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ABSTRACT4

Water distribution and transportation systems are geospatially co-located, forming a net-5

work of connections. This network of connections is referred to as an interface network. Inves-6

tigation of interface network connectivity can help understand and minimize failure propaga-7

tion from water to transportation systems. Water distribution–transportation interface networks8

consist of nodes, which can be either pipes or roads, and edges, which represent the geospatial9

co-location of a pipe and road. The purpose of this study is twofold: to topologically represent10

geospatial co-location by characterizing the connectivity of water distribution– transportation11

interface networks for multiple cities, and to identify the nodal attributes that are most pre-12

dictive of a given connectivity profile. A total of forty interface networks from eight cities of13

varying geospatial morphology are extracted and analyzed using network analysis and machine14

learning. Using network analysis, we investigate if the topological connectivity between water15

and transportation is consistent across different cities. Then we use a random forest model to16

ascertain which nodal attributes may have predictive power to identify the connectivity cluster17

of the city to which a node belongs. Results indicate that cities of different geospatial mor-18

phology may vary in their interface network connectivity, and average shortest path length of19
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a given node is the major nodal feature contributing to a given city’s interface network con-20

nectivity. These findings hold implications for urban planning and water distribution design to21

mitigate potential cascading failures.22

Keywords: water distribution networks, interdependency, transportation networks,23

urban morphology, complexity24

INTRODUCTION25

Water distribution and transportation systems are both critical infrastructures, cru-26

cial and integral to the functioning of cities. All people need access to water and mo-27

bility from and to different locations in cities. In fact, a lack of performance of these28

two types of infrastructures can even be life-threatening. To compound the complexity29

of these two infrastructure systems, they cannot be analyzed independently because30

the failure of water distribution networks (e.g. pipe and main breaks) has a direct im-31

pact on transportation networks as has been illustrated by traffic disruptions and their32

subsequent socio-economic impacts (Reed 2017; Chen et al. 2018) and as alluded to in33

urban design and architecture literature (Alexander 1977; Ahern 2011; Meerow et al.34

2016). Further, in addressing or repairing component failures within water distribu-35

tion, an impact to transportation occurs by way of accessing the underground piping36

which is often located beneath roads (Mair et al. 2017). This type of interdependency37

between water distribution and transportation networks, due to co-location, is referred38

to as geospatial interdependency.39

There are many different models to study interdependent infrastructures, depending40

on the purpose, systems’ specifications, and data availability. Some of the more com-41

mon approaches include: agent-based models, inoperability input output models, sys-42

tems dynamics, probabilistic methods, multi-objective optimization, network-based43

approaches, and combinations thereof (Ouyang 2014; Johansen and Tien 2018). Network-44

based approaches include both structural (i.e. as a snapshot of topology) and dynamics45

on the network (defining stress/failure states and involving stress/failure propagation46
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probabilities). Further, the coupled networks can be modeled in a variety of ways us-47

ing a network approach. The choice of model and analysis is in part influenced by48

data availability/understanding of the system, and also the type of interdependency49

between the infrastructures, as interdependency can be physical, geo-spatial (i.e. co-50

location/proximity), cyber, or logical (Gillette et al. 2002; Rinaldi et al. 2001). Be-51

cause network science is an interdisciplinary field, variations of the same method and52

type of multi-layer networks have been called by different names in the literature (e.g.53

influence model, deterministic/probabilistic Bayesian network, coupled network, in-54

terlinked network, in addition to multi-layer/multiplex). Multi-layer networks are of-55

ten used to study the dynamics on interdependent networks, where each infrastructure56

network layer has its own properties and connections (and thus cascading failure dy-57

namics), in addition to a layer of distinct connections between the two layers (Kivelä58

et al. 2014; Boccaletti et al. 2014; Bianconi 2018). Researchers have used both real,59

virtual, or generic network data to construct these multi-layer network models. Find-60

ings often show that what constitutes a robust network from analyzing it alone, is61

different when considering coupled infrastructures together (i.e. interconnected infras-62

tructure networks each can respond uniquely to external events, internal failures, and63

operation errors) (Haimes et al. 2005; Winkler et al. 2011; Ouyang et al. 2012; Casal-64

icchio and Galli 2008; Rinaldi et al. 2001). Abdel-Mottaleb et al. (2019) have also65

previously shown that whether or not considering interdependency in management de-66

cisions can be dependent on the size/magnitude of failures between water distribution67

pipe network and transportation road network. Due to the coupling between infras-68

tructures, studies have treated two (or in rare cases more) networks together as multi-69

layer/multiplex networks, where dependencies are assumed to be either unidirectional70

(only one infrastructure depends on the other) or bidirectional (both infrastructures de-71

pend on each other in some way) (Dueñas-Osorio et al. 2007; Svendsen and Wolthusen72

2007; Ouyang and Dueñas-Osorio 2011a; Ouyang and Dueñas-Osorio 2011b; Das73
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et al. 2014; Danziger et al. 2016; Wang et al. 2019; Buldyrev et al. 2010; Korkali74

et al. 2017; Guidotti et al. 2016; Rahnamay-Naeini and Hayat 2016; Johansen and75

