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Abstract

The case is made here for the power of using atomic layer deposition (ALD) as a way to induce changes in the nature of
the oxides used as supports in many catalytic processes. ALD provides a route to grow thin films in a conformal way and
with submonolayer thickness control, affording the creation of unique mixed-oxide structures with new reaction sites. This
approach is exemplified here for the case of the hydrogenation of unsaturated aldehydes with platinum-based catalysts.
Silica-supported catalysts were modified with thin alumina films, grown by ALD using trimethylaluminum(IIl) (TMA) and
water, and their performance contrasted with pure Pt/SiO, and Pt/Al,O; samples as well as with catalysts previously reported
by us made by silica ALD on Pt/Al,O;. The quality of the alumina films grown on Pt/SiO, was first evaluated by using N,
adsorption—desorption isotherms in conjunction with SBA-15 as the support, a mesoporous material with well-defined 1D
cylindrical pores. An initial deposition of approximately 1.5 A of the alumina film per ALD cycle was estimated from those
measurements, with retention of the narrow distribution of pore diameters indicative of homogeneous coverage throughout
the length of the pores. The catalytic hydrogenation of cinnamaldehyde was then determined to be slower but more selective
with silica supports compared to alumina. Addition of a half of a monolayer of alumina to Pt/SiO, reduces the total activ-
ity, but only marginally. In exchange, the new mixed-oxide catalysts exhibit a higher selectivity toward the production of
the desirable unsaturated alcohol at high conversions, and a lower activity for its subsequent hydrogenation to the saturated
alcohol. These trends were associated with the formation of new Brgnsted and Lewis acidic sites, possibly based on mixed
Si—O-Al surface structures.

Keywords Atomic layer deposition - Unsaturated aldehyde hydrogenation - C=0 vs. C=C hydrogenation selectivity -
Adsorption—desorption isotherms - Pyridine titrations

1 Introduction

One of the major challenges in heterogeneous catalysis is
the design and preparation of highly stable and selective
catalysts [1-4]. One versatile way to create new catalytic
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sites on solids and to tune their properties is by exploiting
the unique properties of solid—solid interfaces. Specifically,
the area around the contact between two oxides displays
electronic and chemical properties that may be quite dif-
ferent to those of the interacting pure phases and that can
typically lead to the creation of new acidic sites, different
structural atomic ensembles, and/or changes in redox prop-
erties [5-9]. Similarly, the interfaces between oxides and
metals may provide new mixed sites capable of reacting in
unique ways [10—17]. The challenge is to create those inter-
faces in a controlled way. Many mixed oxides can be made
with well-defined compositions and structures, as in the case
of zeolites [18, 19], but that still provides limited control on
the details of their surfaces, where the catalysis takes place.
Procedures that rely on the post-modification of surfaces
after the synthesis of the solids afford a more direct route to


http://orcid.org/0000-0002-0128-7221
http://crossmark.crossref.org/dialog/?doi=10.1007/s11244-019-01163-4&domain=pdf

Topics in Catalysis (2019) 62:838-848

839

the design of unique catalytic sites [20-24], yet many tradi-
tional treatments such as impregnations and precipitations
yield surfaces with ill-defined characteristics. Fortunately,
new molecularly designed deposition processes have become
available in recent years to improve on the control that can
be exerted during the preparation of specific atomic ensem-
bles on surfaces [25-27]. From these, we here focus on the
incorporation of atomic layer deposition (ALD) [28-34] to
the synthesis of mixed-phase catalysts.

ALD is a chemical approach originally introduced for
digital display manufacturing, microelectronics fabrication,
and other related applications [35, 36]. In ALD, the deposi-
tion chemistry is split into two or more self-limiting and
complementary reactions in order to provide a better handle
on the thickness, conformality, and uniformity of the grown
films [28, 37-41]. ALD is presently considered the deposi-
tion method with the greatest potential for the production of
thin films with atomic-level precision [36], offering many
advantages over other chemical vapor deposition (CVD) pro-
cesses, at least on flat surfaces [38, 42]: (1) the film thickness
depends only on the number of cycles employed, not on the
exposures used in each cycle, so process control is simple
and accurate; (2) there is less of a need for a homogeneous
flux of the reactants through the reactor, a fact that makes
processes reproducible and easy to scale for large-area coat-
ings without sacrificing conformality; (3) ALD offers more
flexibility in the design of the operational deposition condi-
tions, requiring lower temperatures than regular CVD; (4)
there is minimal or no interference from gas-phase reactions
during the deposition process because of the separation of
the two complementary reactions in time; and (5) it is ease
to extend ALD processes to the manufacturing of layered
structures. Some of these characteristics of ALD may not be
as applicable to porous materials, though, as we have already
reported recently [43].

