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Abstract

This paper presents a fast and parsimonious parsing
method to accurately and robustly detect a vectorized wire-
frame in an input image with a single forward pass. The
proposed method is end-to-end trainable, consisting of three
components: (i) line segment and junction proposal gen-
eration, (ii) line segment and junction matching, and (iii)
line segment and junction verification. For computing line
segment proposals, a novel exact dual representation is pro-
posed which exploits a parsimonious geometric reparameter-
ization for line segments and forms a holistic 4-dimensional
attraction field map for an input image. Junctions can be
treated as the “basins” in the attraction field. The pro-
posed method is thus called Holistically-Attracted Wireframe
Parser (HAWP). In experiments, the proposed method is
tested on two benchmarks, the Wireframe dataset [15] and
the YorkUrban dataset [S]. On both benchmarks, it obtains
state-of-the-art performance in terms of accuracy and effi-
ciency. For example, on the Wireframe dataset, compared
to the previous state-of-the-art method L-CNN [41]], it im-
proves the challenging mean structural average precision
(msAP) by a large margin (2.8% absolute improvements),
and achieves 29.5 FPS on single GPU (89% relative im-
provement). A systematic ablation study is performed to
further justify the proposed method. The source code is
publicly available'.

1. Introduction

1.1. Motivations and Objectives

Line segments and junctions are prominent visual patterns
in the low-level vision, and thus often used as important
cues/features to facilitate many downstream vision tasks such
as camera pose estimation [24, 25, 1 1], image matching [36],
image rectification [37], structure from motion (SfM) [4, 22],
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Figure 1. Illustration of the proposed HAWP in comparison with
L-CNN [41] in wireframe parsing. The two methods adopt the
same two-stage parsing pipeline: proposal (line segments and junc-
tions) generation and proposal verification. They use the same
junction prediction in (d) and verification modules. The key differ-
ence lies in the line segment proposal generation. L-CNN bypasses
directly learning line segment prediction module and resorts to a
sophisticated sampling based approach for generation line segment
proposals in (e). Our HAWP proposes a novel line segment predic-
tion method in (b) for more accurate and efficient parsing, e.g., the
parsing results of the window in (c) and (f).

visual SLAM [19, 39, 42], and surface reconstruction [17].
Both line segment detection and junction detection remain
challenging problems in computer vision [32, 34, 35]. Line
segments and junctions are often statistically coupled in
images. So, a new research task, wireframe parsing, is
recently emerged to tackle the problem of jointly detecting
meaningful and salient line segments and junctions with
large-scale benchmarks available [15]. And, end-to-end
trainable approaches based on deep neural networks (DNNs)
are one of the most interesting frameworks, which have
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shown remarkable performance.

In wireframe parsing, it can be addressed relatively better
to learn a junction detector with state-of-the-art deep learning
approaches and the heatmap representation (inspired by its
widespread use in human pose estimation [23, 29, 40]). This
motivated a conceptually simple yet powerful wireframe
parsing algorithm called L-CNN [4 1], which achieved state-
of-the-art performance on the Wireframe benchmark [15].
L-CNN bypasses learning a line segment detector. It devel-
ops a sophisticated and carefully-crafted sampling schema to
generate line segment proposals from all possible candidates
based on the predicted junctions, and then utilizes a line seg-
ment verification module to classify the proposals. A large
number of proposals are entailed for achieving good results
at the expense of computational costs. And, ignoring line
segment information in the proposal stage may not take full
advantage of the deep learning pipeline for further improving
performance.

On the other hand, without leveraging junction informa-
tion in learning, the recently proposed attraction field map
(AFM) based approaches [34, 35] are the state-of-the-art
methods for line segment detection. AFM is not strictly
end-to-end trainable. The reparameterization of pixels in the
lifting process is for lines, instead of line segments (i.e., we
can only infer a line with a given displacement vector, and
that is why the squeezing module is needed).

In this paper, we are interested in learning an end-to-end
trainable and fast wireframe parser. First, we aim to develop
an exact dual and parsimonious reparameterization scheme
for line segments, in a similar spirit to the AFM [34], but
without resorting to the heuristic squeezing process in infer-
ence. Then, we aim to tackle wireframe parsing by leverag-
ing both line segment and junction proposals to improve both
accuracy and efficiency and to eliminate the carefully-crafted
sampling schema as done in L-CNN [41].

