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Abstract: Understanding relationships among multimodal data extracted from a smartphone-based 

electrochemiluminescence (ECL) sensor is crucial for the development of low-cost point-of-care 

diagnostic devices. In this work, artificial intelligence (AI) algorithms such as random forest (RF) 

and feedforward neural network (FNN) are used to quantitatively investigate the relationships 

between the concentration of  Ru(bpy)3
2+ luminophore and its experimentally measured ECL and 

electrochemical data. A smartphone-based ECL sensor with  Ru(bpy)3
2+/TPrA was developed using 

disposable screen-printed carbon electrodes. ECL images and amperograms were simultaneously 

obtained following 1.2-V voltage application. These multimodal data were analyzed by RF and FNN 

algorithms, which allowed the prediction of  Ru(bpy)3
2+ concentration using multiple key features. 

High correlation (0.99 and 0.96 for RF and FNN, respectively) between actual and predicted values 

was achieved in the detection range between 0.02 µM and 2.5 µM. The AI approaches using RF and 

FNN were capable of directly inferring the concentration of  Ru(bpy)3
2+ using easily observable key 

features. The results demonstrate that data-driven AI algorithms are effective in analyzing the 

multimodal ECL sensor data. Therefore, these AI algorithms can be an essential part of the modeling 

arsenal with successful application in ECL sensor data modeling. 

Keywords: electrochemiluminescence; artificial intelligence; sensor; mobile phone; modeling 

 

1. Introduction 

Electrochemiluminescence (ECL) is being explored in research ranging from fundamental 

studies to its application as a platform of light-emitting sensors and an analytical detection method. 

Because ECL does not requires any external excitation light source, it has the advantage of having 

ultra-sensitivity and very low background signal. In addition, it allows minimal instrumentation due 

to the simplicity of voltage application, rapid measurements (only a few seconds), localized light 

emission (geometric location of light on a working electrode), and cost-effective set-up [1]. These are 

the inherent advantages of ECL over other light emission-based techniques such as 

photoluminescence and chemiluminescence [2]. In this context, the smartphone can be an alternative 

to the expensive traditional instrumentation for ECL sensors such as the photomultiplier tube (PMT). 

Smartphones are typically equipped with powerful data transmission capabilities and have powerful 
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processors for storage and analysis of imaging data. Recent literature shows that the use of 

smartphones toward optical biosensing is particularly important in the study of health [3], security 

[4], and environment [5]. 

Recent research is focused on the development of instrumentation with adequate 

electrochemical and chemiluminescent functionality to achieve reproducibility [6]. Meanwhile, the 

optimization of the ECL performance, which is closely related to the increase in signal intensity, is 

being addressed through the design of novel luminophores and coreactants, as well as the 

development of assay-driven strategies using existing luminophores and coreactants [7–9]. Tris (2, 2′-

bipyridine) ruthenium(II) (Ru(bpy)3
2+) with tripropylamine (TPrA) as a coreactant is one of the most 

widely studied ECL systems; however, its reactions are not understood clearly so far due to its 

multiparametric nonlinear nature [9,10]. 

Quantitative studies to explore the complex mechanism of ECL typically use applied 

mathematical methods, particularly partial differential equations (PDEs) that constitute mechanistic 

or first-principle models. This modeling approach is suitable for a certain class of problems that are 

susceptible to a mathematical description such as the Ru(bpy)3
2+/TPrA system charge, momentum, 

and mass transfer, as well as the reaction rates involved. Most of these studies use the commercial 

software COMSOL Multiphysics® that, through the finite element method, solves the constituent 

PDEs [11]. Among them, the studies of Danis et al. [6,7], which used mechanistic models combined 

with spectroelectrochemistry, effectively predict the concentration of luminophore and ECL 

emission. In other work [12], model simulations coupled to microscopy imaging provided light 

emission mechanism insight to obtain high sensitivity in bead-based ECL assays. These studies 

required strong expertise in electrochemical theory for the mechanistic model set-up. In this respect, 

the emergence of easy-to-use software such as KISSA [13] could significantly bring down the barriers 

to modeling electrochemical phenomena. As an example, this software was used to study the effect 

of the diffusion rates of reactants on ECL emission for the Ru(bpy)3
2+/TPrA system with reduced 

computational cost as compared to commercial software [14]. 

