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1. Introduction

The porous medium equation (PME), f; = A(f™) with m > 1, arises in the study of diffusion of gas through a porous
medium under the action of the Darcy law [12]. It is widely used in many applications, such as flow through porous media,
heat and mass transfer or combustion theory, population dynamics and tumor growth models, etc. (see [30,14,17] and
the references therein). The PME has several distinct properties, including bound preserving, degeneracy and finite speed
propagation. We refer to [25,26] for a summary of its analytic properties.

There are many challenges in solving the PME numerically. A good numerical scheme should preserve, as much as
possible, essential properties satisfied by the PME, in particular: (i) bound preserving which implies in particular positivity
preserving; and (ii) energy dissipation. It should also be able to accurately deal with degeneracy and finite speed propagation
which means the solution remains to be zero in certain region for some time if it initially has a compact support. The
degenerate region in which f =0 will impede the usage of many traditional parabolic schemes. Besides, for fractional
powers m, the numerical solution at any time should be non-negative to avoid producing complex values. Thus, it is critical
that a numerical scheme for PME should preserve bound.

Many numerical methods have been proposed for the PME, such as Galerkin methods with finite element approximation
[16,21,8,28,9,31,10,27,15], linearization schemes [24,18,20,13,11], perturbation approach [19,7], and particle schemes [29,6].
However, to the best of authors’ knowledge, there is no numerical scheme which is provable bound preserving and energy
dissipative.

It should be noted that the PME, along with Keller-Segel equation, Poisson-Nernst-Planck (PNP) equation and many other
nonlinear parabolic equations, can be viewed as a Wasserstein gradient flow [1] whose nonlinear structure guarantees that
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(i) the solution will remain positive if it is initially so, and (ii) the solution is energy (entropy) dissipative. Therefore, a
key ingredient in designing numerical schemes which are positivity preserving and energy dissipative is to preserve the
Wasserstein structure in the discrete setting. This approach has been used recently to construct bound preserving and
energy dissipative schemes for the Keller-Segel equation in [23] and for the PNP equation [22].

However, to deal with PME, there are two additional essential difficulties which are not present in the Keller-Segel and
PNP equations: (i) bound preserving, and (ii) degeneracy. The fact that the solution may vanish in certain region prevents
a direct application of the approach used in [23,22]. An effective approach to overcome the degeneracy is to introduce a
perturbation [19,7]. More precisely, the initial value is elevated by a small perturbation & > 0 such that the initial condition
in the whole domain is positive, which will also guarantee the solution remain to be positive for all time. In this case, the
approximation error will depend on the discretization errors as well as perturbation parameter. A fully implicit backward
Euler scheme is considered in [19], and the L2 error is estimated to be of order (7 + £2)1/2,

In this paper, we shall combine the approach developed in [23,22] for Wasserstein gradient flows and the perturbation
approach in [19,7] to construct a class of nonlinear schemes, both semi-discrete in time and fully discrete with a finite-
difference in space, which are uniquely solvable, bound preserving, and in the first-order case, also energy dissipative.
Moreover, the schemes at each time step can be interpreted as Euler Lagrangian equations of convex functionals, so they
can be efficiently solved by a Newton type iterative method with just a few iterations. We believe that our schemes are the
first which is bound preserving as well as energy (entropy) dissipative.

The organization of this paper is as follows. In Section 2, we introduce the Dirichlet and Neumann problem of PME, and
present the perturbation technique. In Section 3, we construct semi-discrete schemes and prove their solvability, uniform
boundedness, mass decrease, energy dissipation and H' stability. In Section 4, we consider fully discrete schemes with
finite-difference in space and establish their properties. In Section 5, we present ample numerical experiments in 1-D and
2-D to validate our schemes. We conclude with some remarks in the final section.

2. The porous medium equation

We describe below the Dirichlet problem of the PME that we shall consider in this paper and recall some of mathematical
properties.