We here address the specific case of making mixed silica-
alumina surfaces by ALD to, with the addition of platinum
nanoparticles, tune selective hydrogenation catalysis. Both
silica and alumina are common supports in catalysis, and
specific acidic sites may be added to silica surfaces via the
deposition of alumina [8, 18, 19, 44, 45]. Specifically, the
substitution of silicon atoms with aluminum in the oxide
network provides for a way to add Lewis acid sites, and the
change in the electron distribution in adjacent sites also leads
to an increase in Brgnsted acidity in silanol groups in the
vicinity of the Al centers. Hence, the overall acidity of zeo-
lites, for instance, typically depends on the final Al/Si atomic
ratio. Similar changes have been pursued and achieved with
amorphous silica-alumina solids (ASA), although the new
sites sometimes exhibit characteristics different to those seen
in zeolites. Also, new structures such as pentacoordinated or
distorted tetrahedral Al may be created by alumina addition
to those materials [8, 20, 46].

As a guiding principle, we here propose that the acidity
of amorphous and mesoporous silica and alumina supports
may be modified, and their properties fine-tuned, via the
controlled addition of aluminum or silicon oxide layers to
their surfaces, respectively, by ALD. This idea is certainly
advanced by recent reports where the surfaces of silica and
alumina supports have been modified via the deposition of
reactive precursors [19, 27, 47, 48]. For instance, silication
of y-alumina with tetraethoxysilane (TEOS) was shown
to result in the formation of a surface spinel phase where
silicon substitutes for aluminum in tetrahedral sites, expos-
ing surface silanol groups with limited Brgnsted acidity,
not enough to protonate pyridine at room temperature; this
catalyst showed an increase in activity for n-butene isomeri-
zation without any loss in selectivity to isobutene [49]. In a
separate study with similar samples, “mild” Brgnsted acid
sites were identified exhibiting identical selectivity but much
higher specific activity than the parent alumina for the liq-
uid-phase catalytic dehydration of cyclohexanol [26]. In
yet another investigation, deposition of trimethylaluminum
(TMA) on faujasite-type catalysts led, after proper condi-
tioning, to higher propane cracking activity per Brgnsted
acid site [22]. Deposition of aluminum species on hydroxy-
lated silica has also been shown to create new sites active for
ethanol dehydration and m-xylene isomerization [50]. Some
spectroscopic studies have been directed at identifying the
new sites made by these surface modifications of silica and
alumina amorphous solids, but their structure is still a mat-
ter of debate [25]: the original models that Brgnsted acidity
arises from protons compensating the electronic charge of
the surface or from AI-OH groups close to silanol groups
[51-53] have been challenged by new ideas that include
acidic sites similar to those of zeolites, that is, bridging
Si—OH-Al groups [54-56], and silanol groups in the vicin-
ity of aluminum atoms but not bridging to OH moieties with
aluminum atoms in different coordination spheres, including
tetrahedral AI(IV), five-coordinate Al(V), and unsaturated
Al{II) [57, 58].

Here we report on the modification of Pt catalysts based on
silica porous materials with alumina thin films. The modifica-
tion of pure silica (without any dispersed metal nanoparticles)
via the addition of alumina films has already been reported in
the past in a few selected cases [59, 60]. Typically, alumina
can be deposited by alternating trimethylaluminum (TMA)
and water in ALD cycles under mild conditions, that is, at
temperatures on the order of 200 °C or less. This chemistry
has been quite well characterized on flat surfaces [61, 62], and
also demonstrated in porous materials such as zeolites [29, 60,
63-66] and other supported catalysts [67, 68]. We have in fact
already successfully tested the growth of alumina films on the
walls of the pores of pure SBA-15 using this type of ALD with
TMA and water, as we reported recently [43]. We found that
each ALD cycle leads to a reduction in average pore diameter
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of about 0.3 nm while still retaining most of the narrow dis-
tribution of pore sizes present in the original material. In this
work we have applied the same approach to modify Pt/SiO,
catalysts, with the idea of adding new acidic sites to control
selectivity during the hydrogenation of unsaturated organic
reactants, specifically of unsaturated aldehydes.

