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/Abstract

vice’s overall success.

Degenerative Disc Disease (DDD) causes a nagging to severe back pain as well as numbing sensation to the extremities
leading to loss of overall patients’ height and weakness to leg muscles. Degenerative disc disease is often observed in aging
patients as well as patients who have suffered from a back injury. Cervical Degenerative Disc Disease (CDDD) is a progressive
condition that leads to the degeneration of the intervertebral discs supporting the cervical vertebral column. Anterior Cervical In-
terbody Fusion (ACIF) has been the longstanding treatment option for severe degenerative disc disease; however, ACIF presents
various novel complications, necessitating numerous comparative device studies to reduce the negative effects of spinal fusion.
Cervical disc arthroplasty, the recent focus of clinical attention, was one of the alternatives studied to mitigate the complications
associated with vertebral fusion but presents its own disadvantages. These complications prompted further investigation and
modifications that can be introduced into these devices. We will be discussing the nano-scale interactions between the implant
and extracellular matrix play a crucial role in device integration and efficacy, providing an additional approach towards a de-
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Abbreviations: ASD: Adjacent Segment Disease; ACIF:
Anterior Cervical Interbody Fusion; BMPS: Bone Morphogenic
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Titanium Oxide Nanotubes; VAS: Visual Analog Scale.

Background and Introduction

Degenerative disc disease (DDD) mostly occurred in
the lumbar, cervical, or thoracic region of the spine. DDD is
described as the dehydration of the intervertebral discs, leading to
calcification of the cartilaginous nucleus pulposus, as well as the
degradation of the nucleus pulposus as patients’ age [1]. The human
vertebral column consists of the twenty-four vertebrae and twenty-
three intervertebral discs protecting the spinal cord from trauma
and injuries. The intervertebral disc is acting as shock absorbers,
protecting the spinal cord from impact and pressure during physical
activities exerted by the hosts. Other than providing height, the

intervertebral discs also provide mobility [2]. The intervertebral
discs are often likened to a jelly donut due to the gel-like outer ring
of the discs, or annulus fibrosus, and nucleus pulposus, the inner
portion of the discs. The main components of the nucleus pulposus
of the discs are water, collagen, and proteoglycans [3]. DDD is
one of the issues faced by the majority of the population after the
age of 60 [4]. More than three-quarters of the adult population
often suffer from back pain at some point during their lifetime
[5]. DDD is often observed in aging patients and patients who
have experienced a back injury. The loss of water content in the
discs resulting in less shock absorbance, which causes back pain
problems, especially as they get older. DDD may lead to a loss of
overall patients’ height and weakness to leg muscles [6].

Cervical DDD is a progressive condition that leads to the
degeneration of the intervertebral discs supporting the cervical
vertebral column and results in multiple symptoms that inhibit
daily functional movements [7]. Patients often suffer from neck
pain, muscle fatigue and weakness, paresthesia, stiffness of limbs,
and radicular pain [8]. Some common symptoms of cervical DDD
are neck pain caused by stiff muscles or soft tissue sprain, sharp
nerve pain, or tingling of the extremities, such as arms or fingers
[7]. Although there is no direct link between CDDD and neck
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pain, it is thought that the degeneration of the discs may weaken
the vertebrae, resulting in a slipped disc that applies pressure
along the cord or the nerve root [7]. Aging is one of the many
factors contributing to the degeneration of intervertebral discs.
Other factors, including genetics and lifestyle, also influence the
condition of intervertebral discs [9]. Regardless of other comorbid
facts, as one ages, years of repetitive stress inevitably cause wear
and tear to any regions of the spine, contributing to pain and loss
of mobility to the patients. Cervical DDD can be diagnosed using
different diagnostic tools such as magnetic resonance imaging
(MRI) to provide a better diagnosis to the doctors and treatment
plans to the patients. An MRI scan is able to reveal cervical DDD
at its early stages and access the integrity of the intervertebral discs
accurately [10].

