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1. Introduction

It is well known that many astrophysical bodies have intrinsic magnetic fields. For examples, Earth possesses a
magnetic field that has been known for many centuries; sunspots are the best-known manifestation of the solar
magnetic activity cycle. But only in the last few decades scientists began to try to understand more about the origin
of these magnetic fields. It is widely accepted that the magnetic activities of many planets and stars represent the
magnetohydrodynamic dynamo processes taking place in their deep interiors. For the physical background of the dynamo
model, we refer to R. Hollerbach [1] or Chris A. Jones [2] and the references therein.

There are numerous simplified mathematical models and numerical simulations in the literature (see, e.g. Bullard
et al. [3], R. Hollerbach [4], R. A. Bayliss, et al. [5], C. Guervilly, and P. Cardin, [6], Chris A. Jones [2], W. Kuang and ].
Bloxham [7], David Moss [8], K. Zhang and F. Buss [9] Paul H. Roberts, et al. [10] and the references therein). There are
also a few studies with numerical analysis on some numerical methods for these models, e.g., [11-14] and [15]. In [11],
Chan, Zhang and Zou studied the mathematical theory and its numerical approximation based on a finite element method,
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Fig. 1. Domain £2.

while Mohammad M. Rahman and David R. Fearn [15] developed a spectral approximation of some nonlinear mean-field
dynamo equations with different geometries and toroidal and poloidal decomposition.

There are two main difficulties in dealing with dynamo models: (i) it consists of three-dimensional vector equations
in spherical shells; and (ii) the magnetic field is implicitly divergence-free. Using a finite-element method to deal with
the above issues may be complicated and costly. We consider in this paper the model used in [11] and propose an
efficient numerical scheme based on a semi-implicit discretization in time and a spectral method in space based on the
divergence-free spherical harmonic functions. we first discretize the model in time using a semi-implicit approach such
that at each time step one only needs to solve a linear system with piecewise constant coefficients. Then, we discretize
this linear system by using a spectral discretization consisting of divergence-free spherical harmonic functions in the
transverse directions and a spectral-element method in the radial direction. This way, the linear system can be reduced
to a sequence of one-dimensional equations in the radial direction for the coefficients of the expansion in divergence-free
spherical harmonic functions so that it can be efficiently and accurately solved by using a spectral-element method.

The remainder of this paper is organized as follows. In Section 2, we describe the model that we consider, and list some
of its mathematical properties, together with some useful mathematical tools that will be used later. In Section 3, a fully
discrete spectral method for approximating the continuous problem is proposed. The stability analysis of our numerical
solutions are carried out in Section 4. Section 5 contains implementation details, and numerical experiments are shown
in Section 6.

2. Preliminaries
2.1. The model

We consider the following nonlinear spherical mean-field dynamo system:

b, + V x (B(X)V x b) =R,V x (1’;(;"2‘2!)) +RyV x (ux b) in £ x(0,T),
Vxbxn=0 on 482 % (0,T), (2.1)

b(x, 0) = b°(x) in 2.

The unknown is the magnetic field b. £2 is the physical domain of interest, which consists of three non-overlapping
zones £2y (k = 1, 2, 3) in spherical geometry (see Fig. 1), where £2; is the core, §£2; is the convection zone and 25 is the
outer photosphere. n denotes the unit outer normal vector to the boundary of £2. The physical meanings of the variables in
(2.1) are as follows: u = u(x, t) represents the fluid velocity field, which is given here, and f(, t) is also a known function.
Both u and f vanish on £2; and £25. The non-dimensional parameters R,, R are Rayleigh numbers, o is a constant, 8(x)
is the magnetic diffusivity satisfying 8; < B(x) < B,. The diffusivity is considered as constant in the convection zone. At
the two interfaces Iy and I3, we impose the physical jump conditions

[BX)V xbxn]=0, [b]=0 on(I3UI})x(0,T) (2.2)

where [a] denotes the jumps of a across the interfaces and n is the outward normal.

ence of the first equation in (2.1), we find V - b, = 0. Hence, if we impose the condition
£ x (0, T).




T. Cheng, L. Ma and ]. Shen / Journal of Computational and Applied Mathematics 370 (2020) 112628 3

We now describe some notations, and recall some basic mathematical properties for (2.1). We denote by H™(£2)(m €
R) the usual Sobolev space, and denote H™(£2)? by H™(£2). As usual, (-, -) denotes the scalar product in LZ(.Q) or [3(R2).
For real s > 0, || - || denotes the norm of H*(£2) (or the H5(£2) for scalar functions), in particular, we denote |- o = | - |I.
We define

V = {c € L*(£2); curl ¢ € L}(R2)},
and for all ¢ € V, we set
lelly = llel®* + IV x c||%.

