




low frequency information and highlighting the structure in-

formation. Unlike the above methods, the proposed method

can directly work on the raw color images without any pre-

processing. The proposed model can simultaneously learn

meaningful hierarchical representations, generate realistic

images and reconstruct the original images.

Our contributions. This paper makes three main contribu-

tions to the field of generative learning: (i) It proposes in-

terpretable image synthesis that unfolds the internal gener-

ation process via a hierarchical AND-OR model of seman-

tically meaningful nodes. (ii) It presents a simple yet ef-

fective sparsity-inducing method that facilitates a hierarchi-

cal AND-OR model of sparsely connected nodes to emerge

from an initial network of dense connections between con-

secutive layers. (iii) It shows that meaningful hierarchical

representations can be learned in an end-to-end manner in

image synthesis with better qualities than baselines.

3. Sparsifying generator network

3.1. Image synthesis and model interpretability

From the viewpoint of top-down generative learning in

image synthesis, we start with a d-dimensional latent code

vector Z = (zi, i = 1, · · · , d) consisting of d latent factors.

We usually assume Z ∼ N (0, Id), where Id denotes the d-

dimensional identity matrix. In GANs and VAE, generator

networks are used to implement the highly non-linear map-

ping from a latent code vector Z to a synthesized image,

denoted by Y which lies in a D-dimensional image space

(i.e., D equals the product of the spatial dimensions, width

and height of an image, and the number of chromatic chan-

nels such as 3 for RGB images). The generator network

is thus seen as non-linear extension of factor analysis [12].

The model has the following form:

Y = g(Z; Θ) + ǫ, (1)

Z ∼ N (0, Id), ǫ ∼ N (0, σ2ID), d < D,

where ǫ is the observational errors assumed to be Gaussian

white noises, g(·) represents the generator network and Θ
collects parameters from all layers.

As illustrated at the top of Figure 2, dense connections

between consecutive layers are learned in the vanilla gen-

erator network, which we think is the main drawback that

hinders explicit model intepretability. We explore and ex-

ploit the AND-OR compositionality in image synthesis by

learning to rewire the connections sparsely and to unfold the

internal image generation process in an interpretable way, as

illustrated at the bottom of Figure 2.

3.2. The induced AND-OR model

Without loss of generality, consider a simple hierarchy

of object(O)-part(P)-primitive/basis(B) that generates RGB
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Figure 2. Top: traditional generator networks with dense connec-

tions (solid arrows) between consecutive layers, which are widely

used in GANs and VAE. Bottom: the proposed AND-OR models

with sparse connections (dashed arrows). See text for detail.

images. Start with the latent code vector Z ∈ Rd, we have,

Hierarchy: Z → O → P → B → Y, (2)

Layer Index: 1, 2, 3, 4, 5. (3)

For example, Figure 2 illustrates the computing flow from

Layer 1 to Layer 3.

The symbol O in the hierarchy is grounded in an in-

ternal (H2 × W2 × d2)-dimensional space, which can be

treated as H2 × W2 d2-dimensional vectors when instan-

tiated. Similarly, the symbols P and B will be instantiat-

ed as H3 × W3 d3-dimensional vectors and H4 × W4 d4-

dimensional vectors respectively. Y is a generated RGB

image of size H5 ×W5 × 3.

To better show how to facilitate the sparse connections to

emerge from the dense ones, we look at the computing flow

using the lens of vector-matrix multiplication [9]. In the

vanilla generator network, consider a dl-dimensional vec-

tor, U in Layer l, it connects to a set of dl+1-dimensional

vectors, Vi’s in Layer l+ 1. Let ch(U) be the set of indices

of the vectors in Layer l+1 which connect with U (i.e., U ’s

child nodes). We have

Vi(U) = Wdl+1×dl
· U + b, i ∈ ch(U), (4)

where Vi(U) means the contribution of U to Vi since there

may be other vectors U ′ in Layer l connecting to Vi too.

Wdl+1×dl
is the transformation matrix and b the bias vector.

Consider Layer 1 to Layer 2 (Z → O), U = Z is connected

with all vectors Vi’s in O with different Wdl+1×dl
’s and b’s.

Consider Layer 2 to Layer 3 (O → P ), convolution is usu-

ally used, so each U only connects to vectors Vi’s locally,

and Wdl+1×dl
’s and b’s are shared among different U ’s.

Denote by pr(Vi) the set of indices of vectors in Layer l

connecting with Vi. In the vanilla generator network,

Vi = act(
∑

j∈pr(Vi)

Vi(Uj)), (5)

14298



where act(·) stands for activation function such as the Re-

LU function [21].

