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Cyber-Physical-Social Interdependencies and Organizational Resilience: A Review of

Water, Transportation, and Cyber Infrastructure Systems and Processes

Abstract

Building resilience in critical infrastructures for smart and connected cities requires consideration
of different types of interdependencies. Previous research has mainly conceptualized three types
of interdependencies including cyber, physical, and social. To develop resilient and sustainable
design, operations, and managerial strategies, domain knowledge for each infrastructure along
with its organizational characteristics needs to be integrated with those of other infrastructures. In
this review paper, an infrastructure-oriented approach is taken to systematically examine different
types of interdependencies and resilience quantification techniques for water, transportation, and
cyber infrastructures. Design, operations, and managerial strategies are identified and categorized
into short-term, mid-term, and long-term plans that can potentially improve the resilience of the
underlying infrastructures. Future research needs, in terms of resilience metrics, interdependency,

and strategies, are discussed.

Keywords: Infrastructure interdependency; Integration; Resilience metrics; Sustainable design

strategies

1. Introduction

In recent decades, the occurrence of many serious disasters, such as Hurricane Katrina in
2005, the earthquakes in Japan in 2011, and Hurricanes Harvey, Irma, and Maria in 2017, have
had tremendous negative impacts on economic growth, social development, and public health and
safety by impairing or destroying essential urban infrastructure, such as electric power systems,
transportation systems, and communication systems. For instance, in 2011 a disaster caused by the
earthquake and tsunami in Japan killed 15,782 people, destroyed 128,530 houses, damaged 870
km of expressways and 939 water drainage system components, and reduced about 55% of the
capacity of the fossil fuel-fired and geothermal power plants [1]. In addition to the physical
damage, the total estimated economic loss was about 16.9 trillion JPY (~155.7 billion USD),

including 1.3 trillion JPY (~12 billion USD) loss of the lifetime infrastructure facilities (water
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supply, gas, electricity, communications, broadcasting facilities, etc.) and 2.2 trillion JPY (~ 20.2
billion USD) loss of social infrastructure facilities (rivers, roads, ports, airports, etc.) [1].

To achieve the goal of minimizing the damage of similar events in the future, researchers
have attempted not only to predict the impacts of these events, but also to estimate how fast our
systems can recover from the consequences. Therefore, many studies on risk, vulnerability, and
resilience analysis have been carried out recently to find solutions [2]. Risk analysis considers the
probability and severity of adverse effects, while vulnerability and resilience are key concepts in
risk analysis [3]. Various terms have been used in similar fields, and Figure 1 illustrates the
relationship among these terms. In general, there are 16 critical infrastructure sectors (i.e., water
and wastewater systems, transportation systems, energy, communications, emergency services,
etc.) identified by U.S. Presidential Policy Directive 21 (PPD-21) [4]. These infrastructure systems
are considered to be critical to the United States’ security and prosperity. They are not isolated but
interdependent at different levels, which affect overall infrastructure performance.

In this review paper, we focus on three critical and interdependent infrastructure systems,
namely, water, transportation, and cyber infrastructures. These systems not only provide essential
services to the public under normal conditions and survivability during disastrous scenarios, but
also consume a high proportion of public spending annually at various government levels. This
work also reviews the concept of resilience and how it is manifest in the infrastructure systems
under investigation. Water, transportation, and cyber infrastructure systems are vital to community
well-being and sustainable growth, especially in large metropolitan settings where
interdependencies among these infrastructures often constrain recovery efforts. Previous studies
have established that water and transportation systems are considered critical infrastructures;
hence, it is imperative to continue examining factors that can affect these systems. Furthermore,
as all critical infrastructure sectors are moving towards more intelligent controls through
computing and communication, the resilience of cyberspace has become an indispensable
component of the resilience of the interdependent critical infrastructures, especially in smart and
connected cities. In addition to the critical functions and current status of water, transportation,
and cyber infrastructures, these systems also represent different types of interdependencies,
including physical, social, and cyber, and together provide a strategic opportunity to study the
impacts of interdependencies on the resilience of the critical infrastructures. The greater goal of

this effort is to better understand how infrastructure systems and processes are increasingly
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interconnected, and how taking advantage of those interconnections can support sustainable cities

of the future [5, 6].

1.1 Resilience

In 1973, C. S. Holling introduced the concept of resilience in ecological systems [7]. Since
then, resilience has been used widely in many different fields beyond ecology. Besides its original
definition of the ability of a system to recover to its pre-existing condition after its state is disrupted
[2], resilience has been defined and interpreted differently in the context of various domains, as
summarized in Table 1. In this article, we view the concepts of resilience and sustainability as
distinct but complementary approaches, where resilience contends with building adaptive capacity
while sustainability concerns reordering system dynamics to sustain system functions [8].

There have been several informative reviews about resilience in the recent literature.
Bhamra et al. reviewed the application of resilience at the organizational level, particularly
regarding the interaction between human factors and organizational resilience, and between the
resilience of infrastructures and organizations [9]. Martin-Breen and Anderies provided a
comprehensive review of the theory of resilience and its applications in the areas of engineering,
psychology, complex adaptive systems, and economics over the past 50 years [10]. Hosseini et al.
presented a review of how to define and measure resilience in different fields, with a focus on
qualitative and quantitative approaches in engineering domains [2]. In order to identify a research
agenda for engineering resilience, Righi et al. reviewed many studies in different areas of
engineering, including the theory of engineering resilience, identification and classification of
resilience, safety management tools, analysis of accidents, risk assessment, and training [11].
These reviews, however, only focused on the research of how to define and quantify resilience of
a single domain without considering interactions among several domains, which are typically
designed, operated, and maintained by different and independent agencies. Improvement measures
for resilience of one system, therefore, might negatively affect the resilience of another.

Global disasters, including the recent Caribbean hurricanes, the Japanese earthquakes, and
the UK floods, have demonstrated the significance of the interconnected and interdependent nature
of critical infrastructure systems. Ouyang offers some examples to demonstrate how critical
infrastructures can be interdependent [12]. For example, water and telecommunication services

require electricity to function while electric power systems need these services to generate and
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deliver their power. Moreover, it is common to only regard systems as dependent. For instance,
road and rail systems are useful to transport petroleum, while this fuel is vital for the generator of
an electricity system. This view sustains the belief that one system depends on another but not
necessarily vice versa. In reality, all of these systems are interdependent on each other, creating
multi-directional relationships within the systems. For example, we must acknowledge that, while
transportation systems help move fuels, road and rail systems cannot operate without fuel. Hence,
many researchers advise the need to acknowledge the interdependency of critical infrastructure

systems and processes [12, 13].

1.2 Interdependencies

Water, transportation, and cyber infrastructures are not isolated but interdependent at
different levels, which affect overall infrastructure performance. Such interdependencies can be
generally categorized as physical (e.g., functional, geospatial), virtual (e.g., informational, policy),
and social (e.g., attitudinal, budgetary) [12, 14, 15]. Physical interdependencies can be defined as
the dependency of one infrastructure on another’s material outputs, inputs, layouts, or operations
due to their connection in material input and output or their geospatial proximity (co-location).
Geospatial interdependencies have been separately recognized as a type of interdependency,
however, the proximity between infrastructure systems can also cause physical cascading failures
if one of them fails. For instance, water breaks can cause lane closures leading to traffic blockage.
Virtual interdependencies pertain to scenarios when the linkage of infrastructures relies on
information flow. Interruption in mobile phone services, for example, can lead to the lack of
knowledge in other departments to restore systems after failure. Social interdependencies refer to
the cultural, political, and economic relationships between administrators, consumers and
infrastructure systems, such as how aging transportation and stormwater systems can lead to
private property damage in times of climate stress. A comprehensive discussion on different types
of interdependencies can be found in [12].

There have been previous reviews of interdependency and different criteria have been
investigated to evaluate and compare existing studies. Many researchers have reviewed studies of
interdependencies to classify them based on different mathematical/computational modeling
methodologies [16], such as simulation modeling, stochastic/statistical modeling, and optimization

modeling. Recently, there has been recognition about the lack of integration between the two
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concepts of interdependency and resilience. To the best of our knowledge, only one review paper
has attempted to categorize studies on interdependency, focusing specifically on how resilience
might relate to interdependency [12]. Several strategies were suggested in [12] to improve
resilience, specifically for interdependent critical infrastructure systems. The authors point out that
future studies need to examine interdependency more closely with the concept of resilience to
further improve maintenance and management of critical infrastructure systems. In addition, the
majority of studies on interdependency consider either general concepts across multiple
infrastructures [12] or are mainly restricted to studying power systems [17, 18]. Hence, there
remains a dearth of literature for water, transportation, and cyber system interdependencies. This
review paper is infrastructure-oriented and sheds light on specific strategies to improve the
resilience of water, transportation, and cyber systems in the context of three types of

interdependencies.

1.3 Interdependency and resilience

Although there have been many researchers who study resilience and interdependency
separately, few have considered how interdependent infrastructures affect the resilience of the
entire system. Ouyang, for example, used resilience as one of the criteria to compare and
summarize different approaches to study the performance response of interdependent
infrastructures [12]. Ouyang and Wang proposed a method to assess resilience in interdependent
infrastructures (power and gas systems) and found that synergistic strategies that take
interdependency into consideration produced the most resilient outcomes compared to independent
strategies [17]. Reed et al. proposed a methodology using an input-output model and structural
fragilities to measure the resilience of multi-system infrastructure, with particular emphasis on the
influence of electric power systems on other infrastructure systems [18]. Using the example of
power and telecommunication systems in Hurricane Katrina, they found that both power outage
and power restoration affected the restoration of the telecommunications system, hence
demonstrating the close relationship between resilience and interdependency. Other studies have
focused on assessing the resilience of interdependent infrastructures. For instance, Pant et al.
addressed the problem of estimating, quantifying, and planning for the economic resilience of
interdependent infrastructures using quantitative metrics: static resilience metric, time averaged

level of operability, maximum loss of functionality, and time to recovery [19]. Cimellaro et al.
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considered time series analysis to evaluate the impacts of interdependencies on the resilience of

physical infrastructures [20].