We consider the following weak formulation for (2.1):
Find b(t) € V such that b(0) = by and for almost all £ € (0, T),

(b'(t),a) + (BV x b(t), V x a)

=R, (ﬂt)zb(t), V x a) + Ry (u(t) x b(t), V x a), YaeV. (2.3)
1+ o|b|

By using a standard argument (cf. M. Sermange and R. Temam [16]), one can easily derive the following result:
Theorem 2.1. There exists a unique solution b to the dynamo system (2.3) such that
b 10, T; V)N HY(0, T; L%(£2))
provided that by € V, f € HY(0, T; L>°(£2)), u € HY(0, T; L®°(£2)). More precisely, there exists a constant C > 0 such that
2 2
Bl zo(0,7:v) + ||b“H1(0,r;L2(s2))
< C(IV x B2+ [B°)%) max (IF(E) ey + 1) ey

st

. <
-exp (c f WF(E)lFoeqy + IF ()| ooy + IU(E)lIFoo( ) + ||u’(r)||im(m) : (24)
0
2.2. Some useful mathematical tools

We recall below some lemmas which will be used later.
Lemma 2.2 (Young’s Inequality). For any a, b € R and ¢ > 0, we have

1
ab < ea® + —b2.
4e

Lemma 2.3 (Discrete Integration by Parts). Let {an}’rj=0 and {bn}’;=1 be two vector sequences, then we have

k k-1
D (@ —@y1)-by=ag-by—ag-by— Y ay- (b1 —by).
n=1 n=1

Proof. By direct calculation, we easily get

k k-1
D @ —ap 1) -bo=ac-by—ag-by =Y @y (br1 — by)
n=1 n=1

for scalar sequences {an}',,‘!=0 and {bn}"=1. The desired result for vector sequences can be obtained accordingly. O

Lemma 2.4 (Gronwall Inequality). Let f € L'(to, T) be a non-negative function, g and ¢ be continuous functions on [to, T].
Moreover g is non-decreasing. Then

#(t) < g(t) + f f@)p(r)dr V€ [to,T]
to

implies that

[to, T].
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Remark 2.2. We will frequently use the following special case:
f)<CHa ftf(s)ds implies that f(t) < Ce® Vt [0, T], (2.5)
0
where « > 0 and C are given constants.

Lemma 2.5 ([17], p. 34 Integration by Parts). Let §2 be a bounded region of R¢ (d = 2 or 3) with Lipschitz continuous boundary.
Then, the mapping

S v= vt for d =2,
Y v—o>vxn|ge ford=3

can be extended by continuity to a linear and continuous mapping, still denoted by y., from V into H~2(882) ifd = 2 or
H™2(3$2)? if d = 3, where T is the unit tangent vector to 352. Furthermore, the following Green's formula holds:

(Vxv,¢)=(v,VX0)— (v, P (2.6)
YveV,VopeH (2 ifd=30or¢ e H(R2)ifd=2.

3. The numerical scheme

3.1. Time discretization

T
We consider uniform grid on the temporal scale [0, T] with T = —, and t; = it:

O=f<tj<---<be=T (3.1)

Define u" = u(-,t;) for 0 < n < K. For a given sequence {u”}’”;ﬂ C [*(£2), we apply first order approximation via
difference quotient and define the averaging term u" as follows:
ut — unfl B 1 th
' = — U= —f u(-,t)dt, 1<n<K, (3.2)
T T Ji,
and we set u° = u(-, 0).
In terms of time discretization, we consider the following semi-implicit scheme. Forn =1, 2, ..., K, find b" such that
satisfies this differential equation

b +V x (BV xb") =V x (B — B(x))V x b"!

n
+ R,V x (fizb”*l) + RnV x (" x b1, (3.3)
1+olby |
and the boundary conditions
Vxb"xn=0, on 3%, -
[BV x b" xn] = [(B — B(x))V x b* ' xn], [b"]=0 on 71U 3. :
where
p1 £ max g, X € 2,
N xef2q
B = .?z=£gg§ﬂ=ﬁ, X € §25,
B3 £ max g, X € £2;.
XES23

Remark 3.1. Taking the divergence of (3.3), we find 9,V - b" = 0. Hence, V - b° = 0 implies V - b" = 0 for all n > 1.
3.2. Spatial discretization: Vector Spherical Harmonics (VSH)

For the spatial discretization, we are working with three dimensional variables in spherical region, therefore it is natural
to consider basic functions that specifically designed for spherical domain.
Let S be a unit sphere and (r, &, ¢) be the spherical coordinates with the moving (right-handed) coordinate basis

e = (5in9 cos ¢, siné sin g, cos 9),

2 {cacl cocw cag @ sin g, —sin9), (3.5)
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The tangential gradient is defined as
Voo Dept e (3.6)
ST 30" " sinfag ¢ :

The spherical harmonic functions are defined via the associated Legendre polynomials:

2041 (1—m)!
(14 m)!

