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Abstract
The case is made here for the power of using atomic layer deposition (ALD) as a way to induce changes in the nature of 
the oxides used as supports in many catalytic processes. ALD provides a route to grow thin films in a conformal way and 
with submonolayer thickness control, affording the creation of unique mixed-oxide structures with new reaction sites. This 
approach is exemplified here for the case of the hydrogenation of unsaturated aldehydes with platinum-based catalysts. 
Silica-supported catalysts were modified with thin alumina films, grown by ALD using trimethylaluminum(III) (TMA) and 
water, and their performance contrasted with pure Pt/SiO2 and Pt/Al2O3 samples as well as with catalysts previously reported 
by us made by silica ALD on Pt/Al2O3. The quality of the alumina films grown on Pt/SiO2 was first evaluated by using N2 
adsorption–desorption isotherms in conjunction with SBA-15 as the support, a mesoporous material with well-defined 1D 
cylindrical pores. An initial deposition of approximately 1.5 Å of the alumina film per ALD cycle was estimated from those 
measurements, with retention of the narrow distribution of pore diameters indicative of homogeneous coverage throughout 
the length of the pores. The catalytic hydrogenation of cinnamaldehyde was then determined to be slower but more selective 
with silica supports compared to alumina. Addition of a half of a monolayer of alumina to Pt/SiO2 reduces the total activ-
ity, but only marginally. In exchange, the new mixed-oxide catalysts exhibit a higher selectivity toward the production of 
the desirable unsaturated alcohol at high conversions, and a lower activity for its subsequent hydrogenation to the saturated 
alcohol. These trends were associated with the formation of new Brønsted and Lewis acidic sites, possibly based on mixed 
Si–O–Al surface structures.

Keywords  Atomic layer deposition · Unsaturated aldehyde hydrogenation · C=O vs. C=C hydrogenation selectivity · 
Adsorption–desorption isotherms · Pyridine titrations

1  Introduction

One of the major challenges in heterogeneous catalysis is 
the design and preparation of highly stable and selective 
catalysts [1–4]. One versatile way to create new catalytic 

sites on solids and to tune their properties is by exploiting 
the unique properties of solid–solid interfaces. Specifically, 
the area around the contact between two oxides displays 
electronic and chemical properties that may be quite dif-
ferent to those of the interacting pure phases and that can 
typically lead to the creation of new acidic sites, different 
structural atomic ensembles, and/or changes in redox prop-
erties [5–9]. Similarly, the interfaces between oxides and 
metals may provide new mixed sites capable of reacting in 
unique ways [10–17]. The challenge is to create those inter-
faces in a controlled way. Many mixed oxides can be made 
with well-defined compositions and structures, as in the case 
of zeolites [18, 19], but that still provides limited control on 
the details of their surfaces, where the catalysis takes place. 
Procedures that rely on the post-modification of surfaces 
after the synthesis of the solids afford a more direct route to 
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the design of unique catalytic sites [20–24], yet many tradi-
tional treatments such as impregnations and precipitations 
yield surfaces with ill-defined characteristics. Fortunately, 
new molecularly designed deposition processes have become 
available in recent years to improve on the control that can 
be exerted during the preparation of specific atomic ensem-
bles on surfaces [25–27]. From these, we here focus on the 
incorporation of atomic layer deposition (ALD) [28–34] to 
the synthesis of mixed-phase catalysts.

ALD is a chemical approach originally introduced for 
digital display manufacturing, microelectronics fabrication, 
and other related applications [35, 36]. In ALD, the deposi-
tion chemistry is split into two or more self-limiting and 
complementary reactions in order to provide a better handle 
on the thickness, conformality, and uniformity of the grown 
films [28, 37–41]. ALD is presently considered the deposi-
tion method with the greatest potential for the production of 
thin films with atomic-level precision [36], offering many 
advantages over other chemical vapor deposition (CVD) pro-
cesses, at least on flat surfaces [38, 42]: (1) the film thickness 
depends only on the number of cycles employed, not on the 
exposures used in each cycle, so process control is simple 
and accurate; (2) there is less of a need for a homogeneous 
flux of the reactants through the reactor, a fact that makes 
processes reproducible and easy to scale for large-area coat-
ings without sacrificing conformality; (3) ALD offers more 
flexibility in the design of the operational deposition condi-
tions, requiring lower temperatures than regular CVD; (4) 
there is minimal or no interference from gas-phase reactions 
during the deposition process because of the separation of 
the two complementary reactions in time; and (5) it is ease 
to extend ALD processes to the manufacturing of layered 
structures. Some of these characteristics of ALD may not be 
as applicable to porous materials, though, as we have already 
reported recently [43].