2.1. The Dirichlet problem

We consider the following PME

%—{:A(f’“), inQr:=Qx(0,T), (21)
with initial condition
f(x,0)= fo(x), ing, (2.2)

and one of the boundary conditions

Dirichlet B.C.:  f(x,t) =0,

. inT7:=9Q x [0, T], (2.3)
Neumann B.C.: é,‘—vf(x, t)=0,

where m > 1 is a constant power, and v is the outer normal to the boundary 2. The following existence result is well
known (see, e.g., [26]):

Theorem 2.1. Assume Q is a C%* domain, and fo is bounded in C%($2), then the PME (2.1)-(2.2) with Dirichlet B.C. admits a solution
f in C>1(Qr). Furthermore, if fq is C°°, then so is f. Same results apply to the Neumann problem.

However, the uniqueness of solutions is not guaranteed, since A(f™) =mV - (f™~1Vf), implying possible degeneracy
where fp vanishes. The issue can be solved by introducing the following non-degenerate assumption on the data

0<mq < fo(x) <mp, VxeQ. (2.4)

Under the above assumption, the Dirichlet or Neumann problem is uniquely solvable and the solution f is uniformly
bounded above and below as the data, i.e.

my < f(x,t) <mp, V(x,t)e€Qr. (2.5)
However, in many applications of interest, we can only assume that the initial data is bounded and non-negative, i.e.
0< fo(x) <mp, VxeQ. (2.6)

In this paper, we always assume (2.6) holds, and, for simplicity, € is sufficiently smooth (e.g. a C>% domain).
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2.2. Some properties

The PME (2.1)-(2.3) is energy dissipative under the hypothesis (2.6), and is mass decreasing for Dirichlet boundary
condition and mass conservative for Neumann boundary condition.

e Taking the inner product of (2.1) with f™ and integrating by parts, we obtain energy dissipation

d

a/f’”“dx:—(mﬂ)/IV(f'“)IZdXSO. (2.7)
Q Q

e For Dirichlet B.C., integrating (2.1) over €2, noticing that

9 m _ fm _ m _

;ﬁ—(fm)ds:yg fjm 170 = T “)ds:—¢ tim 7%= g (2.8)
on In]—0 [n| In|]—0 |n|

Q aQ

which is non-positive since f > 0 in 2, we find that the mass is decreasing as

d )
a /fdx: yﬁ a—n(f’”)ds <0, (2.9)
Q

Q2

where n is the outward unit normal of 9.
For Neumann B.C,, ﬁ,g (,f’—n(fm)ds =0 directly leads to the mass conservation,

/f(x,t)dx:/f(x,O)dx, vt > 0. (2.10)
Q Q

3. Semi-discrete (in time) schemes

We construct in this section bound preserving semi-discrete (in time) schemes for the PME with Dirichlet boundary
condition. Note that all schemes that we construct can be used for PME with Neumann boundary conditions with simple
modifications, so we only discuss the Dirichlet case in the following sections.

3.1. A perturbed problem

If f is positive and differentiable in €, then by noting Vf = fVIn f, (2.1) can be rewritten as

%:;nv.(fmvmf), in Qr. (1)

However, the existence of term In f requires f > 0 in Qr, which is a little more strict than the assumption (2.6). Hence
we introduce a small perturbation to the initial data to enforce f to be strictly positive. That is, we solve the following
perturbed problem

os:
at

with initial condition

=mV-(f"VInfs). inQr. (3.2)

fe(x,0)= fox) +¢&, ing, (3.3)

and boundary condition

fé‘ (X7 t) =¢, in ZTa (34)

where ¢ > 0 is a small positive number to make sure the transformed log-type PME (3.2) to be well-defined and non-
degenerate. Without loss of generality, we assume & < my.

3.2. A first-order scheme

We first study the scheme in the strong formulation, followed by the study of its weak formulation which allows us to
establish uniform bounds for the numerical solution.
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3.2.1. Strong formulation
Let N be the total number of time steps, and t := T /N, we consider the following nonlinear scheme for (3.2):

- g

- =mV - ((fFH™VInf?), inQr, (3.5)

with initial condition

20 = fox)+e, inQ, (3.6)

and boundary condition
flx)y=¢, onaQ. (3.7)

Theorem 3.1. Let fgfl > 0 in the scheme (3.5), then f} is uniquely solvable and positivity preserving with boundary condition (3.7),
ie, fl >0.