Recall that {Y"} form orthonormal basis functions of [(S). Now we define the vector spherical harmonic functions (VSH)
(see, e.g., [18,19]), which form an orthogonal basis of LZ(S).
1 BYI ay"
sin@ dg €~ 36 &
VI'=(+1)Y e, — VsY", 1>0, |m| <1,
w" =1Y"e. + VsY", 1>1, |m| <],
Some additional properties of VSH will be provided in Appendix A.

Given the above definitions, for any vector function F(6, ¢) defined on the sphere, we can decompose the function
using VSH and some constant coefficients ¢, o[, w:

Y8, @) = P"(cos 8)e™ .

T =VsY" xe = — [=1, m| <1,

(3.7)

oo
FO,0)=3 Z [f;"rm (6. ¢)+ B"VI0, ) + W"WT(O, qo)] (3.8)
1=0 |m|=0
Considering functions F(r, 8, ¢) defined in the three dimensional ball, since the radii direction and the tangential plane
are perpendicular to each other, we can decompose F using coefficient functions:

00 1
Fr,0,¢) = Y D [6(0T0, )+ o (nVI(0, 0) + wi' (W6, 0)]. (39)

1=0 |m|=0
3.3. Solenoidal vector field

One of the numerical challenge is how to maintain the divergence free property in the discrete case. In the traditionally
methods, this usually involves staggered grid [20], Lagrange multiplier [21] and penalty or projection methods [22,23].

There exists a divergence free (i.e., solenoidal) basis, which has been used mostly in astrophysics [3], that can take
care of the divergence free condition automatically on the spherical domain. Only till recently, there have been some
research and analysis on this subject [24] in the mathematical circle. The detailed derivation of the divergence free basis
can be found in Appendix B.

We can expand any solenoidal vector function B(r, 8, ¢) as

B(r.6,¢) = Z Z tM(rTIO, @) + V x (AT, ) + a)(r)Ye;. (3.10)
=0 |m|=0

with d;ag(r) = 0. The term ag(r)Yge, will vanish once being applied to a curl operator, so in our problem, we will only
consider a3(r) = 0.

3.4. Weak formulation of full discretization

We mark three intervals on the radial direction Iy = [0, r1], I, = [r1, 2], Iz = [r3, r3], with rq, rp, r3 be the radius of
surfaces I, I3, 082 respectively. Each (i = 1, 2, 3) is considered as an element on the radius. Let Cy be the complex
polynomial space of degree at most N. We define the spectral-element space in the radial direction Xy onI = {1 UL UI3}
by

Xy = {un|;€ Cn : [u] =0, i.e. us(ry) = uz(ry), uz(r2) = us(r2)}. (3.11)

Let Yy be the truncated solenoidal vector field. We set N = (N, M). For a function by € Vy = Xy X Yy, it can be
expanded as

M 1
bu(r.0.9) =Y > (IO, 0)+ V x (AN(T](0, ), (3.12)

I=0_|m|=0
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Then, our full discrete scheme is as follows: to find by € Vy such that

f E)Tb;{,-a,vdx+f B(V x bY) - (V ><aN)dx=f(Bfﬁ(x))[beR,_l)-(VxaN)dx
2 2 2

fn (3.13)
+ Rﬂf e LY A aN)derRmf(ﬁ” x by') - (V x ay)dx, Vay € Vy,
2 1+a|by | e
with
[by1=0 onIj UL (3.14)
forn=1,2,...,K, and with initial condition
by = Mybo(x), (3.15)

where [Ty is the projection into the solenoidal vector field.

4. Stability analysis
We show in this section that the solution of the fully discretized scheme remain bounded.

Theorem 4.1. Let by be the solution of the spectral method (3.13)-(3.15). We assume f € wheo(0, T; L°°(£2)) and
u € W0, T; L*(£2)). Then there exist positive constants C, independent of N, such that the following inequalities hold.

