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ABSTRACT
Localization in urban environments is becoming increasingly impor-
tant and used in tools such as ARCore [11], ARKit [27] and others.
One popular mechanism to achieve accurate indoor localization as
well as a map of the space is using Visual Simultaneous Localiza-
tion and Mapping (Visual-SLAM). However, Visual-SLAM is known
to be resource-intensive in memory and processing time. Further,
some of the operations grow in complexity over time, making it
challenging to run on mobile devices continuously. Edge comput-
ing provides additional compute and memory resources to mobile
devices to allow offloading of some tasks without the large laten-
cies seen when offloading to the cloud. In this paper, we present
Edge-SLAM, a system that uses edge computing resources to of-
fload parts of Visual-SLAM. We use ORB-SLAM2 as a prototypical
Visual-SLAM system and modify it to a split architecture between
the edge and the mobile device. We keep the tracking computation
on the mobile device and move the rest of the computation, i.e.,
local mapping and loop closure, to the edge. We describe the design
choices in this effort and implement them in our prototype. Our
results show that our split architecture can allow the functioning of
the Visual-SLAM system long-term with limited resources without
affecting the accuracy of operation. It also keeps the computation
and memory cost on the mobile device constant which would allow
for deployment of other end applications that use Visual-SLAM.
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1 INTRODUCTION
Advances in sensing, computing, communication and actuation are
bringing in a new set of mobile devices into our daily lives. Service
robots operate in our homes cleaning our spaces and delivering
condiments in hotels. Augmented reality apps on smart phones
allow us to navigate in indoor environments, provide visualizations
of spatial reconfigurations without actually doing it, or play games
in the real world by augmenting it with virtual objects. Augmented
reality glasses are used for collaboration across the globe. There are
many more envisioned applications, including better seamlessness
via mixed reality as well as telepresence using robots. Most of these
applications rely on sensing spatial context, in particular spatial
localization and place recognition indoors in GPS-denied scenarios.

Spatial sensing has been a research topic for several decades.
Depending on the application, there are several modalities of spatial
sensing. Examples include (i) place recognition which takes a sensor
snapshot (an image from a camera, for example) of a location and
matches it with known locations from prior measurements, (ii)
tracking or estimation of the path followed by the mobile device
from a starting point e.g. odometry, and (iii) localization which is
the absolute positioning of a mobile device with respect to known
landmarks. Each of these classes of sensing is useful for various
applications and has tradeoffs in terms of computational complexity
as well as utility. More recently, Simultaneous Localization and
Mapping (SLAM) has evolved as a class of algorithms useful for
accurate spatial context. It is the process of localizing a mobile
device with respect to an absolute coordinate system as well as
mapping the traversed space with respect to the same coordinate
system. In particular, there has been much recent interest in using
visual sensing (cameras, depth sensors, LiDARs) for SLAM leading
to several Visual-SLAM algorithms.

Typical Visual-SLAM algorithms perform three main tasks. First,
as the mobile device is moving, the algorithm performs a frame-
frame alignment. This is the process of relating the pose of the
mobile device that captured frame (image) k with the pose when
capturing frame k+1. Usually, this is achieved by detecting features
in each frame and finding feature correspondence between the two
frames. The second step is to perform map adjustments locally. This
step involves adjusting the frame-frame alignment performed in
step 1 and identifying "keyframes" or frames of significance to be
used in step 3. Finally, step 3 is loop closure, or the ability of the
algorithm to identify when the mobile device is back at a location
that it has previously visited. This step requires the algorithm to
compare the new framewith all previous frames to identify matches.
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A challenge with this task is the growing complexity of this task
as the map grows. A typical solution to alleviate this problem is
the use of keyframes identified in step 2 for these comparisons,
and not compare the new frame with all previous frames. Other
algorithms limit the number of comparisons to a subset of frames by
various methods [15] such as the use of a short-term and long-term
memory [33], or clustering using other sensing [22]. However, most
of these solutions perform a tradeoff of accuracy to computational
complexity that leads to mixed results.

Recently, there has been much excitement in edge computing
architectures [37, 46, 47, 49]. Such an architecture advocates for the
use of edge computing resources, typically relatively local to the
mobile device and one hop over the local network away, to alleviate
some of the computational tasks on mobile devices. In this work,
we use edge computing resources to improve Visual-SLAM. To this
end, we make the following contributions:
• We take ORB-SLAM2 [41], a popular Visual-SLAM system,
and adapt it to the edge computing architecture. Our system
is called Edge-SLAM.
• To this end, we de-couple the tracking and local mapping
processes, thereby improving local mapping and loop closure
efficiency without compromising the functionality of the
tracking module.
• We evaluate Edge-SLAM on two different mobile devices
using our datasets as well as benchmark datasets such as
TUM [26].
• We open-source our Edge-SLAM implementation1 allowing
other practitioners to compare with our system.

Our results show that Edge-SLAM architecture is a good way
to distribute Visual-SLAM computation between the edge and the
mobile device. In addition to performance, there are several addi-
tional benefits in deploying Visual-SLAM in the edge computing
paradigm such as control of map complexity, privacy, concurrency
as well as reasoning with dynamics. We hope to study these ideas
in future work.

2 RELATED WORK
The area of edge computing has been the topic of research for the
last decade [37, 46, 47, 49]. It proposes a paradigm with sizeable
computing and storage resources placed at the edges of the Internet
closer to mobile and IoT devices that generate a lot of data. The idea
is to utilize computing and storage closer to the sensors to improve
processing latency while not burdening the resource-scarce devices.

There has been some work on offloading tasks from mobile de-
vices to the edge/cloud previously. MAUI [10] and CloneCloud [8]
perform cloud offloading of tasks at various granularities. MAR-
VEL [7], VisualPrint [30] and [36] present application-specific tech-
niques for offloading to the edge or the cloud. These papers work
on decreasing offload latency or masking it from the end user in
time-sensitive applications.

Simultaneous localization and mapping (SLAM) has been a topic
of research in robotics and mobile systems for several decades [5,
13, 50]. Initial research focused on depth sensors such as sonar [17]
and 2-D LiDAR [9, 12]. Other sensors such as Wi-Fi signal strength
have been used for SLAM as well [18, 25, 39].
1http://droneslab.github.io/edgeslam
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Figure 1: Visual-SLAM vs. Edge-SLAM. An augmented real-
ity device running Visual-SLAM (top), and an augmented re-
ality device running Edge-SLAM in collaboration with an
edge device in the environment (bottom) [1–3, 26, 41]

Visual-SLAM has grown rapidly in the last decade [16, 24]. This
includes the use of RGB cameras, RGB-D cameras, and LiDAR
sensors. Systems such as PTAM [31], DTAM [43], LSD-SLAM [14]
used monocular cameras for SLAM. A recent trend has been the
use of color images with depth images. Some of more well-known
Visual-SLAM examples include RGBD-SLAM [16], RTAB-Map [34],
and ORB-SLAM [40, 41]. They build on initial work from systems
such as Kinect Fusion [42], and Kintinuous [51] that first used RGB-
D sensors for 3-D modeling of environments. Current trends also
improve on basic Visual-SLAM by reasoning about semantics [21,
23] as well as object permanence in maps [20].

