Downloaded 03/30/20 to 72.195.134.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. Sc1. COMPUT. (© 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 2, pp. A849-A877

A SPECTRALLY ACCURATE APPROXIMATION TO
SUBDIFFUSION EQUATIONS USING THE LOG ORTHOGONAL
FUNCTIONS*

SHENG CHENT, JIE SHEN?, ZHIMIN ZHANGS, AND ZHI ZHOUY

Abstract. In this paper, we develop and analyze a spectral-Galerkin method for solving sub-
diffusion equations, which contain Caputo fractional derivatives with order v € (0,1). The basis
functions of our spectral method are constructed by applying a log mapping to Laguerre functions
and have already been proved to be suitable to approximate functions with fractional power singulari-
ties in [S. Chen and J. Shen, Log Orthogonal Functions: Approzimation Properties and Applications,
preprint, arXiv:2003.01209[math.NA], 2020]. We provide rigorous regularity and error analysis which
show that the scheme is spectrally accurate, i.e., the convergence rate depends only on regularity
of problem data. The proof relies on the approximation properties of some reconstruction of the
basis functions as well as the sharp regularity estimate in some weighted Sobolev spaces. Numerical
experiments fully support the theoretical results and show the efficiency of the proposed spectral-
Galerkin method. We also develop a fully discrete scheme with the proposed spectral method in
time and the Galerkin finite element method in space, and apply the proposed techniques to subdif-
fusion equations with time-dependent diffusion coefficients as well as to the nonlinear time-fractional
Allen—Cahn equation.
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1. Introduction. Let Q C R? (d = 1,2,3) be a bounded domain with a convex

polygonal boundary 0f2. Consider the following time-fractional evolution problem for
the function u(z,t) with v € (0,1):

SDYu(x,t) = Lu(z,t) + f(x,t), z€Q, t€A:=(0,T),
(1.1) u(z,t) =0, (z,t) € 09 x (0,7,
u(z,0) = up(x), z €,
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where T" > 0 is a fixed final time, f and ug are given source term and initial data,
respectively, and §D? denotes the Caputo fractional derivative with respect to ¢ and
defined by [33, p. 70]

1 t
Cnyv —v,/
DYy(t) = —— | (t— dr:
D50 = ey [ (=7 (P
here Lu = V-(a(z)Vu)—b(x)u and a(z) is a symmetric d x d matrix-valued measurable
function on the domain 2 with smooth entries, and b(x) > 0 is an Lo, (€)-function.
We assume that

(1.2) col¢? < Ta(@)e < erfe?  forany R e,

where cg, ¢; > 0 are constants. Then —L is a symmetric and positive definite operator.

In recent years, the model (1.1) has received a growing interest in mathematical
analysis and numerical simulation, due to its capability to describe anomalous dif-
fusion processes, in which the mean square variance of particle displacements grows
sublinearly with the time, instead of the linear growth for a Gaussian process. Nowa-
days, the model has been successfully employed in many practical applications, e.g.,
diffusion in media with fractal geometry [48], ion transport in column experiments
[18], and non-Fickian transport in geological formation [6], to name but a few; see
[45] for an extensive list.

The literature on the numerical analysis of the subdiffusion problem is vast; see
[24, 31, 30, 62] for a rather incomplete list of the spatially semidiscrete scheme. In
contrast with the classical parabolic counterpart, the fractional differential operator
appearing in the diffusion model often leads to limited regularity of the solution,
which results in low accuracy of many popular time-stepping methods [56]. It has
been proved that the piecewise linear polynomial collocation method with uniform
meshes [37, 58] is only first-order accurate, due to the presence of the initial layer
caused by the fractional differential operator. Similarly, the convolution quadrature
[39, 12] generated by backward differential formulas (BDFs) for solving the model
(1.1) has only first-order accuracy [27], while the high-order convergence rates could
be restored by correcting the first several time steps. See also [57, 36, 34] for studies on
the L1 scheme with graded meshes, [63] for the analysis of the L1 scheme with initial
correction, [16, 5] for the convolution quadrature Runge-Kutta schemes, [43, 47, 44]
for the application of the discontinuous Galerkin method, and [3, 4, 22, 38, 60] for
some fast algorithms.

Compared with time-stepping schemes, spectral methods with specially construc-
ted basis functions (see [7, 9, 41, 8, 66, 21, 53, 68, 69]) could compensate for the weakly
singular behavior of functions and hence are expected to approximate the solution of
(1.1) accurately. Indeed, some efficient spectral/spectral collocation methods based
on the generalized Jacobi functions (or polyfractonomials) are proposed in [65, 66] for
some fractional models. In [10], Chen, Shen, and Wang studied approximation prop-
erties of generalized Jacobi polynomials in weighted Sobolev spaces and used them
to develop a spectral Petrov—Galerkin method for fractional ODEs without low-order
terms. Exponential convergence was theoretically confirmed, provided reasonable as-
sumptions on the smoothness of problem data. However, the analysis relies on the
fact that suitable fractional derivatives of the solution are smooth despite the solution
itself being nonsmooth, so it cannot be straightforwardly extended to the subdiffusion
equation (1.1). According to the singularity of the underlying fractional problems,
the Miintz spectral method based on a nonlinear mapping to Jacobi polynomials was
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proposed in [20, 21] to enhance the algebraic convergence rate. Our study is motivated
by a very recent work of Chen and Shen [9], where a spectral method was developed
by using novel log orthogonal functions (LOFs), which were constructed by applying a
log mapping to the Laguerre functions and can approximate weakly singular solutions
of fractional ODEs with spectral accuracy. This merit leads us to use LOF's to handle
the singularity that has arisen in the time direction of the time-fractional evolution
problem.

The main contribution of this paper is to develop a spectral-Galerkin method in
time with LOFs for solving the subdiffusion problem (1.1) and to show the spectral
accuracy, provided some reasonable assumptions on the smoothness of problem data.
In particular, we prove that if ug € H3(Q) and for any fixed integer m
(1.3)

T
/ t2j||f(j)(t)||%lé(m\log(t/T)\kdt<oo forall 0<j<k and k=0,1,...,m,
0

then ODt%u(:c, t) belongs to the nonuniformly weighted Sobolev space A (A; HL(Q))

with some mapping parameter 8 > 0 (defined in section 3.4), and there holds the
error estimate (Theorem 4.5)

||UN - u”?—[%(A,Lz(Q)) + ||V(UN - u)H%2(A;L2(Q)) < CN—HL7

where uy is the solution of the Galerkin spectral method using N basis functions
(LOFs), and the generic constant ¢ is independent of N and u but may depend on
v, 8,m, T, ug, and f. We believe that this is the first such result with spectral accuracy
in time for weakly singular solutions of subdiffusion problem (1.1). Moreover, we
also study the fully discrete scheme with the proposed spectral method in time and
Galerkin finite element method in space, and develop a fast algorithm to solve the
matrix system.

It should be noted that the proposed approach is not limited to the linear sub-
diffusion problem with time-independent diffusion coefficients (1.1). Compared with
the high-order BDF schemes [27] and the Runge-Kutta schemes [16, 5], which require
that the source term is sufficiently smooth in the time direction, the current numerical
scheme allows singularity of the source term near ¢ = 0 and hence performs well even
for solving linear subdiffusion equations with time-dependent diffusion coefficients as
well as nonlinear subdiffusion problems (see, e.g., section 5, Examples (b) and (c)).
We present numerical results to support our theoretical findings and to show the
significant advantages of the proposed method.

