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Abstract: Understanding relationships among multimodal data extracted from a smartphone-based
electrochemiluminescence (ECL) sensor is crucial for the development of low-cost point-of-care
diagnostic devices. In this work, artificial intelligence (Al) algorithms such as random forest (RF)
and feedforward neural network (FNN) are used to quantitatively investigate the relationships
between the concentration of Ru(bpy)3* luminophore and its experimentally measured ECL and
electrochemical data. A smartphone-based ECL sensor with Ru(bpy)3*/TPrA was developed using
disposable screen-printed carbon electrodes. ECL images and amperograms were simultaneously
obtained following 1.2-V voltage application. These multimodal data were analyzed by RF and FNN
algorithms, which allowed the prediction of Ru(bpy)3* concentration using multiple key features.
High correlation (0.99 and 0.96 for RF and FNN, respectively) between actual and predicted values
was achieved in the detection range between 0.02 uM and 2.5 uM. The Al approaches using RF and
FNN were capable of directly inferring the concentration of Ru(bpy)3* using easily observable key
features. The results demonstrate that data-driven Al algorithms are effective in analyzing the
multimodal ECL sensor data. Therefore, these Al algorithms can be an essential part of the modeling
arsenal with successful application in ECL sensor data modeling.
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1. Introduction

Electrochemiluminescence (ECL) is being explored in research ranging from fundamental
studies to its application as a platform of light-emitting sensors and an analytical detection method.
Because ECL does not requires any external excitation light source, it has the advantage of having
ultra-sensitivity and very low background signal. In addition, it allows minimal instrumentation due
to the simplicity of voltage application, rapid measurements (only a few seconds), localized light
emission (geometric location of light on a working electrode), and cost-effective set-up [1]. These are
the inherent advantages of ECL over other light emission-based techniques such as
photoluminescence and chemiluminescence [2]. In this context, the smartphone can be an alternative
to the expensive traditional instrumentation for ECL sensors such as the photomultiplier tube (PMT).
Smartphones are typically equipped with powerful data transmission capabilities and have powerful
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processors for storage and analysis of imaging data. Recent literature shows that the use of
smartphones toward optical biosensing is particularly important in the study of health [3], security
[4], and environment [5].

Recent research is focused on the development of instrumentation with adequate
electrochemical and chemiluminescent functionality to achieve reproducibility [6]. Meanwhile, the
optimization of the ECL performance, which is closely related to the increase in signal intensity, is
being addressed through the design of novel luminophores and coreactants, as well as the
development of assay-driven strategies using existing luminophores and coreactants [7-9]. Tris (2, 2'-
bipyridine) ruthenium(Il) (Ru(bpy)3*) with tripropylamine (TPrA) as a coreactant is one of the most
widely studied ECL systems; however, its reactions are not understood clearly so far due to its
multiparametric nonlinear nature [9,10].

Quantitative studies to explore the complex mechanism of ECL typically use applied
mathematical methods, particularly partial differential equations (PDEs) that constitute mechanistic
or first-principle models. This modeling approach is suitable for a certain class of problems that are
susceptible to a mathematical description such as the Ru(bpy)3*/TPrA system charge, momentum,
and mass transfer, as well as the reaction rates involved. Most of these studies use the commercial
software COMSOL Multiphysics® that, through the finite element method, solves the constituent
PDEs [11]. Among them, the studies of Danis et al. [6,7], which used mechanistic models combined
with spectroelectrochemistry, effectively predict the concentration of luminophore and ECL
emission. In other work [12], model simulations coupled to microscopy imaging provided light
emission mechanism insight to obtain high sensitivity in bead-based ECL assays. These studies
required strong expertise in electrochemical theory for the mechanistic model set-up. In this respect,
the emergence of easy-to-use software such as KISSA [13] could significantly bring down the barriers
to modeling electrochemical phenomena. As an example, this software was used to study the effect
of the diffusion rates of reactants on ECL emission for the Ru(bpy)35*/TPrA system with reduced
computational cost as compared to commercial software [14].

