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Abstract

This paper proposes to learn hierarchical composition-
al AND-OR model for interpretable image synthesis by s-
parsifying the generator network. The proposed method
adopts the scene-objects-parts-subparts-primitives hierar-
chy in image representation. A scene has different types
(i.e., OR) each of which consists of a number of object-
s (i.e., AND). This can be recursively formulated across
the scene-objects-parts-subparts hierarchy and is terminat-
ed at the primitive level (e.g., wavelets-like basis). To real-
ize this AND-OR hierarchy in image synthesis, we learn a
generator network that consists of the following two com-
ponents: (i) Each layer of the hierarchy is represented by
an over-complete set of convolutional basis functions. Off-
the-shelf convolutional neural architectures are exploited to
implement the hierarchy. (ii) Sparsity-inducing constraints
are introduced in end-to-end training, which induces a s-
parsely activated and sparsely connected AND-OR model
from the initially densely connected generator network. A
straightforward sparsity-inducing constraint is utilized, that
is to only allow the top-k basis functions to be activated at
each layer (where k is a hyper-parameter). The learned
basis functions are also capable of image reconstruction
to explain the input images. In experiments, the proposed
method is tested on four benchmark datasets. The results
show that meaningful and interpretable hierarchical repre-
sentations are learned with better qualities of image synthe-
sis and reconstruction obtained than baselines.

1. Introduction

Remarkable recent progress on image synthesis [1 1, 4,

, 35, 2, 36] has been made using deep neural networks
(DNNs) [22, 21]. Most efforts focus on developing sophis-
ticated architectures and training paradigms for sharp and
photo-realistic image synthesis [27, 5, 18]. Although high-
fidelity images can be generated, the internal synthesizing
process via DNNs is still largely viewed as a black-box, thus

potentially hindering the long-term applicability in eXplain-
able AI (XAI) [7]. More recently, the generative adversarial
network (GAN) dissection method [3] has been proposed to
identify internal neurons in pre-trained GANs that show in-
terpretable meanings using a separate annotated dataset in a
post-hoc fashion.

In this paper, we focus on learning interpretable models
for unconditional image synthesis from scratch with explicit
hierarchical representations. Interpretable image synthesis
means that the internal image generation process can be ex-
plicitly unfolded through meaningful basis functions at dif-
ferent layers which are learned via end-to-end training and
which conceptually reflect the hierarchy of scene-objects-
parts-subparts-primitives. A scene has different types (i.e.,
OR) each of which consists of a number of objects (i.e.,
AND). This can be recursively formulated across the scene-
objects-parts-subparts hierarchy and is terminated at the
primitive level (e.g., wavelets-like basis functions). Figure 1
shows an example of the AND-OR tree learned from scratch
for explaining the generation of a face image.

The hierarchy of scene-objects-parts-subparts-primitives
is at the stem of image grammar models [10, 41]. The AND-
OR compositionality has been applied in image and vision
tasks [4 1]. With the recent resurgence of DNNs [22, 21] and
the more recent DNN-based image synthesis frameworks
such as the widely used Generative Adversarial Networks
(GANSs) [11] and Variational Auto-Encoder (VAE) method-
s [19, 14], the hierarchy is usually assumed to be modeled
implicitly in DNNs. Due to dense connections between con-
secutive layers in traditional DNNSs, they often learn dense
compositional patterns of how entities in a layer are formed
from “smaller” ones in the layer right below it.