The rest of the paper is organized as follows. In section 2, we will provide some
background on fractional calculus and introduce the solution representation to (1.1)
by spectral decomposition. In section 3, we will introduce the LOFs and their approx-
imation properties. A spectral-Galerkin method using log orthogonal basis functions
will be developed in section 4, and the error analysis will be provided. A fully dis-
crete scheme and a fast algorithm to solve the matrix system will also be discussed.
In section 5, we will provide some numerical experiments to show the efficiency and
accuracy of the proposed spectral-Gakerkin method for solving the linear subdiffusion
equation (1.1) and apply the proposed techniques to solve subdiffusion equations with
time-dependent diffusion coefficients (5.6) and nonlinear subdiffusion models (5.14).

2. Preliminaries.

2.1. Fractional integrals and derivatives. To begin with, we shall review the
definitions of the fractional integrals and fractional derivatives and some important
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basic properties. We recommend that potential readers refer to [49, 51], [35, Lemma
2.6 and Lemma 2.8], and [15, Corollary 2.15] for the details of the following results.

DEFINITION 2.1 (fractional integrals and derivatives). Fort € A = (0,T) and
p € RY, the left and right fractional integrals are respectively defined as

pepy_ L1 f() oy L [T f(n)
10 =555 |, @ 0= [ g

For real s € [k — 1,k) with k € N, the Riemann—Liowville fractional derivatives are
defined by

oDif(t) = O {oly °F (1)}, DFF(t) = (=) {15 F(1)}-
The Caputo fractional derivative of order s is defined by
OD}f(a) = oIi {01 f(1)}, TDIF() = (1" X5 {0F f(1)}-

The derivative operator OF := olliTk’v’ for notational simplicity, will be used throughout
this paper.

If £(0) =0, then it holds that
(2.1) GDYf(t) = oDy f(t), 0<w<1.

To establish a variational formula for (1.1), we introduce some fractional Hilbert
spaces. For any 3 > 0, we denote H?(A) to be the Sobolev space of order 3 on the
interval A (see [1]), and H{ (A) the set of functions f in H?(A) whose extension by
zero to R is in H?(R), with the seminorm g ay = |flmem)- For 0 <8 <1/2,it is
well known that HOB(A) coincides with HA(A).

In [23, Theorems 2.1 and 3.1], it has been proved that for any f € H{f (A) with
B € (0,1), there exist cg 1 and cg o such that

(2.2)

) < sy < cpalloDr Fllrea)-

Moreover, for any f,g € H(’(f (A) with 0 < 8 < 1/2, it has been proved in [35, Lemma
2.8] that

(2.3) (0D’ f,9)a = (4D} f,¢DF9)a,

where (-,-) denotes the inner product of L2(A) or the duality between H(A) and
its dual space (H§(A))* = H*(A) with s € [0,1]. Note that the fractional operator
oD/ is defined in the distribution sense as in [35], or (D>’ f is not well defined for
fe HOB(A). In addition, given f € Hg (A), the following coercivity is valid:

(2.4) (0D} f, Dy f)a > Cﬁ|f|§{g(A)-

We shall use extensively Bochner—Sobolev spaces Hg (A;L%(Q)). For any 8 €
(0,1), we denote by Hg (A; L2(2)) the space of functions u with the norm defined as

[[u(t) ||L2(Q
|U|Hﬁ(A :L2(Q)) // |t—8|1+2ﬂ dsdt.

Besides, we recall the important equivalence inequality that for 8 € (0,1/2)

(2.5) Cﬁ,1||0Dtﬂu||2L2(A;L2(n)) < \uﬁlg(A;La(Q)) < CﬂQHODfu”%z(A;Lz(Q))'
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2.2. Reformulation of original problem. In our paper, we shall study an
equivalent reformulation of the original subdiffusion problem (1.1). In case that ug €
H2(Q) N HE(Q), we let w = u — ug and observe that w satisfies

SDYw(x,t) = Lw(x,t) + F(z,t), z€Q, teA:=(0,T),
w(zx,t) =0, (z,t) € 002 x (0,77,
w(zx,0) =0, x €8,
with F(x,t) = f(z,t) + Lug. Since w(0) = 0, we have §DYw(t) = (D¥w(t) by (2.1).
Then, without loss of generality, we only consider the following subdiffusion problem
with trivial initial data:
oDyu(z,t) = Lu(z,t) + f(z,t), z€Q, teA:=(0,T),
(2.6) u(z,t) =0, (x,t) € 00 x (0,7,
u(z,0) =0, x € Q.

The case of a nonsmooth initial condition, e.g., ug € L*(f), requires new techniques
and is out of the scope of the current paper.

2.3. Solutions to subdiffusion equations. In this section, we introduce a rep-
resentation of the solution to (1.1) by spectral decomposition, which will be intensively
used in the error analysis. To this end, we consider the eigenvalue problem

—Ly = Ap in Q and wn =0 on 0N.

Since —L is a symmetric uniformly elliptic operator, it admits a nondecreasing se-
quence {\;}72,; of positive eigenvalues, which tend to oo with j — oo, and a corre-
sponding sequence {¢;}52, of eigenfunctions, p; € Dom(L) = Hj(Q) N H?(Q), forms
an orthonormal basis in L?(£2), whose inner product is denoted by (-,)q. Further,

vl o) = llvllrz) = (v,v)g)/2 is the norm in L%(Q). Besides, it is easy to verify
that [|v||1(q) = [[Vv[|r2(e) is also the norm in H}(2) and [0l g2 () = 1AV 22(0) is

equivalent to the norm in H2(2) N H(Q) (cf. [59, Lemma 3.1]).
Next, we represent the solution to problem (2.6) using the eigenpairs {(\;, ;) }52;.
Define an operator E(t) for v € L*(Q) by

E(t)v(r) = Zt”fle(—Ajt”) (v, 05)a i),

where E, ,(z) denotes the two-parameter Mittag-Leffler function:

Eop(2) =S —F C, _beR.
o(2) ;)F(aj+b) z€C,a>0,be

The Mittag—Leffler function plays a crucial role in solving fractional differential equa-
tions. A lot of useful properties can be found in [19, 33, 49]. For clarity, here we list
some results which will be used in the subsequent sections below.

LEMMA 2.2. Let 0 < a < 2, b€ R, and an/2 < p < min(n,an). There exists a
constant C = C(a, b, u) > 0 such that

[Eap(2)] <

, < larg(z)| < .
T+ p < larg(z)] <
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LEMMA 2.3. For A >0, a >0, and b € R and fixed positive integer k, we have
(2.7) O E, p (M)} = t" 1B,k (—Mt), > 0.
In particular, for b =1 and b = a, there exists

OFEu1(—MY) = X" E, 0 pr1(—At),
oMt B, (M)} =t F 1 E, o (=A%),
dk

where OF 1= = 18 the k-fold derivative with respect to t.

Proof. The proof can be ended by the following relation:
> (_/\)jtja+b—1

OF{t" Eqp(=Xt")} = 0F > :
= T(ja+b)

— tb_k_lEa7b—lc(_)\ta)

for any t > 0. ]

Then the solution to (2.6) could be expressed as (see [50, Theorem 2.1])
(2.8)

u(a:,t) = A E(t - S)f(s) ds = Z/O TV?lEu,u(f/\nTV)(f(’vt - T)v Cpn)QSDn(x)dT'

Remark 2.1. From the series expansion of the Mittag—Leffler function, it is easy
to observe that the solution (2.8) is weakly singular near ¢ = 0. This leads to low
accuracy of many popular time-stepping methods. For example, in the case where
f(z,t) = f(z), the solution can be written as

u(x,t) = Z/O TVﬁlEV,y(f)\nTV)dT (fa Sﬁn)Q (pn(l')

1

n

I
M8
> =

Ey,l(_AnTV) (fa QDn)Q 9071(1')

n

Il
_

n

In fact, Lemma 2.3 indicates that, for m > 1, the m-fold derivative 9" E, 1(—At") ¢
LY(0,T). As aresult, the solution of the subdiffusion model fails to meet the regularity
assumptions of many existing algorithms. In order to get rid of this dilemma, we
introduce the following log orthogonal functions, which can approximate the Mittag—
Leffler functions with an exponential convergence rate.