Proof. Let £, be a linear operator that £,g is the (unique) solution of

—mtV - ((fF-H"Vu)=g, ing, (3.8)
u=—Ine, onadx. ’
Note £, is self-adjoint and positive definite. Consider the functional
1 _ _
FUft= [ fang = vaxe 5 [ = 127 - £ 39)
Q Q
It is easy to check that F is strictly convex in the admissible set
A:={feH*(Q): f>0inQ, flao=¢}. (3.10)

Hence, there exists a unique f]' € A such that % =0 [4]. Since % =Inf+Ly(f — f*1), we find that % =0 is exactly
€ &
the scheme (3.6). O

Remark 3.1. If we integrate (3.5) over Q with fI' — ¢, the following L2 energy dissipation can be obtained by similar
argument,

n—1\m
[1zeax— [1zPax< -me [ %T)Ivfiflzdx.
Q Q Q €

3.2.2. Weak formulation and uniform boundedness

It is shown above that the scheme (3.5) is positivity preserving, but does not show it is bound preserving. In order to
prove a uniform bound and associated properties for the numerical solution, we shall consider a weak formulation for (3.5).
Let

HY(Q):={f e H'(Q), f = 0inQ, flso=¢}. (3.11)
Then a weak formulation of (3.5) is: Given f"~' e H1(%), find f € H}(S) such that

(f2=f27" ) +mr ((FH™VIn 2, Ve) =0, Ve € Hy(%Q). (312)
Theorem 3.2. Let € < f‘S"*1 <mg + &. Then, the problem (3.12) admits a unique solution such that

e<fi<mg+e. (3.13)

Proof. The existence of weak solutions directly follows Theorem 3.1, which implies the weak problem admits at least one
solution. The uniqueness can be derived as follows. Let f{' and f} be two solutions of (3.12), then it follows

(f1 = f3.¢) +mT ((fFH™V(n f] —In f§), V$) =0, V¥ € HY(RQ). (3.14)
Taking ¢ =1In fI' —In f3 € H\(Q) gives
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(ff = f2.Inff —In f3) + me ((f}~ Hmy(n f —In £, V(n fI' — In fH)=o. (3.15)

The first term on the left is non-negative because of the monotonicity of Inx. This is also true for the second term since
(f3=1y™ > 0. Therefore both terms have to equal to zero, which implies fI = f3.
It remains to show the uniform bounds. Taking ¢ =[& — f}1+ in (3.12), we find

(fl—ele— fM4) +me (FH"VIn L Vie — f14) = (F7" —e.le — f4). (3.16)
Note the first term on the left is non-positive, and the second term equals to
n—1\m
—mt / e )" |VfI%2dx <0,
fE
{fé<e}

so the left hand side of (3.16) is non-positive. But the right hand side of (3.16) is non-negative, hence all the three terms in
(3.16) are equal to zero, which implies meas{f <&} =0, i.e. f} >e¢.
Similarly, by taking ¢ = [f} —mgo — €14, we can obtain f] <mg+e¢e. O

The uniform boundedness of the weak solution is consistent with that of classical PME equation (2.5), and plays an
important role for our analysis below. In particular, we derive from (3.13) that

MHE 1
/|v1nfg|2dx= (f,f)z dx < 8—2/|Vf£|2d><-
Q Q ¢ Q

Moreover, since the classical solution of (3.5)-(3.7) solves the weak problem (3.12), the boundedness result (3.13) is also
true for (3.5)-(3.7), by which we can show the classical solution is mass decreasing and energy dissipative. More precisely,
we have

Theorem 3.3. The solution of scheme (3.5) with conditions (3.6) and (3.7) is mass decreasing, i.e.,

/fgdx</f” ldx, (317)

and energy dissipative (as € — 0) in the sense that

E[fM—E[f" " <-mt /(f” l)m|Vlnf£’|2—8m’11n8§£aa—nfgds , (3.18)
Q2
where E[f]:= [, f(In f — Ddx.

Proof. By integrating (3.5) over 2 and performing integration by parts, it follows that

/fsdx—/f" dx =mg/v-((f£‘1)mv1nfg)dx
_ n-1 _ LU l)'“ 9 '
= mazf(fg ln fids = ¢ fg (3.19)

where the last inequality is derived by using a similar argument as in the proof of (2.9) and the boundedness (3.13).
It remains to prove the energy dissipation law. By multiplying In f on both sides of (3.5), integrating over € and
performing a similar calculation as in (3.19), we obtain

/(fg fHin fldx=m /V.((fg—l)'"vmfg)lnfgdx

n—1ym
¢p@ "infE 2 poas

_— /( MY In 02

3
=—m /(fg—1)m|v1nfg|2 —gm1 1ns§£a—nfgds
Q

aQ
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Given a, b > 0, by Taylor expansion, there exists & between a and b such that

2
(a—b)lna=(alna—a)— (blnb—b) + (@ 2;) .

