




voted to closing the gap with remarkable progress achieved.

Roughly speaking, there are three-level representations of

line segments developed in the literature: (i) Edge-pixel

based representations, which are the classic approaches and

have facilitated a tremendous number of line segment detec-

tors [3, 21, 5, 9, 30, 7, 30, 2, 7]. Many of these line segment

detectors suffer from two fundamental issues inherited from

the underlying representations: the intrinsic uncertainty and

the fundamental limit of edge detection, and the lack of struc-

tural information guidance from pixels to line segments. The

first issue has been eliminated to some extent by state-of-the-

art deep edge detection methods [33, 20]. (ii) Local support

region based representations, e.g., the level-line based sup-

port region used in the popular LSD method [30] and its

many variants [1, 7]. The local support region is still defined

on top of local edge information (gradient magnitude and ori-

entation), thus inheriting the fundamental limit. (iii) Global

region partition based representation, which is recently pro-

posed in the AFM method [34]. AFM does not depend on

edge information, but entails powerful and computationally

efficient DNNs in learning and inference. AFM is not strictly

an exact line segment representation, but a global region par-

tition based line representation. The issue is addressed in

this paper by proposing a novel holistic AFM representation

that is parsimonious and exact for line segments.

Wireframe Parsing Algorithm Design. The recent

resurgence of wireframe parsing, especially in an end-to-end

way, is driven by the remarkable progress of DNNs which en-

ables holistic map-to-map prediction (e.g., from raw images

to heatmaps directly encoding edges [33] or human key-

points [31], etc.). As aforementioned, the general framework

of parsing is similar between different parsers. Depending on

whether line segment representations are explicitly exploited

or not, the recent work on wireframe parsing can be divided

into two categories: (i) Holistic wireframe parsing, which in-

clude data-driven proposal generation for both line segments

and junctions, e.g., the deep wireframe parser (DWP) [15]

presented along with the wireframe benchmark. DWP is

not end-to-end trainable and relatively slow. (ii) Deduc-

tive wireframe parsing, which utilizes data-driven proposals

only for junctions and resorts to sophisticated top-down sam-

pling methods to deduce line segments based on detected

junctions, e.g., PPG-Net [38] and L-CNN [41]. The main

drawbacks of deductive wireframe parsing are in two-fold:

high computational expense for line segment verification,

and over-dependence on junction prediction. The proposed

HAWP is in the first category, but enjoys end-to-end training

and real-time speed.

Our Contributions. This paper makes the following

main contributions to the field of wireframe parsing:

- It presents a novel holistic attraction field to exactly

characterize the geometry of line segments. To our

knowledge, this is the first work that facilitates an exact

dual representation for a line segment from any dis-

tant point in the image domain and that is end-to-end

trainable.

- It presents a holistically-attracted wireframe parser

(HAWP) that extracts vectorized wireframes in input

images in a single forward pass.

- The proposed HAWP achieves state-of-the-art perfor-

mance (accuracy and efficiency) on the Wireframe

dataset [15] and the YorkUrban dataset [8].

3. Holistic Attraction Field Representation

In this section, we present the details of our proposed

holistic attraction field representation of line segments. The

goal is to develop an exact dual representation using geo-

metric reparameterization of line segments, and the dual

representation accounts for non-local information and en-

ables leveraging state-of-the-art DNNs in learning. By an

exact dual representation, it means that in the ideal case

it can recover the line segments in closed form. Our pro-

posed holistic attraction field representation is motivated by,

and generalizes the recent work called attraction field map

(AFM) [34].

We adopt the vectorized representation of wireframes in

images [15], that is we use real coordinates for line segments

and junctions, rather than discrete ones in the image lattice.

Denote by Λ and D ⊂ R
2 the image lattice (discrete) and the

image domain (continuous) respectively. A line segment is

denoted by its two end-points, l̈ = (x1,x2), where x1,x2 ∈
D (2-D column vector). The corresponding line equation

associated with l̈ is defined by, l : aT
l̈
· x + bl̈ = 0 where

al̈ ∈ R
2 and bl̈ ∈ R, and they can be solved in closed form

given the two end-points.