As previously discussed, the laws of conservation of charge, momentum, and mass are currently
carried out without requiring expert knowledge of numerical analysis. The real challenge is defining
appropriate mathematical representation of reaction rates and estimating their kinetic parameters.
As ECL analysis is strongly dependent on the sensing conditions, any changes in these conditions
also have a significant impact on the values of the kinetic parameters. Even if the reaction rates are
applicable, a re-estimation of the kinetic parameters is required under different conditions. For this,
it is necessary to obtain the experimental measurements of the main state variables (e.g.,
concentration of luminophore and co-reactant) over the course of ECL reaction at regular time
intervals, which is not a straightforward task [6]. The proper choice of the reaction rates and their
corresponding Kkinetic parameters to propose a reliable mechanistic model is the subject of
considerable discussion in recent literature [6,7,15,16]. In other approaches, the so-called calibration
curve, i.e., a regression equation, can be useful to infer the concentration of Ru(bpy)3* if it is
correlated with a key feature of the system such as the maximum value of the ECL intensity.
Nevertheless, this approach is oversimplified because it requires the predetermination of a single key
feature that may not have sufficient information of the system, and it also requires a recalibration for
different sensing conditions.

As an alternative to the mechanistic approach and regression equations, the use of data-driven
models supported by artificial intelligence (Al) is becoming an essential part of the modeling arsenal
with successful applications in many fields [17]. However, to the best of the authors’ knowledge,
there is no literature on ECL system modeling using Al algorithms. These algorithms, such as neural
networks and random forest, greatly improved the predictive accuracy of data regression [18]. Al
algorithms can combine several sources of multimodal data into a single, predictive Al-based model,
providing maximum approximation of the phenomenon without the complexity and uncertainty. Al
enables the use of variables that could not be included in the mechanistic model due to a lack of
understanding [19,20].



Sensors 2020, 20, 625 3o0f 14

This study investigated the quantitative cause-and-effect relationships between the
concentration of Ru(bpy)3* luminophore and its experimentally measured ECL and electrochemical
features. A data-driven model supported by Al algorithms was able to predict the luminophore
concentration from easily measurable features obtained from sequences of ECL imaging and
amperograms. The performance of the Al algorithms, namely, random forest (RF) and feedforward
neural network (FNN), was compared in terms of performance measurements to assess the predictive
capability of each algorithm. Figure 1 summarizes the comparison of the traditional modeling and
the proposed modeling in the estimation of the analyte concentration.
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Figure 1. Schematic diagram of the comparison of the traditional and artificial intelligence (AI)
modeling in the estimation of the analyte concentration.

2. Materials and Methods

2.1. Chemical and Reagents

All experiments were conducted using tris (2,2"-bipyridyl) dichlororuthenium (II) hexahydrate
(Ru(bpy)sCl2:6H20) and a coreactant of tri-n-propylamine (TPrA) purchased from Sigma Aldrich
(now Millipore Sigma, St. Louis, MO, USA). The supporting electrolyte phosphate buffer solutions
(PBS) were prepared by dissolving PBS tablets (Sigma Aldrich, St. Louis, MO, USA) in water (pH 7.4).
All aqueous solutions were prepared with Milli-Q water purchased from APS Water Services Corp.,
Van Nuys, CA, USA (resistivity > 18.2 MQecm).