We here address the specific case of making mixed silica-
alumina surfaces by ALD to, with the addition of platinum 
nanoparticles, tune selective hydrogenation catalysis. Both 
silica and alumina are common supports in catalysis, and 
specific acidic sites may be added to silica surfaces via the 
deposition of alumina [8, 18, 19, 44, 45]. Specifically, the 
substitution of silicon atoms with aluminum in the oxide 
network provides for a way to add Lewis acid sites, and the 
change in the electron distribution in adjacent sites also leads 
to an increase in Brønsted acidity in silanol groups in the 
vicinity of the Al centers. Hence, the overall acidity of zeo-
lites, for instance, typically depends on the final Al/Si atomic 
ratio. Similar changes have been pursued and achieved with 
amorphous silica-alumina solids (ASA), although the new 
sites sometimes exhibit characteristics different to those seen 
in zeolites. Also, new structures such as pentacoordinated or 
distorted tetrahedral Al may be created by alumina addition 
to those materials [8, 20, 46].

As a guiding principle, we here propose that the acidity 
of amorphous and mesoporous silica and alumina supports 
may be modified, and their properties fine-tuned, via the 
controlled addition of aluminum or silicon oxide layers to 
their surfaces, respectively, by ALD. This idea is certainly 
advanced by recent reports where the surfaces of silica and 
alumina supports have been modified via the deposition of 
reactive precursors [19, 27, 47, 48]. For instance, silication 
of γ-alumina with tetraethoxysilane (TEOS) was shown 
to result in the formation of a surface spinel phase where 
silicon substitutes for aluminum in tetrahedral sites, expos-
ing surface silanol groups with limited Brønsted acidity, 
not enough to protonate pyridine at room temperature; this 
catalyst showed an increase in activity for n-butene isomeri-
zation without any loss in selectivity to isobutene [49]. In a 
separate study with similar samples, “mild” Brønsted acid 
sites were identified exhibiting identical selectivity but much 
higher specific activity than the parent alumina for the liq-
uid-phase catalytic dehydration of cyclohexanol [26]. In 
yet another investigation, deposition of trimethylaluminum 
(TMA) on faujasite-type catalysts led, after proper condi-
tioning, to higher propane cracking activity per Brønsted 
acid site [22]. Deposition of aluminum species on hydroxy-
lated silica has also been shown to create new sites active for 
ethanol dehydration and m-xylene isomerization [50]. Some 
spectroscopic studies have been directed at identifying the 
new sites made by these surface modifications of silica and 
alumina amorphous solids, but their structure is still a mat-
ter of debate [25]: the original models that Brønsted acidity 
arises from protons compensating the electronic charge of 
the surface or from Al–OH groups close to silanol groups 
[51–53] have been challenged by new ideas that include 
acidic sites similar to those of zeolites, that is, bridging 
Si–OH–Al groups [54–56], and silanol groups in the vicin-
ity of aluminum atoms but not bridging to OH moieties with 
aluminum atoms in different coordination spheres, including 
tetrahedral Al(IV), five-coordinate Al(V), and unsaturated 
Al(III) [57, 58].

Here we report on the modification of Pt catalysts based on 
silica porous materials with alumina thin films. The modifica-
tion of pure silica (without any dispersed metal nanoparticles) 
via the addition of alumina films has already been reported in 
the past in a few selected cases [59, 60]. Typically, alumina 
can be deposited by alternating trimethylaluminum (TMA) 
and water in ALD cycles under mild conditions, that is, at 
temperatures on the order of 200 °C or less. This chemistry 
has been quite well characterized on flat surfaces [61, 62], and 
also demonstrated in porous materials such as zeolites [29, 60, 
63–66] and other supported catalysts [67, 68]. We have in fact 
already successfully tested the growth of alumina films on the 
walls of the pores of pure SBA-15 using this type of ALD with 
TMA and water, as we reported recently [43]. We found that 
each ALD cycle leads to a reduction in average pore diameter 
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of about 0.3 nm while still retaining most of the narrow dis-
tribution of pore sizes present in the original material. In this 
work we have applied the same approach to modify Pt/SiO2 
catalysts, with the idea of adding new acidic sites to control 
selectivity during the hydrogenation of unsaturated organic 
reactants, specifically of unsaturated aldehydes.