In the proposed method, we compute Vi by,

Vi = S(act(
∑

j∈pr(Vi)

Vi(Uj)); kl+1), (6)

where S(·; kl+1) is the sparsity-inducing function. From

symbol Z to O, we apply the sparsity-inducing function a-

long the dl+1 dimension and retain the top kl+1 out of dl+1

elements in the resulting vector in terms of the element val-

ues. In the subsequent layers, we apply it along the spatial

domain across the dl+1 dimensions individually. By doing

so, the resulting vectors at different locations will have d-

ifferent sparsity ratios. The kl’s are hyper-parameters. We

usually set dl > dl+1 and kl < kl+1, that is, Layer l has

higher sparsity degree than lower Layer l + 1.

With sparsity-inducing functions, image synthesis is fun-

damentally changed in terms of representation. The internal

generation process is also much easier to unfold. The AND-

OR model then emerges from the vanilla dense connected

generator network. We can rewrite Eqn. 1 as

Y = g(Z; Θ,k) + ǫ, (7)

Z ∼ N (0, Id), ǫ ∼ N (0, σ2ID), d < D,

where the sparsity hyper-parameters k = {kl; l =
1, · · · , L}. We summarize the proposed AND-OR model

for image synthesis as follows.

Layer 1 to Layer 2: Z → O. The latent code vector Z

is represented by a root OR-node (non-terminal symbol),

Z
OR
−−→ z1|z2| · · · |zi| · · · , zi

i.i.d.
∼ N (0, Id), (8)

where a|b denotes OR switching between symbols a and b

(i.e., instantiated latent code vectors that generate different

object images).

Each instantiated latent code vector zi is then mapped

to an object instance AND-node Oi. The object instance

AND-node Oi represents the object-part decomposition in

the lattice Λ2 (of size H2 ×W2). We have,

Oi
AND
−−−→ oi,1 · oi,2 · · · · · oi,j · · · · · oi,NP

, (9)

where a · b represents the composition between symbols a

and b. NP is the number of part symbols. The object-part

decomposition is usually done in the spatial domain. For

example, if the support domain for oi’s is 4 × 4, we will

have at most 16 parts. We could use 4 parts if we further

divide the 4× 4 domain into 2× 2 blocks.

Each oi,j is then represented by an OR-node in the d2-

dimensional vector space indicating the sparse selection a-

mong
(

d2

k2

)

candidates. When instantiated, we have part

AND-node oi,j(k2).

Layer 2 to Layer 3: O → P . Each part AND-node

oi,j(k2) is decomposed into a number of M child part type

OR-nodes,

oi,j(k3)
AND
−−−→ Pi,j,1 · Pi,j,2 · · · · · Pi,j,M , (10)

where M is determined by the kernel size when convolution

is used to compute Layer 3 from Layer 2.

Similarly, each part type OR-node Pi,j,t is grounded in

the d3-dimensional vector space indicating the sparse selec-

tion among
(

d3

k3

)

candidates. When instantiated, we have

part-primitive AND-node. Then, the AND-OR is recursive-

ly formulated in the downstream layers. Now, let us look

at Figure 2 again, for each instantiated zi, we can follow

the sparse connections and visualize the encountered kernel

symbols (see Figure 1).

3.3. Learning and inference

The proposed AND-OR model can still utilize off-the-

shelf end-to-end learning framework since the sparsity-

inducing functions do not change the formulation (Eqn. 7).

We adopt the alternating back-propagation learning frame-

work proposed in [12].

Denote by {Yi, i = 1, . . . , N} the training dataset con-

sisting of N images (e.g., face images). The learning objec-

tive is to maximize the observed data log-likelihood

L(Θ) =
1

N

N
∑

i=1

logP (Yi; Θ,k)

=
1

N

N
∑

i=1

log

∫

P (Yi, Zi; Θ,k)dZi, (11)

where the latent vector Zi for an observed data Yi is inte-

grated out, and P (Yi, Zi; Θ,k) is the complete-data likeli-

hood. The gradient of L(Θ) is computed as follows

∂

∂Θ
logP (Y ; Θ,k)

=
1

P (Y ; Θ,k)

∂

∂Θ

∫

P (Y, Z; Θ,k)dZ

= EP (Z|Y ;Θ,k)

[

∂

∂Θ
logP (Y, Z; Θ,k)

]

. (12)

In general, the expectation in Eqn.12 is analytically in-

tractable. Monte Carlo average is usually adopted in prac-

tice with samples drawn from the posterior P (Z|Y ; Θ,k)
by the Langevin dynamics,