2.2. Sensor Apparatus and Electrodes

Simultaneous measurements of sequences of ECL imaging and amperograms (current vs. time)
were carried out using a mobile phone-based ECL sensor apparatus. The sensor design interfaces
with a custom compact potentiostat and a mobile phone (Samsung Galaxy S7) with a custom-made
app controlling the potentiostat parameters and the phone camera for time synchronization (Figure
2a). The compact potentiostat used was customized from an open-source potentiostat shield named
Rodeostat (designed from the Teensy 3.2 board; IO Rodeo, Pasadena, CA, USA) in a three-electrode
set-up. Disposable screen-printed carbon electrodes (DropSens, DRP-110) were used consisting of a
carbon working electrode (4 mm diameter), a carbon ink counter electrode, and a silver reference
electrode printed on a flat ceramic card. Figure 2b illustrates the basic operation of the portable
potentiostat circuit. The signal and the voltage (in blue letters) are generated through the
microcontroller unit (MCU) attached on the board. The MCU is modulated according to a square
waveform signal (however, it could also be a sine or triangular waveform) and an input voltage. The
signal and the voltage feed the control amplifier, which is a servo amplifier, to adjust the amplitude
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to the desired current applied on the counter electrode. During tests, the electrometer measures the
voltage differences between the reference and working electrodes and retro-feeds the control
amplifier to keep the voltage at the desired value. The current flowing through the working electrode
is measured at the I/E converter, which is a current-to-voltage converter, and it is recorded and
displayed as a current vs. time graph. The phone camera was set to pro mode with autofocus mode
at ISO 3200, and burst mode was used to collect two-dimensional (2D) ECL image sequences with 8-
20 frames per second (FPS). During experiments, the cell phone camera was aligned with the hole of
the container to fit the mobile phone camera and placed just above the working electrode. The custom
potentiostat was connected with the cell phone on one side and the screen-printed electrodes (SPEs)
on the other side.

- Counter
Control Amplifier Electrode

Reference E
Electrode

Working
| Electrode

< $n

I/E Converter

(b)

Figure 2. Schematic diagram of (a) the mobile phone-based electrochemiluminescence (ECL) sensor
apparatus that mainly comprises (1) a magnifying lens, (2) screen-printed electrodes, (3) a
smartphone, (4) a potentiostat circuit, (5) a light-tight container, (6) a Universal Serial Bus (USB) cable,
and (7) a cable to the battery or USB port; (b) the basic operation of the portable potentiostat circuit.

2.3. Assays

A 1 mM stock solution of Ru(bpy)3* in Milli-Q water was diluted to provide sample solutions
from 0.02 to 2.5 uM of Ru(bpy)3*. Each sample solution was mixed with 20 mM TPrA in 0.1 M PBS,
constituting a Ru(bpy)3*/TPrA system. The reproducibility and repeatability assessment of this
system was demonstrated elsewhere [1]. Measurements were performed at room temperature by
dropping 50 uL of Ru(bpy)3*/TPrA solution onto the carbon working electrode surface. A waiting
time of 10 min was established to create less electrode contact resistance. Then, the ECL reaction was
triggered by applying 1.2 V, while simultaneously measuring the ECL emission and the current at
the carbon working electrode.

2.4. Electrochemical and ECL Experimental Data Generation

Experimental data generation is a critical step in the construction of Al algorithms. The
performance of the Al algorithms depends largely on the quality of the data used in the training step.
This study used electrochemical and ECL data from measurements performed with the mobile
phone-based ECL sensor for training the Al algorithms.

The procedure for experimental data generation used a forward approach as illustrated in Figure
3a, where the electrochemical and ECL data were determined given a concentration of Ru(bpy)3*. In
this procedure, the ECL sensor explored the chronoamperometry technique (an example of real data
is shown in Figure 4), where a square waveform potential was applied to the carbon working
electrode with 50 uL of Ru(bpy)3* /TPrA sample solution. To simultaneously measure the
electrochemical and ECL data for each concentration of Ru(bpy)3*, the portable potentiostat was set
to apply a potential of 0 V vs. Ag/Ag+ for 1 s, followed by -1.2 V vs. Ag/Ag+ for 1 s, and finally
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followed by 1.2 V vs. Ag/Ag+ for 1 s (Figure 4a). The potentials 0 V vs. Ag/Ag*and -1.2 V vs. Ag/Ag*
were used to stabilize the system while avoiding oxidation of Ru(bpy)3*. The potential of 1.2 V vs.
Ag/Ag+ produced ECL upon concomitant oxidation of Ru(bpy)5t and TPrA. Typical transient
current and ECL responses recorded over the course of the stabilization and oxidation periods are
shown in Figure 4b,c, respectively. Figure 4d,e show the zoom-in view of the shaded area in Figure
4b,c, respectively. Figure 4e also shows the current derivative signal (brown line) corresponding to
the current response (blue line). From this data, three key features were identified: the maximum
value of the current peak (Cmaxp), the minimum derivative value of the current (Cmind), and the decay
slope of the ECL intensity (ECLs1), shown in red letters (Figure 4d,e). It is worth mentioning that the
estimated slopes explained the decay of ECL intensities accurately with a coefficient of determination,
R?, above 0.85 for all measurements. The three key features chosen were the input variables of the
data-driven models. The output variable was the concentration of Ru(bpy)3*.