Past studies on the selective hydrogenation of C=O bonds 
over C=C bonds in such aldehydes have concluded that both 
acidic and redox functionality affect the performance of the 
dispersed transition metal phase [69–72]. It has also been 
reported that the use of reducible supports such as TiO2 
increases selectivity towards unsaturated alcohols [73, 74], 
presumably because of a strong metal-support interaction 
(SMSI) effect exerted by the new oxide on the metal phase. 
In a previous publication we described the effects of add-
ing silica films to Pt/Al2O3 catalysts [75], the reverse of the 
case studied here. It was found that the silica layers greatly 
increase the stability of the platinum nanoparticles, prevent-
ing their sintering during high-temperature calcinations 
without affecting access to the metal surface in any signifi-
cant way. It was also established that Pt/Al2O3 promotes this 
hydrogenation at more than twice the rate seen with Pt/SiO2 
but with much lower selectivity toward the production of 
the unsaturated alcohol, typically the desired product. Addi-
tional Brønsted and Lewis acid sites were created upon the 
deposition of submonolayer coverages of silicon oxide, as 
probed via pyridine adsorption. The addition of the silicon 
oxide thin films reduced the overall activity of these catalysts 
but also increased their selectivity toward the production of 
the unsaturated alcohol. The best catalysts in term of selec-
tivity were obtained after 3 or 4 SiO2 ALD cycles, which 
were estimated to deposit approximately half of a monolayer 
(~ 1 Å) of SiO2 [43]. Based on these results, it was proposed 
that the added strong Brønsted acid sites at mixed Si–O–Al 
positions, possibly in synergy with the metal surface, may be 
responsible for the relative enhancement in the hydrogena-
tion of C=O bonds detected. In the experiments described 
below, we explore this possibility further by approaching 
the preparation of the Pt-based silica-alumina mixed-oxide 
catalysts from the other end, starting with silica supports and 
adding controlled amounts of alumina on top. Improvements 
in catalytic performance were seen with the new catalysts, 
as described below, and synergies were identified, as before, 
that lead to changes in both activity and selectivity that can-
not be simply explained by a linear combination of the per-
formance of the two oxide phases.

2 � Experimental Details

Two Pt/silica catalysts were used for these studies: (1) a 
commercial 1 wt% Pt/SiO2 solid, purchased from Sigma-
Aldrich, which was employed to test the catalytic conversion 

of cinnamaldehyde; and (2) 3 wt% Pt/SBA-15, made in 
house (by mixing a H2PtCl6 solution with SBA-15, evap-
orating the solvent under vacuum at 310 K, calcining the 
resulting solid in air at 675 K for 2 h, and reducing the metal 
under H2 at 625 K for 2 h prior to use) and used for the 
adsorption–desorption isotherm measurements and the infra-
red spectroscopy characterization of pyridine adsorption. 
The SBA-15 was purchased from Sigma-Aldrich SBA-15 
(≥ 99.9% SiO2 purity, surface area = 700 ± 50 m2 g−1, pore 
volume = 0.5–0.7 cm3 g−1, pore diameter > 6 nm, particle 
size < 150 µm).

The Al2O3 ALD film growth was carried out in a home-
made reactor based on a six-way stainless steel cross by 
following a procedure described in detail elsewhere [43], 
alternating doses of trimethylaluminum(III) (TMA) and 
deionized water at 475 K with Ar flushings in between. The 
powder was thinly spread on the Ni-based tray of the reac-
tor to assure even exposure to the reactants (also discussed 
extensively previously [43]). The additional data reported for 
Pt/Al2O3 catalysts, by itself and after SiO2 ALD film growth, 
are from a previous study in our laboratory [75].

