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ABSTRACT

Transmission, storage, and archival of high-throughput sequencing
(HTS) short-read datasets pose significant challenges due to the
large size of such datasets. Constant improvements to HTS tech-
nology, in the form of increasing throughput and decreasing cost,
and its increasing adoption amplify the problem. General-purpose
compression algorithms have been widely adopted for represent-
ing read datasets in a compact form. However, they are unable to
fully leverage the domain-specific properties of read datasets. In
response, researchers proposed special-purpose compression algo-
rithms which improve upon the compression efficiency of general-
purpose compression algorithms. In this paper, we present Par-
RefCom, a parallel reference-based algorithm for compressing HTS
genomics short-read datasets. HTS instruments are typically used
to generate paired-end reads as they hold significance for biological
analysis. In contrast to existing special-purpose compression algo-
rithms, ParRefCom treats paired-end reads as first-class citizens.
Owing to this treatment of paired-end reads, our algorithm is able
to significantly improve compression efficiency over the state-of-
the-art. More specifically, for a benchmark human dataset, the size
of the compressed output is 21% smaller than that produced by
the current best algorithm. Further, ParRefCom is scalable and its
compression and decompression speeds are better than those of
reference-free methods.

Implementation : https://github.com/ParBLiSS/refcom
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1 INTRODUCTION

Since the introduction of high-throughput sequencing (HTS) ma-
chines, the cost of sequencing has been declining and the through-
put has been increasing exponentially [15]. For instance, using
the recent NovaSeq line of instruments from Illumina, the current
market leader, sequencing cost is expected to come down to $100
per human genome. Transmission, storage, and archival of HTS
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short-read datasets pose significant challenges owing to the large
size of such datasets. Constant improvements to sequencing tech-
nology, in the form of increasing throughput and decreasing cost,
and its growing adoption for a wide variety of applications amplify
the problem. In response to this problem, researchers resorted to
compression of read datasets.

General-purpose compression algorithms have been widely adopted
for representing HTS read datasets in a compact form. Read datat-
sets have several unique properties that make it difficult for general-
purpose compressors to fully exploit the redundancy present in
these datasets. Domain-specific properties of read datasets include
reduced size of alphabet, interleaved streams of data, fixed length for
reads, occurrence of reads and their reverse-complements, paired
representation of reads, scattered nature of redundancy, and avail-
ability of reference sequence. Researchers proposed special-purpose
compression algorithms, that exploit one or more of these proper-
ties, to improve upon the compression efficiency of general-purpose
compressors. Based on whether or not a reference sequence is made
use of during compression, specialized compressors can be classified
as reference-based or reference-free, respectively.

In this work, we leverage all of the above mentioned domain-
specific properties of read datasets to develop ParRefCom, a paral-
lel reference-based compressor for genomics read datasets. Read
datasets generated using HTS instruments widely deployed today
typically contain what are known as paired-end reads. A paired-
end (PE) read is comprised of two separate but related reads, and
the pairing information can serve to be crucial during biological
analysis. Our specialized compressor allows the following lossless
transformations of PE reads in the datasets : reordering of reads
while keeping paired ends together and reordering of individual
reads within a PE read. By exploiting these insights, ParRefCom is
able to significantly improve upon the compression efficiency over
state-of-the-art. More specifically, for a benchmark human dataset,
the size of the compressed output is 21% smaller than that produced
by SPRING [4], the current best algorithm.

At a high-level, our solution approach consists of the following
steps: (1) Specialized alignment of PE reads to standard reference,
(2) Classifying PE reads based on the number of ends aligned, and
(3) Customizing compression strategies for reads in different cate-
gories. In this work, we develop fast and scalable parallel algorithms
for accomplishing each of these tasks. We demonstrate that ParRef-
Com achieves superior compression efficiency compared to existing
methods. Our compressor is asymmetric by design - decompression
speed is much faster than compression speed. This asymmetricity
in design goes well with the real world requirement of compressing
a dataset once and decompressing (using) it many times.

Reference-based compression algorithms tend to achieve supe-
rior compression efficiency as they are able to leverage external
knowledge in the form of reference sequence. On the other hand,
reference-free compression algorithms tend to achieve superior
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compression speed as they avoid the computationally expensive
step of base-to-base alignment. As ParRefCom makes use of a fast
and scalable specialized alignment algorithm, it combines the best
of both worlds and offers high compression efficiency and speed.

2 BACKGROUND

2.1 Sequencing and Representation

A DNA molecule is comprised of two strands. The forward strand
of the molecule, defined in the 5’ to 3’ direction, is modeled as
a sequence of characters from the alphabet set ¥ = {A,C,G,T}.
Given such a sequence of [ characters, s = sq,. .., s, its reverse
complementary strand i.e., the sequence in the 3’ to 5" direction,
iss = c(sg), ...,c(s1), where c(x),x € X is the mapping function
:¢(A) = T,¢(C) = G,c(G) — C, and ¢(T) — A. High-throughput
sequencing (HTS) instruments are used to sequence a large number
of randomly generated fragments from the genome. A few hun-
dred bases are sequenced from these fragments and are commonly
referred to as reads.

Most widely deployed HTS instruments from Illumina are ca-
pable of generating paired-end reads. A paired-end read consists
of two reads which are sequenced from opposite ends of a DNA
fragment, referred to as insert. Further, it is typical to sequence one
of the reads from the forward strand and the other from the reverse
complementary strand. Pairing information can serve to be crucial
during biological analysis. HTS instruments, owing to their limita-
tions, fail to accurately decipher bases sometimes. When inference
is ambiguous or unsuccessful, an N character is recorded in the read.
For this reason, the DNA alphabet set is expanded to include N for
read datasets and ¢(N) — N. Each base in the genome is typically
spanned by multiple reads. This oversampling or redundancy is
required to facilitate subsequent analysis of the reads. Coverage
is defined as the average number of reads spanning a base in the
genome. A k-length DNA sequence is termed a k-mer.