1.2. Method Overview

In general, a parsing algorithm adopts two phases as pro-
posed in the generic image parsing framework [28]: proposal
generation and proposal verification, which are also realized
in the state-of-the-art object detection and instance segmen-
tation framework [12, 26, 14]. The current state-of-the-art
wireframe parser, L-CNN [4 1] follows the two-phase parsing
paradigm. The proposed method in this paper also adopts the
same setup. As illustrated in Fig. | and Fig. 2, the proposed
method consists of three components:

i) Proposal initialization: line segment detection and junc-
tion detection. Given an input image, it first passes through
a shared feature backbone (e.g., the stacked Hourglass net-
work [23]) to extract deep features. Then, for junction detec-
tion, we adopt the same head regressor based on the heatmap
representation as done in L-CNN [4 1] (Section 4.2), from
which the top-K junctions are selected as initial junction
proposals. For computing line segment proposals, a novel
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Figure 2. Illustration of the architecture of our proposed HAWP.
It consists of three components, proposal initialization, proposal
refinement and proposal verification. See text for details.

method is proposed (Section 4.1).

ii) Proposal refinement: line segment and junction match-
ing. The matching is to calculate meaningful alignment
between line segment initial proposals and junction initial
proposals. In the refinement (Section 4.3), a line segment
proposal is kept if its two end-points are supported by two
junction proposals. If a junction proposal does not find any
support line segment proposal, it will be removed.

iii) Proposal verification: line segment and junction clas-
sification. The verification process is to classify (double-
check) the line segments and junctions from the proposal
refinement stage. We utilize the same verification head clas-
sifier (Section 4.4) as done in L-CNN [4 1], which exploits
a Line-of-Interest (LOI) pooling operation to compute fea-
tures for a line segment, motivated by the Region-of-Interest
(ROI) pooling operation used in the popular two-stage R-
CNN frameworks [12, 26, 14].

Geometrically speaking, the proposed wireframe parser
is enabled by the holistic 4-D attraction field map and the
“basins” of the attraction field revealed by junctions. We thus
call the proposed method a Holistically-Attracted Wire-
frame Parser (HAWP). The proposed HAWP is end-to-end
trainable and computes a vectorized wireframe for an input
image in single forward pass. The key difference between
our HAWP and the current state-of-the-art L-CNN [4 1] ap-
proach is the novel line segment reparameterization and its
end-to-end integration in the parsing pipeline. Our HAWP
outperforms L-CNN by a large margin in terms of both ac-
curacy and efficiency (Section 5).

2. Related Work and Our Contributions

The fundamental problem in wireframe parsing is to learn
to understand the basic physical and geometric constraints of
our world. The problem can date back to the pioneering work
of understanding Blocks World by Larry Roberts [27, 13] at
the very beginning of computer vision. We briefly review
two core aspects as follows.

Representation of Line Segments. There is a big gap
between the mathematically simple geometric representation
of line segments (at the symbol level) and the raw image data
(at the signal level). A vast amount of efforts have been de-
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voted to closing the gap with remarkable progress achieved.
Roughly speaking, there are three-level representations of
line segments developed in the literature: (i) Edge-pixel
based representations, which are the classic approaches and
have facilitated a tremendous number of line segment detec-
tors [3, 21, 5,9, 30, 7, 30, 2, 7]. Many of these line segment
detectors suffer from two fundamental issues inherited from
the underlying representations: the intrinsic uncertainty and
the fundamental limit of edge detection, and the lack of struc-
tural information guidance from pixels to line segments. The
first issue has been eliminated to some extent by state-of-the-
art deep edge detection methods [33, 20]. (ii) Local support
region based representations, e.g., the level-line based sup-
port region used in the popular LSD method [30] and its
many variants [1, 7]. The local support region is still defined
on top of local edge information (gradient magnitude and ori-
entation), thus inheriting the fundamental limit. (iii) Global
region partition based representation, which is recently pro-
posed in the AFM method [34]. AFM does not depend on
edge information, but entails powerful and computationally
efficient DNNS in learning and inference. AFM is not strictly
an exact line segment representation, but a global region par-
tition based line representation. The issue is addressed in
this paper by proposing a novel holistic AFM representation
that is parsimonious and exact for line segments.