1.4 A resilience assessment framework for physical-cyber-social interdependencies

While different modeling approaches have been proposed to capture different
infrastructures, or emphasize different aspects of interdependent critical infrastructure systems, a
strategic framework is needed to integrate different modeling approaches based on their unique
capabilities. It is also critical to validate modeling approaches in a uniform framework and
disseminate the framework to urban planners, infrastructure mangers, policymakers, and other
stakeholders in an easy and understandable manner. The goals of the current review are to: a)
survey and summarize the literature for water-transportation-cyber interdependent systems; b)
jointly review three types of interdependencies, namely, physical, virtual, and social
interdependencies among water, transportation, and cyber infrastructures; and c) consider the
impacts from interdependency on the resilience of target critical infrastructure systems. To select
papers for the review, we first conducted a comprehensive search through different online database
sources, including ASCE Research Library, CRCnetBASE, Engineering Database, IEEE Xplore,
ScienceDirect, Springer, Annual Reviews, Wiley Online Library, Computer Science Database and
JSTOR. Based on the keywords and phrases of “water infrastructures”, “transportation
infrastructures”, “cyber infrastructures”, “interdependency”, “critical infrastructures”, “resilience”
and “resilience metrics”, we identified 601 papers. We then preformed a screening process based
on the following inclusion and exclusion criteria. For duplicated papers, only the original ones
were included. All the papers about resilience that did not address the interdependencies between
critical infrastructures or were unrelated to cyber-physical-social interdependencies were
excluded. Ultimately, we identified 207 relevant papers in total for this review. Figure 2
summarizes the procedure of the overall paper selection process. Our review scheme of a resilience
assessment framework is also depicted in Figure 3. In this paper, we emphasize vulnerability as a
dynamic property of resilient infrastructure systems and processes.
2. Infrastructure Characteristics

2.1 Water Infrastructure

In this paper, water infrastructure includes potable water, wastewater, and stormwater

systems. Potable water systems include physical elements (e.g., infrastructure to convey raw water
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to the treatment plant, a treatment facility to treat raw water to drinking water standards, a
distribution network to distribute treated water to consumers at a required pressure, and
infrastructure to monitor conventional regulated and unregulated contaminants and status of the
operations), cyber elements (e.g., a Supervisory Control and Data Acquisition [SCADA] system
to automate control of drinking water facilities), and human elements (e.g., employees and
contractors to manage and operate the infrastructure systems, administrators to develop policies
and practices for infrastructure operations and financing, and consumers of infrastructure products
and services) [21]. Wastewater systems collect municipal wastewaters and convey them to
treatment plants through collection and conveyance systems and pump stations. Treated
wastewater is then discharged as effluent into a receiving body of water, or may be reused for
irrigation or other purposes through reclaimed water distribution networks. Similar to potable
water systems, wastewater systems include monitoring infrastructure, cyber elements, and human
elements. Stormwater systems have the same elements as wastewater systems but different
collection infrastructure including gutters, storm sewers, tunnels, culverts, detention basins, pipes,
and mechanical devices to collect stormwater. Stormwater is defined as “water that runs off all
urban surfaces such as roofs, pavements, car parks, roads, gardens and vegetated open spaces and
is captured in constructed storages and drainage systems” [22]. In the past, stormwater and
wastewater facilities were designed as combined sewer systems but the development of separate
sewer systems consisting of separate collection of municipal wastewater and stormwater has

become the dominant trend.

2.2 Transportation Infrastructure

In a broad sense, transportation systems include roads, airways, railways, water, and
pipeline transportation, and all other infrastructures essential for the operation of these modes of
transportation. This article mainly focuses on the road transportation system and its components.
Pavement, one of the important components of the road transportation system, is emphasized as
the main transportation infrastructure. Typical functional classification of roads includes arterials,
collectors, and local roads. Arterials are higher speed facilities providing access to only outskirts
of different regions whereas local roads are relatively lower speed facilities providing widespread
access to places. Normally, people and goods move out from homes, farms, businesses, and small

communities and take local roads in order to get access to collectors. Collectors take the traffic
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from local roads and connect them to arterials, which move them to different towns and cities [23].
Transportation and water infrastructures often share the same space in order to serve the population
with lower construction costs. For the most part, local roads and collectors are co-located with
water pipes. Traffic control systems (e.g., traffic signals, signs, markings, traffic management or
control centers) and the organizational structure associated with managing, operating, and using
the transportation system (mainly organizations, human resources serving those organizations and
users) are two other important components of the road transportation system considered in this
paper. Traffic signals are important infrastructures to control traffic at signalized intersections
whereas traffic signs and markings are essential throughout entire road networks in order to ensure
safe, efficient, and reliable traffic operation. Two types of signals, fixed-time and actuated, are
widely in operation at present traffic systems. Fixed-time signals follow a predetermined sequence
of signal operations providing the same amount of time to a traffic movement in every cycle.
Actuated signals can detect the number of vehicles present at each intersection and allocate varying
time to each movement accordingly. Here, an organized set of infrastructures works to detect
vehicles, exchange information, provide power supply, and display the signals to traffic at
intersections. Finally, institutional bodies such as state Departments of Transportation (DOT),
Metropolitan Planning Organizations (MPO), and other local authorities responsible for control,
operation and maintenance of the transportation system and the users of the system are considered

part of the transportation system in this article.

2.3 Cyber Infrastructure

Cyber infrastructures are no longer independent entities but are embedded within most
other infrastructures. Recent advances in technology have led to Industry 4.0 [24] and the merger
of physical and digital systems. The scale of this merger, however, spans beyond industrial
production and into critical infrastructures as well. The operation of water and transportation
infrastructures relies heavily on the embedded cyber infrastructure. Here, cyber infrastructure
includes sensor equipment, enterprise IT systems, SCADA systems, and the human capital
necessary for financing, operating, and maintaining the infrastructure. For example, transportation
infrastructure includes cyber elements in the form of vehicle detectors/sensors (inductive loops,
video detection, etc.), communication equipment (fiber optics, wireless communication devices,

networking equipment), traffic control technologies (roadside controllers) and enterprise level IT
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structure to oversee equipment in the Transportation Management Centers (TMC). Furthermore,
the TMC relies on many different types of software, local server hardware, and cloud computing
facilities. This type of embedded cyber infrastructure within other infrastructure helps to improve

the efficiency of the existing systems.

3. Interdependency and Quantification

Much remains to be understood in terms of how infrastructure interdependencies influence
the resilience of a given infrastructure. These influences can be measured at varying scales [25].
There are two general categories of quantification measures that correspond to system-wide and
component-level scales: a) macro characteristics of interdependencies and impact on system
behavior to assist in organizational decision making, and b) component strengths/weaknesses to
assist in engineering decision making [25]. In addition, there are two commonly used approaches
for arriving at measures of resilience and interdependency: network-based and simulation-based
or holistic approaches [26]. In the following sections, examples of interdependencies between

water, transportation, cyber, and social infrastructure systems are explored.

3.1 Infrastructural and Organizational Interdependencies
3.1.1 Potential vulnerability of water infrastructure

The assessment of vulnerability in water infrastructure due to climate change and
dependency on other infrastructures is critical for paving the road towards resilient cities. This
matter has attracted practitioners and scholars’ attention particularly in coastal cities due to high
exploitation of resources and higher probabilities of vulnerability (see [27]). In general, failures in
water distribution systems fall into two closely related groups [28]: a) mechanical failures of
system components (e.g., pipe breakage, pump outage) and b) hydraulic failures in meeting
consumer demand (e.g., low pressure in pipes). In addition, water systems in urban areas are facing
new challenges as socio-political drivers and broader contextual factors, such as climate change,
resource limitations, and the prioritization of urban amenities and ecological health, test the ability
of traditional systems to deliver adequate levels of water services [29].

A review of the literature reveals that the vulnerabilities and impacted critical functions
associated with water systems can be assessed under three main categories: a) climate-related

events (see [30]), b) dependency on other infrastructures (see [31]) and c) infrastructure
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management (see [32, 33]). Table 2 summarizes potential failures under each category based on
the literature and existing case studies in the U.S. It can be observed that climate-related events
and infrastructure management have a direct impact on physical failures in water infrastructure
(over different time scales), while hydraulic and environmental failures are mainly influenced by
extreme weather events, dependency on other infrastructures, and subsequent managerial
strategies to deal with such events. Given the fact that the main components of water infrastructure
are often hidden from the public’s view (e.g., underground), their failures can easily propagate to

other infrastructures and cause high degrees of vulnerability.

3.1.2 Potential vulnerability of transportation infrastructure

Vulnerability of the road transportation system can be defined as the consequence of
reduced accessibility that occurs due to various incidents. An incident is an event that may directly
or indirectly result in considerable reductions or interruptions in the functioning of a
link/route/road network. Incidents can be unpredictable, caused by physical failures, traffic
accidents as a result of adverse weather, or they can be intentional, such as with the intent of
causing harm or disruption [34]. It should be noted here that a sudden increase in demand could
also reduce the serviceability of a road network. In addition, aging infrastructures (e.g., old or
poorly maintained pavements and bridges) also can threaten the normal functioning of
transportation infrastructure. Sudden failures of old and weak bridges, for instance, can cause
serious disruption to the transportation system as they are critical in terms of network connectivity,
and the situation may worsen during natural disasters [35]. In the field of transportation
engineering, researchers are more interested in quantifying and measuring vulnerabilities in the
system due to the consequences caused by different events rather than identifying those specific
events. Potential factors considered in the literature that can cause a vulnerable situation in the
transportation system can be classified into three categories: natural, anthropogenic, and
managerial issues (although these can be interrelated in many instances). Table 3 contains a

summary of such factors.

3.1.3 Physical interdependency between water and transportation
As defined in Section 1.2, physical interdependency refers to the interactive effects of

material outputs, inputs, layouts, or operations of infrastructures. One illustration of such
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interdependency in terms of material outputs and inputs is presented in the literature using water
supply and electric power distribution as examples [31]. A water supply system requires electricity
to operate its pumps, whereas an electric supply system needs water to make steam and cool its
equipment. As a result, if either one fails, the other becomes impacted.

The road transportation system often shares the same space with other infrastructures,
including the water supply system and the stormwater drainage system. Although there is less
interaction among them in terms of material outputs or inputs, the geospatial co-location of their
layouts leads to interdependency of physical/functional failures and maintenance/rehabilitation
operations among their physical structures. Table 4 summarizes select cases and evidence of

physical interdependency between water and transportation infrastructures and their impacts.

3.2 Cyber Interdependency

The interdependency between physical and cyber infrastructures leads to the inheritance of
vulnerabilities from cyberspace into other critical infrastructures. Case studies examined by Ghena
et al. [36] and Ernst and Michaels [37], in Michigan and Washington, D.C., respectively, show
that it is possible to infiltrate the traffic network through vulnerabilities in the wireless
infrastructure and gain control of roadside controllers, altering the commands sent out to traffic
lights. Ernst and Michaels [37] simulated such scenarios and showed that even minimal access to
a vehicle detector can lead to congestion issues in the compromised corridor. They also provide a
threat analysis framework based on four levels of access (namely, vehicle detector level, corridor
synchronization level, traditional internet level, and physical access level) to analyze threats to
transportation infrastructure through cyber aspects. The impact of cyber vulnerabilities on the
physical transportation infrastructure can clearly be seen from their results.

On the other hand, cyber infrastructures deal with more personal data as the number of
devices connected to the internet grows. Internet of Things (IoT) devices also have a growing
influence on the functioning of critical infrastructure, as it is estimated that the number of IoT
devices will reach 50 billion by 2020. Petit et al. [38], for example, show that it is feasible to track
people using connected vehicles at a zone level and road level by using oft-the-shelf equipment to
sniff Vehicle-to-Infrastructure (V2I) communication. Social systems can also be indirectly
impacted by cyber systems if, for example, a cyber-attack causes a gridlock or loss of water supply

in SCADA-controlled water infrastructure. The impact may range over a large population when
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considering intelligent public transportation (IPT) systems, as new risks open up, such as
unavailability of IPT services, passenger’s health and safety, environmental impacts, and so on
[39]. Petit et al. [38] also argue that to address the challenges and weaknesses when building these
infrastructures, certain best practices must be maintained at the technical level, policy level, and

organizational level to enhance cyber security.