Current Treatments and Limitations

There are many alternative treatment options for cervical
DDD to surgery, such as the ACIF and arthroplasty, although
surgery may still be required if these treatments fail. At its early
stage, patients are generally advised to modify their lifestyle, such
as incorporating exercises in their daily routine or be more aware
of their overall posture as to not put unnecessary pressure on the
spine [7]. A healthy, well-balanced diet, as well as hydration,
is encouraged to all patients of all ages. Doctors can prescribe
conservative treatments such as medication (NSAIDs and muscle
relaxants) or steroid injection to patients who injured their neck or
those who have been experiencing neck pain [5]. Some patients
find relief from going to chiropractors or choosing from different
options such as the electrical stimulation TENS unit, acupuncture,
or massage therapy for pain management.

However, these pain management therapies and medications
only relieve pain and do not cure cervical DDD. When the pain
becomes too severe, and cannot be relieved by initial treatments
and for those who have neurological deficits, different surgeries are
often suggested as a method to alleviate the pain. The options will
be provided based on the observation of the surgeons and are up
to the discretion of the surgeon [5]. In the event that conservative
treatment options are not sufficient, the surgical approach has
shown dramatic success rates in improving all measured clinical
outcomes [11]. These outcomes include the Neck Disability Index
(NDI), Visual Analog Scale (VAS) for arm pain, and a short-form
health survey SF-36 [12]. The success rate of surgical intervention
is judged partly based on the statistically significant improvement
in these scores from post-op, to multi-year follow-up evaluations.
The two types of surgeries that will be discussed in this review in
the following sections are the ACIF and arthroplasty.

Anterior Cervical Interbody Fusion (ACIF)

Conservative treatment options often fail due to the severity
and progression of degradation within the disc. When these
conventional methods fall short, surgical options such as ACIF and
cervical arthroplasty are used due to their high success rates, based
onclinical standards[13,14]. During the ACIF procedure, the patient
undergoes anterior disc discectomy on the degenerated region. A
cervical fusion spacer is then placed within the area between the

two adjacent vertebrae where the disc has been removed. These
spacers may act as autologous bone grafts or cadaveric allograft
bone to encourage osteogenic growth between the two adjacent
vertebrae. Once fusion is complete, the spacer will have achieved
full osseointegration, and the two adjacent vertebrae are connected
in a union [15]. ACIF may occur anywhere from a single level
to triple-level fusion in reference to the number of discs being
replaced with integrated spacers.

Anterior Cervical Interbody Fusion (ACIF) has long been
considered the standard and is a highly effective treatment option
for cervical DDD. Numerous clinical trials have demonstrated
the efficacy of fusion as a treatment option, improving all clinical
outcomes consistently over long-term patient surveillance [16,17].
In recent years, fusion as the standard practice has been questioned
due to evidence suggesting that the procedure is biomechanically
unsustainable and damaging towards adjacent segments of the
spine. In short term clinical trials, pain reduction, and fusion are
present in nearly all patients; however, long-term trials indicate
progressive degradation of discs adjacent to the fusion site [18].
This degradation, termed adjacent segment disease, presents an
adverse event tied directly into the biomechanically restricting
nature of the procedure itself. Although fusion has been deemed
successful by clinical standards, reduction of adverse event rates
such as adjacent segment disease must be held at a high priority.
This is especially true considering the variety of alternative
treatment options in development on the market [19].