As previously discussed, the laws of conservation of charge, momentum, and mass are currently 

carried out without requiring expert knowledge of numerical analysis. The real challenge is defining 

appropriate mathematical representation of reaction rates and estimating their kinetic parameters. 

As ECL analysis is strongly dependent on the sensing conditions, any changes in these conditions 

also have a significant impact on the values of the kinetic parameters. Even if the reaction rates are 

applicable, a re-estimation of the kinetic parameters is required under different conditions. For this, 

it is necessary to obtain the experimental measurements of the main state variables (e.g., 

concentration of luminophore and co-reactant) over the course of ECL reaction at regular time 

intervals, which is not a straightforward task [6]. The proper choice of the reaction rates and their 

corresponding kinetic parameters to propose a reliable mechanistic model is the subject of 

considerable discussion in recent literature [6,7,15,16]. In other approaches, the so-called calibration 

curve, i.e., a regression equation, can be useful to infer the concentration of Ru(bpy)3
2+  if it is 

correlated with a key feature of the system such as the maximum value of the ECL intensity. 

Nevertheless, this approach is oversimplified because it requires the predetermination of a single key 

feature that may not have sufficient information of the system, and it also requires a recalibration for 

different sensing conditions. 

As an alternative to the mechanistic approach and regression equations, the use of data-driven 

models supported by artificial intelligence (AI) is becoming an essential part of the modeling arsenal 

with successful applications in many fields [17]. However, to the best of the authors’ knowledge, 

there is no literature on ECL system modeling using AI algorithms. These algorithms, such as neural 

networks and random forest, greatly improved the predictive accuracy of data regression [18]. AI 

algorithms can combine several sources of multimodal data into a single, predictive AI-based model, 

providing maximum approximation of the phenomenon without the complexity and uncertainty. AI 

enables the use of variables that could not be included in the mechanistic model due to a lack of 

understanding [19,20]. 
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This study investigated the quantitative cause-and-effect relationships between the 

concentration of  luminophore and its experimentally measured ECL and electrochemical 

features. A data-driven model supported by AI algorithms was able to predict the luminophore 

concentration from easily measurable features obtained from sequences of ECL imaging and 

amperograms. The performance of the AI algorithms, namely, random forest (RF) and feedforward 

neural network (FNN), was compared in terms of performance measurements to assess the predictive 

capability of each algorithm. Figure 1 summarizes the comparison of the traditional modeling and 

the proposed modeling in the estimation of the analyte concentration. 

 

Figure 1. Schematic diagram of the comparison of the traditional and artificial intelligence (AI) 

modeling in the estimation of the analyte concentration. 

2. Materials and Methods 

2.1. Chemical and Reagents 

All experiments were conducted using tris (2,2′-bipyridyl) dichlororuthenium (II) hexahydrate 

(Ru(bpy)3Cl2·6H2O) and a coreactant of tri-n-propylamine (TPrA) purchased from Sigma Aldrich 

(now Millipore Sigma, St. Louis, MO, USA). The supporting electrolyte phosphate buffer solutions 

(PBS) were prepared by dissolving PBS tablets (Sigma Aldrich, St. Louis, MO, USA) in water (pH 7.4). 

All aqueous solutions were prepared with Milli-Q water purchased from APS Water Services Corp., 

Van Nuys, CA, USA (resistivity ≥ 18.2 MΩ�cm). 