3.2.1 Cyber dependency of water infrastructure

Water infrastructure’s operation relies heavily on SCADA systems of treatment plants,
where cyber breaches can result in cascading failures among multiple infrastructures. For example,
an attack on the SCADA system may lead to water main breaks due to abnormal pressure
(informational) that causes co-located transportation and cyber infrastructure failure (geospatial).
A number of attacks against SCADA systems have been reported over the years ([40], [41]). Table
5 summarizes some examples and evidence of cyber dependency of water infrastructures. There
also are numerous unreported incidents by asset owners and operators related to the security issues

in SCADA systems (see [42]).

3.2.2 Cyber interdependency in transportation infrastructure

Traffic management systems rely heavily on computer networks in signal control, closed-
circuit television (CCTV) monitoring, and reversible lane control, among others. An attack on the
transportation cyber network may result in serious traffic delay and even increase the possibility
of safety issues [37]. In addition, Intelligent Transportation System (ITS) brings cyber
infrastructure to vehicles, increasing the cyber involvement in transportation systems. V2I
technologies capture the data collected by each individual vehicle on the road, which the system
utilizes to make decisions. This increase in the degree of interdependence opens up threats to the
system as a whole. For instance, Zhang et al. [43] have shown that vehicles can be remotely
compromised. Table 6 summarizes some reported cases illustrating the cyber interdependency of

transportation infrastructure.

3.3 Social Interdependency
Critical infrastructures are embedded in social systems, including cultural values, political

arrangements, and economic markets [44, 45]. These systems are variously interdependent and
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relational with infrastructures, in other words, they are co-constructed and form socio-technical
systems [46]. In addition, these interdependencies are scale dependent — from individual
households to communities or municipalities to national and transnational networks [47]. While
previous research has acknowledged the importance of social and behavioral aspects of
infrastructure and its management [48], most studies reduce the complexity of these various social
dimensions into formal economic logic (e.g., tradeoffs, cost/benefit analysis) that often underlies
decision making to allocate scarce resources to alternate ends [12, 49, 50]. Here, we address this
problem and broaden the discussion by drawing on recent anthropological and other social science
literature, which suggests that there are three overlapping domains of social interdependencies
among critical infrastructures: cultural, political, and economic.

Socio-cultural interdependencies constitute key human perceptions of satisfaction,
confidence, and trust, and how these views influence one’s judgements and behaviors, especially
decision making regarding infrastructure use and management. Socio-political interdependencies
include not only the policies, procedures, and overall bureaucracy within which infrastructure
management is entrenched, but also the influence of power and politics and the role of governance
and citizenship in infrastructure operations. Finally, socio-economic interdependencies concern
the positionality of infrastructures in the market from the perspective of supply and demand, how
infrastructures are financed (from design to operation and maintenance), and the influence of
competition and cooperation in motivating decision making when it comes to the allocation of
resources. In addition to outlining the ways and extent to which these interdependencies influence
the operations and functions of different infrastructures, we also suggest potential sources of
empirical data that can be collected to begin to model the relational nature of infrastructure and
society, that is, how infrastructures mediate the relationships between households and institutions

(e.g., utilities) as well as between people and nature.

3.3.1 Social-cultural interdependencies
Socio-cultural contexts condition infrastructure interdependencies and the physical and
cyber environments they operate in [51]. For example, individual and group values and beliefs
influence people’s perceptions and behaviors regarding infrastructures and the resources they
provide [52]. In their study of transitions from onsite wastewater treatment to integrated

wastewater management in coastal Belize, Wells et al. found that values and beliefs of local
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residents conflicted with those of government officials and foreign tourists, and that these contrasts
shaped opinions and decision making between the groups with regard to the centralization of
wastewater management and other infrastructures [53]. As such, infrastructure can be viewed as
mediating the relationship between people and the institutions and organizational arrangements
that manage critical resources, including water, energy, and transportation. Harvey et al. [54], for
instance, examined the ways in which highway construction in Peru established novel connections
between rural communities and global markets. They argue that the new roads symbolized
progress and development for community members, while offering local governments the promise
of greater political integration and economic connectivity. They caution, however, that these
relationships can be threatened when infrastructures fail to deliver on such promises.
Socio-cultural interdependencies and infrastructure failures have been an increasingly
important topic of research [55], not only with regard to interruptions in the provisioning of critical
services because of aging infrastructure, such as water pipes in Flint, Michigan [56], or weather-
related phenomenon, such as stormwater and transportation during Hurricane Katrina [57], but
also national security issues, such as recent cyberattacks on critical national infrastructure in the
UK [58]. For example, Bigger et al. [59] identify malfunction of traffic signals due to power
outage, loss of telecommunications, and loss of water filtration plants and pump stations as
interconnected phenomena during the 2004 hurricane season in Florida, which resulted in massive
disruptions to the education system among other institutions, such as hospitals. Moreover, because
of the interdependencies among infrastructures, attitudes toward some institutions can be mutually
dependent on the views of other institutions such that the inability of one infrastructure to deliver
adequate services can influence public opinion about the entire interconnected system [60]. Such
failures can also have profound and lasting impacts on public confidence in infrastructures.
Pederson et al. [49], for instance, surveyed different ways of recognizing, characterizing, and
modeling infrastructure interdependencies in the U.S. and globally. They conclude that socio-
cultural interdependencies are the mutual relationships that influence, and are influenced by, trust,

public opinion, and public confidence in infrastructure functioning.

3.3.2 Socio-political interdependencies
Research on socio-political interdependencies among critical infrastructures demonstrates

that bureaucracy and politics can support or impede infrastructure function [50]. For example,
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Little et al. [61] argue that policies developed and enacted for one infrastructure sometimes have
unforeseen consequences for other infrastructures due to their bureaucratic linkages, such as co-
management [62]. They argue that networked policies, while promoting efficiencies of scale, may
compromise the operations of infrastructures by decreasing flexibility in decision-making. Still,
critical infrastructure coordination demands multi-agency cooperation and coordination [63]. The
varying, and sometimes competing, goals and interests in infrastructure management, as well as
different communication strategies, accountability models, and decision-making styles can create
structural barriers for multi-agency coordination [32] that may cause vulnerability in some critical
infrastructures [64]. Yet, in some cases, cooperation between different agencies in charge of
separate critical infrastructures can result in constructive interdependencies, such as in the case of
public-private partnerships [65].

Recent anthropological research expands this focus to include studies of how
infrastructures are interconnected with politics and citizenship [44]. Anand et al. [66], for example,
examine how the physical sighting of water infrastructures in Mumbai creates opportunities for
power brokers to emerge in slums that do not have access to piped water. These power brokers
pressure elected officials to provide water access to slums and, in exchange, local residents deliver
electoral support. In another example, von Schnitzler [67] suggests that the introduction of water
metering in South Africa was not only intended to aid water conservation efforts, but also to serve
as a governing strategy to engender moralities of responsibility and calculation into its citizens that
would potentially encourage energy conservation as well. Similarly, Wells et al. [68] argue that
the design and development of water and wastewater infrastructure in southern Belize are
technopolitical practices designed to enact political goals and influence civic engagement. Viewed
in this way, infrastructure can sometimes become a politically constituted technology directly tied
to the production and reproduction of the State. As these and other recent studies [69, 70]
demonstrate, infrastructure interdependencies can, and often are, intimately tied to power, local

and global politics, and alternative governance strategies.

3.3.3 Socio-economic interdependencies
Water, transportation, and cyber infrastructures are intimately linked by economic markets,
especially in Western capitalist systems that reward efficiencies with lower costs and increased

benefits [71]. For example, infrastructures become economically interdependent when budgetary
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needs and allocations influence, and sometimes determine, how human and financial resources are
allocated for other infrastructures [19]. Tsekeris et al. [72], for example, demonstrates how
tradeoffs impact different infrastructures and how knowledge of interdependencies among public
investments can offer insight into evaluation of regional infrastructure networks [73]. Moreover,
allocation of scarce resources under pressing conditions can impact the resilience of interlinked
infrastructures [74]. Baroud et al. [75], for instance, modeled loss of service costs and restoration
costs associated with perturbations to the Mississippi River Navigation System, a major waterway
transportation system that facilitates large-scale commodity flows throughout the central and
southern U.S. They found that alternative strategies to address loss of service and restoration have
significantly different costs of implementation and impacts on interdependencies across water,
transportation, and energy (petroleum distribution) systems. They argue that resilience-based
analysis of interdependent infrastructures can enhance risk-informed decision-making.

In addition to market-based interdependencies, economic connections among
infrastructures also emerge from sharing technologies and operational costs, both within [76] and
between [77] municipalities as well as internationally [78]. Indeed, cooperation, rather than market
competition, organizes many kinds of infrastructural interdependencies. For example, De et al.
[79] show how cooperative agreements in the transportation infrastructure sector in Southeast Asia
have encouraged regional economic integration. The study suggests that adopting common
transportation policies can yield broad economic benefits for not only transportation but water and
energy infrastructures as well. Similarly, Hophmayer-Tokich [80] demonstrates how regional
cooperation in Israel was an efficient tool for promoting advanced wastewater treatment and led
to the efficient use of limited financial resources and land availability due to transportation
infrastructure. In another study, Whittington et al. [81] model the economic benefits to cooperative
development and management of waterways in Egypt’s Nile Basin. They estimate that the total
potential annual gross economic benefits of interagency cooperation for irrigation and
hydroelectric power generation are U.S. $7-11 billion. There are many other case studies in the
literature demonstrating the necessity and benefits of considering socioeconomic

interdependencies in managing infrastructures [82].

4. Resilience and Quantification

4.1 Water infrastructure resilience
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Sustainability and resilience are dynamic and overarching concepts over different
timescales, which can be measured for water infrastructure systems. Bruneau et al. [83]
characterized system resilience by four infrastructural qualities of robustness, redundancy,
resourcefulness, and rapidity, which largely incorporate the notions of risk (likelihood and impacts
of failures), reliability, recovery, and system tolerance at both pre- and post-failure stages.

To investigate water infrastructures resilience, studies have defined different dimensions
and proxies. For instance, Butler et al. [84] suggested three dimensions of resilience in water
infrastructures including design resilience, operational resilience, and technology-based resilience.
Design resilience refers to a set of design principles for the infrastructure (e.g., degree of
duplication, buffering, multiple water resource supplies). Operational resilience refers to the
agreed performance of water infrastructures (e.g., minimum pressure and flow in pipelines) to
maintain the service after a disruption in the system. Technology-based resilience for water
infrastructures can be viewed in terms of flood resilience where a range of devices are available to
limit flood damage and speed recovery [85]. Yoo et al. [27] suggested several proxies, including
public water supply/population, service population of sewage systems, and ground water
usage/potential groundwater resources for measuring adaptive capacity of water infrastructures to
climate change.

Hashimoto et al. [86] were among the first to propose the use of resilience metrics (the
speed of recovery from failure) and vulnerability (the extent of failure) for the assessment of water
resource system performance. They advance a resilience evaluation procedure for water
infrastructures that can be classified into three main categories: a) network-based indicators, b)
performance-based indicators, and c) technologic indicators. The technologic category includes a
range of devices and their performance indicators available to mitigate flood damage and speed

recovery.