More recently, there is increased interest in the use of multiple
sensors to perform SLAM. Several recent works combine Wi-Fi
with visual sensing for improved SLAM. In [29], they model Wi-Fi
signal strength using a Gaussian process and use it for finding an
initial seed estimate of the robot’s location which is then refined
with RGB-D data. [44] utilizes a training phase for Wi-Fi modeling
and then applies particle filters for fusing different sensors. [22]
provided a general way to integrate wireless signal strength from
Wi-Fi APs to Visual-SLAM algorithms. [4] uses a Wi-Fi map to
merge multiple visual maps from multiple agents.

Collaborative SLAM has been explored in recent works through
combining edge/cloud computing with SLAM systems in different
ways. [48] built a collaborative monocular SLAM on top of ORB-
SLAM2 [41] for Unmanned Aerial Vehicles (UAVs). The system runs
a smaller version of ORB-SLAM2 (tracking thread and local map-
ping thread) on every UAV, to maintain and optimize a limited local
map independently, and runs place recognition and map fusion on a
centralized server, to merge and optimize the UAVs local maps into
a global map. This study focuses on enabling collaborative SLAM
on multiple UAVs. Whereas Edge-SLAM addresses the increasing
resource usage (compute, storage, etc.) of Visual-SLAM on mobile
devices by splitting the Visual-SLAM pipeline between a mobile
device and an edge device. [19] presents a mapping framework for

http://droneslab.github.io/edgeslam
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Micro Arial Vehicles (MAVs). It consists of one-way communication
between multiple MAVs and a server. Every MAV extracts features,
estimates relative-motion, and then sends the information to the
server to build a separate map and detect loops, as well as merge the
MAVs maps. This framework does not maintain a local map on the
MAVs and runs the SLAM pipeline on the server. In Edge-SLAM, the
system maintains a local and global map by splitting Visual-SLAM
pipeline between a mobile device and an edge device. [45] describes
C2TAM which is a collaborative SLAM framework that is built on
top of PTAM [31]. This system keeps PTAM’s tracking thread on
the client and moves PTAM’s mapping thread to the cloud. The
client sends new keyframes to the server, while the server sends the
full map to the client after every optimization. Such a mechanism
has the potential of causing the client to run out of memory and
generate increasing network traffic as the map size gets bigger.
Edge-SLAM keeps memory and network usage under control by
only maintaining a local map on the client instead of a global map.
In [35], the authors present CORB-SLAM, which is a multi-robot
SLAM system built on top of ORB-SLAM2 [41]. CORB-SLAM runs
on multiple robots and a centralized server. Every robot runs an in-
stance of ORB-SLAM2 to build a map of its environment and sends
it to the server. The server merges the maps received from robots
and feed the complete merged map back to every robot. Sending
back the full map to the client can cause the same memory and
network issues mentioned for C2TAM. Collaborative SLAM stud-
ies might have some overlap with what we do; however, there are
differences between the approaches as well as the goals. Most collab-
orative SLAM works focus on building an accurate joint global map
from smaller maps built by individual robots. Their architecture
has no computation offloading; in these systems, multiple agents
run independently to map an area. Therefore, they will likely not
be comparable in resource use to Edge-SLAM. Building a global
map from smaller maps has other sources of error beyond what
Edge-SLAM does. Thus, comparing Edge-SLAM with these systems
would not be an apples-to-apples comparison of the functioning of
the two pipelines.

A recent study [52] addressed offloading Visual-SLAM to the
edge. In this study, the authors propose an edge-assisted monocular
SLAM system built on top of ORB-SLAM [40]. At a high level,
their goal is similar to our work. However, examining it closely
reveals significant differences in design and implementation. The
authors made offloading decisions by looking at the internal pieces
of ORB-SLAM modules and not by looking at each module as one
piece. Further, the authors incorporated a semantic segmentation
algorithm into their system for improved accuracy. Unlike us, the
focus of this study is not on resource constraints on mobile devices.
Correspondingly, their design does not address relocalization, and
their study does not measure resource (CPU, memory) usage or
overhead of synchronizing the edge and mobile devices. Further,
incorporating semantic segmentation makes their design harder to
generalize across other Visual-SLAM systems. In contrast, Edge-
SLAM is built on top of ORB-SLAM2 [41] (improved version of
ORB-SLAM) and incorporates all aspects of Visual-SLAM including
relocalization as well as ability to work with monocular, stereo and
RGB-D cameras. Our design and implementation focus on resource
usage on the mobile device, and our work extensively evaluates
these aspects of the implementation.
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Figure 2: Architecture of a typical Visual-SLAM system [2]

3 SYSTEM DESIGN
3.1 Overview of a Typical Visual-SLAM System
Shown in Figure 2 on page 3 is an architecture diagram of a typ-
ical feature-based Visual-SLAM system. Several SLAM systems
adhere roughly to this architecture including PTAM [31], LSD-
SLAM [14], ORB-SLAM [40] and ORB-SLAM2 [41]. The input to
a typical Visual-SLAM system are series of images (aka frames)
captured from a camera. While we describe this generic system as
one that accepts regular images (RGB), many SLAM systems are
capable of accepting stereo images, depth images as well as color
and depth images together. Most Visual-SLAM systems have the
following three components:

Tracking: The tracking module detects features in the incoming
image (frame). Typical features can be SIFT, SURF, ORB or corners.
The tracking module then uses these features to find correspon-
dences with a previous reference image (also called keyframe in
many cases). Based on the correspondences in features between the
two frames, it calculates the relative odometry (labeled frame-frame
alignment) between the reference keyframe and the current frame.
The tracking module then determines if this frame should be added
as a keyframe to the map based on a set of criteria such as number
of feature matches. If it decides to add a keyframe, it passes the
current frame to the local mapping module.

Local Mapping: If tracking deemed the current frame to be a
new keyframe, the local mapping module is invoked. This mod-
ule creates correspondences between the new keyframe and other
keyframes in the map. It then performs local bundle adjustment;
a process of refining the relative coordinates of where the images
were taken given the detected common features between keyframes.
The bundle adjustment is local because it limits the reasoning to
keyframes with common features.