The sparsity principle has played a fundamental role in
high-dimensional statistics, machine learning, signal pro-
cessing and Al In particular, the sparse coding scheme [32]
is an important principle for understanding the visual cor-
tex. By imposing sparsity constraints on the coefficients of
a linear generative model, [33] learned Gabor-like wavelets
that resemble the neurons in the primary visual cortex (V1).
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Figure 1. An example of AND-OR tree learned for face synthesis at a resolution of 64 x 64. For clarity, we only show 3 layers (out of the
total 5 layers). The AND-OR tree is illustrated from Layer 3 (the part/composite part level) to Layer 1 (the primitive level). The spatial
resolution of the feature map at Layer 3 is 8 x 8. The entire grid is interpreted by a AND-node. Each position (z, y) in the 8 x 8 grid is
interpreted by an OR-node such as the eye node at the positions (2, 3) and (2, 6). Similarly, Layer 2 and Layer 1 can be interpreted w.r.t.
the AND-OR compositions. The activated basis functions have semantically meaningful interpretations at Layer 3 and Layer 2. Layer 1
shows the learned primitives covering the classic Gabor-like wavelets and the blob-like primitives. See text for detail. Best viewed in color.

Since then, there have been many important developments
on sparse coding presented in the literature before the resur-
gence of DNNs. With the remarkable successes of sparse
coding models, it is not unreasonable to assume that a top-
down generative model of natural images should be based
on the linear sparse coding model, or incorporate the sparse
coding principle at all of its layers. However, developing
a top-down sparse coding model that can generate, rather
than merely reconstruct, photo-realistic natural image pat-
terns has proven to be a difficult task [17], mainly due to
the difficulty of selecting and fitting sparse basis functions
to each image.

In this paper, we take a step forward by rethinking dense
connections between consecutive layers in the generator
network. We propose to “re-wire” them sparsely for explicit
modeling of the hierarchy of scene-objects-parts-subparts-
primitives in image synthesis (see Figure 1). To realize the
“re-wiring”, we integrate the sparsity principle into the gen-
erator network in a simple yet effective and adaptive way:
(i) Each layer of the hierarchy is represented by an over-
complete set of basis functions. The basis functions are in-
stantiated using convolution in order to be translation co-
variant. Off-the-shelf convolutional neural architectures are
then exploited to implement the hierarchy such as generator
networks used in GANSs. (ii) Sparsity-inducing constraints
are introduced in end-to-end training which facilitates a s-
parsely connected AND-OR model to emerge from initial-
ly densely connected convolutional neural networks. A s-
traightforward sparsity-inducing constraint is utilized, that

is to only allow the top-k basis functions to fire at each lay-
er (where k is a hyper-parameter). By doing so, we can
harness the highly expressive modeling capability and the
end-to-end learning flexibility of generator network, and the
interpertability of the explicit compositional hierarchy.

2. Related work

Sparse-autoencoders [30, 28, 15] were proposed for ef-
fective feature representations and these representations can
improve the performance of the classification task. The
sparsity constrains are designed and encouraged by the
Kullback-Leibler divergence between the Bernoulli ran-
dom variables [30], [; penalty on the normalized features
[31], and winner-takes-all principle [29]. However, these
methods do not have the ability to generate new data.
Lee [23, 16] proposed a convolutional deep belief net-
work which employs sparsity regularization and probabilis-
tic max-pooling to learn hierarchical representations. How-
ever, the learning is difficult and computationally expensive
for training the deep belief nets. Zeiler [39, 40] proposed
the deconvolutional networks to learn the low and mid-level
image representations based on the convolutional decom-
position of images under a sparsity constrain. However,
for the aforementioned methods, the hierarchical represen-
tations have to be learned layer by layer, that is to first train
the bottom layer of the network and then fix the learned
layer and train the upper layers one by one. Moreover, the
above methods usually work on gray-level images or the
gradient images which are preprocessed by removing the
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low frequency information and highlighting the structure in-
formation. Unlike the above methods, the proposed method
can directly work on the raw color images without any pre-
processing. The proposed model can simultaneously learn
meaningful hierarchical representations, generate realistic
images and reconstruct the original images.

Our contributions. This paper makes three main contribu-
tions to the field of generative learning: (i) It proposes in-
terpretable image synthesis that unfolds the internal gener-
ation process via a hierarchical AND-OR model of seman-
tically meaningful nodes. (ii) It presents a simple yet ef-
fective sparsity-inducing method that facilitates a hierarchi-
cal AND-OR model of sparsely connected nodes to emerge
from an initial network of dense connections between con-
secutive layers. (iii) It shows that meaningful hierarchical
representations can be learned in an end-to-end manner in
image synthesis with better qualities than baselines.