4.1.1 Network-based indicators
Water distribution networks consist of interconnected pipes and nodes (junctions)
conveying water to meet the demand and pressure requirements of the system. A mathematical
graph may represent the structure of such a system, where nodes represent elements at specific
locations (e.g., reservoirs, consumers, and pumps) and links to represent the pipes that define the

relationship between given nodes [87]. The study of complex networks by using techniques from
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graph theory helps with the classification of different network models, and quantifying their
building blocks may partly explain the vulnerability, robustness, and tolerance of the system to
errors and attacks [88]. One of the drawbacks to a solely network-based evaluation of resilience is
that link-node representations do not account for the importance of certain hydraulic
features/structures such as valves ([89], [90]). For this reason, [91] found that there were no strong
correlations between network and performance-based analyses regarding component vulnerability
in water distribution networks. Table 7 summarizes the primary network-based indicators used to

assess the structural resilience of water distribution infrastructures.

4.1.2 Performance-based indicators

Resilience measures in this category provide a quantitative means to assess different
aspects of resilience (e.g., reliability, redundancy, robustness, rapidity), by measuring the
performance of water distribution networks [91, 92]. The estimation of the available flow,
pressure, and free chlorine concentration is the starting point for measuring water distribution
networks’ resilience and their different facets [93-97]. In general, performance-based indicators
are defined over time and encompass both deterministic and probabilistic measures. Generic
indicators in this category are summarized in Table 8, which can be applied to different

infrastructures.

4.1.3 Technological indicators

Existing measures in this category mainly assess urban flood resilience for wastewater and
stormwater infrastructures. Gersonius et al. [98] propose that flood resilience incorporates four
capacities: a) to avoid damage through the implementation of structural measures, b) to reduce
damage in the case of a flood that exceeds a desired threshold, c¢) to recover quickly to the same or
an equivalent state, and d) to adapt to an uncertain future. This approach is consistent with the
definition developed by the United Nations International Strategy for Disaster Reduction [99].

To quantify flood resilience, there are two broad techniques in the literature [100]: a)
indirect methods using indicators that measure the characteristics of a system, and b) direct
measures quantifying how the system responds to extreme events. Existing methods in the first
category mainly consider flood events as one of the variables in the evaluation system and then

quantify disaster resilience according to social, economic, institutional, and infrastructural factors
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(see [101, 102]). In this section, our focus is on the indicators that fall under the second category.
Table 9 summarizes indicators and functions quantifying the resilience of different

systems/technologies to flooding.

4.2 Transportation infrastructure resilience

For the study of resilience of transportation systems, most of the literature attempts to
capture the performance of the system to predict, absorb, adapt to, and/or quickly recover from a
disruptive event. For instance, Ta et al. [103] define freight transportation system resilience from
the perspective of freight mobility, where resilience was viewed as the ability of the system to
absorb the consequence of disruption, to reduce the impacts of disruption, and to maintain freight
mobility. Heaslipet al. [104] define transportation system resilience as the system’s ability to
maintain its expected level of service or to regain that level of service within a specified time
interval after the disturbance. Osei-Asamoah et al. [105] define transportation network resilience
as “the ability of surface transportation networks to resist failure and attack, including their ability
to adapt and maintain their structure and connectivity during disasters.” Finally, Murray-Tuite
argues that a resilient transportation system should have 10 properties: redundancy, diversity,
efficiency, autonomous components, strength, adaptability, collaboration, mobility, safety, and the
ability to recover quickly [106]. There are generally two branches of metrics used for resilience
indicators. One is related to the traffic flow characteristics, such as travel time, traffic flow, and
travel demand. The other is related to network structure and topological features, including

connectivity and accessibility.

4.2.1 Network-based indicators

The abstract representation of a transportation system as a network of nodes and
interconnecting links, whether the system involves roadways, railways, sea links, airspace, or
intermodal combinations, defines a network topology. Nodes represent intersections, origins, and
destinations, while links indicate the transportation routes that connect those nodes. Systems with
distinctive features may be structured by different topological categories. For example, many
arterial roadway networks have a grid or ring shape while air systems are always hub-and-spoke
networks. This suggests that network structure can affect the functionality of the system. At the

same time, for the same type of topology network, structure variation may also affect system
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performance. For instance, for the same origin-destination (OD) pair, more interconnecting links
may increase its redundancy during an interruption. Therefore, the study of network topology may
be of significant help in understanding the performance of the transportation system. Table 10
summarizes network-based indicators used to assess the structural resilience of transportation

infrastructures.

4.2.2 Performance-based indicators

Performance-based indicators for transportation network resilience are based on the study
of traffic flow-related features and their reactions to the perturbation of the system regardless of
the network structure properties. Once there is a perturbation in the system, there may be capacity
reduction of road links or traffic congestion induced by signal failures. In either case, the
performance deterioration of certain road links will be propagated to the system as travelers will
seek new routes for their trips, which leads to the performance variations for other parts of the
transportation system. Travel time, travel cost, and travel demand are fundamental indicators of
the transportation system performance. Resilience measurement based on those indicators or their
variations is generally aimed at capturing system performance before, during, and after a

perturbation. Table 11 summarizes performance-based indicators for traffic network.

4.3 Cyber infrastructure resilience

There is a lack of standard metrics to measure the resiliency of a cyberinfrastructure.
Although guidelines and frameworks exist for designing cyber secure/resilient systems, it remains
a challenge due to the difficulty in measuring security [107]. Linkov et al. [108] reported that no
useful metrics were found in the literature by federal agencies for managing cyber threats. This
issue stems from the fact that the field of security as a whole is usually viewed as binary. The
cyberinfrastructure is secure until it is realized that there has been a breach at which point it is no
longer secure. Pfleeger and Cunningham [109] discuss how measuring security is different from
measuring resilience in other engineering disciplines and provide reasons why measuring security
is challenging.

Cyber resilience has been defined in many ways. Bodeau et al. [ 110] define cyber resilience
as the ability to anticipate, withstand, recover from, and evolve to improve capabilities in the

presence of cyber threats. Bjorck et al. [111] define cyber resilience in terms of “intended
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outcome,” which refers to the goals that the system is supposed to achieve, even under
perturbation. This definition takes the overall business function (critical function) as the objective
of resilience and not just the underlying cyberinfrastructure. Hence, even when the underlying
cyberinfrastructure is similar, the resilience of the system can be different depending on the larger
system of which the cyberinfrastructure forms a part. The Center for Internet Security (CIS)
provides metrics for organizations thatare categorized into six business functions [112]. Some
other measures, such as the Common Vulnerability Scoring System [113], are based on the threat
model against which a system has to be protected.

Some studies that have been conducted tend to focus on the financial consequences caused
by a cyber-breach as a metric. Ponenom Institute’s cost of cybercrime study [114] collected data
from 237 organizations across six different countries, which included 1,278 interviews with
company personnel. They reported 465 total attacks and performed a cost analysis on the various
types of infrastructure and the corresponding financial impacts caused after the breach. A 21
percent net increase was reported in the total cost of cybercrime in 2016 from 2015. They also
point out the areas most affected by cybercrime and identify the effective techniques and practices
in which to invest in order to minimize the damage. Kelly et al. [115] provide a hypothetical
scenario based in the UK, and studied different financial impacts that an attack can bring forth.
They analyzed the number of customers disrupted, the economic losses incurred, and simulated
over a five-year period the impact on the long-term Gross Domestic Product (GDP). The metrics
utilized are not directly connected to the performance of the cyberinfrastructure but, as per the
definition by Bjorck et al. [111], they indicate the decline in the expected business function of the
overall system. These metrics, however, do not indicate the recovery time of the system, which is
usually associated with resiliency metrics.

Improvements in information and communication (ICT) technologies have led to
functional dependence between cyber and physical systems, such as transportation and water
infrastructures, and are essential for their safe and continuous operation. The interconnectivity
provided by cyber systems improves efficiency and functionality of these critical infrastructures
but incurs costs in terms of increased risk associated with the cyber systems [116]. Attacks in the
associated cyber systems can lead to disruptions in the functionality and/or increase safety and
security risks in the physical system, i.e., cyber breaches can directly or indirectly impact key

resilience factors of the system as a whole [117]. To account for the resilience of such
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interconnected systems, cyber security aspects need to be incorporated into the resilience
evaluation. Resilience evaluation used in physical infrastructure domains, such as in water and
transportation systems, often fail to account for possible threats from the cyber domain. At the
same time, the approaches utilized in the cyber systems fail to analyze the physical consequences
of cyber-attacks. Zimmerman and Dining [117] further emphasize the need for cyber-physical
perspectives to bridge the gap for analysis of “cross-over” attack scenarios based on examples of
urban railway systems.

The U.S. Department of Homeland Security estimates that cyber breaches of critical
infrastructure can result in up to 2500 casualties, economic damages of $50 billion, and severe
impacts to national security [118]. Thus, recovering from cyber-attacks not only includes
restoration of the system to a previous functional state but also recovery from financial losses.
With this in mind, cybersecurity and resilience of critical cyber-physical infrastructures cannot be
solely achieved through technological improvements and risk mitigation. The residual cyber risk
is transferred to willing partners through cyber insurance [119]. Tonn et al. [119] regard cyber
insurance as an important risk management strategy to recover from cyber events as it transfers
risk to willing partners and incentivizes investment in IT security.

Some studies provide a framework to manage cybersecurity risks and design cyber resilient
systems. These frameworks are divided into high-level goals that can help lead to a resilient
system. The cybersecurity framework [120] from the National Institute of Science and Technology
(NIST) defines five functions: identify, protect, detect, respond and recover. This framework can
be used to grade an organization’s state against a target goal [107]. MITRE’s cyber resiliency
engineering framework [110] provides four high-level goals: anticipate, withstand, recover, and
evolve, and serves a similar function as the NIST framework. Symantec et al. [121] recognize that
cyber risk is not contained to a single event but a more sustained and persistent threat and that a
single method of protection is not viable. They present a multi-layered approach encompassing
people, processes, and technologies. The framework is based on five pillars (prepare/identify,
protect, detect, respond, and recover) to evaluate an organization’s cyber security strategy so that
continual refinement can be made under each pillar to achieve cyber resilience.

Finally, cyber infrastructure can be a part of any type of system. It is important that a metric
is able to capture the relevant information about the system at hand. This will help define

measurable goals and strategic objectives [107]. Linkov et al. [108] provide a cyber resilience

22



683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

matrix framework, which is a matrix-based approach that provides a structured way to leverage
existing metrics or identify new ones. The framework emphasizes the importance of interaction
between the stages of event management (plan/prepare, absorb, recover, and adapt) and four
domains (physical, information, cognitive, and social). The matrix aims to make transparent
connections between these. Each cell in the matrix should then include a specific measure

(quantitative or qualitative) developed on a system by system basis [108].

5. Strategies to Improve Resilience

Time frames (e.g., before, during, or after impact) with respect to disturbances determine
the types of strategies that can be employed to improve system resilience. The three most common
types of strategies include mitigating, adapting, and coping [84], and correspond to resistance
capacity (mitigation), absorptive capacity (adaptation), and recovery/restorative capacity (coping)
[84, 122].