Loop Closure: Every so often (frequency depends on the particu-
lar algorithm), the SLAM system runs the loop closure procedure.
Conceptually, this might need to run every time a new keyframe is
added. The new keyframe is compared to all the other keyframes
in the map to check if the current location (place where the current
image was taken) is the same as a previously visited location. If
the current keyframe is similar to a previous one, this module will
perform fusion of these keyframes and all related ones. It might also
perform pose optimization, typically as a graph optimization [32].
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3.2 Challenges in Deploying Visual-SLAM
Systems

3.2.1 Computational Complexity. Typically, loop closure, or the
process of identifying previously visited places is extremely time
consuming. This is because the complexity of this task grows with
the size of the map. Secondly, the process of merging map data
structures from two distinct locations could be arbitrarily complex
depending on the local structure at those places. Finally, the step
of refining poses after the merge involves solving an optimization
problem which might also be complex.

Historically, SLAM algorithms were designed to run on robots
that had reasonably powerful computing onboard. As these tech-
nologies move to mobile/wearable devices, running a Visual-SLAM
algorithm at reasonable rates is extremely challenging. Further,
SLAM is typically a service to identify the location or recognize
a place. This service is used by an application to perform addi-
tional tasks that could need additional computing power making
it even more challenging to run a complete SLAM system on a
mobile/wearable device.

3.2.2 Tight Coupling between Modules. An idea would be to run
some modules in a SLAM algorithm on the mobile device while
running others on the edge/cloud. However, this is challenging as
all modules are tightly coupled. As shown in Figure 2 on page 3, all
of them operate on the global map and require to compare, modify
and trim the map. Latency in access to this shared data structure
or between the modules would result in improper function of the
overall system. Therefore, it is challenging to simply offload parts
of the computation in a Visual-SLAM system. To better visualize
the complexity of de-coupling Visual-SLAMmodules, we traced the
modules that access parts of the global map in ORB-SLAM2 [41]
in Section 4.1.2. The number of locks, and the accessing of vari-
ous data structures from multiple locations demonstrates the tight
coupling of the modules.

3.3 Edge-SLAM Design
3.3.1 Edge-SLAM Design Goals. Our primary goal in designing
Edge-SLAM is to reduce the computational and memory overhead
on the mobile/wearable device without affecting the accuracy of
the execution of the Visual-SLAM system. As described previously,
this is challenging given the tightly coupled nature of the modules.
A second goal is to keep the overall resource usage (CPU, memory)
constant to allow smooth working of applications on the mobile
device. As seen in Figure 7 on page 10, running a Visual-SLAM
pipeline could potentially require a large, and an increasing amount
of resources over time. Our objective is to keep that constant for long-
term operation.

3.3.2 Edge-SLAM Architecture. Shown in Figure 3 on page 4 is
the Edge-SLAM architecture. Our goal is to offload some of the
computing to a ”nearby” edge device. However, this is non-trivial
as described previously. To make it possible, we make two major
changes. First, we propose to run the tracking module on the mobile
device and move the local mapping as well as the loop closing to
the edge device along with the global map. However, the tracking
module needs the map for its tasks. To address this, we introduce a
local map—a partial map that resides on the mobile device. This is
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Figure 3: Envisioned architecture of the Edge-SLAM
system—our modifications are shown in red [2]

our second modification. We designed the local map structure to
meet one of our primary motivations, which is to keep the resource
overhead (CPU, memory) on the mobile device constant. From the
local/global map structure, the split followed. The tracking module
could work completely using the local map and is, therefore, on
the mobile device. The local mapping and the loop closing modules
need the global map for some of their computation. Therefore,
they were moved to the edge. We then provision communication
mechanisms between the tracking module and the local mapping
module. Since local mapping and loop closing modules frequently
update the global map, we also need a mechanism to update the
local map when the global map changes. This is discussed further
below.

Network Design: A key design challenge was the synchronization
between the tracking module on the mobile device and the local
mapping/loop closing modules on the edge device. First, we assume
that there is a reasonable connection (such as a reliable wireless
connection with speeds similar to a local wireless network) between
the two sides. Without this, it is challenging to sustain the amount
of synchronization required. As shown in Figure 3 on page 4, we
designed three separate network connections between the mobile
device and the edge device. Each of these network connections
operates independently of the other so that there is no sequencing
of the communication and corresponding delays.

The first two connections are used to pass the output of the
tracking module to the edge device—they are shown in red in the
lower portion of Figure 3 on page 4. One connection is used by
the tracking module during relocalization to communicate the pro-
cessed frame including features and local geometry, and is labeled
Frames in Figure 3 on page 4. The second connection is used to pass
the keyframe if tracking decided to create a new keyframe, and
is labeled KeyFrames in Figure 3 on page 4. The third connection
is used to update the local map. This is shown in the top portion
of Figure 3 on page 4 and labeled Map Updates. This communica-
tion is typically from the edge device to the mobile device. This
connection keeps the local map updated with the global map. The
global map keeps track of the differences between its state and the
current local map. If the difference is deemed to be large, it creates
an update and sends the update to the mobile device. Depending
on the current status of tracking, the mobile device can decide if it
wants to accept the update or not.
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Figure 4: ORB-SLAM2 system architecture [41]

Updating the Local Map: Both the local mapping and loop closing
modules update and optimize the global map. They look for local
and global relationships between keyframes and constantly work
on optimizing the overall map for consistency. However, since
Edge-SLAM creates a new map structure for the mobile device, it is
important to keep it synchronized with the global map for correct
execution of the tracking module.

Each time the tracking module creates a new keyframe, it passes
it on to the local mapping module on the edge. Correspondingly,
the edge keeps track of the local map on the mobile device. As
the global map changes, it computes map updates and sends them
to the mobile device for update. However, map updating on the
mobile device is a time consuming process as will be shown later.
Therefore, we modify the tracking module to have the capability to
accept or reject the map updates. Given this tradeoff, we empirically
determine a timeout mechanism to decide when the local map is
stale and requires updating. The exact mechanism is discussed in
the implementation of our prototype.

While conceptually, these changes seem straightforward, engi-
neering everything to work together with realistic network laten-
cies is challenging. To demonstrate the feasibility of this architec-
ture, we prototyped our idea on ORB-SLAM2 [41], a well-known
Visual-SLAM system. Our work provides a conceptual design to
offload Visual-SLAM. In order to apply it to other Visual-SLAM
systems, one would need to map the components of our design
to the implementation of the particular Visual-SLAM system to
determine the exact implementation of the offloading.

4 Edge-SLAM IMPLEMENTATION IN
ORB-SLAM2

Section 3 described our overall design to offloading some tasks in
Visual-SLAM. We prototyped our idea using ORB-SLAM2 since it
is open-source. We will now describe ORB-SLAM2, and our Edge-
SLAM prototype implementing the split architecture using ORB-
SLAM2. Please note that we present some of the details including
several magic numbers that make the system work for clarity.