Following the procedure described above, multiple experiments were performed for different
concentrations of Ru(bpy)3* distributed in a range of 0.02 to 2.5 uM. This range was established
based on prior knowledge of the ECL emission for the Ru(bpy)3*/TPrA system [1]. Experimental
profiles for Cmaxp, Cmind, and ECLsi were thereby obtained as a function of concentration of Ru(bpy)3*.
The goal was to include the data containing the most relevant information about the system in the
training data. A routine implemented in the R programming environment was used to interpolate
these measurements that showed consistent trends in order to increase the dataset. Therefore, the
dataset used for training provided 105 interpolated data points for each input variable and the same
amount of data for the corresponding output variable.

The modeling supported by Al algorithms used an inverse approach unlike the forward
approach used for data generation (and also used in the mechanistic modeling), as shown in Figure
3b. In the inverse approach, the data-driven model is considered as a black-box model that learns to
relate the inputs, Cmaxp, Cmind, and ECLsl to the output, i.e., the concentration of Ru(bpy)3*, from a
large number of sample points. Due to the models supported by Al having very limited extrapolation
properties, their predictions are only valid when using values within the range defined by the limits
for the input variables.

Concentration of (time—se[;:igls-ima es) Concentratigf of (time- selrzl(ezls_lma es) Concentrati?f of
Ru(bpy)” 8 Ru(bpy)3 & Ru(bpy)3
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(a)

Figure 3. Schematic diagrams of (a) the procedure for experimental data generation (forward

_SPE &

sl? ~maxp’ ~mind

approach) using the mobile phone-based ECL sensor and (b) data-driven modeling (inverse
approach) using a feedforward neural network and a random forest.
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Figure 4. Chronoamperometry technique: (a) potential vs. time applied on carbon working electrode,
(b) typical ECL response vs. time (green line), (c) typical current response vs. time (blue line), (d)
zoom-in view of the shaded red box in Figure 4b, (e) zoom-in view of the shaded red box in Figure
4c. Figure 4e also shows the current derivative signal (brown line) corresponding to the current
response; the green box magnifies these responses. Cmaxp: maximum value of the current peak, Cmina:

minimum derivative value of the current, ECLs: decay slope of the ECL intensity.

2.5. Al algorithms

2.5.1. Random Forest (RF)
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A random forest algorithm is a widely used nonparametric technique for data classification and
regression analysis. A detailed description of the fundamentals of RF is given by Breiman [21]. In this
study, the focus is on the application of RF to obtain a regression between the input variables (Cmaxp,
Cmind, and ECLs1) and an output variable (concentration of Ru(bpy)3*). The idea of RF is to construct
a set of trees from samples randomly selected from the training set by a bootstrapping technique and
to generate an average prediction of the individual trees. Overfitting is avoided by the division of
nodes into decision trees where the RF algorithm randomly selects a subset of variables for each node.
The average of the values in the terminal nodes of the decision trees was used to estimate the
concentration of Ru(bpy)3* (Figure 3b). Therefore, the predicted value by the entire random forest,
hj, is denoted by Equation (1).
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T

h] :Zhjt, (t=1, ey T)and(i=1, ey Tlsmnple), (1)
t=1

where hjt represents the predicted value concentration of Ru(bpy)3* by tree t, T represents the total
number of trees, and nsunple represents the total number of samples from training set.