2.2. Sensor Apparatus and Electrodes 

Simultaneous measurements of sequences of ECL imaging and amperograms (current vs. time) 

were carried out using a mobile phone-based ECL sensor apparatus. The sensor design interfaces 

with a custom compact potentiostat and a mobile phone (Samsung Galaxy S7) with a custom-made 

app controlling the potentiostat parameters and the phone camera for time synchronization (Figure 

2a). The compact potentiostat used was customized from an open-source potentiostat shield named 

Rodeostat (designed from the Teensy 3.2 board; IO Rodeo, Pasadena, CA, USA) in a three-electrode 

set-up. Disposable screen-printed carbon electrodes (DropSens, DRP-110) were used consisting of a 

carbon working electrode (4 mm diameter), a carbon ink counter electrode, and a silver reference 

electrode printed on a flat ceramic card. Figure 2b illustrates the basic operation of the portable 

potentiostat circuit. The signal and the voltage (in blue letters) are generated through the 

microcontroller unit (MCU) attached on the board. The MCU is modulated according to a square 

waveform signal (however, it could also be a sine or triangular waveform) and an input voltage. The 

signal and the voltage feed the control amplifier, which is a servo amplifier, to adjust the amplitude 
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to the desired current applied on the counter electrode. During tests, the electrometer measures the 

voltage differences between the reference and working electrodes and retro-feeds the control 

amplifier to keep the voltage at the desired value. The current flowing through the working electrode 

is measured at the I/E converter, which is a current-to-voltage converter, and it is recorded and 

displayed as a current vs. time graph. The phone camera was set to pro mode with autofocus mode 

at ISO 3200, and burst mode was used to collect two-dimensional (2D) ECL image sequences with 8–

20 frames per second (FPS). During experiments, the cell phone camera was aligned with the hole of 

the container to fit the mobile phone camera and placed just above the working electrode. The custom 

potentiostat was connected with the cell phone on one side and the screen-printed electrodes (SPEs) 

on the other side. 

 
 

(a) (b) 

Figure 2. Schematic diagram of (a) the mobile phone-based electrochemiluminescence (ECL) sensor 

apparatus that mainly comprises (1) a magnifying lens, (2) screen-printed electrodes, (3) a 

smartphone, (4) a potentiostat circuit, (5) a light-tight container, (6) a Universal Serial Bus (USB) cable, 

and (7) a cable to the battery or USB port; (b) the basic operation of the portable potentiostat circuit. 

2.3. Assays 

A 1 mM stock solution of Ru(bpy)3
2+ in Milli-Q water was diluted to provide sample solutions 

from 0.02 to 2.5 µM of Ru(bpy)3
2+. Each sample solution was mixed with 20 mM TPrA in 0.1 M PBS, 

constituting a Ru(bpy)3
2+ /TPrA system. The reproducibility and repeatability assessment of this 

system was demonstrated elsewhere [1]. Measurements were performed at room temperature by 

dropping 50 µL of Ru(bpy)3
2+/TPrA solution onto the carbon working electrode surface. A waiting 

time of 10 min was established to create less electrode contact resistance. Then, the ECL reaction was 

triggered by applying 1.2 V, while simultaneously measuring the ECL emission and the current at 

the carbon working electrode. 

2.4. Electrochemical and ECL Experimental Data Generation 

Experimental data generation is a critical step in the construction of AI algorithms. The 

performance of the AI algorithms depends largely on the quality of the data used in the training step. 

This study used electrochemical and ECL data from measurements performed with the mobile 

phone-based ECL sensor for training the AI algorithms. 

The procedure for experimental data generation used a forward approach as illustrated in Figure 

3a, where the electrochemical and ECL data were determined given a concentration of Ru(bpy)3
2+. In 

this procedure, the ECL sensor explored the chronoamperometry technique (an example of real data 

is shown in Figure 4), where a square waveform potential was applied to the carbon working 

electrode with 50 µL of Ru(bpy)3
2+ /TPrA sample solution. To simultaneously measure the 

electrochemical and ECL data for each concentration of Ru(bpy)3
2+, the portable potentiostat was set 

to apply a potential of 0 V vs. Ag/Ag+ for 1 s, followed by −1.2 V vs. Ag/Ag+ for 1 s, and finally 
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followed by 1.2 V vs. Ag/Ag+ for 1 s (Figure 4a). The potentials 0 V vs. Ag/Ag+ and −1.2 V vs. Ag/Ag+ 

were used to stabilize the system while avoiding oxidation of Ru(bpy)3
2+. The potential of 1.2 V vs. 