4.1 ORB-SLAM2
4.1.1 Overview. ORB-SLAM2 [41] is the recent state-of-the-art
graph-based Visual-SLAM algorithm that can use a monocular

Data Structure Lock
No. of Operations
Acquiring the Lock

per Module

MapPoint mGlobalMutex (static)

5—Tracking
1—Local Mapping
1—Loop Closing

1—Full Bundle Adjustment

MapPoint mMutexPos

12—Tracking
6—Local Mapping
4—Loop Closing

1—Full Bundle Adjustment

MapPoint mMutexFeatures

12—Tracking
6—Local Mapping
4—Loop Closing

1—Full Bundle Adjustment

KeyFrame mMutexPose

2—Tracking
4—Local Mapping
4—Loop Closing

1—Full Bundle Adjustment

KeyFrame mMutexConnections

4—Tracking
7—Local Mapping
4—Loop Closing

1—Full Bundle Adjustment

KeyFrame mMutexFeatures
7—Tracking

8—Local Mapping
6—Loop Closing

KeyFrameDatabase mMutex
1—Tracking

1—Local Mapping
1—Loop Closing

Map mMutexMapUpdate

1—Tracking
1—Local Mapping
1—Loop Closing

1—Full Bundle Adjustment

Map mMutexPointCreation
4—Tracking

1—Local Mapping

Map mMutexMap

6—Tracking
6—Local Mapping
1—Loop Closing

1—Full Bundle Adjustment

Table 1: Global map locks in ORB-SLAM2 [41]

(RGB) camera, stereo cameras, or RGB-D camera to build sparse
3-D maps. The map is a graph where vertices correspond to im-
age frames, and edges correspond to 3-D visual transformations
between them.

ORB-SLAM2 consists of three threads, one per module: tracking,
local mapping, and loop closure as shown in Figure 4 on page
5. The tracking thread loops through incoming image frames for
their initial pose estimation and decides which frame to accept
as a keyframe, based on five conditions where the first four were
introduced in the first ORB-SLAM paper [40], and the fifth in the
second paper [41]. They are:

(1) If relocalization occurred, then 20 frames should pass to
insert a new keyframe.

(2) Either 20 frames have passed after the last inserted keyframe,
or local mapping thread is not busy.

(3) The current frame is tracking at least 50 features.
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(4) The current frame is tracking fewer than 90% points com-
pared to the frame’s reference keyframe (i.e., the keyframe
most similar to the current frame).

(5) If the current frame tracks less than 100 close points, and
can create more than 70 new close points.

As described later, this detail is important to Edge-SLAM because
our split requires us to reason about some of these conditions on
the mobile side and others on the edge side.

Local mapping adds accepted keyframes to a global map and
performs map-points and keyframes optimization as well as bundle
adjustment on the map local to the accepted keyframe. Next, local
mapping passes the accepted keyframe to the loop closure thread,
which checks for loops, which checks if the current keyframe is
similar to any previously stored keyframe. If they are similar, it
performs loop correction where it corrects keyframes poses and
optimizes the global map.

There are two central data structures to the operation of ORB-
SLAM2—KeyFrames andMap-Points. A keyframe, as described above,
is an image frame that contains unique segment or viewpoint of the
environment. A map-point stores the position, feature descriptor,
and references to all keyframes that observe it. In ORB-SLAM2,
the map-points are obtained by detecting the ORB-features in an
image. Therefore, the feature descriptors are ORB-descriptors. Each
keyframe points to several map-points. Also, multiple keyframes
could point to the same map-points if the same features are seen
from multiple keyframes. Together, the set of all keyframes cur-
rently constructed, and all their observed map-points form the cur-
rent global map. These three data structures depend on each other,
and maintain several additional information—details can be found
in [40, 41]. Part of the map is a visual vocabulary. ORB-SLAM2
stores this so it is easy to compare frames. Each incoming frame
gets tagged with the list of observed words from this dictionary.
This can be used later for quick lookup of similar frames—for loop
closure for example.

4.1.2 Complexity. ORB-SLAM22 is an open-source system with
large code-base consisting of 20 classes and ≈18,000 lines of code.
The system depends on three main threads running simultaneously,
where each thread runs one of the modules, i.e., tracking, local
mapping, and loop closing. Further, the system initiates a fourth
thread on-demand after every loop closure to perform full bundle
adjustment. ORB-SLAM2 complexity lies in all these threads work-
ing on a shared global map structure. To demonstrate the level of
coupling between these threads, Table 1 on page 5 lists the set of
locks used in the ORB-SLAM2 code, the data structures they con-
trol access to, and the number of times they are called in various
modules. For example, we observe in the table that the Map data
structure lock mMutexMap is acquired to perform six operations
in the tracking module such as Tracking::UpdateLocalMap(),
to perform six operations in the local mapping module such as
LocalMapping::MapPointCulling(), to perform one operation
LoopClosing::CorrectLoop() in the loop closing module, and to
perform full bundle adjustment.

In ORB-SLAM2, all three threads assume to execute on the same
computing device and have access to a global map maintained by

2https://github.com/raulmur/ORB_SLAM2
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Figure 5: Edge-SLAM system architecture

the system. The operation of each of the threads is dependent on each
other because of their reliance on the shared data structures.

4.2 Edge-SLAM Implementation
Figure 5 on page 6 shows a breakdown of Edge-SLAM into com-
ponents that run on the mobile device and the edge. As described
earlier, in Edge-SLAM split architecture, the Tracking thread runs
on the mobile device while the Local Mapping and the Loop Closing
threads run on the edge.

Global Map: The global map is created and stored on the edge.
This contains the complete set of keyframes, set of map-points, the
Co-Visibility Graph, and the Spanning Tree. The Co-Visibility Graph
connects keyframes based on their shared map-points observations.
The Spanning Tree is a subset of the Co-Visibility Graph connecting
every keyframe with the keyframe that they share the most map-
points.

Local Map: We create our new map structure called the Local
Map in the tracking thread on the mobile device. It includes a subset
of the latest created keyframes, map-points, Co-Visibility Graph,
and Spanning Tree from the global map. It uses the same visual
vocabulary and recognition database as the one on the edge.

Map Synchronization: The edge periodically sends local map
updates with the latest optimized changes to the mobile device. The
mobile device, on the other hand, instantly sends newly created
keyframes along with its map-points to the edge. On receiving
an update, the mobile device can choose if it wants to update its
local map or not. The edge always accepts new keyframes from the
mobile device.