3. Log orthogonal functions (LOFs). In order to design an efficient spectral
method in the time direction of the subdiffusion equation, we shall use the following
LOFs:

Sp(t) := Su(t; B) = t92.4,(—(B + 1) logt), te€(0,1),

where %, (z) = Z,(—(8+1)logt) is the classical Laguerre polynomial of the variable
x € (0,00). The mapping parameter [ is designed for handling functions with distinct
singular behavior when ¢ is close to 0 (see [9]).

The LOFs were proposed by Chen and Shen [9] very recently for solving ODEs
with one point singularity. We will see in subsequent sections that the new method
based on LOFs perfectly circumvents the obstacle caused by the singularity of the
solution of the subdiffusion equations.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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3.1. Basic properties. Various properties of LOFs can be found in [9]. For
clarity, here we just list some useful results:
e Orthogonality: Owing to the orthogonality of Laguerre polynomials, there
exists

1
/Sn(t) S(D)dt = (B+1) "6, teTi=(0,1).
0

e Gauss-LOF's quadrature: Let {z;, w; }évzo be the Gauss nodes and weights of
Laguerre polynomial Zx41(z). Denote

Then, for any p € 775 j\}c_),_glt, there exists

1 N
(3.1) | w0z =3 pit))

where the approximation space
Plﬁ(’logt = span{t?, t?logt, t°(logt)?, ... t°(logt)X}.

e (losed form: The closed form can be read as

—1)k n B
sy =3 (") -+ Dot

n

k=0
In particular, S, (1) = 1.

o (eneralized derivative relation: Define the generalized derivative

Oy 4 i= TtV u} = tOpu — yu.

For parameter v = /2, it holds that

n—1
Oy Sult) =05, Sult) = (B+1) D Silt).
1=0
Then, combining the above equalities, it holds that

B

00 5,(0) = (580 + (04 1) 50 ).
=0

3.2. Approximation properties by LOFs. Here we shall introduce the ap-
proximation properties of the LOFs, which will be intensively used in the subsequent

8
section. To this end, we denote the L2-projection IIyu from L?(I) to P]f,’logt by
satisfying

1 8
(3.2) / (u—Tlyu)p dt =0 Vo€ ’Pl\if’logt.
0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/30/20 to 72.195.134.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A856 SHENG CHEN, JIE SHEN, ZHIMIN ZHANG, AND ZHI ZHOU

Owing to the orthogonality of the LOFs, it holds that

I yu(t) Zun (1), with ﬁn:(ﬁ+1)/1u(t)8n(t)dt.
0

Moreover, for describing the approximability of the projection Ilyu, we define
the following nonuniformly weighted Sobolev space:

AT :=A{v e L*(I): 8ktv€L2 (I), k=1,2,...,m}, with x(¢):=|logt|

equipped with seminorm and norm

" 1/2
[olag@ = 110750l z2,. )5 Mvllagpa) = <Z |U|§1§(1)> :

k=0
Here L2 (I) denotes the weighted L?(I) space with norm \u||L2 oy = Jy lu(?)

LEMMA 3.1 (see [9, Theorem 2.1]). Let m, N, k € N, and let 8 > —1. For any
u € AB/Q( ) and 0 < k <m, m = min{m, N 4+ 1}, we have

¢w+1w"wv m+ 1)!

(3.3) |U—HNU|A§/2(1) < Nkt 1) |u |Am2(1)

In particular, for fited m < N, there exists
(3.4) lu — HNU|A’° (0 = eNE=m/2 lulam, 1),

where the constant ¢ depends on (3, k, and m.

3.3. Approximation to Mittag—Leffler functions. Recalling the solution
representation given in (2.8) and Remark 2.1, the main part in the time direction
consists of Mittag-Leffler functions E, ;(—At"), which are weakly singular near ¢ =
0. This fact leads to the ineffectiveness of many numerical methods for solving the
subdiffusion model.

However, for any fixed integer m, it is easy to observe that for any 8 > 0 and

€(0,1) ,
o (v —5&5)™ .
07 s (=) = Y T T ey,
which is still in C[0,1]. Therefore, E,1(—=At") € Ap),(I) for any 8 > 0, and the
bound of the seminorm is independent of A. This observation together with the ap-
proximation properties given in Lemma 3.1 indicates that the Mittag—Leffler functions
E,1(—At") can be approximated efficiently by using LOFs and hence motivates us to
use LOF spectral methods to solve the subdiffusion equation (2.6).

To see this, we test the approximation to the Mittag-Leffler function E, 1 (—At")
on the unit interval I = (0, 1), using the LOFs {S,(¢; 8)}2_, as basis functions. We
evaluate the L2-error

en = [[(In = D Ey 1 (=X")[ L2 ().

In Figure 1 (left), we plot the numerical error curves for different v, where we
fixed B = 6 and A = 5. The numerical results demonstrate that the numerical approx-
imation of LOFs exponentially converges to the Mittag—Leffler function. Moreover,
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Fic. 1. Left: plot of ey for Ey 1(—5t") with different v. Right: plot of en for Eo.7,1(—At%7)
with different .

since the solution (2.8) consists of Mittag—LefHler functions with different eigenvalues
Al < Ay < oo < A\, < ---, we also check the error ey with different A, in order to
verify that LOFs are efficient for approximating Mittag—Leffler functions with a large
eigenvalue. In Figure 1 (right), we draw the numerical error curves, with fixed 8 = 6
and v = 0.7, for different A\. Our numerical results show that the value of A\ does
not significantly affect the projection error which decays exponentially. Those nu-
merical results indicate that the LOFs are suitable for approximating Mittag—LefHer
functions with different parameters and hence also proper for solving fractional sub-
diffusion equation (2.6).

3.4. Shifted generalized LOFs. In the preceding section, we discussed the
approximation to Mittag—Leffler functions on the unit interval by using the LOFs.
Next, we shall consider the general interval A = (0,7") and the solution of subdiffusion
equation (2.6). To this end, with a slight modification, we define a new class of LOFs
as

(35) Si(t) = (¢/T)¥8(t/T: ), t€(0,T),
and an L2-projection Iy from L2(A) onto the space spanned by {S,(t/T)}N_, by
HOyu(t) :=yu(T7), with 7€ (0,1).
Remark 3.1. The modified basis functions §,”L(t) coincide with a special case of
the shifted generalized LOFs (SGLOFs) [9]. The power functions (¢/T)2 multiplying

the shifted LOFs S,,(t/T; ) is for the convenience of the error analysis. Hereafter,
for simplicity, we still call the modified basis LOF's.

Besides, we shall also define the shifted weighted Sobolev space A;’fT(A):
D) ={ve L*(A): 05w e Ly (A), k=1,2,...,m}, with xr(t):=|log(t/T)l.

Then we have the following approximation properties of SGLOF's.

LEMMA 3.2. Let 0 < v <1, >0, and A = (0,T). For any u € HO%(A) and
oDfu € A%’yT(A), the global-in-time projection

Hﬁvu(t) = OIt% ﬁNth%u
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belongs to the linear vector space spanned by {S”}n o and satisfying

(3.6) T u

—ull gy < clloD7 Myvu = w)l|z2a) < N~ oD ulay ),
:

where the constant ¢ depends on (3, k, and m.

Proof. First of all, we note that for any v € (0,1) and u € Ho% (A) it holds that
oDZu € L2(A), and hence Iy (oD2u) is well defined. Meanwhile, using the fact
that v € (0,1), we know the fractional integral operator ¢I? is bounded from L2(A)

to HO% (A) [23, Theorems 2.1], and hence we have II§;u € Hz(A). Then the first
inequality is valid owing to the Poincaré inequality and the equivalence relation (2.2):

[hogeen < e[hyu —u < cf|oDF (Mt — u)| 2 ()

~ Uz |H§(A)

Next, for any v defined on A, we define ¥(7) = v(T'7), with 7 € I = (0,1). Then,
owing to the approximation result given in (3.4), it holds that

[Ty — Dollz2a) = VT |y — 1)0]| g2y < VTN~ |5

Az
Hence, we arrive at

(3.7) Iy = Dvllzeay < eNT™2 Jollag,, ).