Hence,

/ 0 £ — Tydx— / (I 71— 1yde < / (F7 — £y In fidx <
Q Q

Q
a
—mrt /(fg—l)mwlnfg2 —gm-1 1ns5£8—nfgds :
Q aQ
which is the desired energy dissipation law. O

Next, we derive the [2(H') stability for the semi-discrete weak problem (3.12).

Theorem 3.4. Under the hypothesis of (2.6), 6] :=In f] satisfies

p
) e 2962 2 < (1 + Ine) - Cm. mo, Q).
n=1
forany p=1---, N. Especially, it satisfies
N
T [VOII® < (1 +1ng) - C(m,mg, Q).

n=1
Proof. Rewrite the problem (3.12) as

Ine

find 0" € H! () :={0 € H'(Q) : tr(9) = In ¢ on 3} such that
(egn — el qb) +mt (em(’?_lV@Q, ch) =0, V¢eH\(Q),

with 82(x) = In(fo(x) + €).
Taking ¢ =67 —Ine € H}(Q) in (3.23) leads to

(eeg —ef o - lns) +mt (emeg*1 ver, VOQ) =0.

Sum up (3.24) forn=1,---, p, we obtain

p
(695 —e% 95) +mrz (emgéHVG;’, VOQ) =Ine (eeg —efi 1) .
n=1

M=

1

3
Il

Since Ine <6} <In(mg + €) by (3.13), the first term in (3.25) can be bounded from below as follows.

0F (%)

p p
Z/(eag —e"g_])egdxz Z/ / se*dsdx
n=1g¢

n=1
Qo)

0F (x)
:/ / sesdsdx:/((eg’ —1)e? —(93—1)e"?) dx > —C(mg, Q),
2020 &

where C(mg, ) is a constant only depending on mg and 2.
On the other hand, the right hand side in (3.25) satisfies

lne/(egfp —egg)dxglns-C(mo,Q).
Q

Combining the above relations into (3.25), we obtain the desired results. O

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Remark 3.2. Introducing the transformation 67 :=In fJ is only for convenience in the statement and proof of Theorem 3.4.

In numerical simulations, we solve the equation for fJ directly and do not compute 6}.
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3.3. A second-order scheme

Special care has to be taken when constructing second-order schemes since linear extrapolation of two positive functions
is not guaranteed to be positive. Therefore, a nonlinear extrapolation has to be used. For example, we can construct the
following second-order scheme based on Crank-Nicolson:

n__ fn—1 _~ 1
fe—szmv.((fg” My In Iz +2f > inQr, (3.26)
~n_l
with initial condition (3.6) and boundary condition (3.7). Here fg" 2 is defined by
fwl TG — [, if3f > 172 wxe Q, (3.27)
’ (fQ‘l)%/(f;‘—z)%, if3f11 < f1=2, otherwise, '
which is a second-order approximation to fe(x, t;—1,2) and always positive.
By using similar arguments as in the proof of Theorem 3.1 with (3.9) replaced by
o n f + fa
Fifl:= [ (f+ fH(n > Ddx + (f = f8) £a(f = fHdx, (3.28)
Q Q

we can prove the following result:

Theorem 3.5. Let fg‘l, fj}‘z > 0. The scheme (3.26) with conditions (3.6) and (3.7) is uniquely solvable and bound preserving, i.e.,
f& > 0. Furthermore, the solution is mass decreasing, i.e.,

/gw</ﬂlm

Note that we are unable to prove that the second-order scheme is energy dissipative as the first-order scheme.
In order to establish a uniform bound for the numerical solution, we consider the following weak formulation of (3.26):

find f € AL() such that

p1 0 fne 3.29
(gh—ﬂ—k¢y+mr(u; %mvmﬁi§—ﬁv¢>=a Vo € HY(Q). (3.29)

It can be shown that the problem (3.29) admits a unique solution by using similar arguments for the first-order case.
However, we can only derive a uniform bound for (f} + f;‘”)/Z.