Arthroplasty

Anotheralternativesurgical option forthe treatmentofcervical
DDD is cervical arthroplasty. Arthroplasty is similar to fusion but
differs in the device used for the insertion into the space between
the vertebrae. Instead of fusing the vertebrae in one bony union,
cervical arthroplasty replaces the degenerated disc with a synthetic
polymer disc. This synthetic disc is most commonly capped with
metal plates on each side to provide a site for osseointegration with
the adjacent vertebral bodies [20]. Once fused with the bone, the
synthetic disc acts as a healthy normal functioning intervertebral
disc, restoring range of motion, and allowing degrees of freedom
that standard ACIF would inhibit. Apart from segmental mobility,
cervical arthroplasty also shows a relatively lower occurrence
of adjacent segment disease, suggesting that this procedure is a
better long-term solution to degenerative disc disease, especially
in relation to the health of adjacent vertebrae and discs. Numerous
devices for total disc arthroplasty and cervical fusion have been
subjected to long-term clinical studies that confirm the efficacy
and success of these treatment methods.

The success of both surgical procedures is based on the
decompression of the spinal cord or nerve root being constructed
by the myelopathy of the degenerating disc. Relief of signal
interference by disc discectomy and replacement or vertebral
fusion allows for restoration of essential function and reduction
of all pain index scores. The degree of improvement of clinical
outcomes is contingent upon the procedure that was chosen to
treat cervical DDD. The surgical methods and long-term results of
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cervical arthroplasty have been subject to a variety of comparative
studies with cervical discectomy and fusion [21,22]. The benefits
of arthroplasty, in contrast to fusion, depending on the return
of a mechanically functional and realistic joint provided by the
synthetic polymer disc. Cervical arthroplasty attempts to restore
the natural range of motion and degrees of freedom to the joint
space that would otherwise be fused and reduced to a single mass
of bone [19]. This treatment method of DDD appeals massively
towards the younger working force population that would be
significantly inhibited by reducing the range of motion on a day-
to-day basis. A return to the normal biomechanical function of the
C3-C7 region of the spine is especially pertinent due to the highly
mobile nature of the upper cervical region. In addition to this
superiority in mechanical function, arthroplasty has been shown to
reduce radicular/neck pain and restore natural muscle functions as
effectively as fusing two vertebrae over the disc space [11].

Cervical arthroplasty has also been the center of recent
debate surrounding the origin and factors related to the progression
of Adjacent Segment Disease (ASD). In numerous studies
investigating the long-term efficacy of fusion, there have been
statistically significant findings regarding the rate of returning
patients displaying symptoms of myelopathy in discs adjacent to the
fused vertebrae [18,23,24]. ASD is caused when the biomechanical
load of adjacent secondary discs shifts dramatically due to the
fusion of vertebrae. This fusion causes stress to the surrounding
discs that are greater than their normal load-bearing capabilities
[25]. The reduction of mobility and an increase in stress on the
adjacent segments of the spine have been the primary motivating
factors that have shifted focus from fusion to arthroplasty and
its treatment capabilities. Long term complications associated
with cervical arthroplasty, however, have damaged the promise
of overall superiority claimed by total disc replacement [26,27].
Short-term studies demonstrate the clear benefits of biomechanical
restoration and propose a promising solution to the reduction of
adjacent segment disease. However, long-term studies raise
concerns regarding adverse events that are unique to arthroplasty,
urging caution in the transition between ACIF and cervical
arthroplasty. Heterotrophic ossification, infection, disc migration,
and dysphagia are all adverse effects that have been noted in long
term clinical studies using cervical arthroplasty devices [28]. The
biomimetic nature of cervical disc replacement warrants further
investigation into the improvements that can be made towards the
devices and procedures that may mitigate many of these different
adverse events. In order to establish a new gold standard method of
cervical DDD treatment that restores biomechanical functions of
the spine while significantly reducing the risk of short- and long-
term adverse effects, further enhancements must be made to the
current technologies available on today’s clinical market.