3. Sparsifying generator network
3.1. Image synthesis and model interpretability

From the viewpoint of top-down generative learning in
image synthesis, we start with a d-dimensional latent code
vector Z = (z;,i = 1,- -+ ,d) consisting of d latent factors.
We usually assume Z ~ N(0, I;), where I; denotes the d-
dimensional identity matrix. In GANs and VAE, generator
networks are used to implement the highly non-linear map-
ping from a latent code vector Z to a synthesized image,
denoted by Y which lies in a D-dimensional image space
(i.e., D equals the product of the spatial dimensions, width
and height of an image, and the number of chromatic chan-
nels such as 3 for RGB images). The generator network
is thus seen as non-linear extension of factor analysis [12].
The model has the following form:

Y =g(Z;0) +¢, 1)
Z ~N(0,1;), €~ N(0,0%Ip), d< D,

where € is the observational errors assumed to be Gaussian
white noises, ¢(-) represents the generator network and ©
collects parameters from all layers.

As illustrated at the top of Figure 2, dense connections
between consecutive layers are learned in the vanilla gen-
erator network, which we think is the main drawback that
hinders explicit model intepretability. We explore and ex-
ploit the AND-OR compositionality in image synthesis by
learning to rewire the connections sparsely and to unfold the
internal image generation process in an interpretable way, as
illustrated at the bottom of Figure 2.

3.2. The induced AND-OR model

Without loss of generality, consider a simple hierarchy
of object(O)-part(P)-primitive/basis(B) that generates RGB
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Figure 2. Top: traditional generator networks with dense connec-
tions (solid arrows) between consecutive layers, which are widely
used in GANs and VAE. Bottom: the proposed AND-OR models
with sparse connections (dashed arrows). See text for detail.

images. Start with the latent code vector Z € R%, we have,

Hierarchy: 7 - O— P— B— Y, (2
Layer Index: 1, 2, 3, 4, 5. (3

For example, Figure 2 illustrates the computing flow from
Layer 1 to Layer 3.

The symbol O in the hierarchy is grounded in an in-
ternal (Hy x Wa X d3)-dimensional space, which can be
treated as Hy x Wy dy-dimensional vectors when instan-
tiated. Similarly, the symbols P and B will be instantiat-
ed as H3 x W3 ds-dimensional vectors and Hy X Wy dy-
dimensional vectors respectively. Y is a generated RGB
image of size Hs x W5 x 3.

To better show how to facilitate the sparse connections to
emerge from the dense ones, we look at the computing flow
using the lens of vector-matrix multiplication [9]. In the
vanilla generator network, consider a d;-dimensional vec-
tor, U in Layer [, it connects to a set of d;41-dimensional
vectors, V;’s in Layer [ + 1. Let ch(U) be the set of indices
of the vectors in Layer [ 4+ 1 which connect with U (i.e., U’s
child nodes). We have

VitU) = Wy, xa, -U+b, i€ch(U), “)
where V;(U) means the contribution of U to V; since there
may be other vectors U’ in Layer [ connecting to V; too.
W, xd, is the transformation matrix and b the bias vector.
Consider Layer 1 to Layer 2 (Z — O), U = Z is connected
with all vectors V;’s in O with different Wy, , | xq,’s and 0’s.
Consider Layer 2 to Layer 3 (O — P), convolution is usu-
ally used, so each U only connects to vectors V;’s locally,
and Wy, xq,’s and b’s are shared among different U’s.