Tien 2018; Abdel-Mottaleb et al. 2019). Most research on interdependent infrastruc-76

tures has focused on the failure dynamics of the coupled infrastructure layers, without77

an analysis of the structure of the interface (i.e. the network consisting of components78

that directly influence each other from both infrastructure layers) between them. While79

Winkler et al. (2011) did study the structure of the potable water-power interface for80

a case study, the interdependency between the two infrastructures is more functional81

than it is geo-spatial (or due to co-location). Whereas the interdependency between82

water distribution pipes and transportation roads is heavily co-location based. Further-83

more, there have not been studies on how interface structure may vary for different84

urban development schemes (i.e. geo-spatial morphology). To address these gaps, this85

study characterizes structural network properties of water pipe-road interface (a net-86

work of connections) instead of simulating dynamics on a multi-layer network. We87

start with a multi-layer network consisting of pipes and roads, but only the pipes and88

roads that are co-located are extracted to generate a network of the connections of89

the two layers. We seek to find if the structure of the interdependent linkages between90

water and transportation is some sort of universal property, independent of a city’s geo-91

spatial layout or if it can vary for cities that developed in different patterns. To date no92

study has characterised the complex network structure of the interface between water93

distribution pipes and transportation road networks. The interface network, similar to94

the definition in Winkler et al. (2011) and Ouyang and Dueñas-Osorio (2011a), refers95

to the network of connections between water distribution and transportation. Nodes96

in the interface represent infrastructure components from either water distribution or97

transportation (i.e. pipes or roads) and edges represent potential failure propagation,98

due to geospatial interdependence.99

The water-transportation interface as a logical network is derived from the physical wa-100
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ter distribution infrastructure and surface transportation infrastructure. The topology101

and structure of a given infrastructure network is constrained by geospatial boundaries.102

Thus, geospatial morphology is a contributor to the form an infrastructure network103

takes (Louf and Barthelemy 2014). Gastner and Newman (2004) identified geography104

as a main driver of distribution networks’ overall layout and shape. Water distribution105

networks, specifically, are spatially constrained by the environments in which they are106

located due to both geology and spatial impediments. Hence, they often trace the same107

path as other utility networks such as transportation, urban drainage (sanitary sewer108

and stormwater), and power, which also suffer the same geospatial constraints (Zischg109

et al. 2017; Yang et al. 2017). Spatial impediments are not only a result of a city’s ge-110

ography, but its morphology (i.e. how it’s form developed and continues to do so over111

time). The layout of a city’s infrastructure networks evolves as a spatial and temporal112

event, in so much as it is driven yet constrained by a city’s morphology. This evolution-113

ary morphologic phenomenon yields distinct urban forms throughout the world. Porta114

et al. (2006) identified six general city forms in their research on networks in urban115

design: medieval, grid-iron, modernist, baroque, mixed, and lollipop (post-war, low116

density sprawled suburbs). Different urban forms cities may take, and the properties117

or charactertistics of each, have been identified and studied by (Boeing 2017; Boeing118

2019; Alexander 1977)119

In this vain, cities with different urban forms around the world will have infrastructure120

networks with varying layout. However, this does not guarantee that infrastructure121

interfaces (i.e. network of connections between two or more infrastructure networks)122

vary in their network characteristics. Given that water distribution and transportation123

systems are as interdependent as they are regarding potential failure propagation from124

water to transportation, it is of importance to investigate structural properties of the125

interface network between them. Network structure is integral to understanding inter-126

dependent and complex infrastructure systems; information such as connectivity can127
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be extrapolated from structure. Similar to the limitations imposed on entire cities’ lay-128

out and shape by geospatial form, infrastructure networks’ efficiency (i.e. resistance to129

failure) has been linked to structural properties in both individual and interdependent130

infrastructures (Winkler et al. 2011; Porta et al. 2006).131

Within network analysis, observations can be made at different, often compartmen-132

talized into three scales: micro, community, and macro (Soundarajan et al. 2014).133

Soundarajan et al. (2014) classified the different scales based on operation level. For134

example, micro scale refers to nodal measurements (i.e. measurements of the con-135

stituent parts), while macro refers to network wide, global measures. Community136

scale refers to the nodal neighborhood level. Complex systems cannot be understood137

by solely examining and analyzing their constituent parts – or micro-scale analyses;138

they are defined more by their internal relationships than by their constituent parts.139