The leave-one-out cross-validation (LOOCYV) technique was employed to train the RF algorithm.
In LOOCYV, n - 1 samples from the training set are used to train the RF, and the remaining sample is
used to evaluate the accuracy; this was repeated 90 times. The RF tuning parameters for the LOOCV
were the number of trees to be grown (ntrwe), the number of predictor variables used to split the nodes
at each partitioning (mtry), and the minimum size of the terminal node or leaf (node size). RF
accuracy was assessed on the validation and testing set using performance measures such as mean
square error (MSE) and the coefficient of determination (R?). The RF was implemented in the R
programming environment using the randomForest package Version 4.6-14 [22], based on Breiman
and Cutler’s Fortran code [21].

2.5.2. Feedforward Neural Network (FNN)

This work uses an FNN-type artificial neural network (ANN) [23] due to its simple mathematical
form and logical architecture for data-driven modeling. These characteristics make it suitable for
implementation in a prediction framework, where reduced mathematical complexity is an important
factor for real-time prediction. The FNN with an input layer, one hidden layer of sigmoidal neurons,
and a layer of linear output neurons was used in this study, where the numbers of neurons were I, ],
and M, respectively. The neurons are highly interconnected by weights and bias parameters.
Mathematically, the FNN can be represented as Equation (2).

) I
I :FLZijf(Zwﬁxi +9]-]+bmJ ,(G=1,...,]),(=1,..,)and (m=1, ..., M), (2)
j=1

i=1

where gn and xi represent the vector of input and output variables, f(-) and F(-) represent the activation
functions of the j-th neuron in the hidden layer and of the m-th neuron in the output layer,
respectively, wji denotes the weight connecting the i-th neuron in the input layer and the j-th neuron
in the hidden layer, 0; denotes the bias of the j-th neuron in the hidden layer, Wuj denotes the weight
connecting the j-th neuron in the hidden layer and the m-th neuron in the output layer, and b» denotes
the bias in the m-th neuron in the output layer.

Figure 3b details the input variables (Cmaxp, Cmindg, and ECLs)) and the output variable
(concentration of Ru(bpy)3*) used to perform the FNN training. A representative dataset comprising
105 input/output samples was presented to the FNN for estimating the weight and bias (FNN
parameters). The data were randomly divided into a training set and a validation set. The predictive
performance of FNN was assessed using different measurements (testing set) performed with the
mobile phone-based ECL sensor. The appropriate number of neurons in the hidden layer that
prevents overfitting of the model and achieves a good generalization of training was determined by
cross-validation (CV). CV means that FNNs with different numbers of hidden neurons, that is,
different architectures, are trained with the training set, and the performances are assessed on the
ability to make accurate predictions of the validation set in terms of R? and MSE. The FNN was
implemented in the R programming environment using the neuralnet package Version 1.44.2 [24].