Zτ+1 = Zτ +
δ2

2

∂

∂Z
logP (Zτ , Y ; Θ,k) + δEτ , (13)

where τ indexes the time step, δ is the step size, and Eτ
denotes the noise term, Eτ ∼ N(0, Id).
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Based on Eqn. 7, the complete-data log-likelihood is

computed by

log p(Y, Z; Θ,k) = log [p(Z)p(Y |Z; Θ,k)]

= −
1

2σ2
‖Y − g(Z; Θ,k)‖2 −

1

2
‖Z‖2 + C (14)

where C is a constant term independent of Z and Y . It

can be shown that, given sufficient transition steps, the Z

obtained from this procedure follows the posterior distribu-

tion. For each training example Yi, we run the Langevin

dynamics in Eqn.13 to get the corresponding posterior sam-

ple Zi. The sample is then used for gradient computation in

Eqn.12. The parameters Θ are then learned through Monte

Carlo approximation,

∂

∂θ
L(Θ) ≈

1

N

N
∑

i=1

∂

∂Θ
log p(Yi, Zi; Θ,k)

=
1

N

N
∑

i=1

1

σ2
(Yi − g(Zi; Θ,k))

∂

∂Θ
g(Zi; Θ,k). (15)

3.4. Energy-based model as a critic

It is well known that using squared Euclidean distance

alone to train generator networks often yields blurry recon-

struction results, since the precise location information of

details may not be preserved, and the L2 loss in the image

space leads to averaging effects among all likely locations.

In order to improve the quality, we recruit an energy-based

model as a critic of the generator model which serves as an

actor. The energy-based model is in the form of exponential

tilting of a reference distribution

P (Y ; Φ) =
1

Z(Φ)
exp [−f(Y ; Φ)] q(Y ), (16)

where f(Y ; Φ) is parameterized by a bottom-up ConvNet

which maps an image Y to the feature statistics or energy,

Z(Φ) =
∫

exp [f(Y ; Φ)] q(Y )dY = Eq{exp[f(Y ; Φ)]} is

the normalizing constant, and q(Y ) is the reference distri-

bution such as Gaussian white noise,

q(Y ) =
1

(2πσ2)D/2
exp

[

−
‖Y ‖2

2σ2

]

. (17)

Let P (Y ) be the underlying data distribution. Expec-

tation with respect to P (Y ) is taken to be the average over

training examples. We jointly learn the generator model and

the energy-based model by introducing the following cross-

entropy triangle, under a unified probabilistic framework,

min
Θ

max
Φ

T (Θ,Φ),

T (Θ,Φ) = H(P (Y ), P (Y ; Θ,k)) (18)

−H(P (Y ), P (Y ; Φ)) +H(P (Y ; Θ,k), P (Y ; Φ)),

where H(P,Q) = −EP [logQ] denotes the cross-entropy

between the two distributions. H(P (Y ), P (Y ; Θ,k)) and

H(P (Y ), P (Y ; Φ)) lead to the maximum likelihood learn-

ing of the two models respectively, while H(Θ,Φ) =
H(P (Y ; Θ,k), P (Y ; Φ)) connects and modifies the learn-

ing of the two models. H(P (Y ; Θ,k), P (Y ; Φ)) causes the

following effect: the energy-based model criticizes the gen-

erator model by assigning lower energies to the observed

examples than the synthesized examples. The generator

model then improves its synthesis by lowering the energies

of the synthesized examples.

Specifically, to update Θ, minimizing the first term is

equivalent to maximizing Eqn. 11. The third term in Eqn.18

can be written as

H(P (Y ; Θ,k), P (Y ; Φ)) = −Ep(Y ;Θ,k) logP (Y ; Φ)

= −EZ∼p(Z) logP (g(Z; Θ,k); Φ). (19)

−
∂

∂Θ
EZ∼p(Z) logP (g(Z; Θ,k); Φ)

≈
1

N

N
∑

i=1

∂

∂Θ
f(g(Zi; Θ,k); Φ), (20)

which seeks to make the synthesized (g(Zi; Θ,k)) to have

low energies.

To update Φ, we have

−
∂

∂Φ
T (Θ,Φ) ≈

1

N

N
∑

i=1

∂

∂Φ
f(Yi; Φ)−

1

N

N
∑

i=1

∂

∂Φ
f(g(Zi; Θ,k); Φ), (21)

which seeks to make the energies of the observed (Yi) to be

lower than the energies of the synthesized (g(Zi; Θ,k)).
Algorithm 1 presents the detail of learning and inference.

4. Experiments

In this section, we present the qualitative and quantita-

tive results of the proposed method tested on four datasets

widely used in image synthesis. The proposed method con-

sistently obtains better quantitative performance with inter-

pretable hierarchical representations learned. The code and

results can be found at the project page 1.