Network connectivity quantitatively captures the extent of relationships between con-140

stituent parts (i.e. nodes) of a network. Moreover, using a combination of observation141

across scales, patterns can be found that relate micro and community scale measures to142

macro- scale phenomena, and thus allow for predictions to be made regarding network-143

wide properties from measured nodal characteristics. This is relevant to infrastructure144

operation and management, because decisions and design are enacted on a component-145

level, with aim of yielding particular network-wide or global characteristics. For ex-146

ample, the work of Porta et al. (2006) showed that micro-scale streets in transportation147

networks that were locally efficient yielded an overall transportation network that also148

tended towards global efficiency. Also in the case of water distribution-transportation149

interfaces, a decrease in failure propagation between the two networks is a desirable150

network-wide goal. To understand such network structure properties, complex network151

theory and modeling has been applied.152

Complex network analysis has been used to study the structure of transportation road153

networks (Louf and Barthelemy 2014; Boeing 2017; Zhang et al. 2015) and water dis-154
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tribution networks (Yazdani and Jeffrey 2010; Yazdani and Jeffrey 2012; Giustolisi155

et al. 2017; Giudicianni et al. 2018; Di Nardo et al. 2018). Such an analysis has not156

been conducted for the water distribution-transportation interface.157

To address this limitation, this study seeks to investigate and characterize connectiv-158

ity of the interface between water and transportation networks among different cities,159

which may be indicative of potential failure propagation from water distribution to160

transportation. Then, this study uses that knowledge to identify micro-scale features161

that best predict macro-scale network wide connectivity of the interface between water162

and transportation networks. To this aim, network analysis is fortified with machine163

learning to be able to identify patterns emerging from local (micro-scale) features into164

global (network-wide) properties.165

METHODOLOGY166

In this study, higher network connectivity between water distribution and trans-167

portation infrastructure networks is assumed to indicate higher propensity for failure168

propagation. Due to the inevitable co-location of water distribution and transportation169

road networks, it was not clear if the interface network between the two infrastructures170

could have different connectivity for a city in which the infrastructures were located.171

To investigate this, several different measures of global, network-wide connectivity are172

used. Four topological connectivity metrics are computed for 5 samples of a set of 8173

cities. Five samples are selected for statistical robustness, to account for the variability174

driven by different possible layouts for a water distribution network within a single175

city.176

The workflow of the methodology is delineated in Figure 1. The study begins with the177

selection of cities and results in assessment of network-wide interface connectivity and178

identification of a nodal predictor that predicts interface connectivity.179
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FIG. 1

City Selection180

City selection ensures the analysis of a representative set of geospatial morpholog-181

ical conditions constraining water distribution networks’ layout. A literature review is182

conducted to choose cities that are identified as differing in age and geomorphology,183

and also to allow for extending research and knowledge that is already present (i.e.184

to deepen the body of knowledge) (Alexander 1977; Boeing 2017; Porta et al. 2006).185

Within the urban planning and transportation body of literature, city shapes are distin-186

guished: older and circular; newer grid like; coastal, linear, tree like; mix of dense old187

circular city and sparser extensions, thereby allowing the selection of eight cities of188

varying spatial geometry and evolutionary development. The eight selected cities are:189

Boston, Chicago, Portland, and Atlanta within the USA; Rome, Italy; Paris, France;190

Dubai, UAE; and Alexandria, Egypt.191

Maps of the studied cities are shown in Figure 2. Polar histograms of street orienta-192

tions are inlaid in the maps using the opensource Mapbox tool by Agafonkin (2018)193

with map data from (Mapbox 2018; Contributors 2012). Though street orientations194

do not completely represent the complexity of the studied urban areas’ layouts, they195

highlight some of the significant differences in their development patterns. For ex-196

ample, Portland is the most “grid-like” city, and that is shown in its polar histogram197

because the rainbow bars are concentrated along four directions. However, Rome is198

the most “circularly” laid out, as can be seen from its histogram indicating that streets199

are oriented in all directions.200

FIG. 2
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Data Collection201

Transportation road network data for each respective city is extracted from Open-202

streetmap (Contributors 2012). Five water distribution network models for each city of203

study are generated using an open source virtual water distribution network generator204

(DynaVIBe) developed by Sitzenfrei et al. (2010). Each of the five water distribution205

pipe networks from DynaVIBe comprise the different samples for each city, because206

they vary in their spatial distribution (Abdel-Mottaleb and Zhang 2019). Input for Dy-207

naVibe includes digital elevation models, demand volume, and cyclicity percentage.208

For each city, digital elevation models are downloaded from the Consortium for Spa-209

tial Information database. For hydraulic consistency, a total demand of 1083.3 l/s is210

used for all of the cities’ network generation (as was used in previous studies since211