Ag/Ag+ produced ECL upon concomitant oxidation of Ru(bpy)3
2+  and TPrA. Typical transient 

current and ECL responses recorded over the course of the stabilization and oxidation periods are 

shown in Figure 4b,c, respectively. Figure 4d,e show the zoom-in view of the shaded area in Figure 

4b,c, respectively. Figure 4e also shows the current derivative signal (brown line) corresponding to 

the current response (blue line). From this data, three key features were identified: the maximum 

value of the current peak (Cmaxp), the minimum derivative value of the current (Cmind), and the decay 

slope of the ECL intensity (ECLsl), shown in red letters (Figure 4d,e). It is worth mentioning that the 

estimated slopes explained the decay of ECL intensities accurately with a coefficient of determination, 

R2, above 0.85 for all measurements. The three key features chosen were the input variables of the 

data-driven models. The output variable was the concentration of Ru(bpy)3
2+. 

Following the procedure described above, multiple experiments were performed for different 

concentrations of Ru(bpy)3
2+ distributed in a range of 0.02 to 2.5 µM. This range was established 

based on prior knowledge of the ECL emission for the Ru(bpy)3
2+/TPrA system [1]. Experimental 

profiles for Cmaxp, Cmind, and ECLsl were thereby obtained as a function of concentration of Ru(bpy)3
2+. 

The goal was to include the data containing the most relevant information about the system in the 

training data. A routine implemented in the R programming environment was used to interpolate 

these measurements that showed consistent trends in order to increase the dataset. Therefore, the 

dataset used for training provided 105 interpolated data points for each input variable and the same 

amount of data for the corresponding output variable. 

The modeling supported by AI algorithms used an inverse approach unlike the forward 

approach used for data generation (and also used in the mechanistic modeling), as shown in Figure 

3b. In the inverse approach, the data-driven model is considered as a black-box model that learns to 

relate the inputs, Cmaxp, Cmind, and ECLsl to the output, i.e., the concentration of Ru(bpy)3
2+, from a 

large number of sample points. Due to the models supported by AI having very limited extrapolation 

properties, their predictions are only valid when using values within the range defined by the limits 

for the input variables. 

  
(a) (b) 

Figure 3. Schematic diagrams of (a) the procedure for experimental data generation (forward 

approach) using the mobile phone-based ECL sensor and (b) data-driven modeling (inverse 

approach) using a feedforward neural network and a random forest. 
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(a) 

 

 

 

(b) 

 

(d) 

 

(c) 

 

(e) 

 

Figure 4. Chronoamperometry technique: (a) potential vs. time applied on carbon working electrode, 

(b) typical ECL response vs. time (green line), (c) typical current response vs. time (blue line), (d) 

zoom-in view of the shaded red box in Figure 4b, (e) zoom-in view of the shaded red box in Figure 

4c. Figure 4e also shows the current derivative signal (brown line) corresponding to the current 

response; the green box magnifies these responses. Cmaxp: maximum value of the current peak, Cmind: 

minimum derivative value of the current, ECLsl: decay slope of the ECL intensity. 

2.5. AI algorithms 

2.5.1. Random Forest (RF) 

A random forest algorithm is a widely used nonparametric technique for data classification and 

regression analysis. A detailed description of the fundamentals of RF is given by Breiman [21]. In this 

study, the focus is on the application of RF to obtain a regression between the input variables (Cmaxp, 

Cmind, and ECLsl) and an output variable (concentration of Ru(bpy)3
2+). The idea of RF is to construct 

a set of trees from samples randomly selected from the training set by a bootstrapping technique and 

to generate an average prediction of the individual trees. Overfitting is avoided by the division of 

nodes into decision trees where the RF algorithm randomly selects a subset of variables for each node. 