The strategies that correspond to mitigation, or resistance capacity, focus on first stage
local impacts, such as risk management (to identify components that need hardening), real-time
sensing, monitoring, and updates of the system (making use of newer techniques and
technologies), enhancing organizational structure of decision support platforms, integrating
resilience analysis to existing risk-based decision support process, and allowing room for learning
from previous accidents [122, 123]. Effective resilience enhancement can be achieved by adopting
a tiered resilience analysis approach at the decision support stage, depending upon the extent of
disruption, scope of the mitigation strategy, and available resources [124, 125].
Adaptation/absorptive capacity is recognized as the second stage, and involve system-level
impacts (including both hard and soft assets), such as plans that are regularly reviewed and
evaluated, diversification of urban water supplies to include a range of sources, increasing
redundancy (not just hardening), adjusting infrastructure topology, and forums to build knowledge
among stakeholders [122, 123]. Coping/restoration entails system recuperation (the third stage of
the framework in [122]), such as establishing communication channels, establishing coordination
for rapid recovery response, and enhancing decision support platforms to identify feasible recovery
strategies [122]. Mitigation and adaptation are priorities to invest in when resources are sufficient
[122]. However, to increase resilience for systems with limited resources, restoration, such as

recovery sequences, is a priority [122].
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In an overall sense, assessing resilience of systems for broad range of disruption, adopting
both long and short term mitigation strategies, including all stages of system response after a
disaster and all (social, physical and informational) domains of systems, can provide a complete
effort to implement resilience practice in individual systems and across interdependent systems
[126]. As a result, emerging advances, such as Industry 4.0, show potential for enhancing systems
resilience. If Industry 4.0 is to be understood as an advancement towards the integration of
information, actors, and organizational processes [127], then the power of IoT technologies can
change how traditional bureaucratic organizations such as public utilities collect, store, analyze,
and share information. Instead of hierarchical administrative systems where knowledge is mostly
concentrated at the top, Industry 4.0 has the potential to break down hierarchical boundaries and
decentralize decision making [128].

The type of interventions and strategies may be event-specific and one intervention may
not address design and operational deficiencies simultaneously in an infrastructure. Hence, we
present mitigation strategies under three categories: design (protection), operations

(recoverability), and management (organizational).

5.1 Strategies for water infrastructure
5.1.1 Design Strategies

There is a growing number of studies demonstrating the importance of design and planning
strategies to improve resilience of water infrastructures [129-131]. Flooding, for instance, can be
mitigated through careful consideration of the drainage system (i.e., the above ground flow
pathways as opposed to the piped system) at the planning stage and its incorporation (and
protection) into the urban landscape [132]. The primary strategies to improve the resilience of
stormwater infrastructures at the design stage are green infrastructure (e.g., rain gardens, tree
boxes, green roofs) [133], localizing use/infiltration [101], and better deployment of surface flow
features [134]. Decentralization [84], pipe redundancy [117], localized water sourcing [135], and
increased use of recycled water [29] are recommended strategies for potable and wastewater
infrastructures.

When the principles of Industry 4.0 are applied to water infrastructure, it generally refers
to “smart water systems” using advanced technologies (e.g., smart components, real-time data

acquisition, transmission, and control, augmented reality) for data acquisition, computing,
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visualization and decision making. The insights gained from big data analysis can advance the
understanding of the emergent system performance driven by individual components and their

configuration. This will help guide the design of system structure for the desired performance.

5.1.2 Operations Strategies

To improve resilience in water infrastructures, studies suggest adopting strategies such as
proactive maintenance (e.g., infrastructure leak reduction and flushing water mains) and
technology monitoring (e.g., smart sensors) [92, 136]. Technological strategies are put in place to
enhance prevention and recoverability. Real-time monitoring, surge protection, and management
of pressure zones [137] are among the most common practices at the operations stage for water
infrastructures. Real-time data and decentralized decision making can speed up the response and
lead to more effective daily operation and disaster recovery. In theory, smart water systems are
more resilient compared to the existing systems in terms of improved capacities to absorb, response

to, and recover from the external disturbances.

5.1.3 Managerial Strategies

From an organizational and policy standpoint, interventions in water systems to improve
resiliency encompass various aspects and sectors, addressing water resources and urban water
services [138]. While advanced technologies are gaining attraction, budgets at utilities are still
limited. With limited budgets, utilities must decide where to allocate resources, how to maintain
the new and existing technologies, and how to train operators on using the new technologies. A
persistent question concerns the strategic infrastructure locations that will provide the most useful
data to manage/operate/respond to data from the infrastructure. This leads to another question of
how to effectively analyze and make decisions based on the data provided. Researchers are still
finding ways of deriving needed information for enhancing operations (both day to day and in face
of disturbance) and, by extension, how to make decisions based on the available information. For
example, in water distribution networks, a common challenge utilities face is locating leaks. It can
be a time-consuming and crew-intensive operation, in addition to financial costs. However, real
time data obtained can be useful in identifying leak locations before they become major
disturbances [139]. In other circumstances, it may not be clear how to use the multitude of data

towards more informed and effective decision-making. Another advance is augmented reality. One

25



776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

application by ESRI has begun to be used by some municipalities to assist with asset locators
[140]. This approach appears to have many benefits, such as reducing time spent locating assets,
and they are working on addressing some safety drawbacks. Finally, related to big data are novel
analysis techniques (e.g. complex network analyses and optimization) that supplement the state of
the art and are geared towards providing more complete information for decision-makers. For
example, Torres et al. [141] developed a stochastic optimization approach allowing for
participation from stakeholders/decision-makers to spatially allocate sustainable urban drainage
technologies. Similarly, Abdel-Mottaleb et al. [142] developed an optimization framework to
identify critical water distribution network components. These techniques are still in the
theoretical/research phase, as utilities are often limited in the personnel and equipment that would
allow for such intensive computing. Thus far, Industry 4.0 shows potential for enhancing water
infrastructure resilience, but many more case studies/applications in municipalities and research
are needed to determine its place. Another challenge is the lack of a unified framework of what
exactly “smart water systems” entail [143]. Moreover, as concluded by Li et al. [143], more
collaboration must first take place between researchers, industry, and municipalities to promote

applications.

While different countries may have different regulatory frameworks for managing water
resources (see [144]), there is consensus in the literature on the necessity of coordination among
different water/wastewater utilities (horizontal), and water and other sectors (vertical) to deal with
social interdependencies among infrastructures [133, 145]. Cooperative agreements with the
transportation sector [79], cooperative management of waterways [81], integrated coastal zone
management [146], and coordination by dialogue and experience sharing [147] are the most
adopted mitigating strategies to reduce the potential vulnerabilities due to social interdependencies

among infrastructure sectors.

5.2 Strategies for transportation infrastructure
5.2.1 Design Strategies
In 2014, the Federal Highway Administration(FHWA) issued an order to incorporate climate
change vulnerability and risk into all aspects of transportation decision making [148]. As part of
this process, FHWA partnered with several state DOTs and MPOs and initiated small pilot projects

to identify vulnerable assets (first round of projects) and analyze options for adapting and
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improving the resilience of those critical assets (second round of projects). Under one such project,
the WSDOT created a GIS map identifying the most vulnerable links in the study area so that such
links are considered with special care during maintenance, rehabilitation, and future development
[148]. Another pilot project conducted by Hillsborough County MPO in Florida identified several
critical assets in the region, analyzed potential impacts due to extreme weather events using the
FHWA risk and vulnerability assessment framework, and tested some adaptation strategies to
mitigate the loss during inundation or flooding [149]. The FHWA published two manuals that
provide guidelines for risk and vulnerability assessment and strategies to mitigate risks for
transportation infrastructures prone to inundation in coastal and riverine areas. Raising the
pavement profile, infrastructure redundancy, and raising tunnel portals and bridge deck elevations
are recommended strategies at the design stage. In the context of Industry 4.0 where connected
and autonomous vehicles (CAVs) are integrated into the transportation system, it is expected that
the inherent resilience of the infrastructures from geometry design to traffic control system design
can be enhanced by connected vehicle services and the design of intelligent infrastructures [150].
5.2.2 Operational Strategies

To improve resilience in transportation infrastructures, studies suggest adopting strategies
from a maintenance standpoint (e.g., infrastructure breakdown or degradation reduction) and from
an intelligent transportation management perspective (e.g., intelligent traffic signal control and
intelligent traveler information dissemination). Hardening of traffic control devices [151],
cooperative intelligent transport systems [152], and increased health monitoring are strategies for
transportation infrastructures to improve operational resilience. Studies have also pointed out that
there is a necessity to enhance resilience of the system at a broader spatial scale of a corridor or a
wide-area road network instead of only the adaptive traffic control of intersections in the context
of intelligent systems [ 150]. Kahn et al. [153] studied the potential impact of automation in driving
on enhancing the capacity of the urban traffic network to withstand stochastic traffic overloads
and unpredictable demand.

The U.S. DOT FHWA proposed a Scenario-based Advancing Transportation Systems
Management and Operations method with planning for operational resilience during tropical
storms as a case study [151]. The output of scenario planning aimed at creating more resilient
transportation systems might include the identification of new investment needs, such as

communication networks, and new measures or targets for transportation system restoration after
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a disruptive event. Scenario planning can support communities’ operational decision making under
various assumptions in terms of future events, trends, policies, priorities, or other factors of
uncertainty [151].

Southcom, a regional infrastructure resiliency coalition, studied the operational strategies
for transportation system after a disruptive event [151]. The most effective operational strategies
selected under the assumption of various scenarios include ‘“highly redundant data and voice
communications systems, backup servers and decentralized databases location selection, backup
power for all variable message signs and traffic signals, additional CCTV on roads and rails, and
road weather information systems (RWIS) in rural areas”. [151]

Based on the U.S. climate resilience toolkit, selected applications and tools that support
system resilience and that are linked with the urban transport sector are summarized in [154]. How
these various toolkits could be integrated in a holistic way to support transportation system

operation to enhance system resilience is an optional research and development direction.

5.2.3 Managerial Strategies

The National Infrastructure Advisory Council (NIAC) addressed in their Transportation
Sector Resilience Final Report [155] that there are widespread, major dependencies — within
modes, across modes, and with other lifeline sectors. While these dependencies are typically well
known, they are too often poorly understood or without defined paths for mitigation. Cross-modal
and cross-sector dependencies are of particular concern for transportation system resilience. At the
same time, there is no structured, senior-level engagement between public and private sector
partners, transport modes, and interdependent sectors to address national-level transportation risks.
This is compounded by the difficulty of identifying public sector authorities who have decision-
making ability throughout the networks of state, city, and county leaders [155].

From an organizational and policy point of view, interventions in transportation systems to
improve resilience entail various aspects and sectors, addressing cross-modal and cross-sector
interdependencies. While different countries may have established different regulatory
frameworks for managing transportation infrastructures, there is consensus in the literature on the
necessity of coordination among different transportation utilities (horizontal) and transportation
and other sectors (vertical) to deal with social and economic interdependencies among

infrastructures [155].
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Based on the analysis of societal impacts of infrastructure failure interdependencies (IFIs),
impacts of utility and transportation disruptions were found to be especially significant, that is,
high in metrics of both Impact and Extent. Therefore, it is critical to investigate the organizational
strategies for transportation systems in the context of interdependency [156]. From a managerial
perspective, the inclusion of various stakeholder groups into a coalition addressing transportation
system resilience is also extremely helpful for system resiliency improvement.