4.3 Mobile-Edge Network Setup
As described in Section 3, the latency betweenmodules could greatly
affect the working of the Visual-SLAM system. To this end, we
have three separate connections between the mobile device and
the edge—one each to transmit frames from the mobile device to
the edge upon relocalization event, to transmit keyframes from

https://github.com/raulmur/ORB_SLAM2
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the mobile device to the edge, and the third to send map updates
from the edge to the mobile device. With system performance a
priority, we use a fast blocking concurrent queue implementation3
for inter-thread communication. Our results show that such setup
has low overhead on the overall working of the Edge-SLAM system.

We will now describe Edge-SLAM operation on the mobile as
well as the edge.

4.4 Mobile Device Operation
In our design (Figure 5 on page 6), the mobile device runs the
tracking thread. In order to decouple the mobile device operation,
we allow the tracking thread to maintain a local map, create new
keyframes, create new map-points, and accept map updates from
the edge. As in ORB-SLAM2, the tracking thread in Edge-SLAM
continuously processes input feed/frames from the camera, tracks
the local map, estimates the initial position of the current frame,
and decides which frame to be a keyframe. However, in Edge-SLAM,
the local mapping on the edge does not accept all keyframes created
by the tracking on the mobile device. This is because we split the
keyframe creation conditions, described in Section 4.1, between the
mobile device and the edge depending on where each condition can
be validated. We moved the conditions 1 and 2 to the local mapping
on the edge and kept the conditions 3, 4, and 5 on the mobile device.
If a new keyframe is to be created, it creates the new keyframe
in its local map and sends a copy to the edge to be considered for
addition to the global map as well.

When the mobile device receives a local map update, it first
checks if it is not redundant. A map update is considered redun-
dant if no new keyframe created since the last applied map update.
Second, the mobile device checks if applying the local map update
would significantly increase the chance of losing track due to its
latency. We apply a time constraint starting at 300 milliseconds,
which decreases as the number of keyframes in the local map in-
creases. Such a time constraint will limit the size of the local map on
the mobile device. It will also prevent a local map update from being
applied when the keyframe creation rate is high. Typically, more
keyframes are created when there are large changes in the scene
indicating that the device is moving fast. In such cases, interrup-
tions for map updates will lead to losing track, and is undesirable.
Thus, a local map update is accepted only if more than the time
constraint has passed since the last created keyframe. We use the
following formula to compute the time constraint:

TC = ITC/((KFN /LMU ) + 1) (1)

Where TC is Time Constraint, ITC is Initial Time Constraint (set
to 300ms), KFN is current number of keyframes in the local map,
and LMU is the Local Map Update size (set to six keyframes). We
discuss why we choose such numbers in Section 4.7.

When a local map update is accepted, the tracking thread would
temporarily stop operation and not process any new frame. The mo-
bile device updates the local map by fully clearing the current one,
and then constructs a new map using the received update. Because
keyframes are sent to the edge upon creation, no information is lost
when the current local map is cleared. This is a time-consuming
process and we show the latencies involved in Section 5.

3https://github.com/cameron314/concurrentqueue

4.5 Edge Operation
As described earlier, the edge runs two threads: local mapping and
loop closing. Local mapping thread receives keyframes from the mo-
bile device as they get created and sends periodic local map updates
back to the mobile device. On the other hand, loop closing thread
interacts with local mapping thread to receive new keyframes, after
they get processed and added to the global map, and then it contin-
ues processing as in ORB-SLAM2. When the local mapping thread
on the edge device receives a new keyframe, it checks the remaining
keyframe insertion conditions, i.e., conditions 1 and 2 described
in Section 4.1, before accepting the keyframe to be inserted into
the global map.

In Edge-SLAM, the mobile device maintains a local map to keep
the system going. This map is not intended to be used for a long-
term run. Because the local mapping and loop closure run on the
edge, the tracking local map (on mobile device) does not get opti-
mized and might drift and affect the system accuracy if it does not
receive an update regularly. Thus, our objective is to maximize the
number of updates to minimize such drift in the tracking thread.
However, maximizing the number of updates would also meanmore
network usage as well as adding map reconstruction overhead to
the tracking thread. In Edge-SLAM, we implemented a timer-based
update module in local mapping thread to regularly send a local
map update with the minimum number of keyframes possible at
short time intervals. Such an update would correct any drifts and
inconsistencies in the mobile device’s local map. In our update mod-
ule, a local map update is sent every five seconds and consists of
the six most recent keyframes inserted into the global map along
with all of their map-points. By sending small map updates at short
time intervals, we are achieving our objectives to minimize the drift,
minimize the map reconstruction overhead, and limit the network
usage. We will quantify all these in Section 5. In Section 4.7, we
discuss why a local map update consists of six keyframes in more
detail.

4.6 Implementation Tradeoffs
4.6.1 Local Map Update Strategies. There are two typical methods
to update the local map on the mobile device. The first method is to
apply edge changes to the mobile device’s current local map. The
second method is to clear the mobile device’s current local map
and replace it with the new received local map update from the
edge. After running several experiments, we identified the following
issues with the first method, which makes it not efficient and unsafe:
• If we continue reusing the current local map on the mobile
device by applying changes to it, then we will accumulate
lots of unprocessed and unoptimized keyframes and map-
points in the local map. Such keyframes and map-points will
also contribute to creating newer keyframes and map-points
that are inaccurate and increase the chances of drift and
lower accuracy in the global map on the edge.
• Applying changes to the current local map require an ex-
pensive search for every single keyframe and map-point
in the update to find all their references in the local map
structure. This would significantly increase the time com-
plexity of applying an update and reduce the mobile device
performance.

https://github.com/cameron314/concurrentqueue
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• Due to the complex structure of OBR-SLAM2, there exist lots
of cyclic references in the data structures. Thus, applying
changes to the current local map increases the chances of
memory issues such as memory leaks.
• The local map structure on the mobile device is shared be-
tween the various threads. This requires mechanisms to
avoid concurrent operations on the map for correct function-
ing. Therefore, synchronization mechanisms such as locks
are used by individual threads to streamline their access.
Isolating such data structure to update it would be very time
consuming and might result in the erroneous operation of
the whole system.

Thus, whether we receive updates immediately as it happens
or regularly over time, the process of applying the updates would
rapidly increase the chance of losing track as well as decrease
the mobile device performance. The second method, by contrast,
is safer, more efficient, and has fewer side effects on the mobile
device. In this method, a local map update fully replaces the existing
mobile device local map with the minimum possible overhead on
the mobile device performance due to the small size of the update.