M
max |[byl* +7 ) IV x by|> < CUIBY I + IV x B2, (4.1)
1<n<M =1

M
max |V x byl + 7 Zl 8B 1* < ClIBR - (42)
Proof. Let 0 < § = max A — P < 1. Taking ay = 2thjy, in (3.13), using the Cauchy-Schwarz inequality, Young inequality

and the regularity assumption on f and u, we can derive
by 1> = 1lby 11 + lIby — by '* + 27B|IV x by|I?
| BV x by |* + % f (B — B)P|V x b}l’llzdx
2

_ 2
€ - 2 n
+—r||5be;:,||2+—,rR§[ f—z |b;’(112dx
2 Eﬁ Q 1+o-|bfv_1{

. 2 _
+ %rH,BV x B |12 + Eernfg " x b dx

IA

IA

7| BV x by||* + 76%| BV x by '|I* + el BV x by || + Cr by |,
which implies
by > — 1By 1?4 T(1 — )l BY x by |* < z8*(|BV x by || + Cz|lby'|1%.
Taking € small enough such that 1 — e > 6% + ¢, ie, € < (1 — %), we get
By [12 — By 12 + Tel BY x by |I* + 8%(I BV x by > — BV x by 'I?) < Czlby |

Summing up the above relation for n from 1 to M, we arrive at

M M-1
BN 112 + €T > 1BV x B> < [IBRII* + 87| BY x by ||* + Ct ) _ [IbjII%,
n=1 n=0
which can also be written as
M

M-1
2 < CIBRIP + TV x BYI®)+CT ) BRI~

n=0
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Applying the discrete Gronwall's inequality to above inequality, we find

M
max IIb}‘vll +fZ IV x by [I* < C(IbR|1* + =V x by[I*) < C(Iby |1 + =V x by|*),
n=1

which is (4.1).
To prove (4.2), we take ay = t9.by = by — b;'v_l in (3.13) to obtain

)| 8:by|I* + / B(V x by) -V x (by — by ")dx
2
- [Q(B — BNV x by 1) -V x (by — by ') dx
=R fn bn—l v Tl n—1
= Ry — 3y x[bNibN )dx
2 1+olby!|
+Rmf (" x by ')- V x (b} — by ') dx.
2
We derive from the above that
] a:by|I* + 1BV x By |* + f (B— BV x b}‘(llzdx
2
= j (28 — BV x by) - (V x by ')dx
2

fn
+Raf %b‘x_] -V x (b,nv - bg_l)dx
2 1+0olby |

+Rmf (@ x BV x (b — B ") dx

2

< %f(ZB*ﬁ)IV xbmzdwgf(zﬁfﬁ)w x b dx
2 2

fn
+Ra/ %bﬁ” LV x (b, — B dx
2 1+olby |

+Rmf (" x by ')- V x (b} — by ') dx,
2

which can be rewritten as

A +/ P9 x By 19 By ax
2

n
< Ru,f fizb,”(l -V x (b, — by "dx
2 1+olby!|

+Rmf (" x by 1) - V x (by — by ")dx.
2

Summing up the above for n from 1 to M leads to

rZua bR I* + ||V><an2

< &”beg,ll +R, Z/ ) |b” ] b"’l-Vx(b}{,—b;*l)dx
+

+Rm2f(ﬁ" x by ') V x (by — by ') dx

ﬁnv B2 +1+11.

2

OWS.

(4.3)



8 T. Cheng, L. Ma and ]. Shen / Journal of Computational and Applied Mathematics 370 (2020) 112628

By discrete integration by parts (cf. Lemma 2.3), we have

M

fﬂ n—1 Tl n—1
n= N

7MbM*1 71b0
S . TR Y i TS Y}
14 o|pd| 1+ o|bY|

n+lbn ’nbnfl
—Z(f by 2)-be}.

1+o|by | T +olby

Hence, it is easy to derive from the above that

1= B s oI 4 i + Zna By |2
Mt o |of by Py — oy b |
+ |V x b | dx
n 2 n—1,2
=172 (1+olby|")(1+olby[)
2 POy i+ IR + f: 0By 12 + 1.
8 N NIV 8 T™¥N

n=1
Since f € W1>(0, T; L°®), the term I can be estimated as follows:

M-1 ‘O’fﬂ+l [b:,_]lzbﬁ _ an‘bglzb;_]

IH:Z[

e (4ol +o by )

.|V x bY| dx

by — by B P — BB+ G — g B
=0 Z - ; IV x by| dx
n=1"% (1+ by *)1+0olby ')

M-1 M- )
< cfo |3Ib}{,l|be§‘v|dx+CZf
n=1 2 n=

by (b + by )(1by | — Ibﬁfll))