3. Results and Discussion

3.1. Chronoamperometric Data for Data-Driven Modeling

A series of chronoamperometric measurements were performed using the mobile phone-based
ECL sensor. The ECL and electrochemical key features were measured at different concentrations of
Ru(bpy)3* (from 0.02 to 2.5 uM) following the approach proposed in Section 2.4. The key features
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identified were the maximum value of current peak, Cmaxp, the minimum derivative value of the
current, Cming, and the decay slope of the ECL intensity, ECLs. The concentrations of Ru(bpy)3* were
consistent with the practical use of this luminophore as a label. Figure 5 shows the behavior of each
key feature considered in this study as a function of the concentration of Ru(bpy)3*. These data
clearly demonstrate the influence of the concentration of the luminophore on Cmaxp, Cmind, and ECLsl.
As concentration of Ru(bpy)3* increased from 0.02 to 2.5 uM, the key electrochemical features, Crmaxp
and Cmind, decreased as shown in Figure 5a,b, respectively. Meanwhile, ECL« exhibited lower values
at higher concentration of Ru(bpy)3* (Figure 5c). Previous studies [7,25] discussed the importance
of having systems capable of performing ECL and electrochemical measurements in sync to develop
models that investigate the mechanism of the Ru(bpy)3*/TPrA system. The consistent downward
trend of experimental measurements of Cmaxp, Cmind, and ECL«a with the concentration of the
luminophore made it possible for these measurements to be interpolated to generate a large dataset.
This strategy allowed for well-distributed data of the key features for the calibration of the Al
algorithms. This is a very critical issue that should be addressed, as Al algorithms have very limited
extrapolation properties [26]. For example, Figure 5a—c show the measurements (solid symbols) and
the interpolated data (continuous lines) used to calibrate the random forest (RF) algorithm. These
data and those for calibration of the feedforward neural network (FNN) were randomly divided into
a training set (85%) and a validation set (15%). Prior to interpolation, three experimental
measurements (i.e., three amperograms and three sets of ECL images) were randomly extracted from
the original set of experimental measurements, which determined the testing set.
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Figure 5. Measurements (black, red, and blue solid symbols are for repetitions 1, 2, and 3, respectively)
and interpolated data (continuous lines) used to train the random forest (RF) algorithm: (a) maximum
value of the current peak, Cmaxp, (b) minimum derivative value of the current, Cmind¢, and (c) decay
slope of the ECL intensity, ECLsl.
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3.2. Data-Driven Model Calibration and Prediction of Ru(bpy)3*

3.2.1. Random Forest (RF) Prediction Results

Several structures of the random forest (RF) with different nuwee (number of trees to be grown)
were compared to build the model based on RF. The model estimates the concentration of Ru(bpy)3*
using the maximum value of the current peak, Cmaxp, the minimum derivative value of the current,
Cmind, and the decay slope of the ECL intensity, ECLs|, as input variables. Figure 6a shows that, at
values greater than nuee of 500, the MSE and R? did not show significant improvement. Therefore, the
RF tuning parameter, nire, for the leave-one-out cross-validation (LOOCV) technique was determined
to be 500. The remaining tuning parameters were fixed as follows [22]: number of predictor variables
used to split the nodes at each partitioning (mtry) = 1.732 (square root of the number of inputs), and
minimum size of the terminal node or leaf (node size) = 5. The accuracy of the generated model by
the LOOCV technique was assessed by predicting the concentration of Ru(bpy)3* for the validation
set. Figure 7a shows the actual versus predicted values for this set. The corresponding assessment
using the performance measures, R? and MSE, demonstrated that the model predictions were
particularly accurate. As for the testing set, the RF prediction results were similar to those observed
for the validation set. The actual versus predicted values and the performance measures are
presented in Table 1. The results showed that the model based on RF can effectively directly infer the
concentration of the Ru(bpy)3* from certain key features from multimodal data of the mobile phone-
based ECL sensor. To the best of the authors’” knowledge, the RF was not previously used for the
regression analysis of data from electrochemical/ECL sensors because it is relatively easier to
understand the mathematical form of parametric models such as the FNN. RF can achieve high
precision when a large number of input variables with a large amount of data are used [27].
Nevertheless, this study shows that the use of a reduced number of significant input variables (called
key features) achieves accurate prediction results. These results were slightly higher than those found
using FNN, as shown in the next section.
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network (FNN) at different architectures (inputs-hidden neurons-output). Blue bars represent R? (left
axis), and orange bars represent MSE (right axis).
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Figure 7. Actual versus predicted values of the concentration of Ru(bpy)3* obtained for validation
set using (a) random forest and (b) feedforward neural network.