Theorem 3.6. Assuming & < fg_1 <mg + &, the solution of (3.29) satisfies € < f’?%ﬂH <mg+e.
Proof. By taking ¢ =[¢ — fﬁ ]+ in (3.29), it follows
(ﬂ—fjs &+J‘ )+mr0ﬁ”5Wme?+f , Ve — f5+f )
::< g [e — fg*;f ]+>. (3.30)

Note the second term on the left of (3.30) is equal to

mt TAR e
= e SR AR TR

n_ gn—1
{x:7f€+£s <e}

n n—1
Also, note { : % < 8} {fg < 8} since fg“l > g, so the first term on the left of (3.30) is non-positive. But the right

hand side of (3.30) is non-negative, hence all the three terms in (3.30) are equal to zero, which implies meas{ff +iE”

n—1
e} =0,ie. f£+f£ >é.

n n—1
Similarly, by taking ¢ = [fé T mp — €]+, we can obtain % <mp+e. O
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Since we can not apply the above results recursively to derive a uniform bound for f, we construct below a modified
scheme that will allow us to do so.

o Compute fgn from

on _ fn—1 ~n_ 1 Ik n—1
fe —Je =mV- ((fg" Z)mvm%> ., inQr,
(3.31)
with 74 o ST =17, i3> fI7? VxeQ
= 3 1 .
‘ (fi=N2/(f*2)2, otherwise.
If ﬁn >eVxeQ, set ffl = fg" and go to the next time step.
e Otherwise, set
R I
&€ - 2 )
pgl
and compute fgn+2 from
An+% _ Anf% _ An+% Anf%
fe Je _my [@ymeml—2 T g,
T 2 (3.32)
~ p_1
with fe" = (fe" )%/ £,
DU NI |
set fil = fe 2’; e 2 with homogeneous Dirichlet boundary condition, and go to the next time step.

Following a similar procedure as in the proof of Theorem 3.6, we can establish the following result:

Corollary 3.7. Assuming ¢ < =1 <mq + &, then the solution of (3.31)-(3.32) satisfies
e<fl<mp+e.
4. Fully discrete schemes

We consider in this section fully discrete schemes for the PME using a second-order finite difference method for spatial
discretization. To simplify the presentation, we shall only consider the 1-D case below, but the scheme and the associated
results can be easily extended to multi-dimensional rectangular domains.

4.1. First-order in time schemes

Let Q = (—L, L) with L > 0, given I € N*, we denote h :=2L/I be the grid width and x; := —L +ih, i=0,---, 1, be the
collocation points. Let f' be the approximation to fe(x;,n7), then a fully discrete version of (3.5) is as follows

n_ en-1
i=h hﬁz ((fir:%l)m(ln n—Inflh— (fl,”_‘%l)m(lnf,.” - lnfi’L])> i=1,- 11, (41)

T
with initial condition
fl=fox)+e, i=1,---,1-1, (4.2)
and boundary condition

fi=fi=e “y

forn=1,---, N. It is clear that the above scheme is formally second-order in space.
The solvability of the fully discretized scheme can be described as follows.

Theorem 4.1. Let fi"_1 >0fori=1,---,1—1inthescheme (4.1), then f":=[f} f3 --- f,”_l]T is uniquely solvable and positivity
preserving with condition (4.3), i.e, f" > 0.
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Proof. The scheme (4.1) leads to a system of nonlinear equations

F(f" =0, (4.4)
with

F(f™) ;:%(f“—f"*1)+A1nf”+c, (4.5)
where
—hﬂz(f.":f)m, j=i-1,
i <(f” O™ (1 1‘)“1) j=i,

(f+1)m j=i+1,

0, [j—il>1,

(A)ij = (4.6)

T
and c:[—hﬂz(fzfl)mlns,o, ,0, ——(f" )mlns] .
2

It can be easily seen that A is symmetric positive definite, hence so is A~1. Then the unique solvability can be directly
obtained by the fact that (4.4) is equivalent to A~'F(f™) =0, which is the Euler-Lagrange equation of the strictly convex
function