N2 adsorption–desorption isotherms were carried out 
using a NOVA@2000e gas sorption system. The adsorp-
tion of pyridine was characterized by infrared absorption 
spectroscopy in transmission mode, using a homemade 
quartz cell with NaCl windows and a Bruker Tensor 27 
Fourier-transform infrared (FTIR) spectrometer [75–77]. 
The kinetic measurements were performed using a 300 mL 
high-pressure Parr batch reactor [72, 75]. Aliquots of the 
reaction mixture were taken periodically (every half an hour 
at the beginning, more infrequently later on) and analyzed by 
gas chromatography. Turnover numbers were estimated by 
using the total Pt loading of the catalysts, and expressed in 
terms of molecules converted per Pt atom. Given that only 
about half of the Pt atoms in these catalysts may be exposed 
at the surface of the nanoparticles (NPs) [75], our reported 
TON values systematically underestimate the real extent of 
conversion, but relative comparisons are not affected by this 
factor. Turnover frequencies (TOFs) were then calculated via 
numerical derivatization of the TON versus time data, and 
expressed in TON/h.

3 � Results and Discussion

The effectiveness of the Al2O3 ALD procedure to grow 
uniform films on the Pt/silica catalysts was evaluated via 
analysis of data from N2 adsorption–desorption isotherm 
experiments performed on Pt/SBA-15 samples. As discussed 
in detail in a previous publication, the uniform pore size and 
shape of the pores in mesoporous materials such as SBA-15 
can be exploited to evaluate the characteristics of the thin 
films grown by ALD: the pore size distributions can provide 
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information about deposition rates and the uniformity of the 
films, whereas the changes in pore surface area and pore 
volume can be used to independently assess the extent of the 
deposition [43]. Typical data recorded in the experiments 
reported here for (Al2O3 ALD)/Pt/SBA-15 samples are pre-
sented in Fig. 1.

The left panel of Fig. 1 displays the uptake and desorp-
tion of N2 as a function of pressure for four samples, the 
original catalyst as well as (Al2O3 ALD)/Pt/SBA-15 sam-
ples obtained after 1, 3, and 5 ALD cycles. The results (the 
adsorption isotherms as well as the pore size distributions) 
are very similar to those reported previously with (Al2O3 
ALD)/SBA-15 samples, without any added Pt [43], a com-
parison that indicates that the dispersed Pt NPs do not appear 
to affect the ALD process. The following observations are 
worth highlighting: (1) the normalized total pore volume 
(that is, the N2 volume absorbed at P/P0 = 1 per gram of 
catalyst), decreases with increasing number of ALD cycles, 
because of the empty space in the pores taken by the grow-
ing new film [43]; and (2) the shape of the hysteresis loop 
between the adsorption and desorption branches is not 
affected by the film deposition, indicating retention of the 
original cylindrical geometry of the pores.

The right panel of Fig. 1 reports the pore size distribu-
tions calculated from the data for the N2 desorption process 
in the left panel using the BJH (Barrett–Joyner–Halenda) 

equation for Type IV isotherms [78]. It is clear that the pore 
size decreases monotonically with increasing number of 
ALD cycles. More importantly, the size distributions retain 
their narrow nature, attesting to the good quality (uniform-
ity) of the newly grown Al2O3 films. An initial deposition of 
films 1.5 ± 0.2 Å in thickness per ALD cycle was calculated 
from this data, virtually the same (within experimental error) 
to that seen with the SBA-15 samples without Pt [43], and 
also consistent with typical alumina ALD growth on other 
substrates [61, 79, 80]. Access of the reactants in catalysis 
to the surface of the Pt nanoparticles is preserved in these 
catalysts even after the deposition of the alumina films, a 
fact shown previously by using carbon-monoxide titration 
experiments with infrared absorption spectroscopy [75]. On 
the other hand, partial blocking of metal sites by the grown 
films is possible, as discussed below.