Wireframe Parsing Algorithm Design. The recent
resurgence of wireframe parsing, especially in an end-to-end
way, is driven by the remarkable progress of DNNs which en-
ables holistic map-to-map prediction (e.g., from raw images
to heatmaps directly encoding edges [33] or human key-
points [31], efc.). As aforementioned, the general framework
of parsing is similar between different parsers. Depending on
whether line segment representations are explicitly exploited
or not, the recent work on wireframe parsing can be divided
into two categories: (i) Holistic wireframe parsing, which in-
clude data-driven proposal generation for both line segments
and junctions, e.g., the deep wireframe parser (DWP) [15]
presented along with the wireframe benchmark. DWP is
not end-to-end trainable and relatively slow. (ii) Deduc-
tive wireframe parsing, which utilizes data-driven proposals
only for junctions and resorts to sophisticated top-down sam-
pling methods to deduce line segments based on detected
junctions, e.g., PPG-Net [38] and L-CNN [41]. The main
drawbacks of deductive wireframe parsing are in two-fold:
high computational expense for line segment verification,
and over-dependence on junction prediction. The proposed
HAWP is in the first category, but enjoys end-to-end training
and real-time speed.

Our Contributions. This paper makes the following
main contributions to the field of wireframe parsing:

- It presents a novel holistic attraction field to exactly
characterize the geometry of line segments. To our
knowledge, this is the first work that facilitates an exact

dual representation for a line segment from any dis-
tant point in the image domain and that is end-to-end
trainable.

- It presents a holistically-attracted wireframe parser
(HAWP) that extracts vectorized wireframes in input
images in a single forward pass.

- The proposed HAWP achieves state-of-the-art perfor-
mance (accuracy and efficiency) on the Wireframe
dataset [15] and the YorkUrban dataset [8].

3. Holistic Attraction Field Representation

In this section, we present the details of our proposed
holistic attraction field representation of line segments. The
goal is to develop an exact dual representation using geo-
metric reparameterization of line segments, and the dual
representation accounts for non-local information and en-
ables leveraging state-of-the-art DNNSs in learning. By an
exact dual representation, it means that in the ideal case
it can recover the line segments in closed form. Our pro-
posed holistic attraction field representation is motivated by,
and generalizes the recent work called attraction field map
(AFM) [34].

We adopt the vectorized representation of wireframes in
images [15], that is we use real coordinates for line segments
and junctions, rather than discrete ones in the image lattice.
Denote by A and D C R? the image lattice (discrete) and the
image domain (continuous) respectively. A line segment is
denoted by its two end-points, [ = (x1,X2), where x1,Xg €
D (2-D column vector). The corresponding line equation
associated with [ is defined by, [ : aiT X + by = 0 where
a; € R? and by € R, and they can be solved in closed form
given the two end-points.

Background on the AFM method [34]. To be self-
contained, we briefly overview the AFM method. The basic
idea is to “lif” a line segment to a region, which facilitates
leveraging state-of-the-art DNNSs in learning. To compute
the AFM for a line segment map, each (pixel) point p € A is
assigned to a line segment [if it has the minimum distance
tol among all line segments in a given image. The distance
is calculated as follows. Let p’ be the point projected onto
the line [ of a line segment [. If p’ is not on the line segment
[ itself, it will be re-assigned to one of the two end-points
that has the smaller Euclidean distance. Then, the distance
between p and [ is the Euclidean distance between p and p'.
If p is assigned to [, itis reparameterized as p — p/, i.e., the
displacement vector in the image domain. The AFM of a
line segment map is a 2-D vector field, which is created by
reparameterizing all the (pixel) points in the image lattice
A and often forms a region partition of the image lattice.
A heuristic squeezing module is also proposed in the AFM
work to recover a line segment from a 2-D vector field region
(a.k.a., attraction).

The proposed holistic attraction field map. Strictly
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(a) Line segments (b) A line segment in the local coordinate of p
Figure 3. An illustration for representing line segments in images
with the related distant points. (a) shows one of the line segments
(marked black with two blue endpoints), the corresponding support
region (marked gray) calculated by AFM [34] and one of the distant
points in the support region. (b) shows the process of extending the
attraction field representation and transforming the line segment
into a standard local coordinate originated at p with a horizontal
unit attraction vector.

speaking, the displacement vector based geometric reparam-
eterization scheme in the AFM method can only provide
complete information for the underlying line [ of a line seg-
ment [ (when the projection is not outside the line segment).
One straightforward extension of the AFM method is as fol-
lows. As illustrated in the first column in Fig. 3 (b), consider
a distant (pixel) point p outside a line segment [ with the
projection point being on the line segment, if we not only use
the displacement vector between p and its projection point,
but also include the two displacement vectors between p and
the two end-points of the line segment, we can reparameter-
ize p by its 6-D displacement vector which can completely
determine the line segment (i.e., an exact dual representa-
tion). There are some points (pixels) (e.g., points on any
line segment) that should not be reparameterized to avoid
degradation and are treated as the “background”. Thus, we
can create a 6-D attraction field and each line segment is
supported by a region in the field map (shown by the gray
region in Fig. 3 (a)). This was our first attempt in our study,
and it turns out surprisingly that the 6-D attraction field can
not be accurately and reliably learned in training with deep
convolutional neural networks. We hypothesis that although
the 6-D attraction field captures the sufficient and necessary
information for recovering line segments in closed form, it
is not parsimoniously and complementarily encoded using 3
displacement vectors for each point, which may increase the
difficulty of learning even with powerful DNNs.