Nanoscale Surface Modifications
Nano-surface modification for implants

Titanium (Ti) was discovered in the late 18th century and
has been used widely as paint additives to obtain the color white.
At the beginning of the 19th century, commercially pure titanium

(cpTi) and Ti alloys have been widely used clinically as implants
in the biomedical field, starting mainly in bone fusion and joint
replacement surgery [29]. Ti has been proven to provide excellent
corrosion resistance and has high biocompatibility with the human
bones [30]. Ti has been proven to improve the osseointegration,
and the stability of implants in the hosts [31-43] Their excellent
mechanical properties and chemical properties are the main
reason why they were chosen to play a critical role as artificial
implants materials in orthopedic surgery [29]. Unfortunately,
even with excellent chemical and physical properties of Ti
as implants, surgeons and patients have been plagued by the
underperformance of implants, causing the failure of the implants.
Surgeons and researchers around the world have been trying to
eliminate and decrease the incidence of bone-implant failures for
decades. The reasons for failures could be associated with the lack
of osseointegration [44] a significant difference in mechanical
properties between the implant and the surrounding bones [44],
general wear and tear around the surface of the bone and implant
as well as bacterial contamination of the implants [45].

A study in 2004 found that bone tissues and bone-
forming cells are accustomed to nanometer roughness, but the
conventional synthetic metals implants only showed roughness
in the micrometer scale and smoothness in the nanometer scale
[46]. This means that the bone tissues and cells are not able to
adhere to the implant properly when there is no rough surface in
the nanoscale of the material, resulting in callus formation, which
then encapsulates implants in bone with stratified scar tissues
[44]. This led to various studies to prove that the roughness of
nano-scale materials is essential to enhance osteoblast adhesion,
decease fibroblast formation, and decrease endothelial cells lining
that line the vasculature of the body [47]. Nano-scale materials,
such as alumina nanofiber, carbon nanotubes, rosette nanotubes, or
spherical particles of titania, were used in the studies [44] and were
shown to be successful.

Since surface topography plays a vital role in osseointegration
of the implants, many have tried different metals, metal alloys,
plastics, and bone grafts to obtain the most successful implants
that provide long term stability and least likely to acquire bacterial
invasion. Titanium Oxide Nanotubes (TNTs) have been one of the
most useful implant applications because it is easy to fabricate,
and the size of the nanotube can be controlled precisely during
assembly [48]. TNT has been shown to modulate the functions
of osteoblast cells [49-53], Mesenchymal Stem Cells (MSC) [54-
57], and endothelial cells [58,59]. Not only the nanotubes have a
lower elastic modulus of 36-43 GPa, like natural bones, compared
to conventional Ti implants, it also has better biomechanical
properties as well [60]. While the biological performance of
the TNT as implants was not well understood, it was found that
nano-scale materials, regardless of size, would increase osteoblast
functions. One study did find that cell activity, and cell functions
work best when the size of the nanotubes is less than 15 nm
[61]. Apart from TNTs, Rosette Nanotubes (RNTs) also have the
potential to be used for implant applications in the future. Because
these nanotubes are derived from DNA base pairs, the use of these
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nanotubes is favorable compared to many implants that utilize
inorganic materials. RNTs are known to be novel, biomimetic
and biocompatible, and can self-assemble under physiological
conditions.

Additional attention should be directed towards the novel
advancements being made with respect to nanocomposites and
scaffolds. Drug loaded nanoparticles, such as the RNTs, have serious
utilization potential to enhance osteoblast adhesion, integration,
and show promise to decrease the long-term failure rate of titanium
implants. Nano-coatings have similar enhanced aspect ratio benefits
compared to nano-etching and provide the additional option to
load high concentrations of bone promoting factors integrated into
these nanostructures. Many studies over the past two decades have
been focusing on the promises of what and how RNTs could bring
to the medical community [62,63]. Nanomaterial coatings, such
as the helical rosette nanotubes (HRN), are highly sought after for
their biocompatible, biomimetic, and biodegradable properties.
Other than physical modifications on the TNTs and RNTs where
the size of the implant materials was incorporated, chemical
modification of titanium was also considered. Some studies
showed that chemically modified titanium with the incorporation
ofions, such as zinc (Zn), calcium (Ca), Chlorine (Cl), and lodine
(D), reduces biofilm formations from E. coli [60]. Although the
mechanism of action of how anodic oxidation influences bacterial
adhesion on the surfaces of the implant [64-66], an in vitro study
has shown that bacterial counts ion-implanted surface decreased
by 55-80% compared to cpTi [67]. On the other hand, the RNTs
can be chemically functionalized with peptides to enhance cellular
adhesion, migration, and differentiation after delivery. These
nanotubes are formed from molecules derived from DNA base pairs
self-assemble via hydrogen bond and stacked on each other via a
robust pi-stacking interaction and can be measured up to 200-300
microns in length. The diameter of the nanotubes is approximately
up to 3.5 nm, while the inner hydrophobic core of the nanotube can
be about 1.1 nm in diameter.