1
G =o-(f" - FHTATN = Y+ (T An " - D +cTAT (4.7)

The proof is complete. O

The above nonlinear system can be solved efficiently by using Newton’s iteration (see the numerical examples in the
next section) with Jacobian of F given by

T )’”/f,”l, j=i-1,
(f” )+ (f 11)’")/f,", j=i,

(VF),']' = ) (4.8)
(f" )’“/ f d=i41,
O, lj— 1| > 1.
4.1.1. Uniform boundedness
Similar to the semi-discrete cases, we have
Theorem 4.2. Given € < fi"’1 <mo+ei=1,---,1—1with f('}’1 = fn~! =, then the solution of (4.1) satisfies
e<fll<mg+e fori=1,---,I—1landn=1,--- N. (4.9)

Proof. Multiplying ¢; € R to both sides of (4.1) with ¢9 = ¢y =0, summing up for i=1,---,I — 1 and using summation
by parts, we obtain

-1 -1
Y7 = 5D+ T U™ = In ) i1 — 6 =O. (410)
i=1 i=0

Taking ¢; = max{e — [, 0} in (4.10) gives

1-1 -1

> (I —e)max{e — .0} = Y (f7 — &) max{e — fI'. 0}
i=1 i=1

Z(f” 11) (In f; —In f) (max{e — fI' .0} — max{e — f", 0}) =0.

Note all three terms (including the signs) on the left side are always non-positive, and the right side is zero, so the only
possibility is that all terms are zero, in particular,
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-1

> (S —e)max{e — f.0}=0

i=1

which implies max{e — f*,0} =0, i.e. f{' > &. Similarly, we can show that f/' <mg+¢. O

After obtaining the boundedness, we can show

Theorem 4.3.Given ¢ < f" ' <mo+¢,i=1,---,1— 1 with f§~' = fi!

scheme (4.10) is mass decreasing, i.e.

= ¢, then the solution {f['} of the fully discretized

1t
—Zf” Zf" ! (411)
1 1
and energy dissipative in two separated forms, i.e.
em 11
El—Ef'<— Z|lnfl+] In fI'?, (412)
i=0
-1
where Ej :=h}_ f{'(In f{' — 1), and
i=1
-1 -1 omr 122
S =Y 1P < —mZ(f” DM — TR (413)
i=1 i=1 0 i—1
Proof. By summing up (4.1) fori=1,---,1 —1, we obtain
= -1 m
- (Zf,." - Zf{“) = ((fl”__%l)m(lna —Inflt)— (fg_])m(ln - lns)) . (4.14)
i=1 i=1

By (4.9), the right hand side of above is non-positive, which implies (4.11).

To prove (4.12), it suffices to take ¢; =In f[' in (4.10) then apply (4.9) and (3.20).

To prove (4.13), we take ¢; = f[" in (4.10), then it follows

Z(f"“ FOF + h2 Z(f” "N fy =10 D~ )

i=1

+mf( (D™ ne —In ) ffy+ (7" n A - lng)f1”>:O. (415)

By (4.9), the third term on the left side is non-negative. Hence by using the identity

_ 175 2 2
(a—b)a_i(a —b +(a—b)),
it follows that

-1 -1 1-2 (™ 1)’”
2mr z+1

2 ~1p2 -

DU =Y < =Sy ———If — A

i=1 i=1

i=1 1

where &' > 0 takes a value between f' and f}, ;.

4.2. Second-order in time schemes

(4.16)

Then we can obtain (4.13) from the above and (4.9). O

The fully discrete version of the modified second-order Crank-Nicolson scheme (3.31)-(3.32) is as follows:
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e Compute {Ti”} from

n—1 “n n—1
f f (f )Tﬂ(ln i+1 2f1+1 _]nfi +fl )

T 2
[ AN R ey
(f z)m fz fz —In fl 1 fz 1 , (417)
2 2
with
Fd %(3f,-"‘31 —f,-”‘zg, if3f77" > f172, V),
i (Y2 /(ff7H2, otherwise.
If f” >eVi, set fl'= f" Vi and go to the next time step.
e Otherwise, set
gl fn fn 1 .
f,. 2 s Vi
gl
and compute {fl.n+2} from
~n+l  =n-1 ~n+3 ~n+l =n-1
fi ’ —fi ’ :E(?n ym lan—l2 +f1+1 —lnfi ’ +fi i
T h2 ity 2 2

An-&-% An—% n+2
m ~n m fi +fi f +f
— Ui (I > —In 5 . (4.18)

with
fori=1,.-..,1—1 with conditions (4.2) and (4.3), and go to the next time step.