Denote by pr(V;) the set of indices of vectors in Layer [
connecting with V;. In the vanilla generator network,

Vi = act( Z

j€pr(Vi)
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where act(-) stands for activation function such as the Re-
LU function [21].
In the proposed method, we compute V; by,

Vi = S(act( Y Vi(U;))ikura), (©6)

jepr(Vi)

where S(-; ki11) is the sparsity-inducing function. From
symbol Z to O, we apply the sparsity-inducing function a-
long the d;, dimension and retain the top k;4.1 out of d; 1
elements in the resulting vector in terms of the element val-
ues. In the subsequent layers, we apply it along the spatial
domain across the d;11 dimensions individually. By doing
so, the resulting vectors at different locations will have d-
ifferent sparsity ratios. The k;’s are hyper-parameters. We
usually set d; > d;+1 and k; < kjy1, that is, Layer [ has
higher sparsity degree than lower Layer [ 4 1.

With sparsity-inducing functions, image synthesis is fun-
damentally changed in terms of representation. The internal
generation process is also much easier to unfold. The AND-
OR model then emerges from the vanilla dense connected
generator network. We can rewrite Eqn. 1 as

Y =9(Z;0,k) +¢, (7
Z~N(0,1;), e~N(0,0%Ip), d< D,
where the sparsity hyper-parameters k = {k;;l =

1,---,L}. We summarize the proposed AND-OR model
for image synthesis as follows.

Layer 1 to Layer 2: Z — O. The latent code vector Z
is represented by a root OR-node (non-terminal symbol),

Z 2B )zl e,z N, 1), ()

where a|b denotes OR switching between symbols a and b
(i.e., instantiated latent code vectors that generate different
object images).

Each instantiated latent code vector z; is then mapped
to an object instance AND-node O;. The object instance
AND-node O; represents the object-part decomposition in
the lattice A5 (of size Hy x W5). We have,

AND
O; —=0i1- 02" Oij """ 0iNp, ©))

where a - b represents the composition between symbols a
and b. Np is the number of part symbols. The object-part
decomposition is usually done in the spatial domain. For
example, if the support domain for o;’s is 4 x 4, we will
have at most 16 parts. We could use 4 parts if we further
divide the 4 x 4 domain into 2 x 2 blocks.

Each o; ; is then represented by an OR-node in the d»-
dimensional vector space indicating the sparse selection a-
mong (dQ) candidates. When instantiated, we have part

k
AND-node 0;,5(k2).

Layer 2 to Layer 3: O — P. Each part AND-node
0;,j(k2) is decomposed into a number of M child part type
OR-nodes,

AND
Oi,j(kS) — Pi,j,l : Pi,j,2 T

- Py ja, (10)
where M is determined by the kernel size when convolution
is used to compute Layer 3 from Layer 2.

Similarly, each part type OR-node P; ; ; is grounded in
the d3-dimensional vector space indicating the sparse selec-
tion among (Zi) candidates. When instantiated, we have
part-primitive AND-node. Then, the AND-OR is recursive-
ly formulated in the downstream layers. Now, let us look
at Figure 2 again, for each instantiated z;, we can follow
the sparse connections and visualize the encountered kernel
symbols (see Figure 1).

3.3. Learning and inference

The proposed AND-OR model can still utilize off-the-
shelf end-to-end learning framework since the sparsity-
inducing functions do not change the formulation (Eqn. 7).
We adopt the alternating back-propagation learning frame-
work proposed in [12].

Denote by {Y;,7 = 1,..., N} the training dataset con-
sisting of /V images (e.g., face images). The learning objec-
tive is to maximize the observed data log-likelihood

N
1
N 2 log P(¥i: 6, k)

i=1

L) =

N
1
= ¥ Xtos [ PO Zs0. Kz, )
1=1

where the latent vector Z; for an observed data Y; is inte-
grated out, and P(Y;, Z;; ©,k) is the complete-data likeli-
hood. The gradient of L(©) is computed as follows

0

%IOgP(Y797k)

= ¥E/P(Y Z;0,k)dZ
~ P(Y;0,k) 00 .