Implant associated infections are one of the most severe
complications in this industry and difficult to treat due to the
need for additional surgeries leading to higher healthcare costs
than expected. With the current global infection risk at 2-5% in
orthopedic surgery [68], which is still high, this issue presents
a significant burden to all the researchers, surgeons as well as
patients [29]. Hospital-acquired infection, such as Staphylococcus
aureus (S. aureus), is responsible for the infection that occurred
during surgery from both skin and mucous membranes [69].
A series of disinfection and stringent aseptic surgical protocol,
such as autoclave and ethanol immersion, is applied to decrease
the bacterial contamination, but the bacteria could readily invade
after surgery and cause infection on the nearby tissues. Typically,
the adhered bacteria that caused the infection form biofilm on
the implant, which makes it highly resistant to host defense and
antimicrobial therapy [70,71]. In addition to that, surgical trauma
can compromise the host defense. Thus, the implant insertion
would increase the chance of bacterial invasion into the host. Many
antiseptic surgical methods and protocols are applied because the

removal of biofilm has been proven to be challenging. Researchers
and manufacturers are aiming to optimize implants to minimize
and eliminate the biofilm formation once and for all.

As mentioned previously, implants with TNTs materials are
useful in combating the invasion of bacteria as well as increasing
the rate of osseointegration of the bone cells with the implants.
Due to its cylindrical nature, the nanotubes can act as drug carriers
such as the growth factor as well as act as antibacterial agents
like silver, Ag [72]. In addition to that, the nano-scale roughness
of implants has been proven to be desirable for the bone cells to
adhere quicker than conventional metal implants. Similarly, RNTs
also show promising materials as nano-surface modifications for
implants. Therefore, it is expected that both TNTs and rosette
nanotubes can be used as materials for implants as joint replacement
(arthroplasty).

Nano-surface modifications on Arthroplasty implants

Longterm complications associated with cervical arthroplasty
have damaged the promise of overall superiority claimed by total
disc replacement [26,27]. Short-term studies demonstrate the clear
benefits of biomechanical restoration and propose a promising
solution to the reduction of adjacent segment disease. Overall,
arthroplasty has shown statistically significant improvements
in NDI and VAS scores over fusion, as well as a greater overall
range of motion at the site of disc replacement [73]. C2-C7 range
of motion improved in comparison to fusion groups while also
showing lower rates of degradation in adjacent segments. Pain
relief and functional recovery were superior in most patients
undergoing arthroplasty in comparison to fusion. However, long-
term studies have raised concerns regarding adverse events that
are unique to arthroplasty, urging caution in the transition between
ACIF and cervical arthroplasty.