2.2 FASTQ File Format

Read datasets generated using HTS instruments are typically rep-
resented as FASTQ files [5]. A FASTQ file contains the following
pieces of information for every single-end read : Read identifier,
Bases constituting the read, Comment line, and Quality score corre-
sponding to each base. Read identifiers are typically not made use
of during analysis. Further, due to their structure, it is relatively
straightforward to represent the identifiers compactly. Prior works
explored such representations. Comments are either empty or ex-
actly identical to identifier lines. Significant efforts were devoted to
develop standalone compressors for quality scores. A recent work
explored use of a single bit to capture a quality score value [17].
Further, the work demonstrated that such lossy compression of
metadata does not have any noticeable effect on biological anal-
ysis. Due to these reasons, in this work, we focus on compactly
representing the read data in FASTQ files in a lossless manner.

2.3 General-purpose Vs. Special-purpose
Compression

General-purpose compression algorithms have been widely adopted
for representing HTS read datasets in a compact form, with ZIP
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family of algorithms and their blocked variants being the prominent
examples [18]. Domain-specific properties of read datasets make
it difficult for general-purpose compressors to fully exploit the re-
dundancy present in these datasets. Alphabet size of characters
occurring in reads is small, typically 5. FASTQ files contain sev-
eral interleaved streams of data as described in Section 2.2. Reads
generated by HTS instruments mostly have fixed length. Reads
and/or their reverse-complements can represent segments of DNA
in datasets. Reads are represented as a related pair in case of paired-
end read datasets. Redundancy in sequencing, necessary to facilitate
subsequent analysis of reads, is scattered across the dataset. Dif-
ferences between genomes of organisms belonging to a species
are typically very small. Therefore, genome of an organism of a
species can be made use of to compactly represent the read dataset
of another organism belonging to the same species. Researchers
proposed special-purpose compression algorithms, that exploit one
or more of the above properties, to improve upon the compres-
sion efficiency of general-purpose compressors. Based on whether
or not a reference sequence is made use of during compression,
specialized compressors can be classified as reference-based or
reference-free, respectively. In the following section, we furnish
a survey of special-purpose compression algorithms proposed for
HTS short read datasets.

3 RELATED WORK

A number of special-purpose compression tools have been proposed
over the years for compression of FASTQ datasets, both in reference-
free and reference-based categories. These include DSRC [16], Fqz-
comp [2], Fastqz [2], FQC [6], SCALCE [7], LW-FQZip [8], Quip [9],
Leon [1], k-Path [10], and Mince [14]. A recent review article eval-
uated tools with publicly available implementations using a set of
benchmark datasets [13]. The review article also provides short de-
scriptions of the tools mentioned previously. Three special-purpose
compression tools, which demonstrated better compression effi-
ciency, have been proposed since the review article was published -
FASTORE [17], minicom [12], and SPRING [4].

FASTORE clusters reads, i.e. distributes them into bins, such
that reads from neighboring positions are likely to belong to the
same cluster. Within each bin, reads are matched to generate a
reads similarity graph. After this, reads go through an optional
step of redistribution and matching. Reads are then assembled into
contigs using the final similarity graph. Based on the outcome of
the matching, reads are encoded with respect to contigs or other
reads. minicom also takes an approach similar to that of FASTORE.
It additionally attempts to merge contigs to build longer contigs.
SPRING tool comprises of the following steps : Reordering reads
according to their position in the genome using hashed substring
indices, Encoding reordered reads to remove redundancy between
consecutive reads, and Compressing encoded reads using general-
purpose compression tools. In the following section, we provide a
high-level overview of our solution approach.

4 OVERVIEW OF SOLUTION APPROACH

In this work, we leverage all of the previously mentioned domain-
specific properties of read datasets to develop a reference-based
compressor for genomics read datasets. The ordering of paired-end
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(PE) reads in a dataset and the ordering of two reads of a PE read
do not carry any special significance. Therefore, our specialized
compressor allows the following lossless transformations of PE
reads in datasets : reordering of reads while keeping paired ends
together and reordering of individual reads within a PE read. By
utilizing these insights, ParRefCom is able to significantly improve
upon the compression efficiency over state-of-the-art.

We developed a solution approach that leverages all of the prop-
erties described in Section 2.3 and the insights mentioned above. A
high-level description of the overall approach is as follows. First,
we perform a specialized alignment of PE reads in the dataset using
standard reference for the species. Next, we classify the PE reads
based on the outcome of the alignment. The categories are : Two-
aligned PE read (when both ends of the PE read align), One-aligned
PE read (when one of the ends of the PE read aligns but the other
does not), and Non-aligned read (when both ends of the PE read do
not align). Finally, we develop custom compression strategies for
each of these categories. Through evaluation using an assortment
of read datasets, we demonstrate that PE reads in the first category
(Two-aligned) significantly outnumber those in the remaining two
categories.

In the output of the specialized compressor, we capture One-
aligned and Non-aligned PE reads as they are. For Two-aligned
PE reads, we capture the following pieces of information in place
of the reads themselves : (1) Starting location with respect to the
reference sequence, (2) Number of differences with respect to the
reference sequence, (3) Positions of differences within a read, (4)
Bases corresponding to differences within a read and (5) Locations
of other ends for one of the ends. Collectively, these pieces of
information are sufficient to reconstruct the original PE reads as
depicted in Figure 1.