Past studies on the selective hydrogenation of C=0O bonds
over C=C bonds in such aldehydes have concluded that both
acidic and redox functionality affect the performance of the
dispersed transition metal phase [69—72]. It has also been
reported that the use of reducible supports such as TiO,
increases selectivity towards unsaturated alcohols [73, 74],
presumably because of a strong metal-support interaction
(SMSI) effect exerted by the new oxide on the metal phase.
In a previous publication we described the effects of add-
ing silica films to Pt/Al,O; catalysts [75], the reverse of the
case studied here. It was found that the silica layers greatly
increase the stability of the platinum nanoparticles, prevent-
ing their sintering during high-temperature calcinations
without affecting access to the metal surface in any signifi-
cant way. It was also established that Pt/Al,O; promotes this
hydrogenation at more than twice the rate seen with Pt/SiO,
but with much lower selectivity toward the production of
the unsaturated alcohol, typically the desired product. Addi-
tional Brgnsted and Lewis acid sites were created upon the
deposition of submonolayer coverages of silicon oxide, as
probed via pyridine adsorption. The addition of the silicon
oxide thin films reduced the overall activity of these catalysts
but also increased their selectivity toward the production of
the unsaturated alcohol. The best catalysts in term of selec-
tivity were obtained after 3 or 4 SiO, ALD cycles, which
were estimated to deposit approximately half of a monolayer
(~1A) of SiO, [43]. Based on these results, it was proposed
that the added strong Brgnsted acid sites at mixed Si—~O—Al
positions, possibly in synergy with the metal surface, may be
responsible for the relative enhancement in the hydrogena-
tion of C=0 bonds detected. In the experiments described
below, we explore this possibility further by approaching
the preparation of the Pt-based silica-alumina mixed-oxide
catalysts from the other end, starting with silica supports and
adding controlled amounts of alumina on top. Improvements
in catalytic performance were seen with the new catalysts,
as described below, and synergies were identified, as before,
that lead to changes in both activity and selectivity that can-
not be simply explained by a linear combination of the per-
formance of the two oxide phases.

2 Experimental Details
Two Pt/silica catalysts were used for these studies: (1) a

commercial 1 wt% Pt/SiO, solid, purchased from Sigma-
Aldrich, which was employed to test the catalytic conversion
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of cinnamaldehyde; and (2) 3 wt% Pt/SBA-15, made in
house (by mixing a H,PtCl, solution with SBA-15, evap-
orating the solvent under vacuum at 310 K, calcining the
resulting solid in air at 675 K for 2 h, and reducing the metal
under H, at 625 K for 2 h prior to use) and used for the
adsorption—desorption isotherm measurements and the infra-
red spectroscopy characterization of pyridine adsorption.
The SBA-15 was purchased from Sigma-Aldrich SBA-15
(>99.9% SiO, purity, surface area =700+ 50 m> g~!, pore
volume =0.5-0.7 cm® g~!, pore diameter > 6 nm, particle
size <150 pm).

The Al,O; ALD film growth was carried out in a home-
made reactor based on a six-way stainless steel cross by
following a procedure described in detail elsewhere [43],
alternating doses of trimethylaluminum(III) (TMA) and
deionized water at 475 K with Ar flushings in between. The
powder was thinly spread on the Ni-based tray of the reac-
tor to assure even exposure to the reactants (also discussed
extensively previously [43]). The additional data reported for
Pt/Al,O; catalysts, by itself and after SiO, ALD film growth,
are from a previous study in our laboratory [75].