Heterotrophic ossification, infection, disc migration, and
dysphagia are all adverse effects that have been noted in long
term clinical studies using cervical arthroplasty devices [28]. The
biomimetic nature of cervical disc replacement warrants further
investigation into the improvements that can be made towards the
devices and procedures that may mitigate many of these different
adverse events. In order to establish a new gold standard method of
cervical DDD treatment that restores biomechanical functions of the
spine while significantly reducing the risk of short- and long-term
adverse effects, further enhancements must be made to the current
technologies available on today’s clinical market. The reduction
of these adverse events can begin by focusing on the enhancement
of the site of osseointegration. Decreasing the time necessary for
vertebral attachment and osseointegration can, in turn, reduce
the risk of disc migration and heterotrophic ossification. Disc
migration often occurs due to instability in the joint space where
implantation occurs, which in many cases, results in the significant
anterior shift of the device [74]. This instability is primarily
caused by the absence of an efficient and effective adherence
design on the endplates of arthroplasty devices. Enhancements
of the attachment site, such as TNTs formation, increases the rate
of integration between bone and implant can then create a more
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controlled environment for intended growth and attachment. An
overall reduction in integration and recovery time may also result
in the reduced risk of intervertebral disc shift.

Helical Rosette Nanotubes (HRNs), developed in the early
2000s, contain a lysine sidechain that have been shown to improve
osteoblast adhesion when coated onto titanium samples suggesting
an integral role in the increased protein activity between implant
and external environment [75]. HRNs have also been shown to
increase osteoblastic activity embedded within hydrogels simply
by leaving a functionalized lysine group exposed and has also
presented a decreased pHEMA polymerization time within injected
hydrogels [76]. Additionally, hydroxyapatite (HA) loaded HRN
has demonstrated similar results, including evidence suggesting
nanoscale HA loaded onto these HRNs provide the best results
regarding increased osteoblast adhesion and cytocompatibility
[77]. The promise shown by drug-loaded HRNs encourages the
conduction of further studies regarding the ideal titanium implant
coating in relation to the implant location. Arthroplasty devices
coated with drug-loaded nanoparticles may benefit from increased
osteoblastic adhesion and anti-bacterial properties with the properly
loaded nanoparticle such as JBNTs.

Implementing the concept of nano-surface modifications
using an adequately studied method such as TNTs onto devices
such as the Bryan Cervical Disc, ProDisc-C, or Prestige LP could
help advance current fixation enhancement efforts in the clinical
setting [78]. These three devices have shown varying degrees
of promise through multiple variations in design; however, to
our knowledge, no products on the market have utilized the
antimicrobial and enhanced osseointegration benefits of TNTs or
JBNTs. Many studies have demonstrated the superiority of these
devices compared to traditional fusion practices, further noting the
need for correctional measures to reduce the novel risks associated
with disc replacement [79]. Enhancement in biomechanical
restoration time and integrity may also assist in the reduction
of adjacent segment disease incidents. Once these mechanical
practicalities are established, cervical arthroplasty will be the
most effective DDD treatment method to lower chronic pain and
reduce adverse event risk post-surgery. Considering that there are
no commercially available cervical arthroplasty products on the
market that utilizes the benefits of the TNTs or JBNTSs provide to
other implants, it is logical to establish that the next step forward
for this device is to introduce the application of TNTs or JBNTs
to cervical arthroplasty implants. One of the conventional ways to
avoid bacterial infection on implants is by coating the implant with
antiseptics or antibiotics, such a Gentamicin, which is a commonly
used antibiotic due to its broad antibacterial spectrum. Another way
to avoid bacterial infection is to apply antibacterial drugs either
locally or systemically by the surgeons after the surgery [80].

The TNTs, on the other hand, will be able to deliver drugs
straight into the bone during the surgery and boost osseointegration
instantly due to its nano-scale nature. A similar procedure of
coating the implants with antibacterial agents can be done, but it is
mainly as precaution step rather than prevention. It is also possible
to incorporate growth factors such as bone morphogenetic proteins

(BMPs) to promote bone growth into the nanotubes. When applied
locally, different growth factors can influence bone cells’ adhesion,
proliferation, and differentiation. If BMPs can be incorporated
into TNTs during the fabrication of TNT, it can enhance and
improve the osseointegration of bones onto implants, which
could decrease the time for vertebral attachment and decrease the
chance of disc migration [81]. Similarly, JBNTs can be modified
for the same purpose. Encapsulation of drugs or growth factors,
such as BMP-7, with JBNTs, could stabilize proteins and enhance
the bioavailability of a drug as well as improving osteoblast
proliferation and functions [82].