. > |V x by |dx
(1+olby "Y1+ alby ')

M-1
+Ct f|b;‘(1wxb;,|dx,

which can be further estimated by

—-1,2

bn 1,2 _+_ bn _+_ bn 1
m<—§ ||ab§%||2+6r§ﬁanbﬁ|| +c§ f|rab“ Zlow 1+ 5B O 1)\g by ax
n—1
(1+0o| N| M +olby )

M-1 M-1
+CT Y IV xByP+Cr Y by
n=1 n=1
< - Z |8 b |I* + Ct Z IV x B[ +2CZ[ |T8,b% ||V x b dx + Ct Z B2
n=1 n=1
- M
< 4 2 I8BRI7 + CIBY I

n=1

Similarly, we can derive

A

M
T
BRI + 5 D I18:by 1.
n=1

(4.4)

(4.5)
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Therefore, we obtain from (4.3)-(4.5) that

B2
5 Z 19y I* + —HV x BYI* < 2V x By|I* + ClIbR Iy < CIBYIG,

which 1mplles the desired result. O

Note that the above theorem only shows that the scheme is unconditionally stable. However, to obtain accurate
approximations, one still needs to choose a time step, which should depend on physical parameters R, R, and S,
sufficiently small so that the dynamical behavior can be correctly captured. With the above stability result, one can follow
a standard, albeit tedious, procedure to derive an error estimate by assuming further regularity on the solution. For the
sake of brevity, we leave this to the interested reader.

5. Numerical implementation

We will describe the details in numerical implementation in this section. it is natural to apply a spectral element
treatment to the expansion, to accommodate the phenomenon in three different domains. We present the expansion in
terms of Heaviside step function u;.

3 o !
Br.6,0)=)_ 3 Y uytun(MTF6, )+ V x (Auun(TT(6, 0) ] (5.1)

i=1 =0 |m|=0
where {t;;,m, Aim} € Cn(l;).
Under this expansion, one can find two fully decoupled systems for t;;n, and A;;n. And immediately the three

dimension problem is reduced into a system of one dimension problems.
We first define some notations for cleaner form. Denote:

o= 1, F,=ab™, (5.2)
T
ffﬂﬁfﬂmVxM*+&——£L—ﬂ”HdexM”L (5.3)
1+o|b™ 1|
_ | g1=(B1— BV xb" ' xn, xonIy,
£= { : —(Bs— Ba(X))V x B! xn, xon . (5.4)

Eq. (3.3) can then be written in this form:
ab" + BV x Vxb'=f, +V xf,, (5.5)
with the boundary conditions
Vxb'xn=0, on 352,
[BVxb"xn]l=g, [b"]=0 on IMUID.

We apply the harmonic vector spherical analysis to f,,f, and g. It is clear that f, is also in the solenoidal field, but it
can still be expanded with the full dimension analysis.

(5.6)

oo
Fi(r, 6, 9) ZZ 3, [iﬁfnrm + LY vgym +ﬁ};§ner], (5.7)
i=1 =0 |m|=0
3 ® l
Far,0,9) =33 3w+ s + fier ] (538)
i=1 =0 |m|=0
00 l
£(0.9)=Y 3 [&lnr )0, 0) + & 1nVsVim(6, )], (5.9)

I=0 |m|=0
5.1. Decoupled system of equations

For notational convenience, we define the following operators:
d l d I

ar=S 4 g2t
I dr+ U7 dr r

d
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The strong form of the decoupled reduced differential equations is presented below. Detailed derivation of the strong
form can be found in Appendix C.
The system to solve tj; m(r) is:
2,V
fim  100F50)
atiim + BLGiim) = fiim + hm .
b T r Br

n I, (5.10)

trum(r1) = tam(r1),  t21m(r2) = t3,,m(r2), (
Brd trm(r1) — Bod{ & m(r1) = &1 | s (
B3d] t3 1 m(r2) — Bodi o m(r2) = 85 | i (5.13)
dyt31m(rs) =0, (

And the system to solve A; | () is:

ol n(r)) + B(reAiun(r)) = 5500 + (50, in I, (
Arim(r1) = Agm(r1), Agm(r2) = Asim(ra), (
Aﬁ] lm( r)= Afzqum(rl}s A’;,g,m(rz) :Aig,hm(rz)v (5.17)
Bal(Agm(r1)) — BiLlA 1 im(r1)) = £ s (
BoL(Az1m(12)) — B3 L(Asm(T2)) = &) s (
Li(A3,1m)(r3) = 0. (
The solution space Xy can be expanded from basis constructed from Legendre polynomials:

¢ = (Lg1 — Lk1,0,0), k=1,...,n—1

dkn-1 = (0, Ly—1 — Ly4+1,0), k=1,...,n—1

drroan—2 = (0,0, Lg—1 — Lg+1), k=1,...,n—1

¢3N—2 ( ’ 07 0)7 ¢3N—l ( E] ’ 0)’
( X ] X 1 ) ( X 1
N ’ 2 2 ’ 2 2 N+ 2 2

Notice this ¢(x) has domain x € [—1, 1] in each subdomain, we can convert it to the function by change of variable to
¢(r), such that r € I. In other words,

3N+1 3N+1
()= D wnl(r), AN(r) =) vig(i)
k=1 k=1

We then plug back the expansions (5.1) into Eq. (3.13). Denote (u, v),, as the weighted integral over three domains
3
Z / uvedr, and use t,;m, A,m as the piecewise function with function value t;; m, A;,m respectively in L. Then the weak

formulation of the reduced dimension system becomes: to find ti’,"m(r), Afm(r), such that for ¢(r) € Xy:

a(t{?’m7 ¢)r2 + (Bdrt{fm! df¢)r2 + 1(1 + 1)(Bt,[iyvm! ¢) + rl(Bl - Bz)t{?[m(rl )¢(r1)
+ 12(B2 — B3t (r2)p(r2) + 13 Bty (r3)(rs) (5.21)
=(TfNT, @) + (IFET O — (TT(de(f 2 )), @) + 1128t dh (1) — 12281 b (72).

a(dr A, @)ys + (AN @) + B+ DIAAY,,, ¢) — (A, $)]
O BUAAY, ") + 2AAY, . dr)] + BarsiAY, Y(rs)rse (r3) + 26(13))
+ (B — Ba) AV (12 )12 (12) + 26(r2)) + (Br — B AN,V (1 )19 (1) + 26(r1))
— 13l 4+ 1)B3AY,(r3)p(r3) + ra(r2’gy° — I+ 1)(Bz — B3)ALm(r2))p(r2)
ri(l+ 1)(B2 — BOAY (1) — ri%g (1)
=((nfY, @) + (S, B),2.

Although we only discussed a first-order time marching scheme for brevity, it is clear that a similar second-order

(5.22)

~ifference formula and Adams-Bashforth extrapolation for nonlinear terms can be constructed,
ability result can also be established.
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t=1.0 t=1.2 t=1.4

Fig. 2. Rm = 100. Contours of the azimuthal field B, in a meridional plane at different time.

6. Numerical results

Now we perform some numerical simulations in this section.

We consider an application to a solar interface dynamo as in [11]. The domain 2, composed of inner core 2,
convection zone £2,, and exterior region £24, with the interfaces at r; = 1.5, r, = 2.5, r3 = 7.5. The magnetic diffusivity
Bi(x) is a constant in each zone, namely {1, 1, 150}. In the convection zone, the tachocline is located at r, = 1.875. We
set

f(x,t) = sin® 6 cos @ sin[x r-r ], (6.1)
rp—T;

which represents alpha quenching lies in between the tachocline and outer surface of convection zone; and take

r—r

u = (0,0, 2,(6)r siné sin[x —), (62)
Ir—n

£2:(0)=1—0.1642cos*> & — 0.1591 cos* 6, (6.3)

which represents a solar-like internal differential rotation in between the tachocline and the inner surface of convection

zone.
The initial condition is given by

B, = 2cosOr(r —ry)? /12, (6.4)
By = —sinf(3r(r — rp)> + 2r¥(r — 1p))/13, (6.5)
B, = 3cosf sinfr’(r —ry)?/r2, (6.6)

which is non-zero only in the inner core and convection zone.

In the first simulation, we take R, = 30, R, = 100, and plot in Fig. 2 the contours of azimuthal field B, in a meridional
plane. In this simulation, we take 8t = ﬁ with 40 equal spaced points for latitude and 40 equal spaced points for
longitude, and 20 Legendre-Gaussian-Lobatto points in each layer. In Fig. 3, we show the butterfly-shaped profile on the
tachocline, where the function f and internal differential rotation u meet.

In the second simulation, we keep R, = 30 but take R, = 1000. and plot the contours of azimuthal field B, in Fig. 4.
We observe similar quasi-periodic patterns as the previous example. The large R, leads to a significant increase of the
magnitude.

energy E,, = f o |B|?dx for R, = 30 with different R,,. These results are consistent with




12

7. Concluding remarks

A
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Fig. 3. Butterfly diagram of azimuthal field at the interface at tachocline.

t=0 t=0.2 t=0.4

Fig. 5. Energy for R, = 30, R, = 10, 50, 100.