The catalytic performance of the solids prepared by alu-
mina ALD on commercial Pt/SiO2 for the promotion of 
hydrogenation reactions was tested next. Specifically, these 
catalysts were evaluated for the selective hydrogenation 
of conjugated unsaturated aldehydes (cinnamaldehyde in 
particular). The reactions considered here are depicted in 
Scheme 1. Typically, there is an interest in selectively pro-
moting the hydrogenation of the aldehyde group of unsatu-
rated aldehydes to yield unsaturated alcohols, the conver-
sion of cinnamaldehyde (CMA) to cinnamyl alcohol (CMO) 
in our particular case, because the resulting products are 
valuable feedstocks for the making of flavorings, perfumes, 
and pharmaceuticals [69, 70, 81, 82]. In general, however, 
reported selectivities to the desirable allyl alcohol produc-
tion are low, especially when using Pt-based catalysts, which 
tend to favor C=C double bond hydrogenation to dihydrocin-
namaldehyde (HCMA) instead, or even full hydrogenation to 
dihydrocinnamyl alcohol (HCMO) [70–72, 83–86]. In this 
work we explore the possibility of tuning such selectivity 
by modifying the properties of the support in a controlled 
manner, via ALD.

Typical kinetic data in the form of turnover numbers 
(TONs) versus time resulting from these studies are reported 
in Fig. 2. Results are shown for the total CMA conversion 
as well as for the accumulation of all three individual prod-
ucts in the reaction mixture under the following conditions: 
cinnamaldehyde/Pt mole ratio = 500:1, P(H2) = 30  bar, 
T = 300 K. Kinetics for four samples are reported: for Pt/
SiO2 as is and after 5 Al2O3 ALD cycles, measured in this 
study, and for Pt/Al2O3 naked and after 4 SiO2 ALD cycles, 
from our previous work [75]. The number of ALD cycles 
used in both cases was chosen to correspond to approxi-
mately half a monolayer of coverage of the new oxide film, 
to produce the mixed silica-alumina surfaces that showed 
the most promise before [75]. We’ll return to this point later.

Figure 2 clearly shows that the highest activity, both 
total and partial for each of the products, is obtained with 

Fig. 1   Left: N2 adsorption–desorption isotherms, in the form of 
uptake volume versus pressure, for Pt/SBA-15 samples on which 
aluminum oxide thin films have been deposited by ALD. Data are 
reported as a function of the number of ALD cycles (0, 1, 3, and 5) 
used. Right: Pore size distributions extracted from analysis of the 
desorption branch of the curves reported in the left panel. The mono-
tonic pore size decrease seen with increasing number of ALD cycles, 
together with the preservation of the narrow size distribution, reflects 
the uniform nature of the deposition process and the growth of a film 
by about 1.5 Å in thickness per cycle in the initial stages of the depo-
sition
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the pure alumina support, a result consistent with past pub-
lications [70, 87, 88]. By contrast, the rate of conversion 
is much slower, as much as one order of magnitude lower, 
on silica-based catalysts. In terms of the ALD-treated cata-
lysts, the two cases reported here, namely, the (5 Al2O3 
ALD)/Pt/SiO2 and (4 SiO2 ALD)/Pt/Al2O3 samples, dis-
play similar performance, suggesting that their surfaces 
may be similar. As already mentioned before, we argue 
that the number of ALD cycles chosen in both cases leads 
to the deposition of approximately half a monolayer of 
the new oxide, and results in the likely formation of new 
Si–O–Al surface sites. The total conversion rates with 
those catalysts is marginally lower than with Pt/SiO2, sug-
gesting that perhaps the Pt NPs may become slightly cov-
ered by the ALD films, reducing the active catalytic areas.

The data in Fig. 2 also show a slowing down in con-
version with reaction time, with trends that differ for the 
different individual products. This is likely to be indica-
tive of changes that may take place on the surface of the 
catalyst under reaction conditions, although it may alter-
natively reflect the effect of the presence of the products 
in the reaction mixture, as these reactions were performed 
in a batch reactor. In order to better follow the changes in 
conversion over time, the raw kinetic data was converted 
into TOFs (Fig. 3), and the new numbers used to estimate 
reaction selectivities (Fig. 4). Figure 3 shows how the total 
rate of conversion with both the original Pt/SiO2 catalyst 
and with the sample obtained after 4 Al2O3 ALD cycles 
decreases with reaction time. The approximately linear way 
in which that happens indicates a first-order dependence of 