It should be noted that traffic management plan development can also be different with
vehicle-to-vehicle and vehicle-to-infrastructure communications. Traffic systems with different
CAV penetrations requires different infrastructure inputs. While high penetration of CAVs can
significantly improve system resilience, it requires higher cost for repair and replacement of
intelligent infrastructures [157]. Decisions regarding the balance between system performance and
capital cost in this context may need to be made. Furthermore, existing evacuation and routing
strategies may need to be updated to be more efficient with CAV technologies available [158,
159].

5.3 Strategies for cyber infrastructure

Cyber resilience differs from traditional cybersecurity. Traditional cybersecurity measures
tend to focus on “protect, detect, and react,” while cyber resilience focuses on ensuring proper
functioning of the organization’s mission despite the presence of an adversary. Traditional risk-
based systems are unable to address evolving unknown and uncertain threats. Developing realistic
threat scenarios, evaluating system vulnerabilities, and quantifying consequences required for risk-
based approaches is extremely challenging for increasingly complex and interdependent systems
and may also lead to potentially misleading risk quantification [160]. Bodeau et al. [161] show
that cyber resilience builds on traditional cybersecurity and security in general. This is illustrated
in Figure 4. In addition, cyber-attacks also differ from natural disasters or terrorist attacks, which
are contained by geographic areas. Hence, a form of resilience for cyber infrastructure is
guaranteed by simply having redundant, geographically dispersed infrastructure. Cyber-attacks on
the other hand are not limited by geography and can be systemic and stealthy so that they remain
undetected until the system is compromised [162]. As such, planning for resilient cyber

infrastructure poses unique challenges.
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Many studies have been performed to suggest a framework for developing a resilient cyber
infrastructure, considering the differences between providing cybersecurity and building a resilient
cyber infrastructure. This has led to the creation of a new sub-discipline of mission assurance
engineering called cyber resiliency engineering [110]. Mission assurance is an emerging discipline
that aims to apply systems engineering, risk management, and quality assurance to achieve
successful delivery of service to customers. Cyber resiliency engineering seeks to elevate mission
assurance by bringing the ever-evolving set of resilience practices into real implementations of
cyber infrastructure. Bodeau et al. [110] present a framework for cyber resiliency engineering,
which provides a structured view of elements of cyber resiliency (goals, objectives, practices),
threat models, applicability domains (architectural layers), and various aspects of costs to be
considered for implementation, considering the varying scopes of resiliency. It also aims to help
motivate, categorize, and select a set of cyber resiliency metrics that are able to address the problem
domain comprehensively. Bodeau et al. [161] expand on the previous work by augmenting it with
cyber resiliency techniques, interactions, and tradeoffs between the existing techniques and the
effects of these techniques throughout the lifecycle of the cyber-attack. Chang et al. [163] provide
an architectural framework called Cloud Computing Adoption Framework (CCAF) to provide

guidelines for developing a resilient software system.

5.3.1 Design Strategies
“Resiliency is a design characteristic of a system which cannot just be added to a system, instead
it should be built-in from requirements identification” [163]. Security engineering principles
specify that a cyber-system should implement layered security [110]. The cyber system should be
designed to not just have a strong outer shell but have multiple layers of protection, and each layer
should follow the safe-to-fail principle (i.e., the system should be able to fail in a controlled way)
[111]. Cyber resilience frameworks demand that a resilient system must have components to
anticipate and prevent threats. Hence, the system design must have support to monitor and analyze
all its components. The systems should also utilize techniques such as dynamic positioning (ability
to relocate system assets), diversity (using heterogeneous set of technologies), non-persistent
design (time limited retention policy), privilege restriction (fine grained access control), and
segmentation (logical and physical separation of components) [110]. In addition, there is a need

for the design strategies to include cybersecurity in physical security systems as well because of
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increasing functional dependence and co-location of cyber and physical systems and reliance of
physical security systems on networked IT systems for access control, intrusion detection, and
video surveillance [117]. A major aspect of developing resilient designs is the ability to select the
appropriate design elements for appropriate purposes. These decisions are usually made based on
performance metrics. Ganin et al. [160] provide a model-based approach to quantify resilience
over a period of time based on the performance of critical functionality of the system and provide
designers the ability to trade off different design parameters. However, such performance-based
metrics only capture the availability of the system and do not account for cyber-threats concerning
confidentiality and integrity of the system and associated data [164].
5.3.2 Operational and Managerial Strategies

In the presence of an adversary, a resilient system should continue to function correctly,
constrain the threat, and reconstitute to a known good state [161]. Technologies used in cyber
systems are always evolving and, therefore, relying on the initial design is not adequate. As
systems are upgraded, operators should also be educated about the threats, vulnerabilities, and
mitigation policies and procedures. Solansky [165] mentions the use of cyber-terrorism exercises
to gauge the capabilities of agencies to detect, prevent, and respond to a cyber-terrorist attack and
stresses the importance of collaborative efforts to minimize threats. Bodeau et al. [110] also
include simulation exercises as a technique to achieve resiliency objectives. The increased
awareness from these exercises/simulations helps to identify gaps and respond to them. In addition
to training, organizations also respond to emerging threats through introduction of policies that
apply operational constraints with the goal of limiting new vulnerabilities. Gisladottir et al. [166]
analyzed the impact of training and regulation on cyber-systems resilience considering the human
factors (such as overabundance of information, raised stress levels, and decreased time to perform
critical functions) and found that both under and over regulating can lead to diminished system
resilience. They advocate for introducing a few well-framed rules as a key to maximizing
resilience. In addition, operational and managerial strategies should carefully consider the role of
security in resilience plans, procedures for measurement of cyber risk, understanding the impacts
of cyber-attacks on critical cyber-physical infrastructures (from operation/service delay to data
breaches), and processes for organization to address known threats. With these considerations,
decisions should be made regarding the purchase of appropriate cyber insurance as an important

risk management strategy [119].
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6. Discussion and Concluding Remarks

6.1 Resilience

As demonstrated in Table 12, the quantification of resilience for water and transportation
infrastructures typically includes two approaches, performance-based and network-based. The
network-based indicators focus on the structure of resilience, and spectral gap and algebraic
connectivity are the two most used indicators for water distribution networks. For transportation
networks, connectivity, accessibility, and betweenness are the commonly used resilience metrics.
The network-based metrics are relatively easy to compute with network software; however, they
focus on the link-node representation without taking into account important system features, such
as hydraulic features/structures for water distribution networks and traffic flow characteristics for
transportation networks.

The performance-based metrics, on the other hand, are based on actual system
performance, such as water flow, pressure, and water quality for water distribution systems and
traffic volume, travel time, and cost for transportation systems. Such metrics rely on performance
data from either simulation studies or field investigation. Domain knowledge is required for
developing simulation models, which are computationally expensive for large networks. The data
from field investigation are typically limited and do not provide sufficient spatial and temporal
information. To advance resilience quantification, future research should investigate the
relationship between network-based metrics and performance-based metrics. Identifying the
universal network-based metrics that are sensitive to the performance of the infrastructure systems
will be useful not only for resilience considerations but also for the optimization of the network
structure for infrastructure performance. Another significant challenge is to validate the derived
resilience metrics to determine whether they capture all aspects of a resilient system.

Finally, for cyber systems, the concept of security, instead of resilience, is commonly used.
In the field of security, the measurement is binary, such that the cyberinfrastructure is either secure
or no longer secure when a breach occurs. As a result, the definition and quantification of resilience
for cyber systems is generally lacking. As cyber infrastructure becomes an integral part of
successful operation of other critical infrastructures, it is important to develop appropriate metrics

to quantify cyber resilience. Due to the nature of cyber infrastructure, such metrics may focus more
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on the recovery stage of the system, such as the time and cost required to recover the cyber systems
or the relevant infrastructures that rely on function of cyber systems to the pre-existing condition.

6.2 Interdependency

This review explores how the integration of information about interdependencies has been
applied to resilience quantification. Such understandings may provide insights into potential
strategies that would not have otherwise been conceived. For example, if interdependency is taken
into account in the quantification of vulnerability and risk, it may reveal that the socioeconomic
impact of a failure is actually much higher than what was considered for an individual
infrastructure. Thus, understanding of interdependencies may offer more informed decisions and
investments at the stakeholder and sociopolitical level.

There are challenges that come in assessing multidirectional dependencies, however.
Innovative techniques are needed to bridge the gap between single infrastructure systems and
multi-system effects. The methods that have been used in the literature were presented in this
review with most focusing on infrastructure-wide analysis (i.e., infrastructure as a whole). To be
useful for decision-making, more information is required for both system-wide analysis and
detailed component-level analysis. In terms of social interdependencies, social and political factors
are often not included in the analysis. When they are included, they are usually economic in
character — focusing on cost-benefit analyses, which are based on assumptions about human
behavior that are not universal. Quantitative metrics for socioeconomic factors are generally
lacking; that is, the factors are often acknowledged, but there are very few suggestions for how to
incorporate them into formal models.

Since interdependencies exist in different forms, such as physical, virtual and social as
discussed in this paper, the failure propagation patterns and scales (both temporal and spatial)
might be different. For example, the cascading failures due to physical interdependencies tend to
be contained locally. Scale appears to be a driving factor in choosing methods to analyze (assess
and quantify) interdependencies and resilience. It is thus useful to classify the methods based on
the type of interdependencies and scales. It is also important to view interdependencies as both
advantages and vulnerabilities. For example, the high level of geospatial interdependency (co-
location) between water and transportation infrastructures leads to lower land acquisition costs as

well as construction costs; however, it also makes one infrastructure vulnerable to failures in other
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infrastructures. As a result, the optimization of interdependencies among infrastructures should be
investigated for resilience improvement.

6.3 Strategies

Strategies to improve resilience range from design and planning to management. In
addition to infrastructure types, timescale (e.g., before-during-after disaster) plays a critical role in
identifying strategies that reduce wvulnerability (before disruptive events) and enhance
recoverability (during and after disruptive events). In Table 13, we map the strategies for different
infrastructures on short-term, mid-term, and long-term plans. From design and protection
viewpoints (before disruptions), network redundancy is the most commonly adopted strategy to
increase structural resilience for both water and transportation infrastructures. For cyber
infrastructures, layered protection is the major design strategy to improve resilience. Network-
based metrics can be used to identify the strategic locations for redundancy implementation.
Decentralization or localization is a strategy to improve resilience for both stormwater and
wastewater systems. Green infrastructure is another strategy for stormwater management that
could reduce localized flooding. Several strategies for transportation infrastructure design focus
on structure enhancement, such as seawalls to reduce exposure to flooding. Strategiesthat provide
synergistic effects for multiple infrastructures should therefore be emphasized.

In terms of operations and recoverability (during and after disruptions), there are multiple
maintenance activities that can improve recoverability of existing infrastructure systems. For
example, water infrastructure maintenance activities range from proactive maintenance such as
network inspection, cleaning mechanical parts and replacement of components, to corrective
maintenance such as repair of an impaired pipe or replacement of a faulty pump. The majority of
conventional and current maintenance activities focus on corrective maintenance; however,
proactive maintenance may be more effective to increase system capacity to endure disruptive
events. Establishing the most cost-effective maintenance planning to address different types of
maintenance actions and their complex profiles of maintenance effects on deteriorating
infrastructure is needed.