TNTs or JBNTs could also be developed as a dual drug
delivery carrier where antimicrobial and anti-inflammatory agents
are incorporated into the channels of TNTs. The incorporation
of the anti-inflammatory drug could prolong the longevity of the
implants by abating the hosts’ immune systems during and after
the insertion of the implant. In addition to that, an antimicrobial
such as silver (Ag), have been shown to release Ag+ ions that
interfere with bacterial cell walls, and ultimately reducing
bacterial adhesion, and viability [29] can also be incorporated into
TNTs for further prevention of bacterial invasion. These drugs can
be delivered instantaneously into the surgery site as soon as the
implant came in contact with the cervical vertebral. While there are
many successful studies in vitro for the TNTs in the past, there are
not many studies that prove TNTs work as a drug carrier in vivo.
Studies such as the protocols for drug formulation standardization,
their ultimate dosage, the most suitable size of TNTs for the best
drug, and the drug release activation needed to be investigated
[75]. Furthermore, there have not been studies to show that TNTs
or JBNTs would work as materials for cervical arthroplasty.
However, TNTs and JBNTs as drug carriers are still encouraged
in the field, with the hope of improving osseointegration time,
minimizing bacterial contamination during and after surgery as
well as increase the durability of the implant. Additional research
and analysis are definitely encouraged to understand the application
of TNTs as cervical arthroplasty implants.

Other than the incorporation of drugs into TNTs, many
studies have also investigated their controlled local release into
their surroundings after the surgery. It was understood that even
though TNTs is one of the most promising local drug-delivery
systems, a different drug release activation has been considered
based on different surgery site [83,84]. Hence, it is still unknown if
an internal (in vivo) or external activation system for drug release
is needed for the application of cervical arthroplasty implant. The
understanding of drug release for TNTs as cervical arthroplasty
implants will provide new insights for prospective research. JBNTs
show increased applicability to arthroplasty device nano-coatings
due to their previously established slow drug release properties.
JBNTs have been shown to successfully encapsulate and slowly
release dexamethasone, a popular anti-cancer drug, within the in
vitro setting [85]. Once translated to the in vivo setting, JBNTs
would be an ideal candidate for arthroplasty device nano-coatings
due to their previously established low cytotoxicity profile and
slow-release properties. JBNTs loaded with osseointegration
promoting factors and anti-bacterial agents could be incorporated
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into the surface of cervical arthroplasty devices, causing increased
integration and lower infection rates during the extended period of
healing and ossification. Once the loaded drug has been released,
natural biodegradation of the JBNTs will occur, leaving no toxicity
profile to ensure the unaffected health of local tissue.

Although both ACIF and arthroplasty have advantages and
disadvantages, both doctors and patients need to understand which
option benefits them the most. Hopefully, TNTs and JBNTs can
be integrated as the materials for the development of cervical
arthroplasty implants in the near future.

Conclusion

Nano-surface modifications on titanium arthroplasty
implants provide an opportunity to advance degenerative disc
disease treatment. Drug loaded modifications (such as TNTs
and JBNTSs) can be easily be fabricated on the contact surface of
implants, enhancing osseointegration, decreasing recovery time,
and providing antimicrobial and anti-inflammatory agents directly
to the site of activity. These enhancements provide solutions to
the different adverse events associated with cervical arthroplasty,
establishing superior performance outcomes over other DDD
treatment options, such as anterior cervical interbody fusion.
A nano-scale modification coated cervical arthroplasty device
would establish a biomechanically functional and stable synthetic
joint with significant relief of radicular pain, neck pain, muscle
weakness, and fatigue caused by cervical disc degeneration.
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