We developed in this paper an efficient numerical scheme for the 3D mean-field spherical dynamo equation. For the
time discretization, we adopt a special semi-implicit discretization in such a way that at each time step one only needs

L

1o

to solve a linear system with piecewise constant coefficients. To deal with the divergence-free constraint, we use the
: ical harmonic functions in space so that our numerical solution is automatically divergence-

reduce the linear system to be solved at each time step to a sequence of one-dimensional
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equations in the radial direction, which can then be solved by using a spectral-element method. Hence, the overall scheme
is very efficient and accurate.

We showed that the solution of our fully discretized scheme remains bounded independent of the number of
unknowns, and presented several numerical results to validate our scheme.
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Appendix A. Vector spherical harmonic basis

For VSH defined in (3.7)
Vo (fUT) = (dN)TT
Vox (fWT) = —(d_ )T,
v x (T = nfyI e+ %@v yr
21+ 1)V x (fT"‘) (I + 1)(df )W) — I(d; fv

d
I+1 2f'
VxVx(f(r}T{”):(( J:Z y%f”)?’}”:ﬁ(f)]‘,’".

Appendix B. Representation of the solenoidal vector field

We now seek the representation of the divergence free space, in other words, the Solenoidal vector field. We know
that V - curngI’” = 0, only need to see the other two sets.

Suppose we have a vector u represented by both sets of basis:

u= Z ar(r)Y e, + b (r)VsY["

(B.1)
=D VWV + (W
Given identities
V- -(fT/) =0, V-(V])=(+ 1)d; LY (B.2)
V- (fWT) = ld7 fY", (B.3)
Divergence of the vector u given expansion under basis T|", V}", W{" is
V.ou= Z[ (I+ 1)d,vm + ld7 w Y (B.4)
We know that if u is divergence free, it must obey the following relation,
I+ 1)d1+2v1 +d_w" =0, VI,m>0, (B.5)
for | = 0, we only have V9, therefore
di (ad(r)) = 0. (B.6)
Now we take divergence on u.
1 9(ra) 1 9 ay™ 1 a8 /b(r)oy™
V-u= — Y™ — [ sinéb]" — (=L
" — 2 ar ! +rsir1|9 89 ST a6 +1rsi1'19 dp \ sinf adyp
10(r2a®) . bMr) 8 (.  ay" br(r) 8%y
= = | —— — | sinf—— — 3 (B.7)
E 12 or rsind 96 a0 rsin“@ d¢
1 9(r2a") bI(r) 1 9(r’a ) b"(r)
=y — Y+ LAY = f — I+ 1)y
2 oar ! roo! Z r2  or ( ) ro !

ILm I,m

So we know for the solenoidal field, we need to have, VI, m,

0 (B.8)
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Consider the relations between {a", b"} and {v*, w}"} in (B.13)

(I+ 1"+l =qaf", w'—" =" (B.9)
a" — b a' +(1+ 1)b"
ek W Pl Gl (B.10)
2l+1 2141
So the coefficient for V{", W]" should be:
V= g @™, w'=—d* (™) (B.11)
1 (2[+1)(l+1) 1-1\™1 1 1(21+1) 1+2\"~1
or,
vt = —;d’(mm) w = ! ——dt (ra" (B.12)
: I+ne+n Tt T T4y '
Let Al'(r) = ,(H_] iy ™(r), and notice the identities:
curl (FVF) = (dATF,  curl(FWP) = — (4o )17 1
20+ Deurl(fT") = (1 + 1)(d . f)W]* — I(d; f)V] '
Therefore we can rewrite u as:
u=curld AMNTT (B.14)
Im
Now we know for any u in a solenoidal field, we can expand it as:
u= Z E(OT + V x (ANOTT) + ad(r)Yle, (B.15)
with d;ag(r) = 0. For most practical cases, ag(r) is zero.
Appendix C. Derivation of the strong form for solenoidal vector field
We will give detailed derivation of the strong form in the solenoidal expansion in this section. The system is:
aB"+ AV XV xB' =f;+Vxf, in 2, (C.1)
with the boundary conditions
Vxb"xn=0, on 8%, €2)
[BVxb" xn]l=g, [b']=0 on IMUIY. '
The expansions for functions involved are:
3 o 1
(r.6,0) =23 3 w[tunTT(6, 0+ ¥ x (Aumr)TTE, 0)) ] (C3)
i=1 [=0 |m|=0
3 ™ [
£ 0,0) =23 3 w[fEH IO, ¢)+ £ VS0, ) + £ (e ] (C4)
i=1 1=0 [m|=0
3 o !
2,V
(. 8,0)=3 "> [ T (IO, ©) +fs (r)VsY(8, ¢) ﬂf!fm(r)er]. (C5)

i—1

1l
o

|m|=0

e _

o L0 Al

I
S Ll (T, 0) + 87 VsYin(6, 9], (C6)
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After applying double curl on By,
I