Scheme 1   Reaction network 
considered here for the hydro-
genation of cinnamaldehyde 
(CMA). Particular focus is 
placed on the selective produc-
tion of cinnamyl alcohol (CMO) 
over dihydrocinnamaldehyde 
(HCMA)

Fig. 2   TONs versus time for the 
hydrogenation of cinnamalde-
hyde (CMA) on Pt/SiO2 and Pt/
Al2O3 catalysts, unmodified and 
after ALD of approximately half 
a monolayer of aluminum oxide 
or silicon oxide, respectively. 
Shown are the data for the total 
conversion (left panel) as well 
as for the production of CMO 
(second panel), HCMA (third 
panel), and HCMO (last panel). 
The alumina-based catalyst is 
more active but less selective, 
whereas the mixed-oxide sup-
ported samples show subtle but 
desirable changes compared to 
the Pt/SiO2 case
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the reaction rate on the concentration of the reactant (CMA) 
in the solution, a behavior easy to understand if the process 
involves individual adsorbed reactants at low coverages on 
the surface. However, the trends seen with the individual 
products suggest a more nuanced overall kinetic scheme. 
Indeed, one significant observation in Fig. 3 is the fact that 
the rate of CMO production increases with reaction time in 
the early stages of the conversion, apparently at the expense 
of the HCMA production. This trend, which we have also 
seen with alumina-based samples [75], strongly suggests that 
the catalysts need to be conditioned under the highly reduc-
ing conditions of the reaction before reaching a steady-state 
behavior. After a couple of hours, though, the initial rate 
increase reverses itself, and both the total activity and those 
for the production of both CMO and HCMA go down over 
time afterwards. The TOF for HCMO production does not 
seem to change significantly over time, reflecting zero-order 
dependences on the concentration of the reactant (CMA) and 
the products (CMO and HCMA). 

The traces in the two panels of Fig. 3 do in general 
show similar behavior with the two catalysts considered, 
Pt/SiO2 without versus with an added Al2O3 ALD layer: 
both the total TOFs and the trends versus reaction time 
are comparable. There are, however, some subtle but sig-
nificant differences that are better highlighted in the plots 
of selectivities versus time (left panel) and conversion 
(right panel) provided in Fig. 4. As mentioned before, the selectivity for CMO production goes up in the early 

stages of the reaction, but reverses after a few hours. The 
selectivity toward HCMA production decreases monotoni-
cally with increasing reaction time or conversion, however, 
which means that the changes in the kinetics of CMO are 
due primarily the consumption of the reactant (CMA) and 
the subsequent conversion of CMO to HCMO. It is also 
important to note that the net TOF for HCMA reaches 
values close to zero in the later stages of the CMA conver-
sion but do not become negative, indicating that it is much 
more difficult to further hydrogenate HCMA than CMO to 
HCMO within these reaction mixtures.

In terms of the comparative behavior of Pt/SiO2 versus (4 
Al2O3 ALD)/Pt/SiO2, Fig. 4 clearly shows that, because the 
ALD-treated sample takes longer to fully condition at the 
start of the reaction, it takes longer to reach the maximum 
in CMO selectivity, but also, as a consequence, retains a 
higher CMO selectivity afterwards; further hydrogenation of 
CMO to HCMO is delayed. In fact, the rate for HCMO pro-
duction is always lower with the modified catalyst (Fig. 3), 
which means that the added alumina film also induces an 
intrinsic change in selectivity. This is a desirable change, 
as it implies that a flow-reactor process with good CMO 
selectivity could be setup with the mixed-oxide catalysts at 
higher conversions than possible with pure silica supports. 
Notice that, after approximately 10 h of reaction, both the 
Pt/SiO2 and (4 Al2O3 ALD)/Pt/SiO2 catalysts show similar 

Fig. 3   TOFs versus reaction time for the hydrogenation of cinnamal-
dehyde promoted by Pt/SiO2 catalysts, unmodified (left panel) and 
after being covered with a thin alumina film (deposited using 4 ALD 
cycles, right panel). Data are shown for the total conversion as well as 
for each individual product, calculated by numerical differentiation of 
the original results shown in Fig. 2. Interestingly, the TOFs for CMO 
initially increase with reaction time at the expense of HCMA produc-
tion

Fig. 4   Selectivities, calculated in terms of TOFs, for CMO, HCMO, 
and HCMA. The data are displayed in terms of both reaction time 
(left panel) and the extent of conversion (right). Two sets of data are 
provided, for Pt/SiO2 (light traces, open symbols) and for (4 Al2O3 
ALD)/Pt/SiO2 (dark lines, filled symbols). The maximum in CMO 
selectivity is reached at later times and at higher conversions with the 
ALD-modified catalysts, which then retains better selectivity at high 
conversions
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CMO TOFs, but that the silica-only catalyst shows higher 
HCMO TOF (Fig. 3).