1 2 3 4 5 6 7 8 9 10
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DD©

Figure 1: A fixed-length single-end read can be recovered
by knowing the starting location where the read aligns to
the reference, the number of alignment differences, the posi-
tions of these differences, and the differing bases. Further, a
paired-end read can be recovered from two single-end reads
by knowing the location of the other end for one of the ends

In the following sections, we develop fast and scalable parallel
algorithms for accomplishing tasks that make up our solution ap-
proach. By utilizing these algorithms, we demonstrate that ParRef-
Com achieves superior compression efficiency compared to existing
methods. Our compressor is asymmetric by design - decompres-
sion speed is much faster than compression speed. This is because
the decompression step does not involve the computationally ex-
pensive specialized alignment phase. This asymmetricity in design
goes well with the real world requirement of compressing a dataset
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once and decompressing (using) it many times. We describe our
experimental methodology next.

5 METHODOLOGY

Table 1 lists key properties of datasets used for evaluating this work.
The datasets correspond to organisms from three different species
with varying genome lengths. These diverse datasets are publicly
available and were previously used to benchmark many special-
purpose compression tools. Column 2 represents the number of
fixed-length paired-end reads in each dataset. The length of these
reads is captured in Column 3 and sizes of the original datasets
in Column 4. Among the datasets used for benchmarking various
tools in [13], H. sapiens and T. cacao correspond to big genomics
datasets. We included the former in our evaluation. The latter was
excluded as it is very old and the two ends of paired-end reads have
different lengths.

Table 1: Datasets used for experimental evaluation

Organism Spots/Inserts | Read length | Original

(Thousands) (Bases) Size
C. elegans 33,809 2x 100 6.8 GB
G. gallus 173,698 2x100 | 34.7GB
H. sapiens (H1) 24,476 2 % 100 49 GB
H. sapiens (H2) 207,680 2x 101 42 GB
H. sapiens (H3) 270,765 2 X 146 79 GB

Accession numbers for C. elegans, H. sapiens (H1), and H. sapiens
(H2) are SRR065390, SRR062634, and ERR174310 respectively. Ac-
cession numbers for G. gallus dataset are - SRR197985, SRR197986,
SRR105788, SRR105789, SRR105792, and SRR105794. H. sapiens
(H3) dataset was generated using Illumina NovaSeq and is avail-
able from Illumina BaseSpace as NA12878-Rep-1_S1_L001. This
dataset contains variable length reads with length up to 151. We
trimmed the reads down to 146 bases to make them fixed-length
while retaining the maximum number of reads. The approximate
sizes of the standard reference genome for C. elegans, G. gallus,
and H. sapiens are 100, 1125, and 3300 mega base-pairs respec-
tively. Reference sequences used for respective organisms are -
GCF_000002985.6, GCF_000002315.4, and GCF_000001405.38. We
use bsc (http://libbsc.com) to compress several streams of informa-
tion generated in Sections 7 and 8.

We ran our experiments on a machine with two 14-core Intel
Xeon processors, for a total of 28 cores. The 28 cores in a node
share 256 GB of main memory. Further, we used POSIX threads for
shared-memory parallel programming. For reporting performance
results, each experiment was repeated three times. The wall-times
were collected for each run, and the minimum times amongst the
repeats of an experiment are reported as they closely represent the
capabilities of the system.

6 SPECIALIZED ALIGNMENT
6.1 Motivation

The goal of reference-based special-purpose compression algo-
rithms is to represent the read dataset compactly by capturing
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differences in reads with respect to reference genome. Our spe-
cialized compressor, ParRefCom, also employs a reference-based
strategy. Aligning reads in a dataset, generated from sequencing a
target genome, to standard reference is a fundamental bioinformat-
ics problem. The objective of read alignment is to glean biological
insights by computing and analyzing variations between target
genome and reference genome.

Some attributes of classical alignment are detrimental to com-
pression efficiency when the objective is to represent a read dataset
compactly. When there are multiple equally good alignments for a
read, classical alignment tools may report more than one alignment
for such reads. For compression, one best alignment suffices. Gener-
ating alternative alignments for reads also involves a computational
overhead. While aligning paired-end (PE) reads, classical alignment
tools perform analysis to estimate the insert size and discard ab-
normal alignments [3]. For example, when aligning a PE read, the
location of the read whose reverse-complement aligns to the refer-
ence genome is expected to be after that of the read that aligns as is.
If this is not the case, the alignment may be discarded. As we are not
concerned about biological significance during compression, the
compression efficiency would improve if such an alignment were
to be accepted. Finally, clipping of reads performed by classical
alignment tools may impede faithful recovery of such reads.

In this section, we propose a specialized alignment algorithm
(SAA) that addresses the drawbacks of the classical alignment algo-
rithms when the objective of the alignment is to represent a read
dataset compactly. The goal of our SAA is as follows. For a PE read,
we want to generate an alignment that minimizes the following
expression : Dj 4+ D2 + S12; Dy : Differences between first read and
reference genome, Dy : Differences between second read and refer-
ence genome, and Sy : Separation between alignment locations of
two reads. We propose an SAA utilizing kmer-index that optimizes
the stated objective function. Next, we describe the kmer-index
data structure and provide a parallel algorithm for constructing it.

6.2 Index Data Structure

Our kmer-index data structure comprises of two levels, each an
array, as depicted in Figure 2. Level 2 (L2) array consists of locations
of all kmers in the reference genome. The entries are sorted by kmer
as primary key, and for a kmer by location as secondary key. The
size of level 1 (L1) array is 4k 41, k : kmer size. Each entry in this
array, excluding the last one, corresponds to a kmer and captures
the starting position of the corresponding kmer in L2 array. If a
kmer does not occur in the reference genome, it does not have
any entries corresponding to it in L2 array. For such kmers, the
corresponding L1 array entry contains the same value as that of
the next kmer. To summarize, two consecutive entries in L1 array
help determine the number of occurrences of a kmer in the genome.
Values recorded in L2 array in the range defined by the two entries
provide the corresponding kmer locations.