The average of the values in the terminal nodes of the decision trees was used to estimate the 

concentration of Ru(bpy)3
2+ (Figure 3b). Therefore, the predicted value by the entire random forest, 

hj, is denoted by Equation (1). 
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



T

t
jtj hh

1

, (t = 1, …, T) and (j = 1, …, nsample), (1) 

where hjt represents the predicted value concentration of Ru(bpy)3
2+ by tree t, T represents the total 

number of trees, and nsample represents the total number of samples from training set. 

The leave-one-out cross-validation (LOOCV) technique was employed to train the RF algorithm. 

In LOOCV, n − 1 samples from the training set are used to train the RF, and the remaining sample is 

used to evaluate the accuracy; this was repeated 90 times. The RF tuning parameters for the LOOCV 

were the number of trees to be grown (ntree), the number of predictor variables used to split the nodes 

at each partitioning (mtry), and the minimum size of the terminal node or leaf (node size). RF 

accuracy was assessed on the validation and testing set using performance measures such as mean 

square error (MSE) and the coefficient of determination (R2). The RF was implemented in the R 

programming environment using the randomForest package Version 4.6-14 [22], based on Breiman 

and Cutler’s Fortran code [21]. 

2.5.2. Feedforward Neural Network (FNN) 

This work uses an FNN-type artificial neural network (ANN) [23] due to its simple mathematical 

form and logical architecture for data-driven modeling. These characteristics make it suitable for 

implementation in a prediction framework, where reduced mathematical complexity is an important 

factor for real-time prediction. The FNN with an input layer, one hidden layer of sigmoidal neurons, 

and a layer of linear output neurons was used in this study, where the numbers of neurons were I, J, 

and M, respectively. The neurons are highly interconnected by weights and bias parameters. 

Mathematically, the FNN can be represented as Equation (2). 



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, (j = 1, …, J), (i = 1, …, I) and (m = 1, …, M), (2) 

where gm and xi represent the vector of input and output variables, f(∙) and F(∙) represent the activation 

functions of the j-th neuron in the hidden layer and of the m-th neuron in the output layer, 

respectively, wji denotes the weight connecting the i-th neuron in the input layer and the j-th neuron 

in the hidden layer, θj denotes the bias of the j-th neuron in the hidden layer, Wmj denotes the weight 

connecting the j-th neuron in the hidden layer and the m-th neuron in the output layer, and bm denotes 

the bias in the m-th neuron in the output layer. 

Figure 3b details the input variables (Cmaxp, Cmind, and ECLsl) and the output variable 

(concentration of Ru(bpy)3
2+) used to perform the FNN training. A representative dataset comprising 

105 input/output samples was presented to the FNN for estimating the weight and bias (FNN 

parameters). The data were randomly divided into a training set and a validation set. The predictive 

performance of FNN was assessed using different measurements (testing set) performed with the 

mobile phone-based ECL sensor. The appropriate number of neurons in the hidden layer that 

prevents overfitting of the model and achieves a good generalization of training was determined by 

cross-validation (CV). CV means that FNNs with different numbers of hidden neurons, that is, 

different architectures, are trained with the training set, and the performances are assessed on the 

ability to make accurate predictions of the validation set in terms of R2 and MSE. The FNN was 

implemented in the R programming environment using the neuralnet package Version 1.44.2 [24]. 

3. Results and Discussion 

3.1. Chronoamperometric Data for Data-Driven Modeling 

A series of chronoamperometric measurements were performed using the mobile phone-based 

ECL sensor. The ECL and electrochemical key features were measured at different concentrations of 

Ru(bpy)3
2+ (from 0.02 to 2.5 µM) following the approach proposed in Section 2.4. The key features 
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identified were the maximum value of current peak, Cmaxp, the minimum derivative value of the 

current, Cmind, and the decay slope of the ECL intensity, ECLsl. The concentrations of Ru(bpy)3
2+ were 

consistent with the practical use of this luminophore as a label. Figure 5 shows the behavior of each 

key feature considered in this study as a function of the concentration of Ru(bpy)3
2+ . These data 

clearly demonstrate the influence of the concentration of the luminophore on Cmaxp, Cmind, and ECLsl. 