4.7 Engineering Edge-SLAM Modules For
Efficient Operation

4.7.1 Tracking Thread. Edge-SLAM has 4 parameters—local map
update size (discussed in Section 4.7.2), local map update frequency
(discussed in Section 4.5), relocalization frame frequency (discussed
in Section 4.7.4), and time constraint to accept a local map update
(discussed in this section). Further, Edge-SLAM is sensitive to ORB-
SLAM2 parameters. Thus, not setting such parameters correctly
would affect the system performance.

As we discussed in Section 4.4, the tracking thread computes a
time constraint value which is used to decide whether to accept a
local map update or not. We initially set this to 300ms. Our objec-
tive when selecting an initial time constraint value was to control
how big the tracking local map can get before it is updated, espe-
cially during high keyframe creation rate. Also, we wanted to allow
the mobile device to work independently for small periods and
regardless of connectivity to the edge. After several experiments,
we found that during high keyframe creation periods, an initial
time constraint value of 300ms would most likely lead the tracking
thread to accept a local map update before the size of the local map
gets higher than 50 keyframes.

4.7.2 Local Mapping Thread. As described earlier in Section 4.5,
when the local mapping thread prepares a local map update to send
to the mobile device, it sets the size of the update to six keyframes.
The main objectives we had when setting the size of the local map
update was to reduce network usage and to reduce map reconstruc-
tion overhead on the mobile device. Thus, after looking into the
tracking thread initialization process, we found that if the system
loses track and there are less than six keyframes in the map, the
tracking thread would reset the whole system. It would assume the
system lost track right after initialization. Based on this condition,
the minimum number of keyframes the local map can have to con-
tinue working without resetting the system is six, which is what
we choose as our local map update size.

4.7.3 Reset Function. The reset function can be called by the sys-
tem as well as the user. The system calls reset function after an
unsuccessful initialization. Whenever the reset function is called,
the system will clear all data structures and restart the mapping
process. In Edge-SLAM, we did not add any new data structure
to perform a full (mobile-edge) system reset. Instead, the tracking
thread uses the same keyframes connection to resend the most
recent keyframe after setting the keyframe’s reset flag to true. This
way, both sides would reset instantly upon receiving a request
either from the system or the user.

4.7.4 Relocalization Function. Relocalization function is calledwhen
the tracking thread loses track where it tries to re-compute the cam-
era pose using the global map. Relocalization is particularly useful
when the tracking thread loses track at a location that has been pre-
viously visited and mapped. In Edge-SLAM, we want relocalization
to be as robust as ORB-SLAM2. To this end, when our system loses
track, it not only tries to relocalize using the current local map but
also sends a relocalization request to the edge for assistance. This
is why we dedicated one of the connections between the mobile
device and the edge to the transmission of frames that assist in
relocalization. When the tracking thread on the mobile device loses
track, it transmits a frame to the edge every half a second. We
chose to send a frame every half a second to allow some change to
happen in the scene, so we do not send redundant frames. The local
mapping on the edge uses the received frames to detect candidate
keyframes from the global map for relocalization. It then sends a
relocalization map update to the mobile device so the mobile device
can try estimating the camera pose from the map. A relocaliza-
tion map update consists of candidate keyframes in addition to the
keyframes connected to each one of them. When Edge-SLAM is
trying to relocalize, it lifts all time and size limits imposed on local
map updates. This is because successful relocalization is a priority
over performance during such time. We compare Edge-SLAM and
ORB-SLAM2 relocalization statistics in Section 5.5.

5 EVALUATION
5.1 Experiment Setup
To evaluate Edge-SLAM system, we run experiments using two
distinct mobile devices and an edge device. The first mobile de-
vice is an NVIDIA JETSON TX2—64-bit NVIDIA Denver and ARM
Cortex-A57 CPUs, NVIDIA Pascal GPU with 256 CUDA-cores, 8 GB
Memory, Connects to 802.11ac WLAN—running Ubuntu 18.04LTS.
This is a prototypical computing platform comparable to the pro-
cessing capabilities on the Magic Leap One AR glasses [28]. The
second mobile device is a Dell Latitude laptop—Intel Core i5-520M
(2.4GHz, 3M cache) (Dual-Core), Intel HD Graphics with dynamic
frequency, 8 GB Memory—running Ubuntu 18.04LTS. This comput-
ing platform is loosely comparable to the resources on a Microsoft
HoloLens [38]. The edge device is a Dell XPS desktop—Intel Core i7
9700K (8-Core/8-Thread, 12MB Cache, Overclocked up to 4.6GHz
on all cores), NVIDIA GeForce GTX 1080, 32 GB Memory—running
Ubuntu 18.04LTS.

We use a pre-collected RGB-D dataset of one of our campus
building floors as the input source for long-running experiments.
Our dataset is collected using a robot equipped with a Kinect 360



Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and Mapping MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada

RGB-D sensor as well as a Velodyne VLP-16 LiDAR for ground
truth. The dataset consists of 52,427 frames and runs for a total of
1,774 seconds (≈30 minutes). We repeat our experiments on each
platform by replaying the frames as if they are being collected at that
time. This allows us to provide exact comparison of performance
across different platforms and is a standard mechanism to compare
performance across SLAM systems [6]. Typical frame rate of the
Kinect is 30fps which is what we replay our dataset at. However, at
eight locations, when the robot was making a turn, we observe that
the ORB-SLAM2 system is unable to find correspondences. After
repeated experimentation, we found that slowing the frame rate
down to 15fps at the ends of the corridors when the robot is turning
allows the system to keep the correspondences and continue to
build the map. Note that this is a shortcoming of ORB-SLAM2, and
fixing this was beyond the scope of this work. Therefore, for each
experiment, we reduce the frame rate to 15fps close to the turns
and replay it at 30fps at other locations. This replay pattern is the
same for the evaluation of ORB-SLAM2 as well as Edge-SLAM in
all the results presented below.

We also use a popular public dataset from Technical University
of Munich called TUM [26] RGB-D dataset for short-running exper-
iments and run them at 30fps. The frames are read from storage and
published as ROS topics4 for consumption by either ORB-SLAM2
or Edge-SLAM. The mobile devices are connected to different cam-
pus Wi-Fi networks, and the edge is connected to the campus net-
work through a wired connection emulating a realistic deployment.
Please note that we performed experiments at all times of day and
our results inherently capture network dynamics due to multiple
users using the same access points.

Using this setup, we compare results from four configurations:
• Running ORB-SLAM2 on the JETSON TX2. We refer to this
experiment by ORB-SLAM2 JTX2 in the results.
• Running ORB-SLAM2 on the Dell Latitude laptop.We denote
this experiment by ORB-SLAM2 L in the results.
• Running Edge-SLAM on the JETSON TX2, and the edge Dell
XPS desktop. We denote this experiment by Edge-SLAM
JTX2-D in the results.
• Running Edge-SLAM on the Dell Latitude laptop, and the
edge Dell XPS desktop. We denote this experiment by Edge-
SLAM L-D in the results.