Using a two-level index data structure has several advantages.
The number of occurrences of a kmer in the reference genome can
be determined by accessing two consecutive entries in L1 array.
For kmers not occurring in the reference, the computed frequency
is 0. This quick determination can aid in reducing the alignment
time. Further, the locations where the kmer occurs in the genome
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Figure 2: An illustration of two-level kmer-index data struc-
ture. kmer1, kmer3, and kmer4 occur four, two, and two
times respectively in the reference genome. kmer2 does not
occur in the reference genome

are present in a contiguous segment of L2 array. Scanning these
locations therefore benefits from spatial locality of cache and/or
memory accesses. Memory consumption of the two-level index data
structure is (4% + 1) X 2k + (|G| —k + 1) X [log, |G|1 bits, where |G|
represents the length of the genome. For large genomes and small
values of k (< 15), as used in this work, second term dominates. The
overhead due to L1 array is insignificant. Therefore, the two-level
index data structure enables fast kmer lookups while incurring a
small memory overhead. Next, we present a parallel algorithm for
constructing the two-level index data structure.

6.2.1  Parallel Index Construction. Algorithm 1 demonstrates the
parallel construction of the two-level index data structure. Initially,
reference genome is block decomposed among the available threads.
Every thread generates the list of (kmer, locn) tuples for the block
owned by the thread. Next, the list across all threads is sorted in
parallel. locns from the resulting sorted list make up L2 array. L1
array is obtained by performing a parallel prefix on the sorted list
of tuples.

6.3 Alignment Algorithm

The objective of our specialized alignment algorithm (SAA) is as fol-
lows. For a paired-end (PE) read, we want to generate an alignment
that minimizes the following expression : D1 + Dy + S12; Dy : Dif-
ferences between first read and reference genome, D : Differences
between second read and reference genome, and S12 : Separation
between alignment locations of two reads. In this section, we de-
scribe the design of such an SAA and its parallel implementation. In
case of a PE read, we assume that one of the ends is sequenced from
the forward strand and the other from the reverse-complementary
strand. This assumption is representative of the most common form
of paired-end sequencing, called forward-reverse sequencing.

Let e denote the number of differences we want to tolerate be-
tween a read and the reference genome. According to pigeon-hole
principle, if the read is decomposed into (e + 1) non-overlapping
subsequences, then there is at least one subsequence of the read
that matches exactly with an identical length subsequence from the
reference genome. This property can be extended as follows. If the
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Algorithm 1: Parallel construction of kmer-index

Input: G, reference genome. k, kmer size. t, thread count
Output: Two-level kmer-index: L1 and L2 arrays

// Size of L1 is 4k +1

// Size of L2 is |G|—k+1. |G| < genome size
parallel j = thread’s id do

2 SG « Size of the reference genome G

3 Lg « [%-I

4 It —jXLg

5 rt—(G+1)XLg-1

6 if (Sg — k) < rt then

-

7 ‘ rt « (Sg — k)

8 end

9 Initialize 7 to an empty list of tuples

10 fori < It tort do

1 ‘ Append (kmer, locn) to T~

12 end

13 Parallel sort 7~ using kmer as primary key and locn as
secondary key

14 for i « It tort do

15 ‘ L2[i] « T [i].locn

16 end

17 Use parallel prefix to populate L1 with start position of

every kmer in 7~
18 end

read is decomposed into (e +2) non-overlapping subsequences, then
there are at least two subsequences of the read that match exactly
with identical length subsequences from the reference genome. The
extended pigeon-hole principle has the ability to filter out spurious
matches more effectively. Note that the extension does not have
any impact on the alignment output but only serves to potentially
reduce the computational cost. Therefore, we adopt the extended
pigeon-hole principle in our SAA.

A high-level overview of our SAA is as follows. First, we decom-
pose a read into non-overlapping kmers. We look up each kmer
in L1 array to determine its frequency of occurrence. We select a
subset of (e + 2) kmers that occur with the lowest frequency. For
these (e + 2) kmers, we look up their corresponding locations in
L2 array. Next, we obtain a subset of locations which correspond
to at least two kmers. We perform a banded-alignment of the read
at the locations in the subset using a vectorized Meyer’s bit-vector
algorithm. If the read aligns to the reference sequence with < e
differences, we record the start position of the alignment and the
differences.

For a PE read, we perform the above steps for each individual read
and its reverse-complement. From this point on, for simplicity, we
refer to a read that aligns as is to the reference sequence as forward
read and a read whose reverse-complement aligns to the reference
sequence as reverse read. We then select the best alignment as
one that minimizes the sum of (1) Differences between forward
read and reference genome, (2) Differences between reverse read
and reference genome, and (3) Separation between alignment start
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locations of the two reads. Further, we classify PE reads based on
the outcome of the alignment as : Two-aligned (when both ends of
the PE read align), One-aligned (when one of the ends of the PE read
aligns but the other does not), and Non-aligned (when both ends of
the PE read do not align). We present our strategies for handling
reads in each of the three categories in subsequent sections. The
parallel implementation of our SAA is described in Algorithm 2.

Algorithm 2: Parallel specialized alignment algorithm

Input: R, paired-end read dataset. k, kmer size. t, thread count

Input: B, read block size. e, number of differences

Input: kmer-index, L1 and L2 arrays

Output: LFT,,,: List of forward two-aligned reads

Output: LRT,,,: List of reverse two-aligned reads

Output: Loy, : List of paired-end one-aligned reads

Output: Ly, : List of paired-end non-aligned reads

// Reads in LFr,,, and LRt,,, correspond one to one
1 parallel j = thread’s id do