As concentration of Ru(bpy)3
2+ increased from 0.02 to 2.5 µM, the key electrochemical features, Cmaxp 

and Cmind, decreased as shown in Figure 5a,b, respectively. Meanwhile, ECLsl exhibited lower values 

at higher concentration of Ru(bpy)3
2+ (Figure 5c). Previous studies [7,25] discussed the importance 

of having systems capable of performing ECL and electrochemical measurements in sync to develop 

models that investigate the mechanism of the Ru(bpy)3
2+/TPrA system. The consistent downward 

trend of experimental measurements of Cmaxp, Cmind, and ECLsl with the concentration of the 

luminophore made it possible for these measurements to be interpolated to generate a large dataset. 

This strategy allowed for well-distributed data of the key features for the calibration of the AI 

algorithms. This is a very critical issue that should be addressed, as AI algorithms have very limited 

extrapolation properties [26]. For example, Figure 5a–c show the measurements (solid symbols) and 

the interpolated data (continuous lines) used to calibrate the random forest (RF) algorithm. These 

data and those for calibration of the feedforward neural network (FNN) were randomly divided into 

a training set (85%) and a validation set (15%). Prior to interpolation, three experimental 

measurements (i.e., three amperograms and three sets of ECL images) were randomly extracted from 

the original set of experimental measurements, which determined the testing set. 

(a) 

 

(b) 

 

(c) 

 
  

Figure 5. Measurements (black, red, and blue solid symbols are for repetitions 1, 2, and 3, respectively) 

and interpolated data (continuous lines) used to train the random forest (RF) algorithm: (a) maximum 

value of the current peak, Cmaxp, (b) minimum derivative value of the current, Cmind, and (c) decay 

slope of the ECL intensity, ECLsl. 
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3.2. Data-Driven Model Calibration and Prediction of 𝑅𝑢(𝑏𝑝𝑦)3
2+ 

3.2.1. Random Forest (RF) Prediction Results 

Several structures of the random forest (RF) with different ntree (number of trees to be grown) 

were compared to build the model based on RF. The model estimates the concentration of Ru(bpy)3
2+ 

using the maximum value of the current peak, Cmaxp, the minimum derivative value of the current, 

Cmind, and the decay slope of the ECL intensity, ECLsl, as input variables. Figure 6a shows that, at 

values greater than ntree of 500, the MSE and R2 did not show significant improvement. Therefore, the 

RF tuning parameter, ntree, for the leave-one-out cross-validation (LOOCV) technique was determined 

to be 500. The remaining tuning parameters were fixed as follows [22]: number of predictor variables 

used to split the nodes at each partitioning (mtry) = 1.732 (square root of the number of inputs), and 

minimum size of the terminal node or leaf (node size) = 5. The accuracy of the generated model by 

the LOOCV technique was assessed by predicting the concentration of Ru(bpy)3
2+ for the validation 

set. Figure 7a shows the actual versus predicted values for this set. The corresponding assessment 

using the performance measures, R2 and MSE, demonstrated that the model predictions were 

particularly accurate. As for the testing set, the RF prediction results were similar to those observed 

for the validation set. The actual versus predicted values and the performance measures are 

presented in Table 1. The results showed that the model based on RF can effectively directly infer the 

concentration of the Ru(bpy)3
2+ from certain key features from multimodal data of the mobile phone-

based ECL sensor. To the best of the authors’ knowledge, the RF was not previously used for the 

regression analysis of data from electrochemical/ECL sensors because it is relatively easier to 

understand the mathematical form of parametric models such as the FNN. RF can achieve high 

precision when a large number of input variables with a large amount of data are used [27]. 

Nevertheless, this study shows that the use of a reduced number of significant input variables (called 

key features) achieves accurate prediction results. These results were slightly higher than those found 

using FNN, as shown in the next section. 

(a) 

 

(b) 

 
  

Figure 6. Performance measures (R2 and mean square error (MSE)) to evaluate the accuracy of (a) the 

random forest (RF) at different random of trees to be grown (ntree) and (b) the feedforward neural 
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network (FNN) at different architectures (inputs-hidden neurons-output). Blue bars represent R2 (left 

axis), and orange bars represent MSE (right axis). 