N, adsorption—desorption isotherms were carried out
using a NOVA @2000e gas sorption system. The adsorp-
tion of pyridine was characterized by infrared absorption
spectroscopy in transmission mode, using a homemade
quartz cell with NaCl windows and a Bruker Tensor 27
Fourier-transform infrared (FTIR) spectrometer [75-77].
The kinetic measurements were performed using a 300 mL
high-pressure Parr batch reactor [72, 75]. Aliquots of the
reaction mixture were taken periodically (every half an hour
at the beginning, more infrequently later on) and analyzed by
gas chromatography. Turnover numbers were estimated by
using the total Pt loading of the catalysts, and expressed in
terms of molecules converted per Pt atom. Given that only
about half of the Pt atoms in these catalysts may be exposed
at the surface of the nanoparticles (NPs) [75], our reported
TON values systematically underestimate the real extent of
conversion, but relative comparisons are not affected by this
factor. Turnover frequencies (TOFs) were then calculated via
numerical derivatization of the TON versus time data, and
expressed in TON/h.

3 Results and Discussion

The effectiveness of the Al,0; ALD procedure to grow
uniform films on the Pt/silica catalysts was evaluated via
analysis of data from N, adsorption—desorption isotherm
experiments performed on Pt/SBA-15 samples. As discussed
in detail in a previous publication, the uniform pore size and
shape of the pores in mesoporous materials such as SBA-15
can be exploited to evaluate the characteristics of the thin
films grown by ALD: the pore size distributions can provide
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information about deposition rates and the uniformity of the
films, whereas the changes in pore surface area and pore
volume can be used to independently assess the extent of the
deposition [43]. Typical data recorded in the experiments
reported here for (Al,0; ALD)/Pt/SBA-15 samples are pre-
sented in Fig. 1.

The left panel of Fig. 1 displays the uptake and desorp-
tion of N, as a function of pressure for four samples, the
original catalyst as well as (Al,0; ALD)/Pt/SBA-15 sam-
ples obtained after 1, 3, and 5 ALD cycles. The results (the
adsorption isotherms as well as the pore size distributions)
are very similar to those reported previously with (Al,O;
ALD)/SBA-15 samples, without any added Pt [43], a com-
parison that indicates that the dispersed Pt NPs do not appear
to affect the ALD process. The following observations are
worth highlighting: (1) the normalized total pore volume
(that is, the N, volume absorbed at P/P,=1 per gram of
catalyst), decreases with increasing number of ALD cycles,
because of the empty space in the pores taken by the grow-
ing new film [43]; and (2) the shape of the hysteresis loop
between the adsorption and desorption branches is not
affected by the film deposition, indicating retention of the
original cylindrical geometry of the pores.

The right panel of Fig. 1 reports the pore size distribu-
tions calculated from the data for the N, desorption process
in the left panel using the BJH (Barrett—Joyner—Halenda)

I
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Fig.1 Left: N, adsorption—desorption isotherms, in the form of
uptake volume versus pressure, for Pt/SBA-15 samples on which
aluminum oxide thin films have been deposited by ALD. Data are
reported as a function of the number of ALD cycles (0, 1, 3, and 5)
used. Right: Pore size distributions extracted from analysis of the
desorption branch of the curves reported in the left panel. The mono-
tonic pore size decrease seen with increasing number of ALD cycles,
together with the preservation of the narrow size distribution, reflects
the uniform nature of the deposition process and the growth of a film
by about 1.5 A in thickness per cycle in the initial stages of the depo-
sition

equation for Type IV isotherms [78]. It is clear that the pore
size decreases monotonically with increasing number of
ALD cycles. More importantly, the size distributions retain
their narrow nature, attesting to the good quality (uniform-
ity) of the newly grown Al,O; films. An initial deposition of
films 1.5+0.2 A in thickness per ALD cycle was calculated
from this data, virtually the same (within experimental error)
to that seen with the SBA-15 samples without Pt [43], and
also consistent with typical alumina ALD growth on other
substrates [61, 79, 80]. Access of the reactants in catalysis
to the surface of the Pt nanoparticles is preserved in these
catalysts even after the deposition of the alumina films, a
fact shown previously by using carbon-monoxide titration
experiments with infrared absorption spectroscopy [75]. On
the other hand, partial blocking of metal sites by the grown
films is possible, as discussed below.