2 while reads in R do

3 Parse B reads from R

4 for each rin 8 do

5 r1 « first read in r

6 r2 « second read in r

7 Align r1 and r2 as described in Section 6.3
8 if r1 and r2 align then

9 rf « forward read. rr « reverse read
10 Append (rf, locnf, id) to LFry,

11 Append (rr, locnr, id) to LRT 1o

12 else if r1 or r2 aligns then

13 if r1 aligns as forward read then

14 rf « rl.rr « reverse of r2

15 Append (r f,rr,locnl) to Lone

16 else if r1 aligns as reverse read then
17 rf < r2.rr < reverse of r1

18 Append (r f,rr,locnl) to Lone

19 else if r2 aligns as forward read then

20 rf « r2.rr « reverse of r1

21 Append (rf, rr,locn2) to Lone
22 else

23 rf « rl.rr < reverse of r2

2 Append (r f, rr,locn2) to Lone

25 end
26 else
27 Determine r f, rr, and locn as described in

Section 8

28 Append (rf,rr,locn) to Lyon

29 end

30 end

31 end

32 end

SAA lends itself very well to parallelization. PE read dataset R is
decomposed into virtual blocks, each of size B reads. Each thread
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parses B reads, performs alignment for them, and generates the cor-
responding output. The output blocks are appended to appropriate
lists as described in Algorithm 2. Threads only need to synchronize
to determine the blocks of reads to work on. Each thread seeks
ownership of a new block of reads once it is done working on the
block it currently owns. The parameter 8 can be tuned appropri-
ately based on the number of threads to ensure none of the threads
starves. Note that a straightforward block decomposition of reads
among threads can lead to a load imbalance among threads. This
is because the computational effort necessary to align reads varies
from one read to another.

6.4 Results and Analysis

In this section, we present results obtained using our specialized
alignment algorithm (SAA). Before proceeding to discuss the results,
we furnish the values used for parameters and the rationale behind
selecting the specific values. For the number of hardware threads
typical among shared-memory machines, a value of 4000 for B,
read block size, ensures that threads spend almost all their time
performing useful work, namely read alignment. The value of B is
independent of the dataset.

A value of 14 for k allows us to tolerate up to 5 differences per 100
bases (| (;3%)J) between a read and the corresponding subsequence
of the reference genome. Note that SAA makes use of extended
pigeon-hole principle. We choose a small value of 3 for e initially, to
reduce the computational overhead. However, our implementation
of the banded and vectorized Meyer’s bit-vector algorithm allows a
band size of up to 7. We utilize the full potential of the alignment
algorithm to allow up to 7 differences. So, the final value of e sup-
ported by SAA is 7. Finally, for every read, we explore up to 2000
potential locations to select the best alignment. Note that the ability
to align a read, on average, tapers off as the number of explored
locations increases. The chosen value helps achieve a good trade
off between the number of reads aligned and the computational
cost incurred.

Table 2 shows the percentage of paired-end (PE) reads falling
into each of the three categories : two-aligned, one-aligned, and
non-aligned, for all datasets using SAA. It can be observed that
the percentage of two-aligned reads is the highest for all datasets,
with the value for human dataset reaching 90%. PE reads in this
category offer the most potential for compression. We present our
strategy for compressing reads in two-aligned category in Section 7.
It should be noted that C. elegans and G. gallus datasets were gener-
ated using older generation of sequencing instruments. Therefore,
these datasets contain more sequencing errors, which are partly
responsible for the lower percentage of PE reads in two-aligned
category compared to human datasets. As we mentioned previously,
these results correspond to the case where we tolerate up to 7 differ-
ences per single-end read. Our strategy for compressing the reads
falling into one-aligned and non-aligned categories is described in
Section 8.

In Section 6.1, we described the rationale behind designing a
specialized alignment algorithm to complement classical alignment
algorithms when the objective is to represent the read dataset in a
compact manner. Table 3 shows the percentage of PE reads falling
into various categories for all datasets using BWA [11], a flagship
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Table 2: Percentage of paired-end reads aligned using spe-
cialized alignment algorithm

Dataset H Two-aligned One-aligned Non-aligned
C. elegans 85.12 8.17 6.71
G. gallus 84.14 5.87 9.99
H. sapiens (H1) 88.57 8.21 3.22
H. sapiens (H2) 90.04 7.94 2.02
H. sapiens (H3) 88.46 8.84 2.70

classical alignment tool. It can be observed that the output of BWA
comprises of two additional categories : clipped and multi-aligned.
For PE reads in the clipped category, we do not have complete
alignment for at least one of the ends. In case of multi-aligned cate-
gory, we have multiple alignments for at least one of the ends. Even
thought the percentage of two-aligned PE reads is higher for some
datasets, the reads in clipped and multi-aligned categories pose
challenges for compression. BWA was run with default parameters
and tolerates more differences per single-end read than SAA, which
is mostly responsible for the higher percentage of two-aligned PE
reads.

Table 3: Percentage of paired-end reads aligned using BWA

Dataset H 2-align 1-align O-align Clipped Multi-aligned

CE 81.63 0.65 3.85 12.71 1.16
GG 80.07 0.24 0.45 18.71 0.53
Hi 89.88 0.23 0.16 9.27 0.46
H2 93.94 0.23 0.42 5.06 0.35
H3 94.26 0.09 0.31 4.58 0.76

Table 4 shows the time taken by BWA and SAA for alignment
using identical number of threads, 16 in this case. It can be noticed
that SAA is nearly an order of magnitude faster than BWA. This
demonstrates the superior computational capability of SAA com-
pared to classical alignment tools for the purpose of representing
read datasets compactly. Index construction time is not included
for both BWA and SAA. The value in case of SAA for C. elegans,
G. gallus, and H. sapiens is 3, 51, and 103 seconds respectively. In
the following section, we describe our algorithm and its parallel
implementation for handling PE reads in the two-aligned category.