5.2 Edge-SLAM Performance
As a reminder, the two goals of Edge-SLAM is to reduce computa-
tional load on the mobile device and keep the load constant. Our
first set of results show the computational complexity of running
Visual-SLAM completely on the mobile device (ORB-SLAM2) and
running Visual-SLAMwith offloading (Edge-SLAM). If not specified,
all of them are results averaged over our dataset.

Shown in Figure 6 on page 10 (left) are the average times taken
(in ms) to run the individual modules (tracking, local mapping and
loop closing) in each of the four configurations. As seen from Figure
6 on page 10 (right), the tracking thread takes less than 80ms on
average. There is also not much difference in performance between
latency in execution of the original ORB-SLAM2 tracking module
and the tracking module in Edge-SLAM. This is expected given
4https://wiki.ros.org

the two modules are similar with the exception of the tracking
module in Edge-SLAM interacting with the local map, which does
not have any significant performance impact. However, there is a
large difference between the execution time for local mapping as
well as loop closure modules. We would like to make a couple of
observations related to these results:

• These modules run on the JETSON-TX2/Laptop in the case
of ORB-SLAM2 while they run on the edge (Desktop) in the
case of Edge-SLAM which has a more powerful CPU and
can correspondingly execute the modules faster. However,
this comparison is reasonable as this is the main reason
offloading is appealing.
• While the tracking module is continuously executed to pro-
cess the incoming frames, local mapping and loop closure
modules are not. The local mapping module is executed only
when the tracking module deems that a frame needs to be
registered as a keyframe. Loop closure module runs par-
tially for every created keyframe to check for a loop, and
runs entirely if a loop is detected. Our dataset has a total
of ≈52,400 frames from which our system gets to process
≈39,500 frames. It creates ≈1,200 keyframes. Therefore, local
mapping and loop closure (partial run) modules get called
≈1,200 times.
• Finally, there were two loop closure occurrences in our
dataset, which happen toward the middle and the end. It
can be observed in Figure 7 on page 10 (both sub-figures)
at ≈60% and ≈95% execution time of ORB-SLAM2 running
on mobile devices. While the loop closure occurs only twice
in our dataset, one can envision more occurrences in other
scenarios based on the trajectory followed by the user.

We would like to make two observations with regards to the
results of average latency in processing for each of the modules of
Visual-SLAM. First, Edge-SLAM reduces the latency in the local
mapping and loop closing modules by offloading them to the edge.
It reduces the latency of loop closure module dramatically, allowing
for faster map updates. Our second observation is that by offloading
the intensive tasks, we reduce the variability of performance on
the mobile device and allow the mobile device to run end user
applications which are the main reason to run Visual-SLAM in the
first place. This accomplishes our first objective of reducing overall
computational load on the mobile device.

The next significant performance result is shown in Figure 7 on
page 10. Figure 7 on page 10 (left) shows the instantaneous CPU
usage through the execution on the mobile device. On average, the
CPU usage for ORB-SLAM2 is at ≈30% while using the JETSON
TX2 and ≈40% while using the laptop. In comparison, the CPU
usage is ≈15% when using the JETSON TX2 for Edge-SLAM and
≈25% when using the laptop. Overall, there is ≈35-50% reduction
in CPU use while using Edge-SLAM.

Figure 7 on page 10 (right) shows the memory usage on the
mobile device for both ORB-SLAM2 as well as Edge-SLAM. As
described in Section 3, as the size of the map increases, the overall
memory required to store it also goes up. If the global map is stored
on the mobile device (as in ORB-SLAM2), this will result in growing
memory use which is highly undesirable. Also note that thememory
use goes up when loop closure is performed (at ≈60% and ≈95%

https://wiki.ros.org
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execution time). This is also undesirable. Because Edge-SLAM stores
a fixed size local map on the mobile device, the memory usage
of Edge-SLAM is constant. It remains constant even during loop
closure. This accomplishes our second objective of keeping the resource
use on the mobile device constant.

5.3 Network Performance
As described in Section 5.1, we use a regular on-campus wireless
network to connect the mobile device with the edge. We also per-
formed our experiments in regular working hours when the access
points are used by many users. We did so to understand the net-
work latency imposed in a regular urban setup, and its effect on
the Edge-SLAM system. In Figure 3 on page 4, we show three links
between the mobile and the edge device. We characterize the delay
on each of these links for both configurations of Edge-SLAM we
experimented with. The biggest source of delay is in the map update

Map Update
Edge-SLAM Edge-SLAM JTX2-D

(ms)
Edge-SLAM L-D

(ms)

Construct Map Update
on Edge 57.09 ±0.69 58.30 ±0.66

Re-Construct Map Update
on Mobile Device 411.43 ±4.84 285.68 ±3.18

Table 2: Localmap update latency onmobile device and edge

from the global map on the edge to the local map on the mobile
device. This latency is shown in Table 2 on page 10. Totally, there
are three parts to this latency. First is the latency to construct the
map update on the edge. Second to transmit the update to the mo-
bile device. Finally, once the update is received, the mobile device
needs to reconstruct the map. Table 2 on page 10 shows the first
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Map Update
Edge-SLAM Edge-SLAM JTX2-D

(s)
Edge-SLAM L-D

(s)

Map Update Publish
Frequency on Edge 8.24 ±0.48 7.92 ±0.43

Map Update Acceptance
Frequency on Mobile Device 9.16 ±0.55 8.74 ±0.48

Table 3: Local map update frequency on mobile device and
edge

Keyframe Update
Edge-SLAM Edge-SLAM JTX2-D

(ms)
Edge-SLAM L-D

(ms)

Transmit Keyframe from
Mobile Device to Edge 162.43 ±2.90 142.53 ±6.38

Table 4: Keyframe transmission latency frommobile device
to edge

Accuracy Measure
Visual-SLAM ORB-SLAM2

JTX2
Edge-SLAM
JTX2-D

ORB-SLAM2
L

Edge-SLAM
L-D

Mean Localization
Error (cm) 20.59 ±10.92 19.23 ±11.32 20.90 ±12.77 21.39 ±9.16

Table 5: Mean Localization Error of ORB-SLAM2 and Edge-
SLAM

and third parts of this latency. Constructing the update is done
on the edge and takes ≈58ms. Reconstruction, however, takes be-
tween 285ms and 411ms which is long. We should also note that
when the local map is being reconstructed on the mobile device, it
cannot execute the tracking module. Each map update consists of
the latest six created keyframes. Shown in Table 4 on page 11 are
the network latencies in transmitting keyframes across a wireless
network—both dedicated as well as public. Given the on-campus
public network has higher bandwidth than the private network; the
keyframe transmission is faster on the public network compared to
the private network—142ms vs. 162ms on average. However, like
we show in the next subsection, the Edge-SLAM system works in
both scenarios with little added error in mapping.