  
(a) (b) 

Figure 7. Actual versus predicted values of the concentration of Ru(bpy)3
2+ obtained for validation 

set using (a) random forest and (b) feedforward neural network. 

3.2.2. Feedforward Neural Network (FNN) Prediction Results 

Different network architectures with a single hidden layer were compared to build the data-

driven model based on an FNN that predicts the concentration of Ru(bpy)3
2+ . The optimal 

architecture was determined by varying the number of neurons in the hidden layer. In total, 16 

architectures were assessed as shown in Figure 6b. The appropriate number of neurons in the hidden 

layer was chosen using cross-validation with the number of training epochs fixed at 1.0 × 105 for all 

the architectures studied. The FNN with 16 hidden neurons was determined to give the lowest MSE 

and R2 closer to that for the validation set (Figure 6b). Thus, the optimized model used a 3-16-1 (input-

hidden neurons-output) architecture containing 81 parameters (weights and bias). Table 2 shows the 

FNN optimized parameters according to the notation of Equation (2). The comparison between the 

actual values of the concentration of Ru(bpy)3
2+  and the corresponding predicted values by the 

optimized model for the validation set is shown in Figure 7b. The results showed that the model 

accurately predicted the concentration of Ru(bpy)3
2+, as assessed by the R2 and MSE. For the testing 

set, it can be seen from Table 1 that the model based on the FNN also described the experimental 

measurements accurately (R2 = 0.961, MSE = 0.0356). Nevertheless, the accuracy of this prediction was 

slightly lower than that observed using random forest (R2 = 0.996, MSE = 0.0012). Previous studies 

[28,29] showed that the use of FNN as a data regression method in the development of sensors based 

on electrochemical measurements provided prediction results with high precision. However, to the 

best of the authors’ knowledge, this is the first study to predict the concentration of a compound 

using key features from multimodal data (ECL imaging and amperograms) into a single FNN. While 

FNNs achieved acceptable prediction accuracy for the testing set in this study, further investigations 

could be performed using deep learning to improve the prediction accuracy of the neural networks. 

Recent advances in training techniques and increased computational resources made it possible to 

construct deep neural networks such as the convolutional neural network [30] and recurrent neural 

network [31]. These novel architectures could be applied to the development of the ECL sensors as 

they are particularly useful for image processing and time series data. 

Table 1. Actual versus predicted values of the concentration of Ru(bpy)3
2+ obtained for the testing 

set using the random forest and the feedforward neural network. 

Testing 

Sample 

Random Forest (RF) 

R2 = 0.996, MSE = 0.0012 

Feedforward Neural Network (FNN) 

R2 = 0.961, MSE = 0.0356 
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2 1.25 1.304 2.5 2.472 

3 0.078 0.105 1.25 0.926 

Table 2. Optimized parameters (weights and bias) of the feedforward neural network. 

 

Parameters Connecting the Inputs and Hidden 

Neurons 

Parameters Connecting the 

Hidden and Output Neuron 

wj1 wj2 wj3 θj W1j b1 = −0.46714 

j = 1 −2.16914 0.54961 0.84096 0.96493 −0.11545  

j = 2 0.96444 −0.39983 0.54570 1.38495 −0.55877  

j = 3 −0.06212 0.76427 1.24634 −0.94330 −0.11051  

j = 4 −0.04506 5.42573 −1.99257 −0.36926 −0.16298  

j = 5 −1.42036 0.55738 −0.99856 −1.01188 1.50011  

j = 6 −1.65943 1.06460 −0.98453 −0.65498 1.92081  

j = 7 −2.57911 0.15109 −1.17164 2.19616 1.16145  

j = 8 −4.96551 −4.79277 0.00347 −0.31065 −2.83089  

j = 9 0.76280 −0.86469 −0.90831 0.40019 0.75119  

j = 10 1.10727 −0.04662 −0.60547 −0.14305 −1.12459  

j = 11 −2.98694 1.36294 −0.77255 0.09917 0.90778  

j = 12 1.04993 1.17599 −0.46819 0.39381 1.46889  

j = 13 −1.41821 −0.44610 1.58347 0.83625 −0.21712  

j = 14 1.22302 −5.44580 4.17545 0.97755 −0.45628  

j = 15 0.82019 −0.32754 0.59748 1.02389 −0.17525  

j = 16 2.46345 −1.47657 −2.04265 1.07287 0.69586  

3.2.3. Visualizing Relationships between the Key Features and the Concentration of Ru(bpy)3
2+ 

Contour plots were generated from the validated models (Figure 8a,b for RF and FNN, 