We derive an equivalent geometric encoding that is par-
simonious and complementary as shown in the right two
columns in Fig. 3. For a line segment I, our derivation un-
dergoes a simple affine transformation for each distant pixel
point p in its support region. Let d be the distance between
pandl,ie.,d= |ai-T -p’ + b;| > 0. We have,

i) Translation: The point p is then used as the new coor-
dinate origin.

ii) Rotation: The line segment is then aligned with the
vertical y-axis with the end-point x; on the top and the
point p (the new origin) to the left. The rotation angle
is denoted by 8 € [—m, ).

iii) Scaling: The distance d is used as the unit length to
normalize the x- / y-axis in the new coordinate system.

In the new coordinate system after the affine transforma-
tion, let 61 and 6> be the two angles as illustrated in Fig. 3
(61 € (0,%) and 2 € (—%,0]). So, a point p in the support
region of a line segment lis reparameterized as,

p(l) = (d.0,01,02), (1
which is completely equivalent to the 6-D displacement vec-
tor based representation and thus capable of recovering the
line segment in closed form in the ideal case. For the “back-
ground” points which are not attracted by any line segment
based on our specification, we encode them by a dummy
4-D vector (—1,0,0,0).

The derived 4-D vector field map for a line segment map
is called a holistic attraction field map highlighting its com-
pleteness and parsimoniousness for line segments, compared
to the vanilla AFM [34].

High-level explanations of why the proposed 4-D
holistic AFM is better than the 6-D vanilla AFM. Intu-
itively, for a line segment and a distant point p, we can view
the support region (the grey one in Fig. 3 (a)) as “a face” with
the point p being the left “eye” center and the line segment
being the vertical “head bone”. So, the affine transformation
stated above is to “align” all the “faces” w.rt. the left “eye”
in a canonical frontal viewpoint. It is well-known that this
type of “representation normalization” can eliminate many
nuisance factors in data to facilitate more effective learn-
ing. Furthermore, the joint encoding that exploits displace-
ment distance and angle effectively decouples the attraction
field w.r.t. complementary spanning dimensions.

4. Holistically-Attracted Wireframe Parser

In this section, we present details of our Holistically-
Attracted Wireframe Parser (HAWP).

Data Preparation. Let Dy o, = {(I;,L;);i =
1,--+,N} be the set of training data where all the im-
ages I;’s are resized to the same size of A = H x W
pixels, and L; is the set of n; annotated line segments in
the image I;, L; = {l;.1,-- ,l;n, } and each line segment
lij = (Xij1,%i;2) is represented by its two annotated
end-points (the vectorized wireframe representation).

The groundtruth junction heatmap representations. We
adopt the same settings used in L-CNN [41]. For an image
I € Dyyqin (the index subscript is omitted for simplicity),
the set of unique end-points from all line segments are the
junctions, denoted by J. Then, we create two maps: the
junction mask map, denoted by 7, and the junction 2-D
offset map, denoted by O. A coarser resolution is used
in computing the two maps by dividing the image lattice
into H' x W’ bins (assuming all bins have the same size,
Bx B, i.e., the down-sampling rate is B = % = %). Then,
for each bin b, let A, C A and x; € Ay be its corresponding
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patch and the center of the patch respectively in the original
image lattice and we have, 7(b) = 1 and O(b) = (x —
p)ifdp € J, and p € A, and both are set to 0 otherwise,
where the offset vector in O(b) is normalized by the bin size,
so the range of O(b) is bounded by [—1, 3) x [-1, 1).