Therefore, the claim (3.6) is valid. Then we shall prove that IThu = OIt‘% ﬁNODtgu can
be expanded by SGLOFs {S%(¢)}_,. In fact, due to the facts that

N

N
8
u = g anégz E aiﬂff(logt)}C
n=0 k=0

AN

span{S% (t)}1_, —span{t s (logt) N, and IIyoD;

it suffices to show that olt% {t% (logt)*}N_ belongs to span{t# (logt)*IN_ ). Now we
observe that

v 1 v
oI (¢ o5 t)) = [ (6= 7% 1rH log)ar

I'(35) Jo

T=ts 1 1 v+8 v_q1 B k

= — t = (1—-s5)2's2(logt+logs)¥ds
I'(5) Jo
k v+B ! v B k

:Zt 2 (logt)! = /(1—5)2_152<,>(logs)kds.
=0 I'(5) Jo J
Finally, the estimate (3.6) can be derived by using (3.7). d

4. Spectral-Galerkin method for subdiffusion equations. In this section,
we shall develop a spectral-Galerkin method for solving the subdiffusion equation
(2.6) with rigorous analysis. A fully discrete scheme based on a finite element method
in space and a fast algorithm to solve the matrix system will also be provided.

4.1. Wellposedness of the weak problem. In order to solve the subdiffusion
equation, we follow the standard space-time Galerkin framework. To this end, we
define a space-time Hilbert space

HY(0) = H (A LA(Q)) N L2 (A HA(Q)), O :=AxQ,
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endowed with the norm

/
HU”Hg’l(O) = (HUH%IS(A;LQ(Q)) + ||U||2L2(A;H1(Q))) .

Recalling the assumptions on the elliptic operator L in (1.2), it induces a coercive
bilinear form

a(u,v) = —(aVu, Vo)g + (bu,v)q  Vu,v € Hg(Q),
which satisfies

41)  a(u,u) > etlluly g, and a(u,v) < ellull g gylloll gy Yu.v € Hy(Q).

(©)
Then a weak formulation of the subdiffusion equation (2.6) reads as follows: find
u € Hg’l(O) such that

(4.2) B(u,v) = F(v) Yve HZ'(0),

where the bilinear form B(-,) and the functional F(-) are respectively defined by
T 3 5 T
B(u,v) :== / (0Dfu,¢DFv), +a(u,v) dt, F(v) = / (f,v)adt.
0 0

LEMMA 4.1. For any u,v € HO%’l(O), there exist constants c¢1, co such that

(43)  Bluw) > el Blu,v) < csllul],

£y i ollg oy

Proof. The coercivity and continuity of the bilinear form B(-,-) are the straight-
forward results from the elliptic conditions (4.1), the Cauchy—Schwarz inequality, the
properties (2.2) and (2.4), and the fractional Poincaré inequality. d

With the elliptic conditions (4.3) in hand, we can claim the wellposedness of the
weak formulation of the subdiffusion equation by the Lax—Milgram lemma as follows.

THEOREM 4.2. Let there be a function f belonging to (Hog’l(O))/, the dual space
of HO%’l(O). For any v € (0,1), the weak problem (4.2) admits a unique solution u
satisfying
v < v !
||u||H07'1((9) = chH(H[?l(O)) .
4.2. Spectral-Galerkin method and error estimation. In this section, we

shall develop and study a semidiscrete spectral-Galerkin method using the basis S¥, (¢)
defined in (3.5). Here we define X% (A) to be a finite-dimensional subspace of Hg (A),

(4.4) Xiv = span{Sy (1)} o,

which is a finite-dimensional subspace of HO% (A). Then the semidiscrete-in-time
scheme reads as follows: find uy € Vy = X& ® Hj(Q) such that

(4.5) Buy,v) = F(v) Yve Vy.

1 /

(0)), the

)

By the Lax—Milgram lemma, for any given function f belonging to (Ho%
semidiscrete problem admits a unique solution uy satisfying

(4.6) lunll 50 ) < cllf]

© = Wl(aE" o))"
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Next, we shall derive the error estimate for the semidiscrete solution. The error
u — up satisfies the Galerkin orthogonality
B(uy —u,v) =0 Vv € V.

Recalling that IThu € Vy (by Lemma 3.2), the standard argument leads to

(7)o =l 50 o) < cllTvu =l 5 ) < eloDf (T = u)12ains o)
0

()
To derive the error estimate, we shall use the following regularity estimate.

THEOREM 4.3. Let u be the solution of the subdiffusion equation (2.6). For k =
0,1,...,m, if the source term f satisfies

o(Ff) € L2p (M Hi(Q)  YO<j<F,
then the solution u satisfies
0F (oDFu) € L2, (A Hg(Q), k=0,1,...,m,

where Oy ¢ 1= t0y — 7y, with v > 0 being a generalized derivative.

Proof. For a given suitable function g(¢), we have

2 t — )yt — —7)g(T)dr
oD / (t = 7)1 By (—An(t — 7)")g(r)d

v

1 t s . ) o
=m_;)5t/0(t—s> /(J(s—r) Ey(=An(s = 7)")g(7) drd

(4.8) :

= — t T t —8) " E(s—T)V ! —Ap(s—71)") dsdr
=m0 ), o [ -9 Ee = Eu (s = 7)) dsd

t
=0 [ (1= 1) Buasy (Al = 1)) 9(0) d.
0
where the validation of the last equality owes to

/ (t—8)"5(s = 1) Euu(—Aa(s — 7)) ds

. [t )19V (¢ — 7)Iv
= — 2 1_ —5v—1 TL
(t—7) /O ( 50 Z TG ) do

(4~9) _ (t _ 7_)% i M/ (1 _ 9)*%9j1/+u71 d6
= T(jv+v) o
= r(1 - ’;) (t=7)% Burgs (<At — 7)),

Using the solution representation (2.8) and the derivative relation (2.7), it holds that

oD u(z, 1) = Z on(@ / (t =72 By psg (= Aa(t = 7)) (£ (7)) od7
(4.10)

3" pul) / (t =75 B (“ At = ") (F(27), 00) il
n=1 0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/30/20 to 72.195.134.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SPECTRAL APPROXIMATION TO SUBDIFFUSION EQUATIONS A861

Then we can rewrite th% u as
(4.11)

t [e%e]
oDZu(t) = / E(t—1)f(r)dr, where E(t)v= Z tgflE%%(—)\nt”)(v, <pn)Qtpn.
0

n=1

Now we are ready to prove that &fﬂt[oD? (Azu)] € Lik (A; L*(Q)). Thanks to the
? T
definition of the generalized derivative 0,; = t0; — 7, we only need to check that
oF (t*[oD¢ (A%u)]) € Lik (A; L*(Q)) for k = 0,1,...,m. For this purpose, we observe
T

that
OF (t*[oD7 (AZw))) (t) = Of (tk /0 E(t—7)A% f(7) dT)

= i <k> oF ( /Ot(t — )" IE({t—7) Tﬂ'f(T)dT>

=0 M
-y (5) [ (@10 =m0 - ) (aitatso)ar
§=0

The last equality holds due to the fact that
k41 gk _ ikl gk i _ 2
tlgr(l)t Off(t)=0 and }1_{1(1)75 O E(t)v=0 VveL(Q).