The catalytic performance of the solids prepared by alu-
mina ALD on commercial Pt/SiO, for the promotion of
hydrogenation reactions was tested next. Specifically, these
catalysts were evaluated for the selective hydrogenation
of conjugated unsaturated aldehydes (cinnamaldehyde in
particular). The reactions considered here are depicted in
Scheme 1. Typically, there is an interest in selectively pro-
moting the hydrogenation of the aldehyde group of unsatu-
rated aldehydes to yield unsaturated alcohols, the conver-
sion of cinnamaldehyde (CMA) to cinnamyl alcohol (CMO)
in our particular case, because the resulting products are
valuable feedstocks for the making of flavorings, perfumes,
and pharmaceuticals [69, 70, 81, 82]. In general, however,
reported selectivities to the desirable allyl alcohol produc-
tion are low, especially when using Pt-based catalysts, which
tend to favor C=C double bond hydrogenation to dihydrocin-
namaldehyde (HCMA) instead, or even full hydrogenation to
dihydrocinnamyl alcohol (HCMO) [70-72, 83—-86]. In this
work we explore the possibility of tuning such selectivity
by modifying the properties of the support in a controlled
manner, via ALD.

Typical kinetic data in the form of turnover numbers
(TON? ) versus time resulting from these studies are reported
in Fig. 2. Results are shown for the total CMA conversion
as well as for the accumulation of all three individual prod-
ucts in the reaction mixture under the following conditions:
cinnamaldehyde/Pt mole ratio=500:1, P(H,) =30 bar,
T =300 K. Kinetics for four samples are reported: for Pt/
Si0, as is and after 5 Al,O; ALD cycles, measured in this
study, and for Pt/Al,O5 naked and after 4 SiO, ALD cycles,
from our previous work [75]. The number of ALD cycles
used in both cases was chosen to correspond to approxi-
mately half a monolayer of coverage of the new oxide film,
to produce the mixed silica-alumina surfaces that showed
the most promise before [75]. We’ll return to this point later.

Figure 2 clearly shows that the highest activity, both
total and partial for each of the products, is obtained with
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Scheme 1 Reaction network
considered here for the hydro-
genation of cinnamaldehyde
(CMA). Particular focus is
placed on the selective produc-
tion of cinnamyl alcohol (CMO)
over dihydrocinnamaldehyde
(HCMA)

H,

Cinnamaldehyde
(CMA)

N OH

H,
Cinnamyl Alcohol %
(CMO)
OH

Dihydrocinnamyl Alcohol
(HCMO)

Dihydrocinnamaldehyde
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Fig.2 TONs versus time for the
hydrogenation of cinnamalde-
hyde (CMA) on Pt/SiO, and Pt/
Al,O; catalysts, unmodified and
after ALD of approximately half
a monolayer of aluminum oxide
or silicon oxide, respectively.
Shown are the data for the total
conversion (left panel) as well
as for the production of CMO
(second panel), HCMA (third
panel), and HCMO (last panel).
The alumina-based catalyst is
more active but less selective,
whereas the mixed-oxide sup-
ported samples show subtle but
desirable changes compared to
the Pt/SiO, case
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the pure alumina support, a result consistent with past pub-
lications [70, 87, 88]. By contrast, the rate of conversion
is much slower, as much as one order of magnitude lower,
on silica-based catalysts. In terms of the ALD-treated cata-
lysts, the two cases reported here, namely, the (5 Al,O4
ALD)/Pt/SiO, and (4 SiO, ALD)/Pt/Al,O5 samples, dis-
play similar performance, suggesting that their surfaces
may be similar. As already mentioned before, we argue
that the number of ALD cycles chosen in both cases leads
to the deposition of approximately half a monolayer of
the new oxide, and results in the likely formation of new
Si—O-Al surface sites. The total conversion rates with
those catalysts is marginally lower than with Pt/SiO,, sug-
gesting that perhaps the Pt NPs may become slightly cov-
ered by the ALD films, reducing the active catalytic areas.