The groundtruth holistic attraction field map. It is straight-
forward to follow the definitions in Section 3 to compute the
map for an image I € Dy;.q;,. Denote by A be the map of
the size H' x W’ (the same as that of the two junction maps),
which is initialized using the method in Section 3. Then,
we normalize each entry of the 4-D attraction field vector
(Eqn. (1)) to be in the range [0,1). We select a distance
threshold d,,,,... We filter out the points in A if their d’s are
greater than d,,,, by changing them to the “background”
with the dummy vector (—1,0,0,0). Then, we divide the
distances (the first entry) of the remaining non-background
points by d,,q.- Here, d, 4, is chosen such that all line seg-
ments still have sufficient support distant points (d,,q = 5
in our experiments). It also helps remove points that are far
away from all line segments and thus may not provide mean-
ingful information for LSD. For the remaining three entries,
it is straightforward to normalize based on their bounded
ranges. For example, an affine transformation is used to
normalize 6 to % + %

Feature Backbone. We chose the stacked Hourglass
network [23] which is widely used in human keypoint esti-
mation and corner-point based object detection [18, 10], and
also adopted by L-CNN [41]. The size of the output feature
map is also H' x W’. Denote by F the output feature map
for an input image I.

4.1. Computing Line Segment Proposals

Line segment proposals are computed by predicting the
4-D AFM A from F. Let A be the predicted 4-D map. A
is computed by an 1 x 1 convolutional layers followed by a
sigmoid layer. With A, itis straightforward to generate line
segment proposals by reversing the simple normalization
step and the geometric affine transformation (Section 3).
However, we observe that the distance (the first entry) is
more difficult to predict in a sufficiently accurate way. We
leverage an auxiliary supervised signal in learning, which
exploits the distance residual, in a similar spirit to the method
proposed for depth prediction in [6]. In addition to predict A
from F, we also compute a distance residual map, denoted
by Ad, using one 1 x 1 convolutional layers followed by a
sigmoid layer. The groundtruth for Ad, denoted by Ad, is
computed by the residual (the absolute difference) between
the two distances in A and A respectively.

In training, channel-wise ¢; norm is used as the loss
function for both (A4, A) and L(Ad, Ad). The total loss
for computing line segments is the sum of the two losses,
Lrs =L(A, A) +L(Ad, Ad) In inference, with the pre-
dicted d € A and Ad € Ad (both are non- negative due
to the sigmoid transformation), since we do not know the

underlying sign of the distance residual, we enumerate three
possibilities in updating the distance predlctlon

d (k) = d+ k- Ad, 2)
where kK = —1,0, 1. So, each distant point may generate up
to three line segment proposals depending on whether the
condition 0 < d’ (k) < dpae is satisfied.

4.2. Junction Detection

Junction detection is addressed by predicting the two
maps, the junction mask map and the junction offset map,
from the feature map F. They are computed by one 1 x 1
convolutional layers followed by a sigmoid layer. Denote by
J and O the predicted mask map and offset map respectively.
The sigmoid function for computing the offset map has an
intercept —0.5. In training, the binary cross-entropy loss
is used for (7, j) and the ¢; loss is used for L(O, @)
following the typical setting in heatmap based regression
for keypoint estimation tasks and consistent with the use in
L-CNN [41]. The total loss is the weighted sum of the two
IOSSCS, LJunc = )\msk : L(j, j) + >\off VO] L(O7 @)’
where © represents element-wise product, and A,,s; and
Aoy s are two trade-off parameters (we set Ayqr and Aoy
to 8.0 and 0.25 respectively in our experiments). In in-
ference, we also apply the standard non-max suppression
(NMS) w.r:t. a 3 x 3 neighborhood, which can be efficiently
implemented by a modified max-pooling layer. After NMS,
we keep the top-K junctions from j . And, for a bin b, if
J (b) > 0, a junction proposal is generated with its position
computed by x; + @(b) - w, where Xy is the position of the
junction pixel, @(b) is the learned offset vector, and w is a
rescaling factor of the offset.

4.3. Line Segment and Junction Matching

Line segment proposals and junction proposals are com-
puted individually by leveraging different information, and
their matching will provide more accurate meaningful align-
ment in wireframe parsing. We adopt a simple matching
strategy to refining the initial proposals. A line segment
proposal from the initial set is kept if and only if its two end-
points can be matched with two junction proposals based on
Euclidean distance with a predefined threshold 7 (7 = 10 in
all our experiments). A junction proposal will be removed if
it does not match to any survived line segment proposal after
refinement. After matching, line segments and junctions
are coupled together, which will be further verified using a
light-weight classifier.