The managerial strategies compiled in this review mostly focus on cooperation and
coordination among various entities that are responsible for maintaining the functioning of
interdependent infrastructures before-during-after disruptions. Cooperative agreements and

cooperative management strategies are commonly adopted to enhance system resilience. As
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described in this review, social systems (including cultural, political, and economic aspects)
encompass physical infrastructures. As a result, organizational strategies at the managerial level
can lead to (at times) multiple component level changes over a larger spatial-temporal scale.
Further research is needed to understand the impacts of various organizational strategies. Multi-
stage predictive models to quantify the consequence of disasters are a starting point to analyze and
compare organizational strategies.

Finally, we addressed key aspects of the “fourth industrial revolution” (Industry 4.0, marked by
information or data-driven technologies) and its potential to enhance the resilience of
infrastructures and organizations. One of the most significant contributions of Industry 4.0 to the
resilience of socio-technical systems is the transformation of organizational culture [167]. For
instance, Industry 4.0 through digital integration can help shift organizations to knowledge
management models characterized by connectivity and openness. In this way, researchers,
activists, and local communities can gain access to new sources of data and information. The open
approach can build substantive relationships between organizations and communities, and also
foster social support in crisis planning and response [168, 169]. Even more significant, data
obtained through this relationship between infrastructure organizations and external stakeholders
can play a crucial role in awareness creation and community empowerment. Consequently,
Industrial 4.0 could contribute to resilience beyond technological systems by enabling
communities to participate in the co-creation of organizational values and practices that address
their needs and areas of vulnerability.

As we have noted in this review, developing a better understanding of critical,
interdependent infrastructure systems and process is essential to designing sustainable cities of the
future. Only when we are able to fully recognize and take advantage of the cyber, physical, and
social interdependencies among different infrastructures can we begin to enhance the resilience of

smart and connected cities and communities.
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Figure 1. Terms used in the literature related to resilience and their relationship: tr= time when
disruption occurs, tp=time at which system inoperable, tr= time at which system repair is initiated,
to—= time at which system regains operability. Waiting time = tr - tp; Propagation of
failure/inoperability (or time to maximum impact of disturbance)= tp - tr; Time to system repair=
to-tr; The down time is from tr to to; System operational availability= (1-tp)/total time investigated,
Resilience building strategies can be enacted both to increase robustness and enhance
recoverability (thereby decreasing down time and potentially wait time).
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Table 1: Definitions of resilience in different domains

Discipline/Domain Definition of resilience Reference
“A measure of the persistence of systems and their ability to absorb
change and disturbance and still maintain the same relationship [7]
Ecological systems between populations or state variables”
The speed of a system to return to an equilibrium state after a [170]
disruption
Organizational The ability to maintain a steady state or recover from a disruptive [171]
Systems event to be able to operate as normal
Social Systems The capacity of indi\.fidual.s, groups, community and environmentto  [172]
cope with external disturbing events
“The capacity to reconfigure, that is adapt, its structure (firms,
Economic systems industries, technologies, institutions) so as to maintain an acceptable [173]
growth path in output, employment and wealth over time.”
Socio-ecological The ability of a system to maintain its functionality or reorganize ifa  [174]
systems disturbance happens
A system’s ability to adjust in the face of disturbance [175]
Engineering domain In the face of resilience, systems need to fully recover rapidly and [176]
return to pre-disaster state
Infrastructure The ability to predict disturbances in addition to adapting and [177]
systems recovering from them
Power systems The ability of system to maintain electricity continuously to [178]
(Cyber-physical) customers given a certain load prioritization scheme
Refers to design, maintenance, and operations of water infrastructure
Water systems that limits the effects of disasters and enables rapid return to normal [179]
delivery of safe water to customers
Transportation The systems’ capacity to recover from unexpected and severe [180]
systems disturbance in a dynamic environment
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Table 2: Potential Vulnerabilities and Impacts for Water and Wastewater Infrastructures.

Drivers Failure Failure propagation References
2 | Extreme cold Physwgl (plpe damage, Transportatlon’ [30]
5 | weather collection failure from pumps), electric, energy, [181]
2 hydraulic (treatment failure) economic
§ Environmental (contamination),
% Storm with hydraulic (treatment failure), Transportation, [182]
Z increase surge physical (pipe damage, economic, social
‘é collection damage)
= | Short-term Hydraulic (minimum flow
© drought failure) N/A [183]
Power outage Hydraulic (pressure failure, Transportgtlon, cyber [ [40]
g3 treatment failure) and electric
> 5
% *g SCADA failure hydraulic (treatment failure) Electric [40]
s &
S & . . Socio-economic, [184]
= .
A .£| Road closures hydraulic (treatment failure) fransportation [182]
° Aging Transportation, [56]
- = . . . .
5 5| infrastructures Physical (Pipe damage, leaking) electrlc,.energy, [182]
2 E economic [184]
St
§ § Weak Hydraulic (pressure and flow,
“E g vertical/horizontal | treatment failure), N/A [80]
- coordination Environmental (contamination)
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Table 3: Potential Vulnerabilities and Impacts for Transportation Infrastructures

Drivers Failure/ Consequences References

=

N 7.} . . . . . .
= & F 100d1.ng, winter, wind, sea level rise, | Physical damage .to 1nﬁa§tructure, [185-187]
g9 landslide temporary operational failure,
=S 9

=
& E Congestion during evacuation,

g g Earthquake physical damage to infrastructure [35, 188]
g (especially bridges)
= Vehicle breakdown, crashes, Severe congestion and loss of [189, 190]
g g roadworks, lane blockage serviceability ’

LI

S5 Traffic signal tempering, cyber- .

<« D 3]
< attack on sensor data Severe congestion [116, 191, 192]
2= :

23 Infrastructure reconstruction Increa.sed delay, capacity [190]

g E reduction
ES

»n &

S £
“E g Aging pavement IC)Ofi;gradc?d performance, crash, [193]
— gestion
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Table 4: Physical Interdependencies between Water and Transportation Infrastructures.

Flooding exceed storm water treatment
capacity—>sewage in waterways = water
transportation

Power outages—>lack of sewage treatment—>
waterway contamination

supply systems and
172 sewage treatment
plants

damage; 1000
deaths

Cost/Economic
Events Scale Loss Reference
Hurricane Katrina (2005)
Flooding=> road closures—=>inaccessibility to
access treatment facilities for repairs > 1,000 drinking water 300 billion USD [57. 194-196]

Hurricane Sandy (NY and NJ; 2012)

Storm surge beyond storm water treatment

560 million gallons
untreated sewage

closure

commuters for several
weeks

capacity—> flooding - road closures mixed with storm 70.2 billion USD [182, 184, 197, 198]
Sewage in waterways—> water transportation yvater was released
impacted Into waterways
Flint, Michigan (2016) Entire citv’ .
ntire city’s water o
Storm.%excfes.s road salts in water source = pipe infrastructure >80 million USD | [199]
corrosion of pipes
NY Grand central station Train
accident (2016
( ) IOOdstoresl anci1 flocc>ld ~ 55 million USD [;8(1)]
Water pipe explosion->electricity failure> venaors close ay [201]
subway failure
. . All lanes of affected
S_mkl;h?le; mn ‘Laplap (20,1168 " P road closed; Water
inkhole in underlying soil beneath a roadway . .
appears—>roadway, traffic, water supply, ;l(l)%pllly line Tevered, N/A [202]
telecommunication line and gas line failure ouses lost p ower,
gas and telephone line
Honolulu, Hawaii (2017) .
Water supply main burst->water clogging in Sevderal kllf(}m(:tzrs of N/A [203]
roads—>traffic congestion roadway allecte
. All eastbound lanes
Water Main Burst (Tampa, FL 2017) closed for around one
Pipe breakage—> leaking, washing week: ~20.000 N/A [204]
away/eroding road> cavern formation—> road ’ ’ [205]

Note: cost/economic loss is cumulative for entire disturbance damage/inoperability, not only the interdependency

impact
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1664 Table 5: Summary of Cyber Interdependencies of Water Infrastructures.

Events Scale Cost / Economic loss | Reference
Florida power outage,2008 Shutdown of 26 transmission lines, 38
Electric failure> SCADA cyber substations; 600,000 customers 25 USD million [206]
failure->drinking water treatment and | affected including water treatment settlement
distribution failure facilities and pumping stations

Australia Maroochy Shire

accident, 2000 150 sewage pumping stations taken

50,000 Australian

Cyber hacking - SCADA failure> f:ontrol of; untreated sewage released Dollars for clean up [207]
; into local waterways

waste water treatment failure

USA and Canada Blackout,

2003 100 power plants shut down, 50

Software bug = electricity grid million people affected in USA and 4-10 billion USD [208]

failure> water treatment and Canada

distribution failure

Hurricane Rita,2005 City of Lake Charles raw sewage

Power outage> SCADA released into nearby lake for over a 23.7 billion USD [197]

failure>water treatment failure week

Hurricane Irma, 2017

Power outage—> treatment monitoring | Broward County, FL Not yet determined [209]

failure> boil orders

1665  Note: cost/economic loss is cumulative for entire disturbance damage/inoperability, not only the interdependency
1666 impact
1667
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Table 6: Cyber Interdependencies of Transportation Infrastructures.

Events Scale Reference
San Francisco subway website attack, L L .
2011 Sensitive information, including names, street and
Cyber hacking=>website for subway email addresses, site passwords and even some [210]
information display breached > customer phone numbers for around 2,400 customers was [211
personal information stolen stolen and dumped
Smart parking meter hacking, 2009 The researcher took only three days to attack the
Recording the communication between the smart cards and examined the meters in San [212]
card and the meter—>program the card to Francisco, but the same and similar electronic [211]
never deduct or boost the transaction limit meters are being installed in cities around the
beyond what could legitimately purchased world.
Traffic signal disruption in Montgomery,
2009
A computer for signal control Choreography of 750 traffic lights was disrupted, [213, 214]

crashed->signal pattern chaos and
synchronization of traffic signals
lost>endless read brake lights

causing delays for the whole region.
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1672
1673
1674

1675

Table 7: Summary of Main Resilience Indicators Based on the Water Network Structure.

Relation to

Indicator Equation Case studies o References
Resilience
Shorter path
1 e lengths = more
— Y. d(v;,v; -
Average path length - (n—l)Zl' A, v)) California efficient [87,215]
networks
Min(A(i, /)) for all . Increase in link
Link connectivity (i) Kumasi, connectivity K [216,217]
Ghana increased ’
resilience
Kumasi Decrease in
Spectral gap A Ghana; Milan, spectral gap=> [87,217]
Ttaly decreases
connectivity
. How many
Cy(1i)# geodesic paths geodesic paths
. ) between other vertices . will get longer if
Betweenness Centrality (of i)/ o+ run through vertex Harrls' County certain vertices
i exas; are removed: [215, 218]
Central point dominance 0, () California . .
N ij (higher in
Gy () = Y 212 |
oij centralized
networks)
# geodesic paths
Edge between vertices
Betweenness running along each Indicates
Clustering edge in network community
connection  Size of minimum (flow) Parete, Italy structure, how [219, 220]
strength cut set stratified a
. network is
Vertex distance See path length and
measures vertex efficiency
Ratio of actual
to possible
_ 1 e number of loops
Meshedness coefficient T = u [C%lgomla’ in a network; [215]
Zn—>5 high value >
high
connectivity
- Anytown Indicator of
benchmark redundancy
3Ny
Average clustering coefficient ¢ = —riangles mgde} [221]
Neriples -Timisoara,
Romania

-Milan, Italy

Notes: m= number of links/edges; n= number of nodes; A(i, j)= maximum number of edge disjoint paths between
nodes i and j; 0;;(i)= number of shortest paths between i and j going through node (or link) i. Niyigng1es=number of

three nodes connected exactly by three edges; Nyyip1s= number of three nodes connected by at least two edges.
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1676 Table 8: Summary of Resilience Indicators Based on Infrastructure Performance.