Background on the AFM method [34]. To be self-

contained, we briefly overview the AFM method. The basic

idea is to “lift” a line segment to a region, which facilitates

leveraging state-of-the-art DNNs in learning. To compute

the AFM for a line segment map, each (pixel) point p ∈ Λ is

assigned to a line segment l̈ if it has the minimum distance

to l̈ among all line segments in a given image. The distance

is calculated as follows. Let p′ be the point projected onto

the line l of a line segment l̈. If p′ is not on the line segment

l̈ itself, it will be re-assigned to one of the two end-points

that has the smaller Euclidean distance. Then, the distance

between p and l̈ is the Euclidean distance between p and p′.

If p is assigned to l̈, it is reparameterized as p− p′, i.e., the

displacement vector in the image domain. The AFM of a

line segment map is a 2-D vector field, which is created by

reparameterizing all the (pixel) points in the image lattice

Λ and often forms a region partition of the image lattice.

A heuristic squeezing module is also proposed in the AFM

work to recover a line segment from a 2-D vector field region

(a.k.a., attraction).

The proposed holistic attraction field map. Strictly
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patch and the center of the patch respectively in the original

image lattice and we have, J (b) = 1 and O(b) = (xb −
p) if ∃p ∈ J, and p ∈ Λb and both are set to 0 otherwise,

where the offset vector in O(b) is normalized by the bin size,

so the range of O(b) is bounded by [− 1
2 ,

1
2 )× [− 1

2 ,
1
2 ).

The groundtruth holistic attraction field map. It is straight-

forward to follow the definitions in Section 3 to compute the

map for an image I ∈ Dtrain. Denote by A be the map of

the size H ′×W ′ (the same as that of the two junction maps),

which is initialized using the method in Section 3. Then,

we normalize each entry of the 4-D attraction field vector

(Eqn. (1)) to be in the range [0, 1). We select a distance

threshold dmax. We filter out the points in A if their d’s are

greater than dmax by changing them to the “background”

with the dummy vector (−1, 0, 0, 0). Then, we divide the

distances (the first entry) of the remaining non-background

points by dmax. Here, dmax is chosen such that all line seg-

ments still have sufficient support distant points (dmax = 5
in our experiments). It also helps remove points that are far

away from all line segments and thus may not provide mean-

ingful information for LSD. For the remaining three entries,

it is straightforward to normalize based on their bounded

ranges. For example, an affine transformation is used to

normalize θ to θ
2π + 1

2 .

Feature Backbone. We chose the stacked Hourglass

network [23] which is widely used in human keypoint esti-

mation and corner-point based object detection [18, 10], and

also adopted by L-CNN [41]. The size of the output feature

map is also H ′ ×W ′. Denote by F the output feature map

for an input image I .

4.1. Computing Line Segment Proposals
Line segment proposals are computed by predicting the

4-D AFM A from F . Let Â be the predicted 4-D map. Â
is computed by an 1× 1 convolutional layers followed by a

sigmoid layer. With Â, it is straightforward to generate line

segment proposals by reversing the simple normalization

step and the geometric affine transformation (Section 3).

However, we observe that the distance (the first entry) is

more difficult to predict in a sufficiently accurate way. We

leverage an auxiliary supervised signal in learning, which

exploits the distance residual, in a similar spirit to the method

proposed for depth prediction in [6]. In addition to predict Â
from F , we also compute a distance residual map, denoted

by ∆̂d, using one 1× 1 convolutional layers followed by a

sigmoid layer. The groundtruth for ∆̂d, denoted by ∆d, is

computed by the residual (the absolute difference) between

the two distances in A and Â respectively.