@ Springer

10 20 0

Time/h

10 200

Time/h Time/h

The data in Fig. 2 also show a slowing down in con-
version with reaction time, with trends that differ for the
different individual products. This is likely to be indica-
tive of changes that may take place on the surface of the
catalyst under reaction conditions, although it may alter-
natively reflect the effect of the presence of the products
in the reaction mixture, as these reactions were performed
in a batch reactor. In order to better follow the changes in
conversion over time, the raw kinetic data was converted
into TOFs (Fig. 3), and the new numbers used to estimate
reaction selectivities (Fig. 4). Figure 3 shows how the total
rate of conversion with both the original Pt/SiO, catalyst
and with the sample obtained after 4 Al,O; ALD cycles
decreases with reaction time. The approximately linear way
in which that happens indicates a first-order dependence of
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the reaction rate on the concentration of the reactant (CMA)
in the solution, a behavior easy to understand if the process
involves individual adsorbed reactants at low coverages on
the surface. However, the trends seen with the individual
products suggest a more nuanced overall kinetic scheme.
Indeed, one significant observation in Fig. 3 is the fact that
the rate of CMO production increases with reaction time in
the early stages of the conversion, apparently at the expense
of the HCMA production. This trend, which we have also
seen with alumina-based samples [75], strongly suggests that
the catalysts need to be conditioned under the highly reduc-
ing conditions of the reaction before reaching a steady-state
behavior. After a couple of hours, though, the initial rate
increase reverses itself, and both the total activity and those
for the production of both CMO and HCMA go down over
time afterwards. The TOF for HCMO production does not
seem to change significantly over time, reflecting zero-order
dependences on the concentration of the reactant (CMA) and
the products (CMO and HCMA).

The traces in the two panels of Fig. 3 do in general
show similar behavior with the two catalysts considered,
Pt/S10, without versus with an added Al,0; ALD layer:
both the total TOFs and the trends versus reaction time
are comparable. There are, however, some subtle but sig-
nificant differences that are better highlighted in the plots
of selectivities versus time (left panel) and conversion
(right panel) provided in Fig. 4. As mentioned before,

Il
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0 ALD Cycles
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Fig.3 TOFs versus reaction time for the hydrogenation of cinnamal-
dehyde promoted by Pt/SiO, catalysts, unmodified (left panel) and
after being covered with a thin alumina film (deposited using 4 ALD
cycles, right panel). Data are shown for the total conversion as well as
for each individual product, calculated by numerical differentiation of
the original results shown in Fig. 2. Interestingly, the TOFs for CMO
initially increase with reaction time at the expense of HCMA produc-
tion
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Fig.4 Selectivities, calculated in terms of TOFs, for CMO, HCMO,
and HCMA. The data are displayed in terms of both reaction time
(left panel) and the extent of conversion (right). Two sets of data are
provided, for Pt/SiO, (light traces, open symbols) and for (4 Al,O;
ALD)/Pt/SiO, (dark lines, filled symbols). The maximum in CMO
selectivity is reached at later times and at higher conversions with the
ALD-modified catalysts, which then retains better selectivity at high
conversions

the selectivity for CMO production goes up in the early
stages of the reaction, but reverses after a few hours. The
selectivity toward HCMA production decreases monotoni-
cally with increasing reaction time or conversion, however,
which means that the changes in the kinetics of CMO are
due primarily the consumption of the reactant (CMA) and
the subsequent conversion of CMO to HCMO. It is also
important to note that the net TOF for HCMA reaches
values close to zero in the later stages of the CMA conver-
sion but do not become negative, indicating that it is much
more difficult to further hydrogenate HCMA than CMO to
HCMO within these reaction mixtures.

In terms of the comparative behavior of Pt/SiO, versus (4
Al,05; ALD)/Pt/SiO,, Fig. 4 clearly shows that, because the
ALD-treated sample takes longer to fully condition at the
start of the reaction, it takes longer to reach the maximum
in CMO selectivity, but also, as a consequence, retains a
higher CMO selectivity afterwards; further hydrogenation of
CMO to HCMO is delayed. In fact, the rate for HCMO pro-
duction is always lower with the modified catalyst (Fig. 3),
which means that the added alumina film also induces an
intrinsic change in selectivity. This is a desirable change,
as it implies that a flow-reactor process with good CMO
selectivity could be setup with the mixed-oxide catalysts at
higher conversions than possible with pure silica supports.
Notice that, after approximately 10 h of reaction, both the
Pt/Si0, and (4 Al,0; ALD)/Pt/SiO, catalysts show similar
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CMO TOFs, but that the silica-only catalyst shows higher
HCMO TOF (Fig. 3).