In search for an explanation for the higher ultimate selec-
tivity achieved by the mixed-oxide catalysts at the later 
stages of the conversion, in particular the suppression of 
the hydrogenation of CMO to HCMO, pyridine-infrared 
spectroscopy (IR) titration studies were performed to iden-
tify new possible acidic sites [89–91]. The data obtained 
from this work are summarized in Fig. 5. There, IR traces 
are shown for (x Al2O3 ALD)/Pt/SBA-15 (x = 0, 3, 5) and 
(y SiO2 ALD)/Pt/Al2O3 (x = 0, 6) after surface saturation 
with pyridine at 300 K (left panel) and after annealing to 
425 K to desorb any weakly adsorbed species (right panel). 
Most of the peaks observed here are expected, and have been 
reported and assigned before. Specifically, the two main fea-
tures at 1447 and 1595 cm−1 are associated with hydrogen-
bonded pyridine, and the additional bands at 1492, 1578, and 
1614 cm−1 originate from coordinately bonded pyridine on 
Lewis acidic sites [92, 93]. All those peaks are clearly seen 
with all the samples at low (300 K) temperatures, because 
pyridine can bind weakly and show similar behavior on both 
silica and alumina supports under those conditions.

The data recorded after annealing at 425 K is more dis-
criminating, however, as those only shows relatively strongly 
bonded species. For one, there are clear differences in peak 

intensities between the samples based on silica versus alu-
mina supports, with the spectra from the former mainly 
showing hydrogen-bonded pyridine and the data for the 
latter also displaying features for adsorption on Lewis acid 
sites (the hydrogen-bonded pyridine features are weaker 
in those cases). The spectra from the samples modified by 
ALD display most of the features of the alumina-only cata-
lyst, but also show some subtle differences indicative of a 
synergy between the silicon oxide and the aluminum oxide. 
In particular, the peak at 1492 cm−1 seems to be the most 
intense for the (3 Al2O3 ALD)/Pt/SBA-15 sample, and to 
show much less intensity in samples with higher alumina 
content. Perhaps more interestingly, new features develop 
at 1547 and 1620 cm−1, the latter seen as a shoulder of the 
1614 cm−1 feature in the traces for the (3 Al2O3 ALD)/Pt/
SBA-15 and (6 SiO2 ALD)/Pt/Al2O3 and more clearly in the 
data for (5 Al2O3 ALD)/Pt/SBA-15. The first is typically 
associated with pyridinium ions, and is indicative of adsorp-
tion on strong Brønsted acid sites, whereas the latter has 
been ascribed to strong Lewis sites [94]. These new acidic 
sites are likely to be responsible for the changes in selectiv-
ity during the hydrogenation of cinnamaldehyde seen with 
Pt/SiO2 catalysts upon the addition of thin alumina layers.

4 � Conclusions

A brief discussion has been provided in the Introduction of 
this report on the merits of using atomic layer deposition 
(ALD) as a way to prepare new catalysts in a controlled 
way to improve on catalytic performance. ALD affords the 
deposition of thin films of metal oxides on porous materials 
in an even and conformal fashion and with submonolayer 
thickness control, a way to create new mixed-oxide sites 
on the surface of catalysts. This ALD approach to catalyst 
design was illustrated here for the modification of Pt-based 
catalysts used for the selective hydrogenation of unsaturated 
aldehydes, cinnamaldehyde in our example. Silica supported 
catalysts were modified via the addition of thin alumina 
films, and their performance contrasted to alumina based 
catalysts modified by silica ALD, which we had studied 
before and reported in a previous publication [75]. First, the 
quality of the alumina films was assessed by recording N2 
adsorption–desorption isotherms, using SBA-15 as the silica 
support to take advantage of the well defined geometry of 
the pores in that material. It was shown that the average pore 
diameter is reduced monotonically with increasing alumina 
ALD cycles, as expected because of the blockage induced by 
the new grown films; an initial deposition rate of about 1.5 
Å/ALD cycle was estimated from these results. Significantly, 
the narrow nature of the pore diameter distribution of SBA-
15 was retained upon the ALD addition of alumina films, 
indicating that the deposition is homogeneous all throughout 