Then, we set f'=

Following similar arguments in the proofs of Theorem 4.2, we can also establish the following results:

Theorem 4.4. Given ¢ < fi"’1 <mg+e¢i=1,---,1—1with f(’}’1 = fi~! =&, then the solution of the second-order scheme
(4.17)-(4.18) satisfies

e<fl<mg+e fori=1,---,1-1, (4.19)
and
e 11
;Zf,-” < ;Zfi”‘l. (4.20)
i=1 i=1

We can also construct a second-order scheme based on the second-order backward difference formula (BDF2) as follows:

3fin _ 4fin71 + fin—z m
2t

((fn 1) (In fI! i1 lnfin)—(?ii%)m(]nfin—lnfin_l)),i:],...,]_]’ (4.21)
with
an . Zfin_l _ fin—zy lfzf;l_] > f]’:l_z,vj,
P2/ fm2, otherwise.

For multi-dimensional cases, fully discretized schemes of first- and second-order can be constructed by using similar
finite difference approaches on (3.5) and (3.26) with corresponding initial and boundary conditions. For the second-order
BDF scheme (4.21), we are unable to prove a uniform bound for the solutions.
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5. Numerical experiments

We present several numerical examples in this section to validate our theoretical results and demonstrate the effective-
ness of the proposed schemes. For all examples, the standard Newton’s iteration is employed to solve the nonlinear algebraic
equations in each time step with stopping tolerance 10~ 12,

5.1. Accuracy test

First we test the accuracy of schemes by solving the Dirichlet problem of PME with a source term g:

%:A(fm)-l-g(x,t), in (0, T) x (=1,1), (5.1)

such that the exact solution is given by

f(x,t) =exp(—t) cos(wx/2), (5.2)

which is C* and supported in [—1, 1].
To evaluate the accuracy, we use the maximum error and discrete L2 error defined by

1
2

-1
e = max | - f(x,-,T)', e == (nY () . (5.3)
! i=1

We discretize the space with a high resolution I = 8000 and test our schemes with various 7 and ¢. The final time is set
to T=1. The errors for t=7=2"7,--.,7=2"10 and ¢ =10~*...,10~1° by BDF1, BDF2 and modified C-N schemes are
listed in Table 5.1 and 5.2. Furthermore, we list the average number of Newton’s iterations in each time step in Table 5.3. It
is worth mentioning that the Newton iteration does not guarantee the positivity of the intermediate solutions so negative
intermediate solution may occur, although we have not meet such issues. One may need to use a more robust nonlinear
solver (e.g. downhill algorithm) if such situation occurs.

We observe from these two tables that first-order convergence rate is achieved by BDF1, and second-order convergence
rate is achieved by BDF2 and modified C-N for maximum and L2 errors, as long as the perturbation parameter & is small
enough (e.g. ¢ = 1078 or 10719) so that the errors are dominated by the discretization error. On the other hand, it is clearly
seen larger & will cause slower or no error decay (the cases of ¢ =10~* or 10~ for BDF2 and C-N).

5.2. Barenblatt solution

We consider the well-known Barenblatt solution [26], whose explicit expression is given by

1/(m—-1
Bua(i D)= (t+1) (1- 201 ik e (5.4)
m,d\~, = - 3 B
2md  (t+1)2e/d n
Table 5.1
Maximum error for various T and ¢ by BDF1, BDF2 and C-N.
e T BDF1 BDF2 C-N
el Order el Order el Order

104 277 2.68e-02  ~ 249-03  ~ 1.92e-03 ~
2-8 149e-02  0.85 1.16e-03 111 1.02e-03 091
279 812e-03  0.87 830e-04 048 799e-04 035
2710 451e-03 085 7.55e-04 0.14 7.48e-04 0.10

10-6 277 263e-02 ~ 1.85e-03  ~ 127e-03  ~
2-8 143e-02  0.88 486e-04 193 337e-04 191
279 746e-03 094 129-04 192 911e-05  1.89
2710 38203 097 3.75e-05 178 2.81e-05 170