In training, channel-wise ℓ1 norm is used as the loss

function for both L(A, Â) and L(∆d, ∆̂d). The total loss

for computing line segments is the sum of the two losses,

LLS = L(A, Â) + L(∆d, ∆̂d). In inference, with the pre-

dicted d̂ ∈ Â and ∆̂d ∈ ∆̂d (both are non-negative due

to the sigmoid transformation), since we do not know the

underlying sign of the distance residual, we enumerate three

possibilities in updating the distance prediction,

d̂′(κ) = d̂+ κ · ∆̂d, (2)

where κ = −1, 0, 1. So, each distant point may generate up

to three line segment proposals depending on whether the

condition 0 < d̂′(κ) ≤ dmax is satisfied.

4.2. Junction Detection

Junction detection is addressed by predicting the two

maps, the junction mask map and the junction offset map,

from the feature map F . They are computed by one 1 × 1
convolutional layers followed by a sigmoid layer. Denote by

Ĵ and Ô the predicted mask map and offset map respectively.

The sigmoid function for computing the offset map has an

intercept −0.5. In training, the binary cross-entropy loss

is used for L(J , Ĵ ), and the ℓ1 loss is used for L(O, Ô),
following the typical setting in heatmap based regression

for keypoint estimation tasks and consistent with the use in

L-CNN [41]. The total loss is the weighted sum of the two

losses, LJunc = λmsk · L(J , Ĵ ) + λoff · J ⊙ L(O, Ô),
where ⊙ represents element-wise product, and λmsk and

λoff are two trade-off parameters (we set λmsk and λoff

to 8.0 and 0.25 respectively in our experiments). In in-

ference, we also apply the standard non-max suppression

(NMS) w.r.t. a 3× 3 neighborhood, which can be efficiently

implemented by a modified max-pooling layer. After NMS,

we keep the top-K junctions from Ĵ . And, for a bin b, if

Ĵ (b) > 0, a junction proposal is generated with its position

computed by xb + Ô(b) · w, where xb is the position of the

junction pixel, Ô(b) is the learned offset vector, and w is a

rescaling factor of the offset.

4.3. Line Segment and Junction Matching

Line segment proposals and junction proposals are com-

puted individually by leveraging different information, and

their matching will provide more accurate meaningful align-

ment in wireframe parsing. We adopt a simple matching

strategy to refining the initial proposals. A line segment

proposal from the initial set is kept if and only if its two end-

points can be matched with two junction proposals based on

Euclidean distance with a predefined threshold τ (τ = 10 in

all our experiments). A junction proposal will be removed if

it does not match to any survived line segment proposal after

refinement. After matching, line segments and junctions

are coupled together, which will be further verified using a

light-weight classifier.

4.4. Line Segment and Junction Verification

Without loss of generality, let l̈ be a line segment proposal

after refinement. A simple 2-fc layer is used as the valida-

tion head. To extract the same-sized feature vectors in F (the

output of the feature backbone) for different line segments

of different length for the head classifier, the widely used

RoIPool/RoIAlign operation in the R-CNN based object de-
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tection system [12, 26] is adapted to line segments, and a

simple LoIPool operation is used as done in L-CNN [41].

The LoIPool operation first uniformly samples s points for a

line segment l̈. The feature for each sampled point is com-

puted from F using bi-linear interpolation as done in the

RoIAlign operation and the 1D max-pooling operator is used

to reduce the feature dimension. Then, all the features from

the s sampled points are concatenated as the feature vector

for a line segment to be fed into the head classifier (s = 32
in all our experiments).

In training the verification head classifier, we assign pos-

itive and negative labels to line segment proposals (after

refinement) based on their distances to the groundtruth line

segments. A line segment proposal is assigned to be a posi-

tive sample if there is a groundtruth line segment and their

distance is less than a predefined threshold η (η = 1.5 in all

our experiments). The distance between two line segments

is computed as follows. We first match the two pairs of

end-points based on the minimum Euclidean distance. Then,

the distance between the two line segments is the maximum

distance of the two endpoint-to-endpoint distances. So, the

set of line segment proposals will be divided into the positive

subset and the negative subset.