Thanks to Lemma 4.4, we have

k k v 1 k t v_q : ; 1 k
195 (" 1oD7 (A2 w)]) (t)l 20y < CZ/ (t = 7) 2 IO A% f(T)]ll 2 (o) dT = €Y K (1)
3=0"0 3=0
By Young’s convolution inequality, we have

2
| og(t/T)|* dt

T

/OT |K;(t)]? log(t/T)|* dt = /

0

T
</
0

T 2 T
s( / tf—ldt) / 10T AF F(0)] 25 | log(r/T) * dt

/0(t,T)%*lHaz[fjA%f(T)lemdT

2

/0 (t =75 (19717 A% F(7)]ll 2o log(r/T)|* ) dr | dt

< C/o 1877 f ()]l (o | log(r/T)|" dt < .

Therefore, 9} (1*[)DF u]) € L2, (A; HY(2)) for k = 0,1, m, and so does 9, [oDf u].
This completes the proof of this theorem. 0

LEMMA 4.4. Let E(t) be the operator defined in (4.11). Then it holds that
[0F *E@®)v| 20 < et M|vllp2@) Vo€ L*(Q) and k=0,1,2,...,

d); is the k-fold derivative with respect to t.

where Of := S
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Proof. Using the identity (2.7), we have

OF(FE(t))v = Z( )i oF Itk oy (trle (- /\nt”)>(v,cpn)9g0n

7=0

—Z ( )Z 5B, (= Ant?) (0, 9n) g

n=1

This together with Lemma 2.2 leads to

k oo
10 (t* E@)vlFa) <D >

j=0n=1

v_ 2 2 _
By i (=2t (0,00)5 < e 20l3 ),

which completes the proof. 0

Combining (4.7) and Theorem 4.3 with the approximation properties stated in
Lemma 3.2, we immediately obtain the following error estimate.

THEOREM 4.5. Let u be the solution of the subdiffusion equation (2.6) and uy be
the semidiscrete solution of the spectral-Galerkin scheme (4.5). If the source term f
satisfies

8{(tjf)eLf<§(A;H§(Q)) VO<j<k and k=0,1,...,m,

then it holds that
_ v < —HL/Q-
[lun u|| 51 < cN
Here the constant is independent of N and u but may depend on v, B, m, T, and f.

Remark 4.1. In case that the initial condition of the subdiffusion problem is not
zero, we may derive the same result by assuming that uy € H3(Q). Recall that the
initial value ug(x) of the subdiffusion equation (1.1) transforms to Lug arising in the
source term in (2.6), and it is easy to verify that 97 (t" Lug) € C°°([0,T]; H3()) for
any positive integer n.

Remark 4.2. In Jin, Lazarov, and Zhou [25] and Jin, Li, and Zhou [27], the au-
thors developed time-stepping schemes using convolution quadrature generated by
high-order BDF methods, motivated by the pioneer work in [39, 12]. An initial
correction strategy was proposed to restore high-order convergence. See also [63]
for the analysis of the L1 scheme with initial correction and [16, 5] for the convo-
lution quadrature Runge-Kutta schemes. One requirement of those time-stepping
schemes in the aforementioned works is that the source term f needs to be smooth
in the time direction. As an example, the kth-order BDF method requires f €
WHEL(0,T); L2(Q)) N f € Wk((¢,T); L*>(Q2)), and the high-order convergence will
deteriorate if f is not regular enough (cf. [27, section 4]). Therefore, it is nontrivial
to extend the strategy and analysis to nonlinear problems [28] or problems with time-
dependent diffusion coefficients [26, 29]. Compared with those schemes, the spectral
Galerkin method (4.5) allows singularity of the source term near ¢ = 0, and hence also
performs well for solving linear subdiffusion equations with time-dependent diffusion
coefficients as well as nonlinear subdiffusion problems. See section 5 for numerical re-
sults and more discussion. On the other hand, the spectral Galerkin method requires
a smooth initial condition, and the error estimate was derived in the space-time energy
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norm, while the time-stepping schemes in [25, 27] lead to an optimal pointwise-in-time
error estimate at a fixed time (even for nonsmooth initial data ug € L?(£2)). How
to derive a pointwise-in-time error estimate for the spectral Galerkin method (4.5)
requires further investigation.

4.3. Fully discrete scheme and error estimation. In this section, we shall
discuss the fully discrete scheme based on our preceding results. As an example,
we apply the P1 conforming finite element in space. Here we introduce a quasi-
uniform shape regular partition of the domain 2 into simplicial elements of maximal
diameter h, which is denoted by 7. We consider the space of continuous piecewise
linear functions on 7, with N € N being the number of degrees of freedom. Let
{pi}M, C HE(Q) be the nodal basis functions, and denote

(4.12) Xiy := span{p; } 14,
The L%-projection Py, : L2(Q) — X is defined by
(¢p — Pro,v)o =0 YveX.

It is well known that it satisfies the following error estimate [59]:
(4.13)
1Pnd = Bll 200 +RIIV(Pad = d) L2 () < ch bl raey Vo € Ho(QNH!(Q), ¢ =1,2.

Then the spatially semidiscrete scheme reads as follows: find uy € Wy, = HO% (0,7T)®
X} such that

(414) B(uh,v) = ]'-(U) Yv € W,

The wellposedness follows from the coercivity of the bilinear form and the Lax—
Milgram lemma.

Upon introducing the discrete operator Ly, : X7 — X7 defined by —(Lp, x) =
a(,x) for all ¥, x € Xp, let {Al, "}V be the eigenpairs of the discrete operator
—Lj,. Now we introduce the discrete analogue Ej, of the operator E defined in (2.8)

for t > 0 and vy, € Xp:

N

(4.15) Ep(t)on = Z T (=AY (vn, @] )a o)
j=1

Then the solution wuy, (t) of the spatially semidiscrete problem (4.14) can be represented
by [24, equation (3.4)]

(4.16) up(t) = /Ot En(t— s)Prf(s)ds.

LEMMA 4.6. For f € L?*(A;L%(Q)), the spatially semidiscrete solution uy, in
(4.14) satisfies

l|un — UIIH?I(O) < chllflle i@y

Proof. By the approximation property (4.13), we have for o = Pyu —u

lel? 5.1, = lel’

2
o w8 ozaay T IV Oz @iz @)

< (| vull? ,

2
H¥ (AsL2()) + ”uHL?(A;H?(Q)))'
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Then by applying (2.2), (2.3), and regularity results [24, Theorem 2.1], we obtain
T . ., T
||Vu||i{0% (hL2) < c/o (0D Vu,DEVu), dt = C/o (oDfu, —Au), dt
< clloDYullF2(ap2(0)) + cllAullZz(a.z20)) < el fIZ2(ar20)-
Therefore, we arrive at

(4.17) ”Q”HO%’I(O) < ch|| fllrz(a;r2 (@)

The function ¢ := uj, — Ppu satisfies #(0) = 0 and (059 — Lp¥ = Ly (Pru — Rpu) =
LyRpo (with Ry being the Ritz projection) [24, equation (3.9)]. By the regularity
results, we have

191 e (asm -1 () + 190 L2812 (@) < ellLaRroll20,7,m-1 ()

Then the interpolation between H”(A; H~1(Q)) and L?(A; H3(2)) yields that (note
that £ < 1)
2 <32

H19||H0% iz T 191l L2 (a; 12 (2)) < cllLaRnoll2am-1(0)-

This together with the estimate (4.17) leads to
(4.18)

191 51 o) < clLnBnellzasm-1@) < cllVEAel 2Lz < chllfllzzaizz-
0

As a result, (4.17), (4.18), and the triangle inequality complete the proof. d

The next lemma, which is an analogue to Theorem 4.3, provides regularity results
of uy in the time direction. The proof, relying on the solution representation (4.16)
and the property of Mittag—Leffler functions, is similar to the proof of Theorem 4.3.
The details can be found in Appendix B.