Reference Performance Indicator for Resilience
Average probability of a recovery from the failure set in a single time step =y =
[86] (:a) = Prob {X.e S and X;,,€ F}/ Prob {X, € F} = Prob {X,e F and X;,,€ S }/
Prob {X; € F}=Prob {X;,1€ S | X;€ F}
[222] System’s performance / systems service life = (T; + FATy + RAT,)/(T; + ATy + AT,.)
30] Accumulative system’s performance / life span = ) j(Tij + FjAT¢j + RAT,;)/ lifespan,
where j is the challenge index
_ o(tr|e))-o(tale’) , ;
Recovery / Loss= actual performance/planned performance: novel €
[223] [o(to)—0(tq e’
D
Tp@e)at
[122] Actual performance / target performance AR = E [foT TP(t)dt]
[224] Integration of area under Q) curve, for given impact

1677 Notes:a= probability that a system is in a satisfactory state, p= probability of system being in satisfactory state at
1678 time ¢, and going to failure state in the following period, S= set of satisfactory states, F= set of failure states, X;=
1679 system performance variable, R is the recovery profile, I is the failure profile, AT is the duration of the failure, AT
1680 is the duration of the recovery, 7is the time to the incident, ¢()=performance, e’= disruptive event, t,= time at
1681 original state, t; = time at disrupted state, t,. = time at which resilience is evaluated, D= set of possible disruptive
1682 events, Q(¢): quality

1683

1684
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1685 Table 9: Resilience Indicators Assessing Flood Damages.

Underlying . Referen
System/Technology Indicators Case study ces
a) Amplitude of reaction to flood waves
(expected annual damage, and average
annual number of causalities),
Lowland river svstem b) Function of the slope of discharge- N/A (hypothetical [225]
Y damage relationship system)
¢) Recovery rate (Combined set of
indicators related to physical, economic
and social factors)
(Grlilr}rll Insir;?:;?:t?gzzs a) Depth-damage function'™! [226]
rI; ilw: . oas a;1 d Wat;r b) Road pavement condition!>!:152 United States, [227]
mains ycé) 1%1 unication c) Road level of service!>! 152 Netherlands [179]
Sy ten;s) d) Number of structures in flood zones'*
a) Area and volume of wetland'*
b) Discharge!4 153
g:telzrigfisitr;lrcigfines) ¢) Soil depth below or above 2 feet!33 United States Ezz}
- TP d) Ground covers lower than 2 feet in
height at maturity'*?
Coastal City Flooq Vulnerability 'Index Argentina: India:
a) hydrogeological: sea level rise, storm i
.. surge, river discharge Morocco;
Coastal Cities System > . . Bangladesh;
. b) Socioeconomic: population close to . [229]
(Deltaic) . Philippines; France;
coastline Japan; China;
¢) politico-administrative: flood hazard Netherlands
maps
Urban drainage systems Systems residual functionality (1 — ‘;—TTT X :—f) Kampala, Uganda [230]

1686 Notes: Vrp = total flood volume, Vr;= total inflow into the system,t; = mean duration of nodal flooding, t; = total
1687 elapsed time.
1688
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Table 10: Summary of Resilience Indicators Based on the Transportation Network Structure.

Indicator Equation Case studies Relation to Resilience References
. w Hypothetical Increase in OD connectivity
OD connectivity — Ee [Z P (DI Z Ly ne}g)vork rate>increased resilience [43]
wew wew
Average 1 1 . Increase in reciprocal distance
reciprocal E¢ [Z d" (f)]/ z 1/,_ Ee};?v(ﬁllf tical rate > increased resilience [43]
distance ew wew "W
Increase in average
Yin Melbourne,

Average degree ci degree—>increased coping [43,231]

v Australia capacity < increased resilience
hvpothetical Increase in diameter—>decreased
Diameter max(d;;) sy§Zme tca coping capacity ->decreased [43]
M resilience
N Z;lzl Cycle, Hypothetical Incr.ease in C)./chclt.yélncreased
Cyclicity _ twork coping capacity 2 increased [43]
IR| networ resilience
Increase in
Betweenness Ijk (i) Melbourne, betweenness—~>increased [231]
Tjk Australia probability of bottleneck
existence—>decreased resilience
Hvpothetical Increase in node
Node resilience T ne}gj’vork resilience—>increased network [232]
resilience
Network Lpre_e,,gnt Increase in network
coverage Looes ) Kobe, Japan coverage—~>increased resilience [233]
post—even
Increase in transport
T D ro—event g .
ransp'm.'t. AL Kobe, Japan accessibility—>increased [233]
accessibility D e
post—event resilience
Winnipeg Increase in travel alternative
Travel alternative s network, diversity->increase 234
diversity Ng Manitoba, redundancy—>increased resilience [234]
Canada
X‘i Increased connectivity >
N K = increased coping capacity =
etwor. . I3 increased resilience [235]
connectivity Capr
- [a-] 55
kEKy ack

Notes: ¢" (§)=binary variable indicating whether or not O-D pair w is connected under perturbationé; I',,=original
connectivity of O-D pair w; d” (§)=shortest distance of O-D pair w under disruption ¢; Y, =original shortest distance

of O-D pair w; n;=number of arcs incident on node i; v=number of nodes in the graph;d;=distance of shortest path
between O-D pair (i, j);Cycle,=number of times random walk cycled back to node i; [R[=number of random walks;
i (y=number of shortest paths from node j to k that pass through node i;7;= average number of reliable independent
paths with all other nodes fornodei;L=total length of network open; D=total distance based accessibility; N7 =the
number of efficient routes between O-D pair (1, s) using link a; XM"(, is the connectivity between O-D pair w under
disaster scenario &; ijr post-disaster capacity of arc a after augmentation due to implementing preparedness action
p or recovery action r under disaster scenario &. C® pre-disaster capacity of arc a.
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1700 Table 11. Summary of Resilience Indicators Based on Transportation System Performance.

Indicator Equation Case studies References
Network Spare Winnipeg network, [234]
Capacity # Manitoba, Canada
TI‘E%V.CI time Rtt (t) = tij(before shock)/tij(after shock) Transportatlon corridor
I‘CSIIICH(?Q} travel Rcost = COStbefore shock/COStafter shock between Boston and New
cost resilience; €O, emission York [236]
environment Reny = — (before shack)
resilience €O, emiss L0 fter shock)
tp1 (1 _ ¢ ) dt Hypothetic system; Cuenca
o = f‘po ¥, (6) 100 network, Spain; Sioux Falls
L=
Perturbance tp1 ~ tyo network
resilience; 6. = 2 arctan (Ebk (tpl)Tth)
recovery speed; k= o ty — ty [237-239]
recovery
i tr
resilience L Ghi(tp) — Yr(e))de
Xk = Uk
lpk(tpl)(tr - tpl)
Western US; hypothetic
Travel demand w network
resilience max E; [ max Z Z fr () /Z D, [43, 240, 241]
weW keK,, wEW
cs Hypothetic network
Consumer surplus Res(6) = Pr(m > 0)
resilience; travel TTO
time resilience; Rr(0) = Pr (— > 9) [242]
traffic flow FlTT
i ow
resilience Ry(8) = Pr( - > 0)
Flow :
Travel time (T <x% 0> Hypothetic network (243]
resilience Rrp = o T >
IEEE 33-node distribution
System travel cost system and IEEE 123-node
- Curs distribution system with [244]
resilience
assumed urban
transportation system
M(t) = New York City

Normalized travel

. . [245]
tme devation_(a(e) - u())" 5.0 a(t) ~ 4(0))

Cumulative travel Lj+1ly Lj+l New York City

time lost AT =B Z Ly —=——) [246]
resilience ijEE Y !

1701 Notes: p is the largest multiplier applied to a given existing OD demand matrix and indicates whether the current
1702 network has spare capacity or not; ¢;;travel time for OD pair (i, j); x,f=perturbation resilience; 8,= recovery speed;
1703 xp=recovery resilience; Y, (t)=the exhaustion level, which is related to travel cost increase and traffic flow

1704 variation; t, is the time when perturbation occurs and t, is the time when perturbation stops; t, is the time when
1705 new equilibrium is reached; f" (§)=travel demand that can be satisfied in perturbation &; D,, =original travel
1706 demand for OD pair w; CS°, CS= consumer surplus before and after perturbation; TT?, TT= travel time before and
1707 after perturbation; Flow®, Flow=traffic flow before and after perturbation; tt”, tt%= travel time before and after
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1708
1709
1710
1711
1712
1713

1714

1715

1716

1717

1718

1719

perturbation; Cyrs = Travel cost after extreme events when there are damage to the power system of traffic lights;

M (t) represent the Mahalanobis distan, used to capture the deviation of traffic travel time performance from normal
pattern at time t; a(t) is the observed traffic patterns at time t and p(t) is the expected traffic pattern at time t; AT
represent the cumulative time lost by all commuters; V;;and v;; are the free flow speed and the actual traffic speed

along the ij road segment; [;; is its length; [, is the length correction due to traffic signals; £ is the proportionality

coefficient.

Table 12: Resilience metrics comparison for infrastructures and their interdependencies

Resilience Type of Type of Computational
Metrics Infrastructure Interdependency Complexity
Physical (co-
Network-based Water and . location), Social- Small, Medium
Transportation Cultural
(community-level)
Performance- Water and . )
based Transportation Physical, Cyber High
Technological Water Physical Small
Transportation and . .
Stage-based Cyber Physical, Cyber Medium

Table 13: Strategies comparison for infrastructures and different timescales

Strategies

Recoverability/Operations

Protection/Design

Organizational /Managerial

Green infrastructures, low
impact development, separating | Cooperative agreements with
sewer and stormwater systems, Transportation sector,
smart sensors, leak L. . .
. redistribution of discharge over cooperative management of
reduction, surge . . .
Water river arms, pipe and network waterways, integrated coastal
management of pressure o . L
. o redundancy, diversification of zone management, coordination
zones, real-time monitoring . . .
urban water supplies, by dialogue and experience
decentralized/hybrid treatment sharing
facilities
Hardening of traffic control
devices, cooperative .. . .
. ©s, Coop Raising pavement profile, Cooperative agreements with
intelligent transport systems, . .
. L redundancy, raising tunnel water sector, regional
Transportation | communications system . . ..
. portals and bridge deck cooperation, predictive models
redundancy, increased . .
Do . elevations for future disasters consequences
health monitoring, dynamic
rerouting
Cyber Layered design, dynamic
Cyber-terrorism exercises, yered design, Cyn - Procedures for measuring cyber
. positioning, privilege restriction, . f
increased awareness : . risk, procedures for addressing
. . . segmentation, non-persistent .
(simulation exercises) design cyberattacks, cyber insurances

2\
|

Short-term

Mid-term

Long-term
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