0
= EP(Z|Y;@,k) l:(?@ lOgP<Y,Z,®,k>:| . (12)

In general, the expectation in Eqn.12 is analytically in-
tractable. Monte Carlo average is usually adopted in prac-
tice with samples drawn from the posterior P(Z|Y; ©,k)
by the Langevin dynamics,

2

52 0
Zrir = Zr+ 5 52108 P(Z:.Y:0,K) +06,,  (13)

where 7 indexes the time step, J is the step size, and &,
denotes the noise term, £, ~ N(0, I).

14299



Based on Eqn. 7, the complete-data log-likelihood is
computed by

log p(Y, Z;©,k) = log [p(Z)p(Y|Z; ©, k)]

1 1

=SV —g(Z:0 WP - 2P +C a4
where C' is a constant term independent of Z and Y. It
can be shown that, given sufficient transition steps, the Z
obtained from this procedure follows the posterior distribu-
tion. For each training example Y;, we run the Langevin
dynamics in Eqn. 13 to get the corresponding posterior sam-
ple Z;. The sample is then used for gradient computation in
Eqn.12. The parameters O are then learned through Monte
Carlo approximation,

259(Zi;0,k). (15)

3.4. Energy-based model as a critic

It is well known that using squared Euclidean distance
alone to train generator networks often yields blurry recon-
struction results, since the precise location information of
details may not be preserved, and the L» loss in the image
space leads to averaging effects among all likely locations.
In order to improve the quality, we recruit an energy-based
model as a critic of the generator model which serves as an
actor. The energy-based model is in the form of exponential
tilting of a reference distribution

P(Y;®) = exp [~ f(Y;®)] q(Y), (16)

1
Z(®)
where f(Y; ®) is parameterized by a bottom-up ConvNet
which maps an image Y to the feature statistics or energy,
Z(®) = [exp[f(Y;®)]q(Y)dY = E {exp[f(Y;®)]} is
the normalizing constant, and ¢(Y") is the reference distri-
bution such as Gaussian white noise,

1 Y|?
qYV)= ———=-exp {— 1Yl ] . (17

(2m02)P/2 202

Let P(Y) be the underlying data distribution. Expec-
tation with respect to P(Y) is taken to be the average over
training examples. We jointly learn the generator model and
the energy-based model by introducing the following cross-
entropy triangle, under a unified probabilistic framework,

min max 7(©, ®),
© (i3]

T(©,®) = H(P(Y)

,P(Y;0,k)) (18)
—H(PY),P(Y;®)) +

( (Y;®7k)7P(Y;(I)))>

where H(P,Q) = —Ep [log Q] denotes the cross-entropy
between the two distributions. H(P(Y), P(Y;0,k)) and
H(P(Y),P(Y;®)) lead to the maximum likelihood learn-
ing of the two models respectively, while H(O,®) =
H(P(Y;0,k), P(Y;®)) connects and modifies the learn-
ing of the two models. H(P(Y;0,k), P(Y; ®)) causes the
following effect: the energy-based model criticizes the gen-
erator model by assigning lower energies to the observed
examples than the synthesized examples. The generator
model then improves its synthesis by lowering the energies
of the synthesized examples.

Specifically, to update ©, minimizing the first term is
equivalent to maximizing Eqn. 11. The third term in Eqn.18
can be written as

H(P(Y;0,K), P(Y;®)) = —Eyy-10 log P(Y; ®)
= 7EZ~p(Z) logP(g(Z,G,k),CI)) (19)

0
_%EZNp(Z) log P(9(Z;0,k); ®)

1o 9
~ 5 2 o (904 0.K); @), (20)
i=1

which seeks to make the synthesized (g(Z;; ©,k)) to have
low energies.
To update ®, we have

B 1L 9
—aTI)T(G P) ~ N;a@f(yi;q’)_
1L 9
N2 55/ 9(Z:0.K);0), @D

=1

which seeks to make the energies of the observed (Y;) to be
lower than the energies of the synthesized (g(Z;; ©,k)).
Algorithm 1 presents the detail of learning and inference.

4. Experiments

In this section, we present the qualitative and quantita-
tive results of the proposed method tested on four datasets
widely used in image synthesis. The proposed method con-
sistently obtains better quantitative performance with inter-
pretable hierarchical representations learned. The code and
results can be found at the project page '.