3.2.2. Feedforward Neural Network (FNN) Prediction Results

Different network architectures with a single hidden layer were compared to build the data-
driven model based on an FNN that predicts the concentration of Ru(bpy)3*. The optimal
architecture was determined by varying the number of neurons in the hidden layer. In total, 16
architectures were assessed as shown in Figure 6b. The appropriate number of neurons in the hidden
layer was chosen using cross-validation with the number of training epochs fixed at 1.0 x 10° for all
the architectures studied. The FNN with 16 hidden neurons was determined to give the lowest MSE
and R? closer to that for the validation set (Figure 6b). Thus, the optimized model used a 3-16-1 (input-
hidden neurons-output) architecture containing 81 parameters (weights and bias). Table 2 shows the
FNN optimized parameters according to the notation of Equation (2). The comparison between the
actual values of the concentration of Ru(bpy)3* and the corresponding predicted values by the
optimized model for the validation set is shown in Figure 7b. The results showed that the model
accurately predicted the concentration of Ru(bpy)3*, as assessed by the R? and MSE. For the testing
set, it can be seen from Table 1 that the model based on the FNN also described the experimental
measurements accurately (R?=0.961, MSE = 0.0356). Nevertheless, the accuracy of this prediction was
slightly lower than that observed using random forest (R? = 0.996, MSE = 0.0012). Previous studies
[28,29] showed that the use of FNN as a data regression method in the development of sensors based
on electrochemical measurements provided prediction results with high precision. However, to the
best of the authors” knowledge, this is the first study to predict the concentration of a compound
using key features from multimodal data (ECL imaging and amperograms) into a single FNN. While
FNNs achieved acceptable prediction accuracy for the testing set in this study, further investigations
could be performed using deep learning to improve the prediction accuracy of the neural networks.
Recent advances in training techniques and increased computational resources made it possible to
construct deep neural networks such as the convolutional neural network [30] and recurrent neural
network [31]. These novel architectures could be applied to the development of the ECL sensors as
they are particularly useful for image processing and time series data.

Table 1. Actual versus predicted values of the concentration of Ru(bpy)3* obtained for the testing
set using the random forest and the feedforward neural network.

Random Forest (RF) Feedforward Neural Network (FNN)
Testing R2=0.996, MSE =0.0012 R2=0.961, MSE =0.0356
Sample Concentration of Ru(bpy)3* Concentration of Ru(bpy)3*
Actual Prediction Actual Prediction

1 1.25 1.253 0.156 0.185
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2 1.25 1.304 2.5 2.472
3 0.078 0.105 1.25 0.926

Table 2. Optimized parameters (weights and bias) of the feedforward neural network.

Parameters Connecting the Inputs and Hidden Parameters Connecting the
Neurons Hidden and Output Neuron
wi wj2 wijs 0; Wj b1=-0.46714
j=1 -2.16914 0.54961 0.84096 0.96493 -0.11545
j=2 0.96444 -0.39983 0.54570 1.38495 -0.55877
j=3 -0.06212 0.76427 1.24634 -0.94330 -0.11051
j=4 -0.04506 5.42573 -1.99257  -0.36926 -0.16298
j=5 -1.42036 0.55738 -0.99856  -1.01188 1.50011
j=6 -1.65943 1.06460 -0.98453  -0.65498 1.92081
ji=7 -2.57911 0.15109 -1.17164 2.19616 1.16145
j=8 -4.96551 -4.79277 0.00347 -0.31065 -2.83089
j=9 0.76280 -0.86469  —-0.90831 0.40019 0.75119
j=10 1.10727 -0.04662  -0.60547  -0.14305 -1.12459
=11 -2.98694 1.36294 -0.77255 0.09917 0.90778
=12 1.04993 1.17599 -0.46819 0.39381 1.46889
=13 -1.41821 -0.44610 1.58347 0.83625 -0.21712
=14 1.22302 -5.44580 417545 0.97755 -0.45628
=15 0.82019 -0.32754 0.59748 1.02389 -0.17525
j=16 2.46345 -1.47657  -2.04265 1.07287 0.69586