LEMMA 4.7. Let uy, be spatially semidiscrete solution in (4.14). Fork =0,1,...,m,
if the source term f satisfies

Oj(Ff) € L3, (A Hg(Q) YO <j <k,
then the solution u satisfies
&ﬁtthguh € Li,%(A;Hé(Q)) for k=0,1,...,m,

where Oy 4 := t0; — 7y, with v > 0 being a generalized derivative.

Now we are ready to develop a fully discrete scheme. Let X% (A) and X(9)
be finite-dimensional spaces defined in (4.4) and (4.12), respectively. Then the fully
discrete scheme reads as follows: find upy € Xpn = X]tv ® X}, such that

(4.19) B(upn,v) = (f,v) Vo€ Xpn.

Similarly, the wellposedness of the above numerical scheme can be guaranteed by the
coercivity of linear form B(-,-) and the Lax-Milgram lemma.

The following theorem provides an estimate on the difference between the fully
discrete solution upny and the spatially semidiscrete solution wuy,.
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THEOREM 4.8. Let up, be the solution of the spatially semidiscrete scheme (4.14)
and up N be the fully discrete solution satisfying (4.19). If the resource term f satisfies

M f) e L3, (A Hg(R) YO<j<k and k=0,1,...,m,
then it holds that

_ . < -m/2
HuhN uh”H(?'l(O) ~ CQN .

Here the constant is independent of h, N, and u but may depend on v, 5, m,T, and
f-

To estimate the numerical error u,n — u, we split it into two components:
UpN — U = (UhN — uh) + (uh — u)

Note that the bound of w;, —u and upy —up has already been established in Theorems
4.5 and 4.8, respectively.

COROLLARY 4.9. Let u be the solution of the subdiffusion equation (2.6) and upn
be the fully discrete solution satisfying (4.19). If the resource term f € L?(A; L?(2))
also satisfies

8f(tjf)eLi§(A;H§(Q)) VO<j<k and k=0,1,...,m,

then it holds that
—m/2
luny =l 5 ) < bt N m/2,
Here the constant is independent of h, N, and u, but ¢y may depend on v, f, and T,
and co may depend on v,B,m, T, and f.

4.4. Fast solver. In this section, we want to develop a fast algorithm to solve the
space-time linear system (4.19). By substituting upy = Z%Zl 227:0 U Om () SE (1)
and v = qﬁp(w)gg(t), p=1,....,M,q=0,1,..., N, the fully discrete scheme (4.19) is
equivalent to solving the following matrix system:

(4.20) s*UMHT + M*U (SHT = F,

where M? and S® are the mass and stiffness matrices in the z-direction(s), and M?
and S? are the mass and stiffness matrices in the ¢-direction below:

ST = <5§m)a Spm = (Lq{@%)gz; R M* = (mim)» My = (qimvfp)sz’
S'=(sgn):  5n = (D7 S;iDFS))y, M= (m,),  my, = (S, 5]),,

U:(umn)7 Umn = Umn, FZ(pr)’ qu: (f7¢p§(l;)

Notice that both the matrices M and St are nonsymmetric (see Appendix A), so the
classical matrix diagonalization method [40, 17, 52] cannot be applied directly. To
overcome this difficulty, we shall apply an efficient QZ decomposition method recently
proposed by Shen and Sheng [54].

The key point of the new method is the following QZ decomposition:

QsH'z=A, QM")"z=B,
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where Q, Z are unitary matrices satisfying QQ” = ZZ” =1, and A, B are upper
triangular matrices, namely,

air G2 ... QIN bir b2 ... bin
aso ... as N b22 b2N

A= . B=
anNnN bnn

Then, by setting U = VQ and multiplying (4.20) by both sides of Z, we have an
equivalent form

(4.21) M*VA+S*VB=G:=FZ
Denote by v, = (v1n, V2n, - - - an)T the nth column of the matrix V, i.e.,
Vi1 V12 VIN
V21 V22 V2N
V:[V17V2,...,VN]: .
VM1 Um2 ... UMN

The matrix system (4.21) can be solved by the following fast algorithm:
(4.22) (annM® + b, S") vy, =gn —h,1, n=12... N,

where g, is the nth column of the matrix G and

n—1 n—1
hy = 0, h, = M* ( Z Qn Vk> + S* < Z bin Vk> .
k=1 k=1

Note that the new algorithm (4.22) is indeed equivalent to solving the following
N times elliptical problems:

—apnLv(z) + bppv(z) = gn(z), n=12,...,N.

As shown in Theorem 4.8, our scheme enjoys spectral convergence in time, so in
general only small N is needed to achieve the desired accuracy. On the other hand,
the above elliptic problems can be solved efficiently by usual multigrid or other fast
solvers. Therefore, our space-time scheme is very efficient.

5. Numerical experiments, extensions, and discussions. In this section,
we present some numerical examples to illustrate our theoretical results proposed in
previous sections, and in addition we apply the proposed techniques to problems with
time-dependent diffusion coefficients and to a nonlinear time-fractional Allen—Cahn
equation. In our experiments, we computed the numerical solutions of the fully dis-
crete scheme (4.19), with the spectral-Galerkin method in time and the Galerkin finite
element method in space. Since the spatially semidiscrete solution has been verified
in [24], we focus on the temporal discretization error below. All the computations are
carried out in MATLAB R2015a on a personal laptop.
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Example (a). Subdiffusion problems with time-independent coeffi-
cients. In the first example, we present the numerical results for the following two
dimension subdiffusion problem on the unit square domain Q = (0,1)%. Letting
0<v<landz:=(x1,22) € Q, we look for the function u satisfying

SDYu(z,t) — Au(z,t) = f(z,t), (x,t) € Q% (0,7T),

(5.1) u(z,0) =0, x €Q,
u(z, )|, =0, te (0,7).
Here we choose the source term
(5.2) flx,t) =931 — |22 — 1))(1 — |222 — 1]).
In our computation, the domain Q = (0,1)? is first divided into M? small equal

squares, and we obtain a symmetric triangulation by connecting the diagonal of each
small square. To verify the temporal error, we fixed M = 100, # = 5 and changed
the number of basis functions of the spectral method in the time direction. Since
the closed form of the exact solution to problem (5.1) is unavailable, we compute a
reference solution u;, ~ URN,op> With Npep = 70.

In this case, the source term f satisfies the smoothness requirement in Theorems
4.5 and 4.8,

(5.3) 8§(tjf)eLi§(A;H§(Q)) VO<j<k and k=0,1,...,m,

with an arbitrary positive integer m. Therefore, all the theoretical results hold valid
and we expect an exponential convergence in the time direction. The numerical results
are presented in Figure 2, where the temporal error E, in L? space and error Ey in
space-time energy space are defined by

|un — unn |l L2(a;12(0)) lun = unnll g5 0)

HuhHL2(A;L2(Q))

(54) EL = and EH =

||“h||H%v1(o) 7
respectively. In Figure 2, we draw the error curves against N for distinct parameters
v and final time 7. All the experiments show that the proposed spectral-Galerkin
method is highly efficient for subdiffusion problems, and the numerical solutions upnx
exponentially converge to up,.