In search for an explanation for the higher ultimate selec-
tivity achieved by the mixed-oxide catalysts at the later
stages of the conversion, in particular the suppression of
the hydrogenation of CMO to HCMO, pyridine-infrared
spectroscopy (IR) titration studies were performed to iden-
tify new possible acidic sites [§9-91]. The data obtained
from this work are summarized in Fig. 5. There, IR traces
are shown for (x AL,O; ALD)/Pt/SBA-15 (x=0, 3, 5) and
(y SiO, ALD)/Pt/Al,0O5 (x=0, 6) after surface saturation
with pyridine at 300 K (left panel) and after annealing to
425 K to desorb any weakly adsorbed species (right panel).
Most of the peaks observed here are expected, and have been
reported and assigned before. Specifically, the two main fea-
tures at 1447 and 1595 cm™! are associated with hydrogen-
bonded pyridine, and the additional bands at 1492, 1578, and
1614 cm™! originate from coordinately bonded pyridine on
Lewis acidic sites [92, 93]. All those peaks are clearly seen
with all the samples at low (300 K) temperatures, because
pyridine can bind weakly and show similar behavior on both
silica and alumina supports under those conditions.

The data recorded after annealing at 425 K is more dis-
criminating, however, as those only shows relatively strongly
bonded species. For one, there are clear differences in peak

N
Al,0,,Si0, ALD on Pt/SBA-15,Al,0,
Pyridine Titration, IR

T,4s = 300 K | ads = 425 K

I
Pt/AITOS
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(5 Al;O, ALD)/Pt/SBA-15

\ | (3Al,O4 ALD)/Pt/SBA-15

Transmittance
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0.2I 0.21
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Fig.5 IR absorption spectra of pyridine adsorbed at 300 K (left
panel) and 425 K (right panel) on Pt/SiO, and Pt/Al,O; catalysts,
unmodified and after ALD of thin alumina or silicon oxide films of
different thicknesses, respectively (after 3 and 5 Al,O; ALD cycles
on the silica substrate and after 6 SiO, ALD on the alumina based
sample). The new peaks that develop at 1547 and 1620 cm™' in the
ALD-modified catalysts indicate the creation of new strong Brgnsted
and Lewis sites, respectively, on the mixed oxide surfaces
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intensities between the samples based on silica versus alu-
mina supports, with the spectra from the former mainly
showing hydrogen-bonded pyridine and the data for the
latter also displaying features for adsorption on Lewis acid
sites (the hydrogen-bonded pyridine features are weaker
in those cases). The spectra from the samples modified by
ALD display most of the features of the alumina-only cata-
lyst, but also show some subtle differences indicative of a
synergy between the silicon oxide and the aluminum oxide.
In particular, the peak at 1492 cm™' seems to be the most
intense for the (3 Al,O; ALD)/Pt/SBA-15 sample, and to
show much less intensity in samples with higher alumina
content. Perhaps more interestingly, new features develop
at 1547 and 1620 cm™', the latter seen as a shoulder of the
1614 cm™! feature in the traces for the (3 Al,O; ALD)/Pt/
SBA-15 and (6 SiO, ALD)/Pt/Al,O5 and more clearly in the
data for (5 Al,O; ALD)/Pt/SBA-15. The first is typically
associated with pyridinium ions, and is indicative of adsorp-
tion on strong Brgnsted acid sites, whereas the latter has
been ascribed to strong Lewis sites [94]. These new acidic
sites are likely to be responsible for the changes in selectiv-
ity during the hydrogenation of cinnamaldehyde seen with
Pt/Si0, catalysts upon the addition of thin alumina layers.