As illustrated in Fig. 1(b), the negative subset usually

contains many hard negative samples since the proposed

holistic AFM usually generates line segment proposals of

“good quality”, which is helpful to learn a better verification

classifier. Apart from the learned positive and negative sam-

ples, we use a simple proposal augmentation method in a

similar spirit to the static sampler used in L-CNN [41]: We

add all the groundtruth line segments into the positive set.

We also introduce a set of negative samples that are gener-

ated based on the groundtruth junction annotations (i.e., line

segments using the two end-points that do not correspond to

any annotated line segment). During training, to avoid the

class imbalance issue, we sample the same number, n, of

positives and negatives (i.e., LoIs) from the two augmented

subsets (n = 300 in all our experiments). We use binary

cross entropy loss in the verification module. Denote by

LV er the loss computed on the sampled LoIs.

The proposed HAWP is trained end-to-end with the fol-

lowing loss function,

L = LLS + LJunc + LV er. (3)

5. Experiments

In this section, we present detailed experimental results

and analyses of the proposed HAWP. Our reproducible Py-

Torch source code will be released.

Benchmarks. The wireframe benchmark [15] and the

YorkUrban benchmark are used. The former consists of

5, 000 training samples and 462 testing samples. The latter

includes 102 samples in total. The model is only trained on

the former and tested on both.

Baselines. Four methods are used: LSD [30]2, AFM [34],

DWP [15], and L-CNN [41] (the previous state-of-the-art

approach). The last three are DNN based approaches and the

first one does not need training. The last two leverage junc-

tion information in training, and thus are directly comparable

to the proposed HAWP.

Implementation Details. To be fair in comparison with

L-CNN, we adopt the same hyper-parameter settings (includ-

ing those defined in Section 4) when applicable in our HAWP.

Input images are resized to 512× 512 in both training and

testing. For the stacked Hourglass feature backbone, the

number of stacks, the depth of each Hourglass module and

the number of blocks are 2, 4, 1 respectively. Our HAWP is

trained using the ADAM optimizer [16] with a total of 30
epochs on a single Tesla V100 GPU device. The learning

rate, weight decay rate and batch size are set to 4 × 10−4,

1 × 10−4 and 6 respectively. The learning rate is divided

by 10 at the 25-th epoch. To further ensure apple-to-apple

comparisons with L-CNN, we also re-train it using the same

learning settings with slightly better performance obtained

than those reported in their paper.

5.1. Evaluation Metric

We follow the accuracy evaluation settings used in L-

CNN summarized as follows to be self-contained.

Structural Average Precision (sAP) of Line Seg-

ments [41]. This is motivated by the typical AP metric

used in evaluating object detection systems. A counterpart

of the Intersection-over-Union (IoU) overlap is used. For

each ground-truth line segment l̈ = (x1,x2), we first find

the set of parsed line segments each of which,
ˆ̈
l = (x̂1, x̂2),

satisfies the “overlap”,

min
(i,j)

‖x1 − x̂i‖
2
+ ‖x2 − x̂j‖

2
≤ ϑL, (4)

where (i, j) = (1, 2) or (2, 1), and ϑL is a predefined thresh-

old. If the set of parsed line segments “overlapping” with

l̈ is empty, the line segment l̈ is counted as a False Nega-

tive (FN). If there are multiple candidates in the set, the one

with the highest verification classification score is counted

as a True Positive (TP), and the rest ones will be counted as

False Positives (FPs). A parsed line segment that does not

belong to the candidate set of any groundtruth line segment

is also counted as a FP. Then, sAP can be computed. To

eliminate the influence of image resolution, the wireframe

parsing results and the groundtruth wireframes are rescaled

to the resolution of 128 × 128 in evaluation. We set the

threshold ϑ to 5, 10, 15 and report the corresponding results,

denoted by sAP5, sAP10, sAP15. The overall performance

of a wireframe parser is represented by the mean of the sAP

values with different thresholds, denoted by msAP.

Heatmap based F-score, FH and APH of Line Seg-

ments. These are traditional metrics used in LSD and wire-

2The built-in LSD in OpenCV v3.2.0 is used in evaluation.
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