Finally, Table 3 on page 11 shows the frequency of themap update
in our experiments. Note that the mobile device might choose not
to accept map updates transmitted by the edge. We show both
the average frequency of map updates transmitted as well as the
frequency of map updates accepted. Our results show that the
mobile device rejects map updates rarely, at least on our dataset.
Map updates are accepted every ≈9s.

5.4 Mapping Accuracy
Our primary objective was to improve the execution performance
of Visual-SLAM while running on mobile devices. Implicit in this
objective is to retain the accuracy of the localization and mapping
achieved by the redesigned Visual-SLAM system. In this subsection,
we will compare the performance of Edge-SLAM with ORB-SLAM2.
The 2-D trajectories of the path traced by the mobile device as
constructed by ORB-SLAM2 and Edge-SLAM are shown in Figure
8 on page 12. There is minimal difference between the mapped
trajectories and the ground truth trajectory demonstrating that the

Relocalization
Visual-SLAM ORB-SLAM2

JTX2
Edge-SLAM
JTX2-D

ORB-SLAM2
L

Edge-SLAM
L-D

# of Successful
Relocalization 4 6 4 10

Relocalization
Latency (ms) 18.25 ±2.29 38.50 ±4.61 12.00 ±0.82 22.90 ±3.92

Table 6: Relocalization statistics for ORB-SLAM2 and Edge-
SLAM

Edge-SLAM system is comparable in accuracy to ORB-SLAM2. For
a more detailed examination, we show the mean localization error
in centimeters of ORB-SLAM2 and Edge-SLAM on both platforms
in Table 5 on page 11. Each system performs better on one platform,
and in each case, the difference is≈1cm on average on a trajectory of
≈150m length. For most applications, this is quite acceptable for the
feasibility of deploying accurate localization/mapping long-term
on mobile devices.

Also, ORB-SLAM2 mapping accuracy is very good. From the
results in Table 5 on page 11, we see that it only drifts for ≈20cm
after traveling ≈150m, which is relatively small. Inherent latency,
as well as working with a smaller map (local map), tend to increase
the potential drift/error in Edge-SLAM. However, our results show
that the drift of running Edge-SLAM is similar to ORB-SLAM2, i.e.,
≈20cm, after traveling ≈150m. This is because ORB-SLAM2 per-
forms full bundle adjustment after every loop closure. This process
optimizes the global map to reduce the drift. In our experiments, our
dataset has two loops, where ORB-SLAM2 has to run full bundle
adjustment. However, Edge-SLAM got to run full bundle adjust-
ment three times because the loop closing module runs on the edge
with more computing power and lower latency, and this enabled
the detection and running of an additional full bundle adjustment
for one of the loops.

5.5 Relocalization Latency
In this subsection, we show that the split architecture has minimal
effect on the relocalization performance. We perform the four exper-
iments using a public dataset—TUM [26] RGB-D dataset running at
30fps. While running this dataset, both systems, i.e., ORB-SLAM2
and Edge-SLAM, lose track and successfully relocalize multiple
times. This is because the camera in this dataset shakes multiple
times while in motion. Table 6 on page 11 shows that our system
successfully relocalizes multiple times comparable to ORB-SLAM2.
It even relocalizes a couple of times more. This is because the track-
ing module in Edge-SLAM uses a local-map, and thus it reasons
with fewer features in comparison to ORB-SLAM2 since it has fewer
keyframes in comparison to the global map. This is the cause of
additional relocalizations.

Table 6 on page 11 also shows that the split architecture of Edge-
SLAM has minimal effect on the relocalization latency. When our
system loses track, it not only sends a relocalization request to the
edge but also tries to relocalize using the existing local map in the
meantime. Thus, on average, the relocalization latency on both
systems is less than ≈40ms. ORB-SLAM2 takes on average between
12ms and 18ms and Edge-SLAM takes on average between 22ms



MobiSys ’20, June 15–19, 2020, Toronto, ON, Canada Ben Ali, et al.

−10 −5 0 5 10

X (m)

−20

−10

0

10

Y
(m

) Ground Truth

Edge-SLAM

ORB-SLAM2

−10 −5 0 5 10

X (m)

−20

−10

0

10

Y
(m

) Ground Truth

Edge-SLAM

ORB-SLAM2

Figure 8: ORB-SLAM2 and Edge-SLAM trajectories running on the JETSON TX2 (left) and the laptop (right) compared to the
ground truth. The Edge-SLAM is connected to on-campus private network on the JETSON TX2 and on-campus public network
on the laptop

and 38ms. The additional overhead of Edge-SLAM comes from seri-
alizing a frame every half a second to send it to the edge. Otherwise,
Edge-SLAM and ORB-SLAM2 have almost similar latencies.

6 CONCLUSION
Many mobile applications including augmented reality apps (and
libraries such as ARCore, ARKit and HoloLens API) require spatial
localization. One popular mechanism to achieve this is using Visual-
SLAM. However, most Visual-SLAM systems are computationally
intensive. In this work, we adapt Visual-SLAM to a split architec-
ture called Edge-SLAM distributing the compute load between a
mobile device and an edge device. We demonstrate our proposal
by prototyping the Edge-SLAM architecture using ORB-SLAM2, a
popular Visual-SLAM system. In particular, we moved the tracking
module to the mobile device and the local mapping as well as the
loop closing modules to the edge. We achieved this split by creating
a new map structure called the local map on the mobile device for
use by the tracking module. This local map only contains a local
view of the global map, and gets periodically updated by the edge
when needed.

In Edge-SLAM, we overcome two challenges of ORB-SLAM2.
We limit the growth in memory usage due to increasing map size,
and keep the mobile device memory usage constant. We also move
the bursty computational tasks (local mapping and loop closing)
to the edge device allowing the mobile device to function more
efficiently and allow running other apps. Overall, we achieved
this with minimal loss of accuracy in the final map as well as the
trajectory taken. We demonstrated this using our own dataset as
well as a publicly available dataset. We have internally tested our
system on multiple other datasets and the results are similar. We
open-source5 our Edge-SLAM implementation andmake it available
to other researchers to evaluate their solutions using Edge-SLAM.

In the future, we would like to deploy Edge-SLAM in a long-term
setting and observe the challenges of executing SLAM across days.
We are interested in crowd-sourcing maps of large urban spaces as
well as reasoning about localization across devices.
5http://droneslab.github.io/edgeslam
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