Datasets: We use the CelebA dataset [26], the human
fashion dataset [25], the Stanford car dataset [20], the L-
SUN bedroom dataset [38]. We train our proposed AND-
OR model on the first 10k CelebA images as processed
by OpenFace [1], 78,979 human fashion images as done
in [25], the first 16k Stanford car images, and the first 100k
bedroom images, all cropped to 64 x 64 pixels.

Uhttps://andyxingxl.github.io/Deep-Sparse-Generator/
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Algorithm 1 Learning and Inference Algorithm
Input:
(1) training examples {Y;,i =1,..., N}
(2) network architectures and sparsity-inducing hyper-
parameters k (see Table 1)
(3) Langevin steps lg and learning iterations T’
Output:
(1) estimated parameters © and ¢
(2) synthesized examples {Yz,z =1,..,N}
1: Lett < 0, initialize © and ®.
2: repeat
3 Step 1: Fori = 1,..., N, generate Zi ~ N(0, 1),
and generate Y; = g(Z;; ©) k). Update ®(+1) =
M) 4+, 2701, 1)), where ZT(01, 1) is
computed using Eqn. 21.
4:  Step 2: For each i, start from the current Z;, run
lg steps of Langevin dynamics to update Z;, each of
which follows Eqn. 13.
5. Step 3: Update O+ = 01 + ~, L (L(OW) —
HO® oty where -LL(O®)  and
A H(0®, (+1)) are computed using Eqn. 15 and

20 respectively.
6: Lett+t+1
7. untilt =T

Settings and baselines: Table | summarizes architec-
tures of the generator network and the energy-based net-
work used in our experiments. We compare our mod-
el with state-of-the-art image synthesis methods including
VAE [19], DCGAN [34], WGAN [2], CoopNet [35], CE-
GAN [6]), ALI [8], and ALICE [24]. We use the Fréchet
Inception distance (FID) [13] for evaluating the quality of
generated images. VAE (based on variational inference) and
GAN (based on adversarial training) are two kinds of repre-
sentatively generative models for image synthesis. CoopNet
and CEGAN are both the energy-based models. However,
the above traditional GAN and energy-based methods can
only generate images and do not have the reconstruction
power. Our model has both the generative and reconstruc-
tion power, so we further compare with ALI and ALICE,
which are also GAN based models but also have the re-
construction power. The number of generated samples for
computing FID is the same as that of training set. We also
compare the image reconstruction quality in terms per pixel
mean square errors (MSE).

4.1. Qualitative results

Our AND-OR model is capable of joint image synthe-
sis and reconstruction. Figure 3 shows examples of recon-
structed and generated face images. The top of Figure 4,
Figure 5 and Figure 6 show examples for human fashion im-
ages, car images and bedroom images respectively (where

Table 1. Network architectures used in experiments. Upsample us-
es nearest neighbor interpolation. Downsample uses average pool-
ing. LReLU is the leaky-ReLU with negative slope being 0.2. All
convolution layers use kernels of size 3 x 3 with the number of out-
put channles listed in (-). The sparsity-inducing hyper-parameter

k is also given.

Layer Generator Network Energy Based Network
1 Z ~ N0, Iioo) Y, (64 X 64 x 3)
2 FC, (4 x 4 x 3200); k = 8 Conv+LReLU, (64)

Upsample, 2 Downsample, 2
3 Conv+ReLU, (512) Conv+LReLU, (64)
Conv+ReLU, (512); k = 8%8 Conv+LReLU, (64)
Upsample, 2 Downsample, 2
4 Conv+ReLU, (256) Conv+LReLU, (128)
Conv+ReLU, (256); k = 16x16 Conv+LReLU, (128)
Upsample, 2 Downsample, 2
5 Conv+ReLU, (128) Conv+LReLU, (256)
Conv+ReLU, (128); k = 32X32 Conv+LReLU, (256)
Upsample, 2 Downsample, 2
6 Conv+ReLU, (64) Conv+LReLU, (512)
Conv+ReLU, (64) Conv+LReLU, (512)
Conv+Tanh, ( FC, (1)