3 o
x (V x By) = ZZ Z u, [ﬁ(ti,;,m(r))r{” + wylme,

i=1 1=0 |m|=0

o a(rﬁ(f(r)))

Direct calculation on V x fz gives,

VSY{“] .

I+ 15 1d(fn
\vJ fo ZZ E u[l I: # {”(9, (P)er + FWVSYIWE(G,(;J}

i=1 =0 |m|=0

d 2,Vs 2,r

_1d{fiim (r)) ™, )+f”m( )me )}
r dr

Due to the orthogonality of T}", ¥;"e, and VsY/", it is easy to derive that for T}" direction,

Fin(n)  1dagy S )
r r dr

a[i,l,m(r)+Bi (tllm(r))—.ﬂzm(r)Jr , in L,

for VsY" direction,

: d|\rLA; 1 m(T) 2,T
ald(rAt,l,m(r)) +Bl ( ! ) — i,]i:zs(r)"*_ %d(rf:,l,m(r))

T dr r dr da
for e, direction,
aAim(r) + BiL(Aim(r)) = fzm(r)+ﬁ1m(f) in L.

(I + 1)
Notice the fact that f, is also in the solenoidal vector field, which means
1) M+1) g
2 dr  r fitm'
(C.12) can be rewritten as:

ld(rAf,l,m(r)) N ,Bld(rL'Ar,t,m(r)) _ EE Tz_f;’li’;"(r) 1 d(r”m( ))
*r dr T dr Tordr 1+1 r dr
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(C7)

(C8)

(C9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

We want to make a remark that (C.13) and (C.15) differ in the order of the PDE in the sense that solution of A; ;m(r) can
differ up to a constant. We have already pointed out that in the solenoidal representation, the A(r) is not unique, but we

can manually set the constant to any value for convenience.
We focus now on the boundary conditions. First we consider

[by] =0,

this requires the continuity at intersections, which leads to the following conditions. For T}" direction:

t1,,m(@) = o m(@), t2,1m(b) = t3 m(b),

for VsY/™ direction:

E(Tf‘la,!,m(r)}

d
—(rAym(r))| =
r=b dr r=b

d
—(rA2,1.m(T)) r—a’ dr

d
(L) = o

for Y"e, direction:

A m(a) = Ay m(a), Az m(b) = A3 m(b).
Next, we consider

[Vxbyxnl=g

which will lead to for T]" direction:

Brdit1 1 m(@) — Bodi ty m(a) = g1 | 1,

T
)Zgzqf,m,

(C.16)

(C.17)

(C.18)
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for VY™ direction:

BaL(Azm(@) — BrL(A1m(@) = &) e (C21)
BaL(Azim(D)) — BsL(Az1m(D)) = & m (C22)
and no condition can be given in the e, direction. On I, the boundary condition is:
Vxbyxn=0,
this leads to
dit51m(c) =0, Li(A31m)(c)=0. (C23)

It is quite clear that for VsY," and Y"e. directions, the differential equations are essentially the same but boundary
conditions differ a lot. This is because the e, direction is a consequence in the solenoidal vector field. We will take the
VSY{” as the first choice, and still taking account the boundary conditions for e, direction.

Now we can summarize the strong form for t; m(r) and A; ;m(r).

2,

1ty fim(™)  1dif )
r 2

atym(r) + Bil(tim(r)) = fm(r) + . o in I, (C.24)
t1,,m(@) = to m(a), ta,,m(b) = t3 1 m(b), (C.25)
Brdt11m(a) — Bad{ taym(a) = g1 1, (C.26)
B3d{ t31.m(b) — B2d] ta 1 m(b) = &5 | m» (C27)
ditsm(c) = 0. (C.28)
oy () + B(reAsm(D) = 5V + (), i (C29)
Avm(@) = Az 1 m(a), Az m(b) = A3 m(b), (C.30)

L@ =AY (@), Ay (b) =AY (b), (C31)
B2 (A2 m(@) — BrL(A1 (@) = 81} s (C32)
BaL(Azm(b)) — BsL(As im(D)) = 85 (€33)
Li(As,1m)(c) = 0. (C.34)
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