Next, we test the problem (5.1) with another source term,

(5.5) flz,t) =1+ 25z (1 — x1)x2(l — x2),

and compare the spectral-Galerkin method with some high-order BDF schemes de-
veloped in [27]. Note that the source is nonsmooth in the time direction, and hence
the BDF schemes fail to achieve the desired high accuracy. In particular, it can be
verified that )
feWi=o10,T/2; L2(Q)) N W™ (T/2,T; L*(R))

for any small € > 0 and positive integer m > 0. The proof of [27, Theorem 2.2]
indicates a convergence rate O(T%*E) for this example, where 7 denotes the step size
in time. This prediction is consistent with the numerical results plotted in Figure 3
(right), where we plot the L?(2)-norm of the numerical error at 7' = 1. On the other
hand, the source term still satisfies the smoothness requirement (5.3). Therefore,
we can observe the high accuracy of the spectral method in Figure 3 (left). Those
experiments indicate that the spectral-Galerkin method (4.19) performs much better
than the time-stepping approach in this special case.
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F1G. 2. Ezample (a) with the source term (5.2). Left: plot of Er, and Eg with T = 1 and
fractional orders v = 0.25,0.5,0.75. Right: plot of Er, and Exg with v = 0.5 and terminal times
T =0.01,0.1,1.
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FiG. 3. Example (a) with the source term (5.5). Left: plot of Er, with T = 1 and fractional
orders v = 0.25,0.5,0.75. Right: plot of the L?(Q)-norm of the error at T = 1 with v = 0.5 for
spectral-Galerkin method (4.19) and the kth-order BDF method proposed in [27].

Example (b). Subdiffusion problems with time-dependent coefficients.
We consider the following subdiffusion problems with time-dependent coefficients:

oDyu(x,t) = V- (a(z,t)Vu(z,t)) = f(z,t), z€Q, teA:=(0,T),
(5.6) u(z,t) =0, (x,t) € 09 x (0,T],
u(z,0) =0, x €.

Here we assume that the diffusion coefficient a(x,t) : Q x (0,7) — R?*? has the
following regularity for some real number A > 1 and for any positive integer m:

(5.7)

ATHEP < a(z, )€ - € < AP VEEeRY, V(x,t) € 2% (0,T],
(5.8)

| Za(z,t)| + |Vea(z, t)| + Vo Za(z,t)| < e V(z,t) € Qx(0,T],

(5.9)
Vo 2a(a, )] + |V rralz, )] < e V(z,t)eQx(0,T], j=1,...,m.

For standard parabolic problems with time-dependent coefficients, there are a few rel-
evant works. Unfortunately, the fractional derivative does not satisfy the well-known
Leibnitz rule, and hence some traditional techniques working for the heat equation
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cannot be directly applied. In [46], Mustapha analyzed the spatially semidiscrete
Galerkin FEM approximation of the subdiffusion problem involving time-dependent
coeflicients, but without the source term, by using a novel energy argument. A per-
turbation argument was developed in [29] to derive regularity results and analyze
the spatially semidiscrete Galerkin scheme, as well as some first-order time stepping
schemes. In particular, it has been proved in [29, Theorem 2.1] that under conditions
(5.7)(5.9), with ug = 0 and f € LP(0,T; L*(Q)), 1/a < p < oo, problem (2.6) has a
unique solution

u e C([0,T); L*(Q)) N LP(0,T; H*(Q)) such that oDYu € LP(0,T; L*(Q)).

Very recently, a second-order time stepping scheme, based on convolution quad-
rature generated by the second-order BDF scheme and an initial correction technique,
was developed and analyzed in [26]. To the best of our knowledge, there is no other
high-order numerical scheme for such models with rigorous analysis in the literature.
The main difficulty is caused by the initial singularity of the solution, which will cause
trouble in the estimation of the perturbation term. However, under the assumptions
(5.7)=(5.9), it has been proved in [26, Theorem 3.2] that the solution w satisfies the
regularity results for all ¢t € (0,7] and k € N:

k t
k(g D ()] K ® ()|
(5.10) H@t(t u(t))HHS(Q)Sch_%tJIfJ(0)|H1<Q>+ct /0 175 ()] 1.y ds-

Therefore, using this estimate, we have the following result.

THEOREM 5.1. Assuming that f € W™tL1(A; HY(Q)), the solution u of the sub-
diffusion problem (5.6) satisfies

0¥ ,(oDf u) € L2 (AT HY(Q) for k=0,1,...,m,

where Oy ¢ = t0; — vy, with v > 0.

The proof of Theorem 5.1 can be found in Appendix C. This result indicates
that th%u(:z:, t) belongs to the nonuniformly weighted Sobolev space AT (A; HY(Q)),
provided that the source term is smooth enough in the time direction. ’:)I‘his regularity
result motivates us to develop a spectral-Galerkin method using the LOFs. In fact, it
is possible to prove such a regularity result as above in the case where f satisfies the
smoothness requirement (5.3). But the proof requires some technical arguments and
is out of the scope of the current paper.

Let X% (A) and X;7(Q) be finite-dimensional spaces defined in (4.4) and (4.12),
respectively. Then our fully discrete scheme for (5.6) reads as follows: find upy €
Xpn = X% ® X[ such that

T T
(5.11) / (0D unn ,1DZv) o+ (a(t) Vupy, Vo) dt = / (f,v)odt Yove XyRXF.
0 0

In the first experiment, we let a(z,t) := 2 + cos(t), Q = (0,1)?, T = 1, and we
test
(5.12) f(z,t) = cos(t)x1 (1 — x1)xa (1l — 2),

which is smooth in the time direction. Therefore, by Theorem 5.1 and the approxi-
mation property in Lemma 3.2, we expect that the numerical solution upy converges
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Iogm(Error)
Iogm(Error)
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Fic. 4. Ezample (b). Left: plot of Er, with T = 1, with the smooth-in-time source term (5.12)
and fractional orders v = 0.25,0.5,0.75. Right: plot of Er, with T = 1, with the nonsmooth-in-time
source term (5.12) and fractional orders v = 0.25,0.5,0.75.

to up, exponentially. This estimate is fully supported by the error curves (against N)
plotted in Figure 4 (left).

Further, we test the numerical results in the case of nonsmooth (in time) source
term

(5.13) flat) = (1+ Yz (1 — z1)29(1 — 22).

Although it does not satisfy the smoothness condition in Theorem 5.1, we still observe
the exponential convergence (see, e.g., Figure 4 (right)). The theoretical confirmation
awaits studies in the future. The numerical results verify the high efficiency of the
spectral-Galerkin method for solving the subdiffusion problem with time-dependent
coefficients.

Example (c¢). Time-fractional Allen—Cahn equations. Finally, we consider
the following one-dimensional time-fractional Allen—Cahn problem:

§DYu — Au=u—u?, x€Q:=(-1,1), t>0,
(5.14) u(—1,t) =u(l,t) =0, ¢>0,
U(I‘,O) = UO(I)v S Qa

where ¢ is a small parameter which describes the interfacial width.

The first rigorous studies of the semilinear subdiffusion problem were given in
[28], where Jin, Li, and Zhou proposed a general framework for mathematical and
numerical analysis of the semilinear subdiffusion equation with a globally Lipschitz
continuous potential f(u). A time-stepping scheme based on a backward Euler con-
volution quadrature scheme was studied, and a convergence rate of order O(7%) was
proved, where 7 denotes the step size in time. Then the analysis was extended to
the time-fractional Allen-Cahn equation [13], where Du, Yang, and Zhou developed
and analyzed several ath-order accurate time-stepping schemes satisfying a weighted
energy dissipation law. See also [2] for the argument in the case of nonsmooth ini-
tial data. As far as we know, high-order time-stepping schemes by using convolution
quadrature or a collocation method for the nonlinear problem (5.14) are still missing
in the literature.

In order to develop a spectral-Galerkin scheme for solving the time-fractional
Allen—-Cahn equation (5.14), we define an auxiliary function w(z,t) = u(x,t) — u(z)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/30/20 to 72.195.134.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SPECTRAL APPROXIMATION TO SUBDIFFUSION EQUATIONS A8T71

and note that the function w(x,t) satisfies the following initial boundary value prob-
lem:

F(w) :=FDYw — e?Aw + (w + up)? — w — (e2Aug +up) =0, x€Q, t>0,
w(—1,t) =w(1,t) =0, t>0,
w(z,0) =0, z € Q.