Fig. 5   IR absorption spectra of pyridine adsorbed at 300  K (left 
panel) and 425  K (right panel) on Pt/SiO2 and Pt/Al2O3 catalysts, 
unmodified and after ALD of thin alumina or silicon oxide films of 
different thicknesses, respectively (after 3 and 5 Al2O3 ALD cycles 
on the silica substrate and after 6 SiO2 ALD on the alumina based 
sample). The new peaks that develop at 1547 and 1620 cm−1 in the 
ALD-modified catalysts indicate the creation of new strong Brønsted 
and Lewis sites, respectively, on the mixed oxide surfaces
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the surfaces of the pores. Decreases in total pore volume and 
surface area were seen as well, consistent with the picture of 
an even coating of the mesopores by the new alumina films. 
The behavior seen here during Al2O3 ALD on Pt/SBA-15 
matches quite closely that reported by us in the past for pure 
SBA-15 samples, without Pt [43], demonstrating that the 
dispersed Pt nanoparticles do not affect the ALD process in 
any significant way.

The ALD-modified catalysts were tested for the hydro-
genation of cinnamaldehyde. As reported before [75], we 
found that alumina-based catalysts are much more active 
but less selective for this reaction than those made out of Pt 
nanoparticles dispersed on silica. Catalysts made by addi-
tion of alumina thin films to Pt/SiO2 showed performances 
comparable to the unmodified original material, but a few 
subtle differences were nevertheless identified. First, a slight 
decrease in total activity was seen, presumably because of 
partial site blockage of the metal phase by the deposited 
alumina films. This drop in activity was small, however, 
and detectable mostly at high conversion; the initial TOFs 
were identical with versus without the added alumina films 
(within experimental error). Perhaps more significant are the 
changes seen in the selectivity of the hydrogenation catalysis 
as a function of reaction time. Two observations stand out in 
this context. First, the selectivity toward the production of 
the desirable cinnamyl alcohol (CMO) increased with reac-
tion time with all our catalysts in the initial stages of the con-
version, at the expense of dihydrocinnamaldehyde (HCMA) 
formation. This trend, which implies the need for condi-
tioning of the surface under reaction conditions, reverses 
after a few hours, after which the rate of CMO production 
decreased linearly with reaction time or conversion, reflect-
ing the expected first-order kinetics. Critically, the transition 
from increasing to decreasing CMO selectivity was slower 
with the alumina-modified catalysts, which means that maxi-
mum selectivity is reached at higher conversions with those. 
This is a desirable outcome, as it suggests that the mixed-
oxide catalysts should be better in terms of selectivity for 
operation in flow reactors under high conversion conditions.

The second important observation in these kinetic studies 
was that dihydrocinnamyl alcohol (HCMO) production is 
partially suppressed by the added alumina films. HCMO is 
mainly made as a secondary product, via further hydrogena-
tion of the primary CMO and HCMA products (although 
in some circumstances it can be produced directly on the 
surface of the metal catalyst in a concerted way [95]), but 
in our mixed-oxide systems it seems to come from hydro-
genation of CMO only. Accordingly, the suppression of this 
secondary step seen with the ALD-modified catalysts is also 
desirable, as it helps increase selectivity toward CMO. The 
suppression of the extensive hydrogenation of cinnamalde-
hyde (CMA) to HCMO correlates with the creation of new 
Brønsted and Lewis sites on the mixed-oxide surfaces, as 

identified by the new peaks seen at 1547 and 1620 cm−1 
in the IR spectra of pyridine adsorbed on these catalysts, 
respectively. Since the coverages of the oxides added by 
ALD that lead to optimum catalytic performance amount 
to approximately half a monolayer, we speculate that the 
new chemistry may be associated with new Si–O–Al surface 
sites.
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