Quindry et al. (1981)), and a constant cyclicity value of fifty percent is input. For a212

given city and water network layout, the water distribution network is converted to a213

shape file and imported into the ArcGIS user interface, and the transportation network214

for the same city is also imported into GIS for geoprocessing.215

Interface Network Extraction and Model Construction216

After importing the two shape files (water distribution and transportation) into the217

same ArcGIS map, a buffer is added to account for lane width (road lane information is218

present in Openstreetmap GIS files). After adding the lane width buffer, both networks219

are intersected using the intersect geoprocessing tool, resulting in a new feature layer220

containing a subset of the original pipes and roads. After obtaining the intersect of the221

overlaid pipe and road networks (shown in Figures 3 and 4), the interface network is222

generated from the logical implications in the intersection: a pipe failure will cause223

a road failure if it is below the road (or over a longer time, vehicular loads on roads224

can stress water pipes). Thus, a node represents the pipe, another node represents225

the road, and the causal link is represented by an edge between them. The attribute226
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table of the interface network consists of an edge list (i.e. a list of the edges, the227

connections between water and transportation, where one column contains pipes, and228

another contains the roads that are co-located to them), as shown in Figure 3. This229

network represents unidirectional propagation of failure from the water distribution230

pipes to the transportation roads in the event of a pipe failure. The attribute table is231

exported as a spreadsheet for analysis in the following step.232

FIG. 3

FIG. 4

Network Analysis233

Classification of similar networks is challenging but using multiple measures for234

comparison eases and enhances the accuracy of the process (Soundarajan et al. 2014).235

There are network-wide measures representing facets of connectivity that are assumed236

to indicate failure propagation, and there are nodal measures for each node in a given237

network. Thus, two distinct network analyses are conducted: global, network-wide238

and local, nodal-scale. An example of the distinction is the difference in measurement239

scale between centralization and centrality; centrality refers to the nodal or component240

scale (a micro-level measurement) whereas centralization is a global scale network-241

wide metric (a macro-level measurement).242

To conduct network analysis, the interface network for each city is imported as an243

edge list into Cytoscape (an open source network analysis software by Doncheva et al.244

(2012)). Within the software, the connected components of each network are automati-245

cally identified. Because all of the tested interface networks contain a giant component246

(containing >> 50 percent of the networks’ nodes), only the giant component is used247

10



in the analysis as is common in network analysis (Kolaczyk 2009). The network an-248

alyzer and CytoCluster plugins are used to compute four network-wide connectivity249

measures: modularity, heterogeneity, centralization, and average number of neighbors250

(Doncheva et al. 2012; Li et al. 2017). Average number of neighbors is based on the251

aggregate connectivity of network neighborhoods. It is calculated as the average of252

the number of nodes that each node in the network is connected to. Centralization and253

heterogeneity are closely related. Heterogeneity is the tendency of a network to con-254

tain hub nodes. Similarly, centralization is the tendency of a network to have central255

structure, meaning the presence of central nodes relative to how central other nodes256

are in the network (Freeman et al. 1979). Thus, higher values of heterogeneity and257

centralization indicate that connectivity is not homogeneous across the entire network.258

Modularity examines connectivity from the vantage of community structure; it is the259

strength of network division into communities. High modularity indicates high con-260

nectivity between nodes in the same community or module, and sparser connections261

between nodes of different modules.262

The network analyzer plugin within Cytoscape is also used to compute the nodal at-263

tributes: in-degree, out-degree, neighborhood connectivity, betweenness centrality, and264

average shortest path length (Doncheva et al. 2012). The nodal degree is the number265

of edges incident to a given node, meaning more connected nodes have higher in or266

out degrees. Neighborhood connectivity is the mean of the number of neighbors for267

all neighbors of a given node, and so higher values indicate higher nodal connectivity.268

Betweenness centrality is the fraction of all shortest paths in the network that contain269

a given node, while average shortest path length is the average length of all shortest270

paths between a node and other nodes. The higher the betweenness centrality, the more271

crucial a node is to the connectivity of a network (Freeman et al. 1979; Soundarajan272

et al. 2014; Newman 2018). The shorter the average shortest path length of a node is,273

the more highly connected it is.274
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Instead of using Cytoscape, the networkx package can be used within python for con-275

venience. After obtaining network wide measures, ANOVA and post hoc Tukey HSD276

analyses are conducted to test if connectivity measures are statistically different among277

cities using the Scikitlearn package in python, and to identify where the differences are278

located.279

Clustering on Global Measures280

The hierarchical clustering of network-wide connectivity in this study is analyzed281

to discern similar and different networks using a distance matrix based on four network-282

wide connectivity measures. To eliminate the effects of scale on the analysis, connec-283

tivity metrics are normalized prior to calculating a distance measurement between each284

pair of measurements for all of the interface networks using dynamic time warping.285

Dynamic time warping is a robust technique that is used in signal processing applica-286

tions and other classification problems (Mueen and Keogh 2016). The mlpy (machine287

learning python) was used for this method (Albanese et al. 2012).288

Using the Scipy package within python, clustering was conducted to group cities’ in-289

terfaces based on the distance matrix of the global network-wide measures. A cluster-290

ing criterion defines obtained clusters, imposing structure on the observations — it is291

therefore important to evaluate whether the clusters do in fact group similar objects,292

and distinct clusters are more different (Cesar Jr and da Fona Costa 2009). Ward’s293

linkage was used to cluster the cities’ interfaces based on the network connectivity, be-294

cause it is a dispersion-based clustering approach and is regarded as superior or the best295

hierarchical clustering technique (Cesar Jr and da Fona Costa 2009). Though Ward’s296

linkage was used, other linkage techniques were tested and provided similar results.297