Table 4: Alignment time in seconds using 16 threads for
BWA and specialized alignment algorithm

Dataset H BWA time ( s) SAA time (s) SAA speedup
C. elegans 46 8.98
G. gallus 5265 433 12.16
H. sapiens (H1) 101 9.13
H. sapiens (H2) 8140 852 9.55
H. sapiens (H3) 16054 1770 9.07
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7 HANDLING TWO-ALIGNED PAIRED-END
READS

7.1 Overall Approach

For two-aligned paired-end (PE) reads, we capture the following
pieces of information in lieu of the reads themselves : (1) Alignment
start location with respect to the reference sequence, (2) Number
of differences with respect to the reference sequence, (3) Positions
of differences within a read, (4) Bases corresponding to differences
within a read and (5) Locations of other ends for one of the ends.
Collectively, these pieces of information are sufficient to reconstruct
two-aligned PE reads. In the following subsections, we provide a
detailed description for generating each of these pieces of informa-
tion.

Algorithm 3 demonstrates parallel generation of data streams to
be recorded for two-aligned PE reads. Lists of forward and reverse
two-aligned reads generated by Algorithm 2 are independently
sorted in parallel based on the alignment locations of the reads.
The sorted lists are block decomposed among available threads and
each thread is responsible for generating data streams for reads
in the block owned by it. Data stream (5) is an exception and we
describe the process for generating it in Section 7.6. Note that data
streams (1)-(4) are generated for both forward and reverse reads
and data stream (5) only for forward reads. This is because it is
sufficient to record pairing information only for one of the ends,
forward read in our case, of a PE read. The generated data streams
are compressed in parallel using bsc, a general-purpose compressor.

7.2 Generating List of Starting Locations

The first piece of information that needs to be recorded for every
read, forward and reverse, is the location in the reference genome
where the read starts aligning with the genome. There are two pos-
sible options for recording the alignment start location information
: (1) Combine forward and reverse reads into a single list or (2)
Maintain them in separate lists. In the former case, in addition to
storing the start location, a bit is necessary to indicate whether
the read is a forward read or a reverse read. Further, there can be
implication for how the pairing information is maintained. Owing
to these reasons, it is beneficial to choose the second option. For a
read, we store its relative start location, location delta from previous
read, instead of the absolute start location. This offers additional
space savings.

For all datasets, and for both forward and reverse lists, the
frequency of occurrence of relative start location values falls off
sharply as the values increase. Based on this observation, we use
the following scheme to encode location deltas. We use one byte to
encode the location delta if the value is < 253. We use the remain-
ing three values that can be represented using a byte - 253, 254,
and 255 - to indicate that 2, 3, and 4 bytes are necessary to capture
the location delta value respectively. The value is stored using the
corresponding number of bytes.

7.3 Generating List of Number of Differences

The next piece of information that needs to be recorded for every
read is the number of bases different in the alignment between the
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Algorithm 3: Parallel generation of data streams for two-
aligned paired-end reads

Input: LFT,,,: List of forward two-aligned reads

Input: LRT,,,: List of reverse two-aligned reads

Output: LFsy and LRgy: List of starting locations

Output: LFNp and LR p: List of number of differences

Output: LFpp and LRpp: List of positions of differences

Output: LFgp and LRpp: List of bases corresponding to

differences

Output: Lpg: List of locations of other ends

// LFr,,, and LRT,,, have the same size

// They are lists of tuples of type (read,locn,id)
1 parallel j = thread’s id do

2 Sg « Size of LFr,,,. LG < [STG-I

3 It —jxLg. rt —(+1)xXLg-1

4 if (Sg — 1) < rt then

5 ‘ rt «— (Sg —1)

6 end

7 Parallel sort LFT,,, using locn as key. Parallel sort LRT,,
using locn as key

8 Initialize 7°F to an empty list of tuples. Initialize 7R to an
empty list of tuples

9 fori < It tort do
10 Append (idf, locnf,posnf) to TF
1 Append (idr, locnr) to TR

12 Append starting location of LFr,,,[i] to LFsp,

13 Append starting location of LRT,,[i] to LRs,
14 Append number of differences of LFr,,,[i] to LFNp
15 Append number of differences of LRT4,,[i] to LRND
16 Append positions of differences of LFr,,,[i] to LFpp
17 Append positions of differences of LRT,,,[i] to LRpp
18 Append differing bases of LFr,,[i] to LFgp

Append differing bases of LRT+,,[i] to LRpp

19

end

Parallel sort 7 F using id as key. Parallel sort 7 R using id
as key

Initialize 7P to an empty list of tuples

20

21

22
fori « It tort do

‘ Append (locnf, locnr, posnf) to TP
end

23
24
25
26 Parallel sort 7P using locnr as key
fori < It tort do

‘ Append (locnr — loncenf, posnf) to Lpg

end

27
28

29

30 end

read and the reference genome. We use one byte to capture each
difference count.

7.4 Generating List of Positions of Differences

In addition to storing the counts of differences, we need to record
the positions of differing bases for reads which have one or more
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differences. The number of bits necessary to store each difference
is logoL, where L denotes the length of the read. This cost can be
brought down if we store relative difference positions. We use one
byte to encode each relative difference position.

7.5 Generating List of Bases Corresponding to
Differences

In order to recreate individual reads exactly during decompres-
sion, we need to record the bases corresponding to the differences
along with the counts and the positions of the differences. In our
experiments, we observed that the count of substitutions signifi-
cantly outnumber the counts of insertions and deletions. Further,
the counts of insertions and deletions are approximately the same.

Taking these characteristics into account, we developed the fol-
lowing encoding scheme to capture the base differences. We use
2 bits for capturing a substitution. Note that A, C,G, T can be sub-
stituted with one of the other three bases. This leaves us with one
unused value, 11, which can be used to capture additional scenar-
ios using 2 more bits. The four values made available through the
additional 2 bits are used to capture : substitution to an N, deletion,
insertion of an N, and insertion of a regular base. When the insertion
corresponds to a regular base, we use 2 additional bits to capture
the inserted base.