Datasets: We use the CelebA dataset [26], the human

fashion dataset [25], the Stanford car dataset [20], the L-

SUN bedroom dataset [38]. We train our proposed AND-

OR model on the first 10k CelebA images as processed

by OpenFace [1], 78,979 human fashion images as done

in [25], the first 16k Stanford car images, and the first 100k

bedroom images, all cropped to 64× 64 pixels.

1https://andyxingxl.github.io/Deep-Sparse-Generator/
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Figure 7. Part-level basis functions learned from the traditional

generator network on the face dataset. Comparing with the part-

level (layer-3) basis functions learned with our sparsely connected

AND-OR model as shown in Figure 1, the traditional generator

network cannot obtain meaningful internal basis functions. The

first row shows the basis functions from the traditional genera-

tor network without sparsity-inducing constraint. The second row

shows the results of the generator network combining with an en-

ergy network but without sparsity-inducing constraint.

4.2. Quantitative results

The FID comparsions are summarized in Table 2. The

proposed method consistently outperforms the seven state-

of-the-art image synthesis methods in comparisons. On the

human fashion dataset, the images are nice and clean, our

method obtains the least improvement by 1.44. On the bed-

room dataset, the images are much more complex with large

structural and appearance variations, our method obtains the

biggest improvement by 4.11. We note that all the improve-

ment are obtained with more interpretable representations

learned in the form of AND-OR trees. This is especially

interesting since it shows that jointly improving model per-

formance and interpretability is possible.

We utilize per-pixel mean square error (MSE) to evalu-

ate image reconstruction. Table 3 shows the comparisons

with three state-of-the-art methods that are also capable of

joint image synthesis and reconstruction (VAE [19], ALI

[8], and ALICE [24]). We do not compare with the variants

of GANs and CoopNets since they usually can not perform

joint image reconstruction. From the experimental result-

s, the proposed method can not only obtain interpretable

generative process, such as semantically meaningful objec-

t parts and primitives, but also obtain competitive or even

better performance than the 7 famous traditional generative

models on the synthesis and reconstruction tasks.

4.3. Ablation studies

In addition to the AND-OR tree visualization, we pro-

pose a simple method to evaluate the intepretability of

learned basis functions (e.g., those at Layer 3, see Figure 1).

We perform Template Matching between the learned ba-

sis functions with training images using the fast normal-

ized cross-correlation algorithm [37]. Consider Layer 3

(a.k.a. object part level), if the learned basis functions con-

tain meaningful local parts of the object, the matching s-

core shall be high. We compare the Layer-3 basis functions

learned with and without the proposed sparsity-inducing ap-

proach respectively (i.e., Eqn. 7 vs Eqn. 1). The results of

the mean matching scores are summarized in Table 4. The

Table 3. Comparisons of the per-pixel mean square error (MSE).

Smaller MSE is better.

Datasets\ Methods VAE [19] ALI [8] ALICE [24] Ours

CelebA 0.016 0.132 0.019 0.011

HumanFashion 0.033 0.28 0.043 0.024

Standford cars 0.081 0.563 0.078 0.054

LSUN bedrooms 0.154 0.988 0.127 0.097

Table 4. Evaluation of interpretability. Comparisons of the match-

ing scores using the fast normalized cross-correlation algorithm

between the generator without sparsity and the proposed sparse

activated generator.

Methods\Datasets CelebA HumanFashion Cars Bedroom

w/o sparsity 0.33 0.29 0.31 0.23

w/ sparsity 0.83 0.81 0.76 0.72

proposed method significantly outperforms the counterpart.

The results verify that the proposed method can learn mean-

ingful basis functions for better model interpretability.

5. Conclusion

This paper proposes interpretable image synthesis by s-

parsifying generator network to induce a hierarchical com-

positional AND-OR model. The proposed method is built

on the vanilla generator network, which inherits the implic-

itly hierarchal grammar of the convolutional network. The

AND-OR model of sparsely connected nodes emerges from

the original densely connected generator network when

sparsity-inducing functions are introduced. Our work u-

nifies the top-down generator network and sparse coding

model, can learn interpretable dictionaries at multiple lay-

ers, moreover, learn the compositional structures and primi-

tives automatically from data. In training, we further recruit

an energy-based model and we jointly train the generator

model and the energy-based model as actor and critic. The

resulting AND-OR model is capable of image synthesis and

reconstruction. The results show that meaningful and inter-

pretable hierarchical representations are learned with bet-

ter qualities of image synthesis and reconstruction obtained

than baseline methods.
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