4.4. Line Segment and Junction Verification
Without loss of generality, let [ be a line segment proposal
after refinement. A simple 2- fc layer is used as the valida-
tion head. To extract the same-sized feature vectors in F (the
output of the feature backbone) for different line segments
of different length for the head classifier, the widely used
RoIPool/RolAlign operation in the R-CNN based object de-
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tection system [12, 26] is adapted to line segments, and a
simple LoIPool operation is used as done in L-CNN [41].
The LolIPool operation first uniformly samples s points for a
line segment I. The feature for each sampled point is com-
puted from F using bi-linear interpolation as done in the
RolIAlign operation and the 1D max-pooling operator is used
to reduce the feature dimension. Then, all the features from
the s sampled points are concatenated as the feature vector
for a line segment to be fed into the head classifier (s = 32
in all our experiments).

In training the verification head classifier, we assign pos-
itive and negative labels to line segment proposals (after
refinement) based on their distances to the groundtruth line
segments. A line segment proposal is assigned to be a posi-
tive sample if there is a groundtruth line segment and their
distance is less than a predefined threshold 7 (n = 1.5 in all
our experiments). The distance between two line segments
is computed as follows. We first match the two pairs of
end-points based on the minimum Euclidean distance. Then,
the distance between the two line segments is the maximum
distance of the two endpoint-to-endpoint distances. So, the
set of line segment proposals will be divided into the positive
subset and the negative subset.

As illustrated in Fig. 1(b), the negative subset usually
contains many hard negative samples since the proposed
holistic AFM usually generates line segment proposals of
“good quality”, which is helpful to learn a better verification
classifier. Apart from the learned positive and negative sam-
ples, we use a simple proposal augmentation method in a
similar spirit to the static sampler used in L-CNN [41]: We
add all the groundtruth line segments into the positive set.
We also introduce a set of negative samples that are gener-
ated based on the groundtruth junction annotations (i.e., line
segments using the two end-points that do not correspond to
any annotated line segment). During training, to avoid the
class imbalance issue, we sample the same number, n, of
positives and negatives (i.e., Lols) from the two augmented
subsets (n = 300 in all our experiments). We use binary
cross entropy loss in the verification module. Denote by
Ly ¢, the loss computed on the sampled Lols.

The proposed HAWP is trained end-to-end with the fol-
lowing loss function,

L= IL'LS + ]LJunc + H4\/'e'r‘~ (3)

S. Experiments

In this section, we present detailed experimental results
and analyses of the proposed HAWP. Our reproducible Py-
Torch source code will be released.

Benchmarks. The wireframe benchmark [15] and the
YorkUrban benchmark are used. The former consists of
5,000 training samples and 462 testing samples. The latter
includes 102 samples in total. The model is only trained on
the former and tested on both.

Baselines. Four methods are used: LSD [30]?, AFM [34],
DWP [15], and L-CNN [41] (the previous state-of-the-art
approach). The last three are DNN based approaches and the
first one does not need training. The last two leverage junc-
tion information in training, and thus are directly comparable
to the proposed HAWP.

Implementation Details. To be fair in comparison with
L-CNN, we adopt the same hyper-parameter settings (includ-
ing those defined in Section 4) when applicable in our HAWP.
Input images are resized to 512 x 512 in both training and
testing. For the stacked Hourglass feature backbone, the
number of stacks, the depth of each Hourglass module and
the number of blocks are 2, 4, 1 respectively. Our HAWP is
trained using the ADAM optimizer [16] with a total of 30
epochs on a single Tesla V100 GPU device. The learning
rate, weight decay rate and batch size are set to 4 x 104,
1 x 10~% and 6 respectively. The learning rate is divided
by 10 at the 25-th epoch. To further ensure apple-to-apple
comparisons with L-CNN, we also re-train it using the same
learning settings with slightly better performance obtained
than those reported in their paper.

5.1. Evaluation Metric

We follow the accuracy evaluation settings used in L-
CNN summarized as follows to be self-contained.

Structural Average Precision (SAP) of Line Seg-
ments [41]. This is motivated by the typical AP metric
used in evaluating object detection systems. A counterpart
of the Intersection-over-Union (IoU) overlap is used. For
each ground-truth line segment [ = (x1,X3), we first find

the set of parsed line segments each of which, [= (X1, X2),
satisfies the “overlap”,
min [[x1 = %|” + lxe = %5* < Oz, S
where (i, ) = (1,2) or (2,1), and 9y, is a predefined thresh-
old. If the set of parsed line segments “overlapping” with
lis empty, the line segment [ is counted as a False Nega-
tive (FN). If there are multiple candidates in the set, the one
with the highest verification classification score is counted
as a True Positive (TP), and the rest ones will be counted as
False Positives (FPs). A parsed line segment that does not
belong to the candidate set of any groundtruth line segment
is also counted as a FP. Then, sAP can be computed. To
eliminate the influence of image resolution, the wireframe
parsing results and the groundtruth wireframes are rescaled
to the resolution of 128 x 128 in evaluation. We set the
threshold ¥ to 5, 10, 15 and report the corresponding results,
denoted by sAP®, sAP'?, sSAP'®. The overall performance
of a wireframe parser is represented by the mean of the sAP
values with different thresholds, denoted by msAP.
Heatmap based F-score, F and APY of Line Seg-
ments. These are traditional metrics used in LSD and wire-