respectively) for the visualization of the relationships between the input variables (Cmaxp and ECLsl) 

and the concentration of Ru(bpy)3
2+ (response variable). It can be seen that the contours for both the 

FNN and the RF were nonlinear and revealed that the concentration of Ru(bpy)3
2+ decreased as the 

values of Cmaxp and ECLsl decreased. The magnitude of the effects of the input variables on the 

response variable can also be inferred from these plots. In this regard, it was observed that the 

concentration of Ru(bpy)3
2+ was more sensitive to the variation of ECLsl than Cmaxp. Contour plots 

were especially useful to display the system behavior, given the complexity of the developed models 

that are nonparametric, such as the RF, or that do not have simple prediction equations as the FNN. 

As in previous works [26,32], it can be noted that Figure 8a,b show typical behaviors of contour plots 

generated from a nonparametric model and a parametric model, respectively. In this study, the use 

of a reduced number of key features allowed for fast calibration and operation of the AI algorithms 

to predict the concentration of Ru(bpy)3
2+. A greater number of key features could be considered in 

the construction of the data-driven models; however, some features could have a little or no effect on 

the response. Therefore, before incorporating more key features into the models, a sensitivity analysis 

should be performed to determine their potential contribution. 

The use of the approach presented in this study to other applications, such as the detection of 

analytes of interest using the enhancing or quenching of their luminescent intensities, is 

straightforward. In this case, the concentration of Ru(bpy)3
2+ must be fixed at an optimal value. For 

instance, phenolic compounds demonstrated a highly efficient quenching effect in the 

Ru(bpy)3
2+/TPrA system [33]. In this sense, future work will take advantage of the results obtained in 

this study to develop an AI-driven smartphone-supported ECL sensor to monitor phenolic 

compounds in wastewater from biofuel plants. In this context, the present study is important because 

it provides a proof of concept demonstrating the feasibility to develop a sensor for intelligent 

detection of analytes. 
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(a) 

 

(b) 

 

Figure 8. Contour plot generated by (a) random forest and (b) feedforward neural network at a fixed 

Cmind. 

4. Conclusions 

The quantitative investigation of the relationships between the concentration of Ru(bpy)3
2+ and 

its experimentally measured electrochemical and ECL features naturally leads to the use of complex 

models that are very difficult to calibrate. It is necessary to examine key features from the system to 

effectively consider the generalization of the model. This study proposes a novel modeling approach 

based on AI (in particular, random forest (RF) and feedforward neural network (FNN)) to correlate 

the concentration of Ru(bpy)3
2+  with key features obtained from sequences of ECL imaging and 

amperograms. All multimodal measurements were extracted from a low-cost smartphone-based 

electrochemiluminescence (ECL) sensor. The input (key features) and output (concentration of 

Ru(bpy)3
2+) variables were applied to generate sample points. These samples were used to build 

data-driven models using RFs and FNNs. The predictions of the data-driven models were shown to 

be in agreement with the measurements performed (validation and testing sets) with the mobile 

phone-based ECL sensor. Contour plots allowed quantitative determination of the relevance of the 

key features on the output and the relation between them. The AI approaches were capable of directly 

inferring the concentration of Ru(bpy)3
2+  using easily observable key features, while traditional 

mechanistic modeling uses a complex calibration procedure. Future work will extend the proposed 

approach to develop a robust, practical, and affordable sensor for intelligent detection of analytes of 

economic relevance such as phenolic compounds. 
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