7.6 Generating List of Locations of Other Ends

Collectively, data streams (1) - (4) described in preceding subsections
contain sufficient information to recover forward and reverse reads
independently. We now describe the information we capture so that
reverse reads can be paired with their corresponding forward reads.
Among the approaches available to capture pairing information,
the one that incurs the least cost is the following. For every reverse
read, we capture the relative location of its forward read. There
can be more than one forward read that aligns starting at a given
location. To account for such cases, we capture which of these
forward reads pairs with the reverse read under consideration.

We use one byte to encode each value of the second type. The
former values follow a normal distribution. We map the distribu-
tion mean to zero and compute the corresponding folded-normal
distribution. We use the scheme described in Section 7.2 to encode
the resulting values. This concludes our discussion on capturing
the data streams necessary for encoding and decoding two-aligned
PE reads. Next, we discuss our approach for handling one-aligned
and non-aligned PE reads.

8 HANDLING ONE- AND NON- ALIGNED
PAIRED-END READS

In Section 6.4, we showed that there is a small fraction of paired-end
(PE) reads for which one or both ends do not align. We classified
them under one-aligned and non-aligned categories, respectively.
Even though we do not have the desirable outcome for these PE
reads, our specialized alignment algorithm (SAA) generates suffi-
cient information to orient and order them. In order to orient PE
reads, we need to know which read to capture as forward read and
which one to capture as reverse read. Relative placement of PE reads
with respect to one another helps in determining a good ordering
to assist in better compression. In case of one-aligned PE reads, we
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have an alignment for one of the ends of the PE read. Based on
whether the end is aligned as a forward read or as a reverse read,
we have the necessary information to determine the orientation.
Refer to Algorithm 2. Further, location of the aligned end assists in
ordering the reads relative to one another.

The determination of orientation and ordering of non-aligned
PE reads works as follows. Note that we don’t have an alignment
for any of the ends in case of a non-aligned read. When we attempt
to align a PE read using SAA, we generate potential candidate lo-
cations where the read may align. When such candidate locations
are available for a non-aligned PE read, we pick the best among
available locations and use it to orient and order reads. We label
such PE reads under non-aligned-x category. Even when potential
candidate locations are not available, we can have one or more suc-
cessful kmer lookups. When information from looking up kmers is
available, we pick the best among such lookups and use it to orient
and order reads. We label such PE reads under non-aligned-y cate-
gory. Finally, when we have no information available to orient and
order PE reads, we label such reads under non-aligned-z category.

The orientation for PE reads in non-aligned-z category is deter-
mined based on the order in which reads appear in the dataset, first
read as forward read and second read as reverse read. In terms of
ordering PE reads in this category, we place them after PE reads
belonging to the remaining categories. In Section 10, we will show
that the percentage of reads in non-aligned-z category is zero or
close to it for all datasets. Therefore, even when both ends of a PE
read do not align, we have sufficient evidence to orient and order
reads.

For one- and non-aligned PE reads, orientation is determined
while attempting to align the reads using SAA. Further, they are
ordered by performing a parallel sort. We use one byte per base
encoding to capture one- and non- aligned PE reads. Oriented and
ordered one- and non- aligned PE reads are compressed in parallel
using bsc, a general purpose compressor. We considered alternative
encodings, including using two bits for four regular bases and
recording Ns separately, but one byte per base encoding yielded
the best compression efficiency. It must be noted that classical
alignment algorithms do not provide any information for orienting
and ordering non-aligned reads.

9 DECOMPRESSION ALGORITHM

Our special-purpose compressor, ParRefCom, is asymmetric by
design - decompression is much faster than compression. This is
because the decompression step does not involve the expensive
specialized alignment phase. This asymmetric design of ParRef-
Com goes well with the real world requirement of compressing a
dataset once and decompressing (using) it many times. Our parallel
algorithm for recovering the read dataset using the compressed
representations described in Sections 7 and 8 works as described
below. General-purpose compressor bsc is first used to perform par-
allel decompression. Recovery of one- and non- aligned paired-end
(PE) reads is complete after this step. Note that reverse-complement
of second end in every PE read is computed to undo the reverse-
complement operation performed by the specialized alignment
algorithm.
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9.1 Recovering Two-aligned Reads

Our parallel algorithm for recovering two-aligned PE reads is de-
scribed in Algorithm 4. We first use the reference genome and
the list of starting locations to recover difference-free reads. Then,
we use lists of counts of differences, positions of differences, and
bases corresponding to differences in order to update bases that
are different between reads and the reference genome. These steps
are performed independently for lists corresponding to forward
and reverse reads. Finally, we perform a parallel sort of reverse
reads using information contained in data stream (5). This step
accomplishes the task of pairing reverse reads with forward reads
appropriately. The reference sequence used during decompression
is the same as that used during compression.

Algorithm 4: Parallel algorithm for recovering two-aligned
paired-end reads

Input:
Input:
Input:
Input:
Input:
Input:

G, reference genome. t, thread count
C, number of two-aligned paired-end reads
LFsy and LRgy : List of starting locations
LFnp and LRy p: List of number of differences
LFpp and LRpp: List of positions of differences
LFpp and LRpp: List of bases corresponding to
differences

Input: Lpg: List of locations of other ends

Output: LFT,,,: List of forward two-aligned reads

Output: LRT,,,: List of reverse two-aligned reads

// Reads in LFr,,, and LRt,,, correspond one to one
1 parallel j = thread’s id do
2 S « Size of LF74,0

3 LG<—[SG-|
4 It —jXLg
5 rt — (G+1)xXLg-1
6 if (Sg — 1) < rt then

7 ‘ rt «— (Sg - 1)
8 end
9 fori « It tort do

Populate LFr,,,[i] using decoded LFs[i] and G
Populate LRT,,,[i] using decoded LRsy[i] and G
Identify differing bases in LF7,,,[i] using LFnp[i],