2The built-in LSD in OpenCV v3.2.0 is used in evaluation.
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Method Wireframe Dataset YorkUrban Dataset FPS
sAP°  sAP'"  sAP™ [ msAP [ mAP” [ APY | F¥ sAP°  sAP'" AP [ msAP | mAP” [ AP” | F¥

LSD [30] / / / / / 552 | 625 / / / / / 50.9 | 60.1 49.6

AFM [34] 18.5 24.4 27.5 23.5 233 69.2 77.2 7.3 9.4 11.1 9.3 12.4 48.2 63.3 13.5

DWP [15] 3.7 5.1 59 4.9 409 | 678 | 722 1.5 2.1 2.6 2.1 134 | 510 | 616 | 2.24
803 | 76.9 585 | 61.8

L-CNN [41] 58.9 62.9 64.9 62.2 59.3 3.8 | 813t 24.3 26.4 27.5 26.1 30.4 506" | 6531 15.6
. 81.6 77.9 58.3 62.2

L-CNN (re-trained) | 59.7 63.6 65.3 62.9 60.2 337t | 817 25.0 27.1 28.3 26.8 31.5 503t | 6501 15.6
84.5 | 80.3 60.6 | 64.8

HAWP (ours) 62.5 66.5 68.2 65.7 60.2 617 | 8317 26.1 28.5 29.7 28.1 31.6 612" | 663" 29.5

Table 1. Quantitative results and comparisons. Our propsed HAWP achieves state-of-the-art results consistently except for the FPS. The

FPS of our HAWP is still significantly better than that of the three deep learning based methods. Note that for fair and apple-to-apple
comparisons, we also retrained a L-CNN model using their latest released code and the same learning hyper-parameters used in our HAWP.
Our retrained L-CNN obtained slightly better performance than the original one. T means that the post-processing scheme proposed in

L-CNN [

PR Curve for sAP1® PR Curve for AP?

]is used. The FPS of L-CNN is computed without the post-processing. See text for details.

PR Curve for sAP1® PR Curve for AP"

= [sAP= 5.1] DWP = [sAP= 2.1] DWP
0.9 — (5AP=24.4] AFM . 0.9 e = 0.9 — [sAP= 9.4]afm f 0.9
0.8 S S SRR 0.8 e gl 0.8
0.7 0.7 0.7 0.7
Sos6 - §o06 \ So6 | §0.6 =
5 0.5 5051 — [F=62.5]LSD 205 5051 — [F=60.1] LSD
&’ 0.4 &’ 0.4 [F=72.2] DWP E 0.4 g 0.4 [F=61.6] DWP
— [F=77.2]AFM —— [F=62.2] L-CNN (retrained)
0.3 0.3 [F=77.9] L-CNN (retrained) 03 03 [F=63.3] AFM e
0.2 03 0.2 { — [F=80.3] HAWP (ours) 0.2 03 0.2 = [F=64.8] HAWP (ours)
= [F=81.7] L-CNN' (retrained) = [F=65.2] L-CNN' (retrained)
0.1 0.11— [F=83.1] HAWP! (ours) 0.1 017 [F=66.3] HAWP' (ours)
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Recall Recall

Recall Recall

Figure 4. Precision-Recall (PR) curves of sAP'? and APY for DWP [15], AFM [34], L-CNN [41] and HAWP (ours) on the wireframe
benchmark (the left two plots) and the YorkUrban benchmark (the right two plots). Best viewed in color and magnification.

frame parsing [ 5]. Instead of directly using the vectorized
representation of line segments, heatmaps are used, which
are generated by rasterizing line segments for both pars-
ing results and the groundtruth. The pixel-level evaluation
is used in calculating the precision and recall curves with
which F/ and AP are computed.

Vectorized Junction Mean AP (mAP”) [41]. It is com-
puted in a similar spirit to msAP of line segments. Let ¥ ;
be the thresold for the distance between a predicted junction
and a groundtruth one. The mAP” is computed w.r.t. ¥ ; =
0.5,1.0,2.0.