Roads Indegree Distribution298

In order to provide some physical understanding of information the interface net-299

work provides, and to better demonstrate the data being input into the random forest300
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model, this study quantifies the indegree distribution of roads in the interface network.301

The indegree distribution is the distribution of the number of roads with a given num-302

ber of pipes intersecting them. This is an interesting property because irrespective of303

type of mechanical failure of a pipe, the co-located road(s) must often be disturbed304

as a consequence. The degrees of the transportation roads are extracted to identify305

a best fit distribution, via methods explained in Clauset et al. (2009), using the net-306

workx, matplotlib, scipy and numpy packages in python. The scaling parameters are307

also determined as they reveal unique properties regarding the distributions’ shape. In308

particular, a power law distribution is tested for. If the distribution follows a power309

law, y = x−α, then the scaling parameter, α, can provide insight about the hierarchy310

of connections within the interface networks (e.g., is there a small proportion of roads311

interacting with many pipes?).312

Random Forest Model and Feature Extraction313

Random forest is a powerful machine learning algorithm that uses a combination314

of many decision trees (hence the name, forest) based on given predictors or classifiers315

to make a prediction or classification. Using a training set, the model “learns” from316

past data, and reduces the variance. It is of importance to ensure the diversity of the317

input training set such that the random forest model is not biased. Due to the non-linear318

and non-normal nodal network data, and the large number of samples, and multiplicity319

of classifiers (i.e. the nodal features), a random forest model is used for nodal feature320

extraction. The total samples for the random forest exceeded 1 million (nodes). The321

large amount of data allowed for using fifty percent of the data for training the model.322

The relative importance of a feature is measured by calculating the increase in the323

model’s prediction error after shuffling the feature (Molnar 2019). A feature is impor-324

tant in the model if shuffling its values increases the model error, because the model325

relied on the feature for the prediction. If shuffling feature values leaves the model326
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error unchanged, then the model ignored the feature for the prediction, indicating the327

feature is unimportant (Molnar 2019). This shuffling feature importance measurement328

is described in Breiman et al. (1984) and in Breiman (2001) and Breiman (2002) for329

random forests. It is called the “Gini importance” or “mean decrease impurity”, be-330

cause it is a measure of the decrease in node impurity, averaged over all trees of the331

ensemble (i.e. the random forest). The method is implemented in scikitlearn, the332

python package used to calculate it for this study.333

RESULTS AND DISCUSSION334

Measures of Connectivity335

For each interface sample, network-wide, global measures of connectivity are taken.336

Figure 5 shows plots of the ANOVA with post-hoc Tukey HSD results for each city.337

As shown in Figure 5, cities have statistically similar connectivity measures where the338

bars overlap and where the bars do not overlap, they are statistically different with p339

value ≤ 0.05. From the plots shown in Figure 5, Rome and Portland appear at oppo-340

site ends of the spectrum for each connectivity measure. It is also interesting to note341

that values of sample centralization showed the highest variability among connectivity342

measures, whereas the average number of neighbors showed the least variability. For343

Heterogeneity, the samples for Dubai are between Rome, and Chicago and Atlanta.344

Paris is between Chicago and Atlanta, and Boston and Alexandria. In terms of Modu-345

larity, it was surprising that Rome’s samples were highest and Portland the lowest. Due346

to the grid like shape of Portland’s infrastructure its individual physical infrastructures347

(i.e., water distribution and transportation) appear to be more modular than those of348

Rome. However, the grid-like pattern is no longer present in the interface network349

when the connections between two infrastructures are examined. Just as surprising350

is that Portland’s interface samples showed the highest centralization, whereas Rome,351

Dubai, Chicago, and Atlanta have the lowest values for centralization. The centraliza-352
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tion values for Paris and Boston are higher, followed by Alexandria. It is interesting353

that Alexandria’s samples are closer to Portland. Even though Alexandria is an older354

city, it is more coastal and has had newer expansion that may be cause for the similar-355

ity. The physical water and transportation infrastructures of Rome have centralization356

values three orders of magnitude higher than those of Portland (see Appendix), with357

higher connectivity in the center – so it is interesting that this characteristic does not358

translate to the interface network. Boston is between Rome and Portland, and the re-359

maining cities were all more similar and closer in value to Rome than Portland. For360

the average number of neighbors, Alexandria’s samples show the lowest values, and361

Portland’s samples have the highest values. The value for Dubai’s samples is between362

Alexandria’s, and Rome, Paris, and Atlanta. Chicago’s samples fall higher on the spec-363

trum, and Boston’s samples are between Chicago and Portland. This result signifies364

that characteristics of the physical infrastructures network are different from that of365

the logical interface network and not all cities have the same interface connectivity.366

As a result, clustering of the cities based on properties of the interface network is use-367

ful to investigate infrastructure interdependency and grouping them based on all four368

connectivity measures is necessary, because the similarities of cities’ interface samples369

was not consistent across the four measures. For example, Alexandria was closer to370