4 Conclusions

A brief discussion has been provided in the Introduction of
this report on the merits of using atomic layer deposition
(ALD) as a way to prepare new catalysts in a controlled
way to improve on catalytic performance. ALD affords the
deposition of thin films of metal oxides on porous materials
in an even and conformal fashion and with submonolayer
thickness control, a way to create new mixed-oxide sites
on the surface of catalysts. This ALD approach to catalyst
design was illustrated here for the modification of Pt-based
catalysts used for the selective hydrogenation of unsaturated
aldehydes, cinnamaldehyde in our example. Silica supported
catalysts were modified via the addition of thin alumina
films, and their performance contrasted to alumina based
catalysts modified by silica ALD, which we had studied
before and reported in a previous publication [75]. First, the
quality of the alumina films was assessed by recording N,
adsorption—desorption isotherms, using SBA-15 as the silica
support to take advantage of the well defined geometry of
the pores in that material. It was shown that the average pore
diameter is reduced monotonically with increasing alumina
ALD cycles, as expected because of the blockage induced by
the new grown films; an initial deposition rate of about 1.5
AJALD cycle was estimated from these results. Significantly,
the narrow nature of the pore diameter distribution of SBA-
15 was retained upon the ALD addition of alumina films,
indicating that the deposition is homogeneous all throughout
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the surfaces of the pores. Decreases in total pore volume and
surface area were seen as well, consistent with the picture of
an even coating of the mesopores by the new alumina films.
The behavior seen here during Al,O; ALD on Pt/SBA-15
matches quite closely that reported by us in the past for pure
SBA-15 samples, without Pt [43], demonstrating that the
dispersed Pt nanoparticles do not affect the ALD process in
any significant way.

The ALD-modified catalysts were tested for the hydro-
genation of cinnamaldehyde. As reported before [75], we
found that alumina-based catalysts are much more active
but less selective for this reaction than those made out of Pt
nanoparticles dispersed on silica. Catalysts made by addi-
tion of alumina thin films to Pt/SiO, showed performances
comparable to the unmodified original material, but a few
subtle differences were nevertheless identified. First, a slight
decrease in total activity was seen, presumably because of
partial site blockage of the metal phase by the deposited
alumina films. This drop in activity was small, however,
and detectable mostly at high conversion; the initial TOFs
were identical with versus without the added alumina films
(within experimental error). Perhaps more significant are the
changes seen in the selectivity of the hydrogenation catalysis
as a function of reaction time. Two observations stand out in
this context. First, the selectivity toward the production of
the desirable cinnamyl alcohol (CMO) increased with reac-
tion time with all our catalysts in the initial stages of the con-
version, at the expense of dihydrocinnamaldehyde (HCMA)
formation. This trend, which implies the need for condi-
tioning of the surface under reaction conditions, reverses
after a few hours, after which the rate of CMO production
decreased linearly with reaction time or conversion, reflect-
ing the expected first-order kinetics. Critically, the transition
from increasing to decreasing CMO selectivity was slower
with the alumina-modified catalysts, which means that maxi-
mum selectivity is reached at higher conversions with those.
This is a desirable outcome, as it suggests that the mixed-
oxide catalysts should be better in terms of selectivity for
operation in flow reactors under high conversion conditions.

The second important observation in these kinetic studies
was that dihydrocinnamyl alcohol (HCMO) production is
partially suppressed by the added alumina films. HCMO is
mainly made as a secondary product, via further hydrogena-
tion of the primary CMO and HCMA products (although
in some circumstances it can be produced directly on the
surface of the metal catalyst in a concerted way [95]), but
in our mixed-oxide systems it seems to come from hydro-
genation of CMO only. Accordingly, the suppression of this
secondary step seen with the ALD-modified catalysts is also
desirable, as it helps increase selectivity toward CMO. The
suppression of the extensive hydrogenation of cinnamalde-
hyde (CMA) to HCMO correlates with the creation of new
Brgnsted and Lewis sites on the mixed-oxide surfaces, as

identified by the new peaks seen at 1547 and 1620 cm™!
in the IR spectra of pyridine adsorbed on these catalysts,
respectively. Since the coverages of the oxides added by
ALD that lead to optimum catalytic performance amount
to approximately half a monolayer, we speculate that the
new chemistry may be associated with new Si—O—Al surface
sites.
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