CELE 0T
¥ L0y 0o
CELE 01T
Bk Y B
BB RS BT )
o G S P ¢

Figure 3. Results of image synthesis and reconstruction on Cele-
bA. The first two rows show the original face images, the middle
two rows show the reconstruction results, and the last two rows
show the generated face images. The learned AND-OR tree mod-
el is illustrated in Figure 1.

the learned AND-OR tree models are shown in the same
way as Figure 1). Both the reconstructed images and the
generated images look sharp. The reconstructed images of
bedroom (Figure 6) look relatively blurrier. Bedroom im-
ages usually have larger variations which may entail more
complicated generator and energy-based network architec-
tures. We use the same architectures for all the tasks.

The learned AND-OR trees on the four datasets unfold
the internal generation process with semantically mean-
ingful internal basis functions learned (emerged). To our
knowledge, this is the first work in image synthesis that
learn interpretable image generation from scratch. As we
demonstrated in the Fig. 1,4, 5, and 6, our model can mine
semantically meaningful AND-OR Tree from the datasets
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Table 2. Comparisons of the Fréchet inception distance (FID). Smaller FID is better. The last column A shows the improvement of our

method over the runner-up method, WGAN.
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Figure 4. Results on the human fashion dataset. Top: the three
rows show original images, reconstructed images and generated
images respectively. Bottom: the learned AND-OR tree model.
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Figure 5. Results on the Stanford car dataset. Top: the three rows
show original images, reconstructed images and generated images
respectively. Bottom: the learned AND-OR tree model.

automatically, which facilitate the generative process to be
transparent and explainable. (E.g.) from Fig. 1, we have
learned semantically meaningful parts, such as eyes, nose
and mouth of a face. It is semantically meaningful, since,
at the eye’s location, the learned basis functions consist of

Datasets\ Methods | VAE[19] | DCGAN [34] | WGAN [2] | CoopNet [35] | CEGAN [6] | ALI[8] | ALICE [24] | Ours A
CelebA 53.38 19.28 18.85 28.49 20.62 30.53 23.17 16.62 | 2.32
HumanFashion 27.94 10.82 10.19 15.39 11.14 16.75 12.56 8.65 | 1.44
Standford cars 87.64 33.58 31.62 45.34 36.12 50.48 37.35 28.36 | 2.26
LSUN bedrooms 105.76 36.26 33.81 49.73 41.64 52.79 39.08 29.70 | 4.11
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Figure 6. Results on the LSUN bedroom dataset. Top: the three
rows show original images, reconstructed images and generated
images respectively. Bottom: the learned AND-OR tree model.

different kinds of eyes, in other words, there are not other
kinds of basis functions, such as nose and mouth, appearing
at the eye’s location. Moreover, we can find that the basis
functions (subparts) of the eye’s part are different from the
basis functions from the nose and mouth parts. From Fig. 4,
we can learn semantically meaningful parts, such as head,
body, left arm and right arm of a human. For the car exam-
ple in Figure 5, we can learn semantically meaningful parts,
such as the car window, central pillar at the left side of the
car, headlight and car tires. More interestingly, we observe
that the primitive layers in different AND-OR trees share
many common patterns similar to the Gabor wavelets and
blob-like structures, which is also consistent with results in
traditional sparse coding.

It is worth noting that the without the proposed sparsely
connected AND-OR model, the traditional generator net-
work cannot obtain these meaningful internal basis func-
tions, as we can observe from Figure 7. The reason is
they utilize the distributed representations, the representa-
tive power for a single activation is weak. In contrast, in
our sparsely connected AND-OR model, the energies are
forced to be collected into a few activations to make the
corresponding basis functions meaningful.
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Figure 7. Part-level basis functions learned from the traditional
generator network on the face dataset. Comparing with the part-
level (layer-3) basis functions learned with our sparsely connected
AND-OR model as shown in Figure 1, the traditional generator
network cannot obtain meaningful internal basis functions. The
first row shows the basis functions from the traditional genera-
tor network without sparsity-inducing constraint. The second row
shows the results of the generator network combining with an en-
ergy network but without sparsity-inducing constraint.