Portland for two measures, but closer to Rome for the other two measures.371

FIG. 5

Interface Connectivity Clusters372

The results of the clustering analysis are shown in Figure 6. Two things are clear373

from Figure 6. Cities can be clustered into three groups (in Figure 6, they correspond374

to cluster 1 on the left (containing interface samples from Rome, Dubai, Chicago,375

and Alexandria ), cluster 2 in the middle (containing city samples from Alexandria,376
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Atlanta, and Paris), and cluster 3 on the right (containing city samples from Paris,377

Boston, and Portland)) based on the four measures of connectivity used in the anal-378

ysis of variance. The three clusters are selected for two reasons: to maximize the379

distance (i.e. ensure that distinct cluster labels are actually different from each other),380

and to ensure that the distances obtained from a clustering technique accurately reflect381

the original data. This is often checked using the cophenetic correlation coefficient,382

introduced in Sokal and Rohlf (1962). It measures the linear correlation coefficient383

between dissimilarity between each pair of observations (i.e. original connectivity384

data) and their cophenetic distance (i.e. the vertical distances between where clusters385

diverge shown in the dendrogram). The cut dendrogram does have a cophenetic corre-386

lation coefficient ≥ 0.75, indicating that the clustering technique accurately represents387

the data. A few cities’ samples (e.g., Alexandria and Paris) are divided between two388

different clusters. These two cities have a higher variability in their resulting interface389

network based on the input water distribution configuration. This observation indi-390

cates individual infrastructure system design and subsequent layout are driving forces391

of a city’s interface network properties. Consequentially, engineers and urban plan-392

ners may influence failure propagation from water infrastructure by accounting for a393

city’s interface connectivity when designing water distribution systems. It also appears394

that cities with similar geospatial morphology tend to cluster together; Alexandria and395

Rome are closer to each other than they are to Portland. Portland, being the most grid-396

like shaped city, is closer to more grid-like cities such as Boston. Similarly, Rome,397

an older, circular city is clustered closer to Chicago which is one of the cities that398

has previously been identified to be modeled after older European cities in Louf and399

Barthelemy (2014). Rome, Dubai, Chicago, and Alexandria are clustered together, and400

are categorized under Cluster 1. Cluster 2 includes Alexandria, Atlanta, and Paris, and401

Cluster 3 includes: Paris, Boston, and Portland. Thus, for the nodal network measures,402

each node is labelled with either connectivity cluster 1, 2, or 3 depending on which403
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connectivity cluster its sample is a part of, enabling use of random forest.

FIG. 6

404

Road Indegree Distribution405

In Figure 7, one of the studied nodal attributes (Indegree) that are used in conjunc-406

tion with the clusters for constructing the model is shown in detail. The significant407

power law distribution of indegrees for all of the tested interface networks indicates408

that there are some roads with very high connectivity to water distribution pipes, while409

most roads are not as highly connected to water pipes. Roads with higher indegree410

tend to be “secondary”, connecting main highways to the neighborhoods. The power411

law distribution confirms this physical pretext, that has already been demonstrated for412

water distribution networks (Zischg et al. 2017). But the scaling parameter, the power413

law exponent, provides nuance. It is significant within the random forest model (as414

determined from the feature extraction), suggesting the hierarchy of the infrastructure415

as guided by urban development is an important factor in determining interface con-416

nectivity. Hierarchy here is quantified by the power law exponent, because the larger417

its magnitude, the more gradual the indegree distribution falls. The smaller the expo-418

nent magnitude is, the more unevenly distributed the pipe-road connectivity is among419

the roads, and the less “balanced the interdependency is”. For example, Rome has the420

largest magnitude of the power law exponent (α = 2.4), and Portland has the smallest421

magnitude (α = 0.95). This is interesting as Rome and Portland are very different422

in their spatial layout as shown in their polar histograms in Figure 2, where Rome is423

most circular, and Portland is most grid-like. Another observation is that for all of424

the interface networks, the power-law tail begins at an indegree equal or larger than425

10 pipes. This means that the power law relationship holds strongest for roads with426

greater than 10 pipes intersecting them at some location. The characterization of the427
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power law exponents implicitly denotes the relationship between the road size/capacity428

and their corresponding connectivity to water pipes. A less evenly distributed hierarchy429

of connections between water pipes and transportation roads (i.e. lower value scaling430

parameter) suggests that it is possible for large road failures to be induced by seemingly431

inconsequential failures in the water distribution network. This result would be con-432

sistent with the findings regarding urban drainage and transportation from Wang et al.433

(2019), that localized floods can induce catastrophic road failures for some networks.434