10
11
12
13 and corresponding number of LFpp entries
14 Identify differing bases in LRT,,[i] using LRNpli],
15 and corresponding number of LRpp entries
16 Update differing bases in LFr+,,[i] using LFppli],
17 and corresponding number of decoded LFgp entries
Update differing bases in LRT,,,[i] using LRpp|[i],

and corresponding number of decoded LRpp entries

18

19

20 Compute reverse-complement of LRT,,[i] read

21 end
22 Sort LRT4y, in parallel using Lpg values as keys
// LFryoli] and LRTy,0[i] correspond to two ends

of a paired-end read

23 end
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10 RESULTS AND ANALYSIS

In this section, we present and analyze results corresponding to
compression and decompression of all datasets. We use minicom
and SPRING as baseline to compare our results. These are the most
recent tools and demonstrated superior compression efficiency
among the tools mentioned in Section 3. Table 5 shows the sizes
of the compressed datasets, in mega bytes, produced by minicom,
SPRING and ParRefCom. For comparison, the sizes of the original
datasets are furnished in Table 1. It can be observed that ParRef-
Com performs better than SPRING for all datasets but C. elegans.
Excluding the C. elegans dataset, the size of the compressed output
produced by ParRefCom is at least 21% smaller compared to the
next best. For human dataset H1, it is smaller by as much as 77%.
These results demonstrate the superior compression efficiency of
ParRefCom, our special-purpose compressor.

Table 5: Compressed file sizes (in MB) using minicom,
SPRING, and ParRefCom algorithms

Dataset H minicom SPRING ParRefCom Improvement

CE 249 227 267 -17.62%
GG 1,739 1,512 1,175 22.29%
Hi1 821 825 192 76.61%
H2 2,522 1,666 1,324 20.53%
H3 2,888 2,022 1,459 27.84%

Tables 6 and 7 depict the time taken by minicom, SPRING, and
ParRefCom tools for compression and decompression respectively.
The results are provided for all datasets and correspond to the case
when 16 threads are used. For compression, ParRefCom is at least
1.9 times faster across all datasets. In case of decompression, Par-
RefCom is at least 1.4 times faster across all datasets. Note that a
dataset typically needs to be compressed only once but needs to
be decompressed multiple times. Therefore, decompression perfor-
mance carries more significance than compression performance.

Table 6: Compression time in seconds using 16 threads for
minicom, SPRING, and ParRefCom algorithms

Dataset H minicom SPRING ParRefCom Speedup

CE 490 75 6.53
GG 12, 680 2,374 634 3.74
H1 1,667 540 249 2.17
H2 16,232 2,502 1,117 2.24
H3 53,780 4,042 2,141 1.89

Table 8 shows the time taken by specialized alignment, compres-
sion, and decompression for human dataset H2 as the number of
threads is varied from 2 to 16. Our algorithms demonstrate good
scalability across the board. Most of the discrepancy in scalability
is due to the sequential nature of IO, bsc, and interference from
concurrently running jobs while accessing the file system. ParRef-
Com compression and decompression times reported in Tables 6, 7,
and 8 are end-to-end times. Currently, ParRefCom performs all the
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Table 7: Decompression time in seconds using 16 threads for
minicom, SPRING, and ParRefCom algorithms

Dataset H minicom SPRING ParRefCom Speedup

CE 31 33 19 1.63
GG 149 198 104 1.43
Hi1 51 56 21 2.43
H2 190 226 114 1.67
H3 273 326 187 1.46

processing in-memory. The memory consumption can be reduced
by writing intermediate data to disk and using external-memory
algorithms.

Table 8: Specialized alignment, compression, and decom-
pression times in seconds for H. sapiens (H2) dataset using
ParRefCom algorithm

No. of threads H Alignment Compression Decompression

2 5,956 6,903 387
4 3,050 3,605 235
8 1,650 1,989 158
16 852 1,117 114

Table 9 shows the breakdown for one- and non- aligned PE reads
in each of the categories described in Section 8 for all datasets. It can
be observed that the percentage of reads in non-aligned-z category
is zero or close to it for all datasets. Therefore, even when both ends
of a paired-end read do not align, we have sufficient evidence to
orient and order reads. Note that classical alignment algorithms do
not provide any information for orienting and ordering non-aligned
reads.

Table 9: Percentage of one- and non- aligned paired-end
reads using specialized alignment algorithm

Difference type | CE GG~ HI H2 H3
One-aligned 8.17 5.87 821 7.94 8.4
Non-aligned-x || 2.74 9.09 296 1.51 234
Non-aligned-y || 3.95 098 026 0.51 0.36
Non-aligned-z 0.02 0.00 0.00 0.00 0.00

11 CONCLUSION

Owing to the large size of the read datasets produced by high-
throughput sequencing instruments, transmission, storage, and
archival of such datasets pose significant challenges. The mag-
nitude of the problem grows as the sequencing technology im-
proves. Domain-specific properties of read datasets make it difficult
for general-purpose compressors to fully exploit the redundancy
present in these datasets. Researchers proposed special-purpose
compression algorithms, that exploit one or more of the unique

456

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

properties of read datasets, to improve upon the compression effi-
ciency of general-purpose compressors.

In this work, we developed a reference-based compressor for
genomics read datasets which exploits all of the domain-specific
properties of read datasets. Our compressor performs a specialized
alignment of paired-end (PE) reads to standard reference sequence.
It classifies PE reads based on the number of ends aligned. Finally, it
uses custom compression strategies for reads in different categories.
Our special-purpose compressor allows lossless transformations
of PE reads in datasets. By leveraging all of these insights, it is
able to significantly improve upon the compression efficiency over
state-of-the-art. In addition to enhancing compression efficiency,
we furnished fast and scalable parallel algorithms for compressing
and decompressing read datasets.
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