4.2. Quantitative results

The FID comparsions are summarized in Table 2. The
proposed method consistently outperforms the seven state-
of-the-art image synthesis methods in comparisons. On the
human fashion dataset, the images are nice and clean, our
method obtains the least improvement by 1.44. On the bed-
room dataset, the images are much more complex with large
structural and appearance variations, our method obtains the
biggest improvement by 4.11. We note that all the improve-
ment are obtained with more interpretable representations
learned in the form of AND-OR trees. This is especially
interesting since it shows that jointly improving model per-
formance and interpretability is possible.

We utilize per-pixel mean square error (MSE) to evalu-
ate image reconstruction. Table 3 shows the comparisons
with three state-of-the-art methods that are also capable of
joint image synthesis and reconstruction (VAE [19], ALI
[8], and ALICE [24]). We do not compare with the variants
of GANs and CoopNets since they usually can not perform
joint image reconstruction. From the experimental result-
s, the proposed method can not only obtain interpretable
generative process, such as semantically meaningful objec-
t parts and primitives, but also obtain competitive or even
better performance than the 7 famous traditional generative
models on the synthesis and reconstruction tasks.

4.3. Ablation studies

In addition to the AND-OR tree visualization, we pro-
pose a simple method to evaluate the intepretability of
learned basis functions (e.g., those at Layer 3, see Figure 1).
We perform Template Matching between the learned ba-
sis functions with training images using the fast normal-
ized cross-correlation algorithm [37]. Consider Layer 3
(a.k.a. object part level), if the learned basis functions con-
tain meaningful local parts of the object, the matching s-
core shall be high. We compare the Layer-3 basis functions
learned with and without the proposed sparsity-inducing ap-
proach respectively (i.e., Eqn. 7 vs Eqn. 1). The results of
the mean matching scores are summarized in Table 4. The

Table 3. Comparisons of the per-pixel mean square error (MSE).
Smaller MSE is better.

Datasets\ Methods | VAE [19] | ALI[8] | ALICE [24] | Ours
CelebA 0.016 0.132 0.019 0.011
HumanFashion 0.033 0.28 0.043 0.024
Standford cars 0.081 0.563 0.078 0.054
LSUN bedrooms 0.154 0.988 0.127 0.097

Table 4. Evaluation of interpretability. Comparisons of the match-
ing scores using the fast normalized cross-correlation algorithm
between the generator without sparsity and the proposed sparse
activated generator.

Methods\Datasets | CelebA | HumanFashion | Cars | Bedroom
w/o sparsity 0.33 0.29 0.31 0.23
w/ sparsity 0.83 0.81 0.76 0.72

proposed method significantly outperforms the counterpart.
The results verify that the proposed method can learn mean-
ingful basis functions for better model interpretability.

5. Conclusion

This paper proposes interpretable image synthesis by s-
parsifying generator network to induce a hierarchical com-
positional AND-OR model. The proposed method is built
on the vanilla generator network, which inherits the implic-
itly hierarchal grammar of the convolutional network. The
AND-OR model of sparsely connected nodes emerges from
the original densely connected generator network when
sparsity-inducing functions are introduced. Our work u-
nifies the top-down generator network and sparse coding
model, can learn interpretable dictionaries at multiple lay-
ers, moreover, learn the compositional structures and primi-
tives automatically from data. In training, we further recruit
an energy-based model and we jointly train the generator
model and the energy-based model as actor and critic. The
resulting AND-OR model is capable of image synthesis and
reconstruction. The results show that meaningful and inter-
pretable hierarchical representations are learned with bet-
ter qualities of image synthesis and reconstruction obtained
than baseline methods.
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