Using the Newton iterative method [55], we are led to solve, at each iteration,

%D;’Ek —2AE, + (3(wk + U0)2 —1E, = —F(wk), reQ, t>0,

Ei(—1,t) = Ex(1,t) =0, t>0,
Ey(z,0) =0, x € Q,
Wi+1 = B + wg, re, t>0.

In the computation, we choose the initial guess wy = 0 and derive the approximation
wi+1 = Wi + Ex by the above iteration process. For each iteration step, we apply the
fully discrete method (4.19).

In our computation, we test the time-fractional Allen-Cahn equation (5.14) with
e =0.05, h =0.01, 8 = 7, and smooth initial distribution ug(z) = sinwz. The profile
of the numerical solution at 7' = 10 is plotted in Figure 5 (left). Furthermore, in order
to verify the high efficiency of the spectral-Galerkin method in time, we plot the error
curve in Figure 5 (right). The exponential decay of the error shows again that our
new method is very efficient for solving the semilinear time-fractional problem (5.14).

15
=075
v=0.5,T=10 0 By
10 v=0.75
2
05| 5
5 4
0 =3
(@]
051 g
Al 8
15 ‘ ‘ ‘ A0l ‘ ‘ ‘ ‘ ‘
1 05 0 05 p 10 20 30 40 50 60
N
X

Fic. 5. Ezample (c). Left: profile of numerical solutions at T = 10. Right: plot of Er with
T =10 and v = 0.25,0.5,0.75.

6. Conclusion. In this paper, we developed a spectral-Galerkin method (in the
time direction) for solving the subdiffusion equations which involve a time-fractional
derivative with order v € (0,1). The log orthogonal functions (LOFs), which were
constructed by applying a log mapping to the Laguerre functions, are used as the
basis functions. We established the regularity results in some nonuniform weighted
Sobolev spaces. This together with the approximation properties of the LOF's leads
to the spectral convergence of the numerical schemes. We believe that this is the first
such result with spectral accuracy in time for weakly singular solutions of subdiffusion
problem (1.1).

We also developed fully discrete space-time schemes with the spectral-Galerkin
method in time and the Galerkin finite element method in space. Compared with the
traditional time-stepping schemes, the proposed spectral-Galerkin method in time
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could achieve high accuracy even if both the solution and the source term have sin-
gularities at initial time, and hence it is very efficient for solving the subdiffusion
problem. Numerical results fully support the efficiency and accuracy of the proposed
spectral-Galerkin methods.

Furthermore, we have applied the proposed method to linear subdiffusion equa-
tions with time-dependent diffusion coefficients as well as nonlinear subdiffusion equa-
tions, for which high-order time-stepping schemes are rarely studied in the litera-
ture. Our numerical results indicate that the proposed approach is very efficient
and achieves accuracy similar to that for the linear subdiffusion equations with time-
independent coefficients.

Appendix A. The detail for computing M?! and S?. In this section, we
shall present the way to compute the mass matrix M? and stiffness matrix St.
In fact, by using the Gauss-GLOF's quadrature (3.1) and relation

(8.8 = /OT (;>sn (;) (;)gq(D i = T/OlTvgn(T)sq(T) ar,

we can compute M? with high accuracy.
The evaluation of S, involving the fractional derivative, is more technical. The
following relation eases the complexity:

v v Ls = N A AL
comtwts b -wis. s~ | arf(2)'s ()} (2) s (3)
1
:Tlf”/ %DZ{T%Sn(T)}T%Sq(T)dT
0

where the last equality holds via 8% (0) = 0 and the relation (see [11, equation (2.9)])
below:

v t -V v
ODt h(T) =T ODTh(T), T = T

Next, denote f(t) = t2S,(t) and g(t) = t2S,,(t); then the remaining work is to
compute

/01 1“(11 V) [ (tfl(i)) ds ()dts—” ) // 1—7 T g(t)t v dt.

The integrand f(t7)g(t)t'="(1 — 7)™ has the low regularity near both ¢ — 0 and
t — 1. In order to compute integral folngf(t) g(t)dt with high accuracy, we use the
identity

/01(1"0_(37 /f (tr) (1 —7) "dT+/ Flr) (1 —7)dr

L AE) (-5 et [ (0

to derive its high accuracy numerical approximation,

/I%Dt”f() (Dt ~ e iif (t b )( —g)ﬁ g(t)ti ™" Xixg

0 1030
NL Ny

41 ”F sz< £J+3 >g(ti)t%_” XiMjs

ZOJO
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where Ny and N; are the node numbers usually greater than the degree of poly-
nomlals/functlons and the corresponding Gauss nodes and weights {tz,xl} <, and
{&, 771}1:0 are the Gauss-GLOF's nodes with suitable 8 and the classical Gauss—Jacobi
nodes with weight function w=*? = (1 — x)~, respectively. d

Appendix B. Proof of Lemma 4.7. Repeating the argument in (4.8)—(4.11),
we have the following expression for any v € X}

t o]
oDfup = / En(t — s)Puf(s)ds, where Ej(t)v= Z t%_lEV’%(—Aﬁt”)(v, QDZ)Q
0 n=1

Then similar to Lemma 4.4, there holds the smoothing property

10F (" En ()] 20y < ct? M|z Yo € Xf and k=0,1,2,....
Next, by the observation

k41 ak . k+1 9k 7 2
tlgr(l)t T1oFf(t) =0 and }g% [t* 1O Ep(t)v| L2y =0 Vo € L*(Q)

and simple calculation, we derive that

af(tk[ODt%(—Lh)%uh)])(t) =of (tk /t Ep(t— T)(_Lh)%th(T) dT)

() (/ t—1)* B (t—1) (- Lh)%phf(T)dT)

k
2
i( ) / (0571t = T Bt = 7)) (94077 (~Lu) 2 P ()] ) dr

where we apply the estimate that
1
alvllgio) < I(=Ln)2vllrz@) < c2llvllgrg) Vv € Xj.

Appealing to Lemma 4.4, we have the estimate that

19F (#1007 un))) (Bl 11y = 19F (*oD2 (= La) 2 un)]) (8]l 20

k + k
< CZ/O (t— T)%ilnai[Tjth(T)}HHl(Q) dr =: CZ K;(t).
Jj=0 j=0

Then Young’s convolution inequality and the stability of L?(Q) projection P}, on
H(Q) imply that

/0 K ()P os(t/T)[* dt = / '
<o

Sc(/o trldt) /0 ||a,].[7']f(7—)ﬂ|ill(ﬂ)|log(T/T)lkdt

2
|[log(t/T)|" dt

/Ol(tff)"lllPhaf[T]f( Ml e d7

2
dt

/Otuw)"l(nai[ SOl i1 sy log(r/T)| 2 ) dr

T . .
<e / 102077 (s | o (/T dt < e,
(0]
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Therefore, 9f (tk[ODtgu]) € Li;% (A; HY(Q)) for k= 0,1,...,m, and so does &ﬁt[thgu].
This completes the proof of this lemma. ]

Appendix C. Proof of Theorem 5.1. It suffices to show that OF (tkth% u) €
Li’“ (A; HY(Q)) for all k= 0,1,...,m. Appealing to the subdiffusion equation (5.6),
T

we have

v t(p — /21 t_ ryv/2-1
oDZ u(t) :/0 %L(T)u(r) dT+/O (tl"(z/)/Q)f(S) ds.

Using the a priori estimate (5.10), we derive that for all k =0,1,...,m —1

i 07 (#*u(t)) =0 and  lim F (1" 1 (1)) = 0,

and hence

F (t*aDF u(t)) = o) > <’;> /0 B (t— 1) [r D (L (ryu(r) + f(7)] dr.

=0

Then taking the H'(Q) norm, we obtain
v k t . . . .
19F (#*0DZ w(t)) |l g1 () < € /0 (t =)L ()| s gy + 1037 F N g1 y] dr < e
j=0

This immediately implies that Bf(tkth%u(t)) € Lik (A; HE(Q)).
T
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