FIG. 7

Random Forest Model Prediction435

From the random forest model, it is determined that, with 90 percent accuracy, a436

node’s connectivity cluster can be predicted using the input nodal features (between-437

ness centrality, in-degree, out-degree, average shortest path length, and neighborhood438

centrality). A confusion matrix contains information pertinent to the accuracy of the439

model in identifying a connectivity cluster of nodes from nodal properties. The con-440

fusion matrix shown in Figure 8 contains more detail on the distribution of model441

accuracy in distinguishing different clusters from each other. The x-axis of the ma-442

trix represents the predicted city connectivity cluster of a sample by the random forest443

model. The y-axis represents the actual city connectivity cluster. The matrix is read444

by row, and the diagonal represents the normalized number of samples accurately clas-445

sified (actual cluster matches the predicted cluster) by the random forest model. The446

diagonal in Figure 8 has the highest number of normalized number of samples owing447

to the high accuracy of the model. The matrix also indicates that the accuracy in iden-448

tifying samples from clusters 1 and 3 is higher than identifying samples from cluster449

2. It can also be observed from the 90 percent accuracy that nodal properties can pre-450

dict a given connectivity cluster; this relates to the micro-nodal scale measures being451
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able to predict global network-wide patterns. The random forest also enables feature452

extraction of the nodal property contributing the most to the prediction/classification,453

by shuffling attributes and evaluating the change in model accuracy.454

FIG. 8

Feature Extraction455

From the feature extraction, for which results are shown in Figure 9, average short-456

est path length accounts for 60 percent of the relative importance in the identifica-457

tion/prediction of the connectivity cluster a given node belongs to. This is much458

higher than any other nodal attributes. Average shortest path length has previously459

been shown to correlate with an individual water distribution network’s performance.460

Specifically, for individual water distribution networks, average shortest path length461

positively correlates to redundancy and consequently network resilience (Giudicianni462

et al. 2018). This research extends the predicative utility of average shortest path length463

of nodes from single infrastructure networks to predict connectivity between interface464

networks of coupled, co-located infrastructures.465

FIG. 9

CONCLUSION466

In this work, we conclude that interface networks representing potential failure467

propagation from water distribution to transportation infrastructures may differ in their468

network connectivity depending on the water distribution layout for a given transporta-469

tion network in a city. Practically, WDN design, despite the WDN being co-located,470

still has sufficient leverage to alter the connectivity profile of the interface between471

road and water. This indicates that the location/structure of redundancies in a WDN472

19



can significantly influence co-location (and thus propagation of failure from one in-473

frastructure to another), as seen for two of the studied cities.474

The variation in connectivity allowed the clustering of city interface networks based475

on connectivity. Further, the study determined that nodal properties, such as neighbor-476

hood connectivity and average shortest path length, can predict the connectivity cluster477

of an interface network that a given node belongs to. The study finds average shortest478

path length to be the most powerful attribute in predicting connectivity. Future work479

can validate connectivity clusters with simulation performance data and formulate an480

optimization model to minimize the failure propagation by changing interface network481

layouts using extracted nodal feature(s).482

The study also found that the directional connectivity of water pipes to roads for the483

studied cities follows a power law, but with varying scaling or hierarchy. These in-484

sights are a step at answering 1) how to mathematically represent connectivity of the485

coupled interface structure and 2) how much does a given urban development pattern486

influence the connectivity of water-transportation interfaces. Such understanding can487

have practical implications in terms of designing the desired interfaces by modifying488

both urban form/development and some aspects of water distribution networks so that489

a lower failure propagation can be achieved from a water distribution network to a490

co-located road network. Future work will investigate network layouts with lower in-491

terface connectivity, as that is assumed to propagate less failure from water distribution492

to transportation infrastructure.493

The interdependency between urban water distribution and transportation networks is494

doubtlessly present, but the extent is not fully understood nor quantified; hence, char-495

acterizing the interdependencies between urban water distribution and transportation496

systems can aid in the optimization of both networks by informing design, operations497

and maintenance.498
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Winkler, J., Dueñas-Osorio, L., Stein, R., and Subramanian, D. (2011). “Interface net-653

work models for complex urban infrastructure systems.” Journal of Infrastructure654

Systems, 17(4), 138–150.655

Yang, S., Paik, K., McGrath, G. S., Urich, C., Krueger, E., Kumar, P., and Rao, P.656

S. C. (2017). “Functional topology of evolving urban drainage networks.” Water657

Resources Research, 53(11), 8966–8979.658

Yazdani, A. and Jeffrey, P. (2010). “A complex network approach to robustness and659

vulnerability of spatially organized water distribution networks.” arXiv preprint660

arXiv:1008.1770.661

Yazdani, A. and Jeffrey, P. (2012). “Water distribution system vulnerability analysis662

using weighted and directed network models.” Water Resources Research, 48(6).663

Zhang, X., Miller-Hooks, E., and Denny, K. (2015). “Assessing the role of network664

topology in transportation network resilience.” Journal of Transport Geography, 46,665