Speed. Besides accuracy, speed is also important in prac-
tice. We use the frames per second (FPS) in evaluation. For
fair comparisons, we compute the FPS for different methods
under the same setting: the batch-size is 1, and single CPU
thread and single GPU (Tesla V100) are used. Note that the
LSD [30] method does not take advantage of GPU.

5.2. Results and Comparisons

Quantitative Results. Table 1 summarizes the results
and comparisons in terms of the evaluation metric stated
in Section 5.1. Our HAWP obtains state-of-the-art per-
formance consistently. In terms of the challenging msAP
metric, it outperforms L-CNN by 2.8% and 1.3% (absolute
improvement) on the wireframe benchmark and the YorkUr-
ban benchmark respectively. It also runs much faster than
L-CNN with 89% relative improvement in FPS. AFM and
DWP are relatively slow due to their non-GPU friendly post-
processing modules entailed for performance. In terms of the

‘ | # Junctions [ # Proposals [ SAPTO | FPS | # GT Lines |
L-CNN [41] 159.2 22k 63.6 15.6
HAWP (ours) 189.6 4k 66.5 | 29.5
Table 2. Performance profiling on the Wireframe dataset. #Pro-
posals represents the number of line segments in verification. The
average number of groundtruth is listed in the last row.

74.2

heatmap based evaluation metric, our HAWP is also signifi-
cantly better than L-CNN regardless of the post-processing
module proposed in L-CNN. Fig. 4 shows comparisons of
PR curves.

Since our proposed HAWP and L-CNN use very simi-
lar wireframe parsing pipelines and adopt the same design
choices when applicable. The consistent accuracy gain of
our HAWP must be contributed by the novel 4-D holistic
attraction field representation and its integration in the pars-
ing pipeline. In terms of efficiency, our HAWP runs much
faster since a significantly fewer number of line segment
proposals are used in the verification module. As shown
in Table 2, our HAWP uses 5.5 times fewer number of line
segment proposals.

Qualitative Results. Fig. 5 shows wireframe parsing
results by the five methods.

5.3. Ablation Study

We compare the effects of three aspects: our proposed H-
AFM vs. the vanilla AFM [34], the distance residual module
(Section 4.1), and the composition of negative samples in
training verification module (Section 4.4).

Table 3 summarizes the comparisons. We observe that
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Figure 5. Wireframe parsing examples on the Wireframe dataset [15].

Line Segment | Distance Residual | Negative Example Sampler Performance
Representation | Training  Testing | N*  D* D~ S~ SAP®  sAP!0  sAP!®
v v 62.5 665 68.2
v 620  66.0 67.6
H-AFM v v v Y v 622 66.1 6738
v v 620 658 67.4
H-AFM v v v 589 630 64.8
H-AFM v v 587 626 64.4
AFM v v 309 337 35.0

Table 3. The ablation study of three design and learning aspects in
the proposed HAWP. See text for details.

both H-AFM and the distance residual module are important
for improving performance. The natural negative sampler
N* randomly chooses negative line segments based on the
matching results (with respect to the annotations). The rest
of three negative example samplers (D*,D~,S™) are also
investigated in L-CNN and their full combination is needed
for training L-CNN. D* randomly selects a part of examples
from the online generated line segment proposals, regardless
of the matching results. D~ tries to match the proposals
with pre-computed hard negative examples and the matched
proposals are used as negative samples. S~ directly obtains
the negative examples from the pre-computed hard negative
examples set. In our experiment, the number of samples for

N* D*, D~ and S~ are set to 300, 300, 300, 40 respectively.

We observe that our HAWP is less sensitive to those samplers
due to the informative line segment proposal generation
stage.

6. Conclusions and Discussions

This paper presents a holistically-attracted wireframe
parser (HAWP) with state-of-the-art performance obtained
on two benchmarks, the wireframe dataset and the YorkUr-
ban dataset. The proposed HAWP consists of three compo-
nents: proposal (line segments and junctions) initialization,
proposal refinement and proposal verification, which are
end-to-end trainable. Compared to the previous state-of-the-
art wireframe parser L-CNN [41], our HAWP is enabled
by a novel 4-D holistic attraction field map representation
(H-AFM) for line segments in proposal generation stages.
Our HAWP also achieves real-time speed with a single GPU,
and thus is useful for many downstream tasks such as SLAM
and Structure from Motion (SfM). The proposed H-AFM is
also potentially useful for generic LSD problems in other
domains such as medical image analysis.
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