3.2.3. Visualizing Relationships between the Key Features and the Concentration of Ru(bpy)3*

Contour plots were generated from the validated models (Figure 8a,b for RF and FNN,
respectively) for the visualization of the relationships between the input variables (Cmaxp and ECLs1)
and the concentration of Ru(bpy)3* (response variable). It can be seen that the contours for both the
FNN and the RF were nonlinear and revealed that the concentration of Ru(bpy)3* decreased as the
values of Cmaxp and ECLs decreased. The magnitude of the effects of the input variables on the
response variable can also be inferred from these plots. In this regard, it was observed that the
concentration of Ru(bpy)3™ was more sensitive to the variation of ECLs than Cmaxp. Contour plots
were especially useful to display the system behavior, given the complexity of the developed models
that are nonparametric, such as the RF, or that do not have simple prediction equations as the FNN.
As in previous works [26,32], it can be noted that Figure 8a,b show typical behaviors of contour plots
generated from a nonparametric model and a parametric model, respectively. In this study, the use
of a reduced number of key features allowed for fast calibration and operation of the AI algorithms
to predict the concentration of Ru(bpy)3*. A greater number of key features could be considered in
the construction of the data-driven models; however, some features could have a little or no effect on
the response. Therefore, before incorporating more key features into the models, a sensitivity analysis
should be performed to determine their potential contribution.

The use of the approach presented in this study to other applications, such as the detection of
analytes of interest using the enhancing or quenching of their luminescent intensities, is
straightforward. In this case, the concentration of Ru(bpy)3* must be fixed at an optimal value. For
instance, phenolic compounds demonstrated a highly efficient quenching effect in the
Ru(bpy)3*/TPrA system [33]. In this sense, future work will take advantage of the results obtained in
this study to develop an Al-driven smartphone-supported ECL sensor to monitor phenolic
compounds in wastewater from biofuel plants. In this context, the present study is important because
it provides a proof of concept demonstrating the feasibility to develop a sensor for intelligent
detection of analytes.



Sensors 2020, 20, 625 12 of 14

Concentration of Concentration of
Ru(bpy)3* (uM) Ru(bpy)3* (kM)

25 25
Pan) >
% -1 z

& 20 5 20
= £
g~ 3

i 15 ] 15
@ £ (b) £

o 10 o 10
2 g
57 e

2 05 = 05
[u) [W)
(&) o
o 9 o
[a] ]

00 00

2800 3000 3200 2800 3000 3200
Max. value of the current peak (mA) Max. value ofthe current peak (mA)

Figure 8. Contour plot generated by (a) random forest and (b) feedforward neural network at a fixed
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4. Conclusions

The quantitative investigation of the relationships between the concentration of Ru(bpy)3* and
its experimentally measured electrochemical and ECL features naturally leads to the use of complex
models that are very difficult to calibrate. It is necessary to examine key features from the system to
effectively consider the generalization of the model. This study proposes a novel modeling approach
based on Al (in particular, random forest (RF) and feedforward neural network (FNN)) to correlate
the concentration of Ru(bpy)3* with key features obtained from sequences of ECL imaging and
amperograms. All multimodal measurements were extracted from a low-cost smartphone-based
electrochemiluminescence (ECL) sensor. The input (key features) and output (concentration of
Ru(bpy)3*) variables were applied to generate sample points. These samples were used to build
data-driven models using RFs and FNNs. The predictions of the data-driven models were shown to
be in agreement with the measurements performed (validation and testing sets) with the mobile
phone-based ECL sensor. Contour plots allowed quantitative determination of the relevance of the
key features on the output and the relation between them. The Al approaches were capable of directly
inferring the concentration of Ru(bpy)3* using easily observable key features, while traditional
mechanistic modeling uses a complex calibration procedure. Future work will extend the proposed
approach to develop a robust, practical, and affordable sensor for intelligent detection of analytes of
economic relevance such as phenolic compounds.
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