35–45.666

Zischg, J., Klinkhamer, C., Zhan, X., Krueger, E., Ukkusuri, S., Rao, P., Rauch, W.,667

and Sitzenfrei, R. (2017). “Evolution of complex network topologies in urban water668

infrastructure.” World Environmental and Water Resources Congress 2017, 648–669

659.670

27



APPENDIX I. CENTRALIZATION AND ROAD INDEGREE DATA671

The centralization of Rome’s individual infrastructure networks is 3.5 ∗ 10−5. The672

centralization of Portland’s individual infrastructure networks is 2.0 ∗ 10−8. In con-673

trast, the centralization of Portland’s interface network is higher than that of Rome’s674

interface network. These values are obtained using networkx within python. Cen-675

tralization is normalized by the maximum possible centralization for a graph with the676

same number of nodes (i.e. a star configuration). It is not surprising that the physical677

infrastructure networks of Rome would have higher centralization values than Portland678

because Rome’s layout more closely resembles a star while Portland’s layout resem-679

bles a grid. For more on centralization, see Freeman (1979) and Newman (2018).680

Figure 8 shows the road indegree distributions for the studied cities. Table 1 contains681

more information regarding the cities’ road indegree distributions (values of the scaling682

parameter (α), and p-values).683
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TABLE 1: Power Law Data for Road Indegree Distributions

City α range p-value range

Alexandria [1.43, 1.53] [10−17, 10−13]

Atlanta [1.80, 1.88] [10−26, 10−22]

Boston [1.28, 1.33] [10−33, 10−30]

Chicago [1.88, 1.96] [10−52, 10−48]

Dubai [2.01, 2.14] [10−16, 10−14]

Paris [1.77, 1.84] [10−24, 10−23]

Portland [0.93, 0.98] [10−22, 10−21]

Rome [2.39, 2.48] [10−19, 10−16]
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FIG. 1: Flowchart of study methodology starting with the city selection and ending
with the extraction of a predictor nodal attribute

Figure 1 Click here to access/download;Figure;FIG1.pdf
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Alexandria Atlanta

Boston Chicago

Dubai Paris

Portland Rome

FIG. 2: Maps of the studied cities, with inlaid polar histograms representing the pro-
portions of streets in different directions for each city. Portland is the most grid-like
(polar histograms showing the majority of roads are along four directions). Rome is
the most circularly developed city (polar historgram showing roads in about equal pro-
portions lie in every direction).
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(a) (b)

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

(c)

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

(d)

(e)

(f)

FIG. 3: (a) A Boston water network sample (b) Boston road network (c) Overlay
of water and road Networks (d) Physical representation of interface (i.e. co-located
pipes and roads) (e) The edgelist of pipes and roads that is imported into cytoscape
(f) Interface network representation in cytoscape, giant connected component can be
seen in the center (no longer spatially embedded), and much smaller disconnected
components are also shown

Figure 3 Click here to access/download;Figure;FIG3.pdf
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Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Alexandria

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Atlanta

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Boston

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Chicago

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Dubai

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Paris

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Portland

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the

GIS User Community

Rome

FIG. 4: Pipe and road intersections: one sample map of each city’s intersection of pipes
and roads. The interface networks are constructed from these intersections, where each
line or point on the map represents a connection between a pipe and road.
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(a) (b)

(c) (d)

FIG. 5: Plots of the multiple comparison of means for the network-wide connectivity
metrics: the x-axes are values of the different connectivity metrics (a) average number
of neighbors (b) modularity (c) heterogeneity (d) centralization; the y-axes contain the
different cities; each horizontal bar is summarizing the confidence intervals for the 5
samples of a given city; the plots show results from the multiple comparison of means
from the post-hoc analysis for each connectivity measure; if the horizontal bars (of
different city samples) in a plot overlap, the cities’ interface network samples are not
statistically different, but if they are not overlapping at all, then they are significantly
different with p-value ≤ 0.05.
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FIG. 6: Dendrogram of interface network connectivity: Along the x-axis are different
city samples; The y-axis represents the distance between samples and their clusters,
the lower the distance of the horizontal line connecting two samples or clusters, the
more similar they are to each other; the further the distance at which two clusters
are connected with a horizontal line, the more dissimilar they are. The dashed line
intersecting the dendrogram is the location of the “cut” based on the two criteria for
identifying clusters. As a result, three clusters are identified (1, 2, and 3), highlighted
in different color.
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FIG. 7: Indegree distribution of roads in the interface networks for the studied cities.
Axes are plotted on a log-log scale. The x-axis of these plots represents the number of
pipes that intersect a road, this is the “indegree” of a given road. The y-axis represents
the frequency, or number of roads, for which a given indegree occurs. Significant
power-law tail is evident for all distributions at the same indegree value of 10, because
of the linearity on the log-log scale.
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FIG. 8: Random forest model confusion matrix: The x-axis contains the city connec-
tivity clusters predicted by the model; the y-axis contains the actual city connectivity
clusters. The matrix is read by row, where values are the normalized number of sam-
ples predicted for each cluster. The values along the diagonal represent accuracies
because the actual and predicted clusters are the same.
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FIG. 9: Relative importance of nodal attributes to the prediction of the network-wide
connectivity cluster by the random forest model: Average shortest path length is the
most important nodal-attribute for the model in distinguishing between clusters.
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