1078 277 263e-02  ~ 1.84e-03 ~ 1.26e-03 ~
2-8 143e-02 088 480e-14 194 330e-04 193
279 745e-03 094 122e-04 197 8.46e-05 196
2-10 3.81e-03 0.97 3.10e-05 1.98 2.15e-05 1.97

10-10 27 2.63e-02  ~ 1.84e-03 ~ 1.26e-03 ~
2-8 143e-02  0.88 4.80e-04 194 330e-04 193
279 745e-03 094 122e-04 197 8.45e-05 197
2710 381e-03 097 3.09e-05 198 2.15e-05 1.98
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Table 5.2
L? error for various T and & by BDF1, BDF2 and C-N.
e T BDF1 BDF2 C-N
elf Order el Order el Order

104 277 113e-02 ~ 6.73e-04  ~ 5.43e-04  ~
278 597e-03 093 3.64e-04  0.89 339%-04  0.68
279 316e-03 092 2.99-04 028 294e-04 021
2-10 1.72e-03 0.87 2.85e-04  0.07 2.84e-04  0.05

1076 277 111e-02 ~ 472e-04 ~ 3.21e-04 ~
2-8 5.72e-03  0.96 122e-04 195 8.48e-05 192
279 291e-03 098 323e-05 192 231e-05  1.88
2-10 1.47e-03 0.99 9.63e-06 175 7.48e-06 1.63

10-8 277 111e-02 ~ 4.70e-04  ~ 3.20e-04  ~
278 5.72e-03  0.96 121e-04 196 830e-05 194
279 2.90e-03 098 3.06e-05 198 212e-05 197
2-10 1.46e-03 0.99 7.75e-06 1.98 5.40e-06 197

10-10 277 111e-02 ~ 4.70e-04  ~ 3.20e-04  ~
2-8 5.72e-03 096 1.21e-04 1.96 8.30e-05  1.95
279 290e-03 098 3.06e-05 198 212e-05 197
2710 146e-03 099 7.73e-06  1.99 538e-06 198

Table 5.3

Average number of Newton’s iterations in each
time step for various T and & by BDF1, BDF2 and

C-N.
e T BDF1 BDF2 C-N
104 277 3.01 3.01 3.01

2-8 3 3 3
279 3 2.82 2.49
2-10 3 229 217
10-6 277 3.01 3.01 3.01
2-8 3 3 2.94
279 3 247 229
2-10 2.94 212 2.06
10-8 277 3.01 3.01 3.01
278 3 3 2.94
279 3 247 23
2-10 2.94 212 2.06
10-10 277 3.01 3.01 3.01
278 3 3 2.94
279 3 247 229
2-10 294 212 2.06

where (s)+ = max(s, 0), ¢« = m with d being the dimension of the problem. Note that the solution is weakly singular

am-1)  |x? -0

at [x| =0 and at the moving front where 1 — = — G =

One-dimensional case.

We solve the Dirichlet problem from t =0 to t =1 in the domain = (-8, 8) using the first-order scheme (4.1), the
second-order BDF scheme (4.21), and the second-order C-N scheme (4.17)-(4.18) with m =1.5,3, ¢ = 10~8,10710, and
time step 7 from 27> to 2710, Since the exact solution is singular, we use a fine mesh (I = 8000) in space to resolve the
singularity.

The error curves for all schemes are shown in Fig. 5.1. It can be observed the errors from second-order schemes (BDF2
and C-N), although not achieving second-order due to singularity, decay faster than the first-order scheme, both in maximum
norm and L?> norm. Also, similar results are obtained with & = 10~8 and 1079, which implies that the range for the
perturbation parameter between 10~1% and 10~8 is acceptable.

The exact and numerical solutions with ¢ = 10~8 and 7 =2~10 at various time are plotted in Fig. 5.2, from which it is
clearly observed that the support of solutions is expanding with finite speed. We also plot in Fig. 5.3 the time evolution of
the positive interface point defined by

Xg(t) :=sup{x: x>0, f(x,t) > 1072} (5.5)
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m=1.5,¢=10"8% m= 1.5,e = 10710

10° 10

107 1072
—_ —
o o
= 10"E 10"E =

106 106

3
108 108 10 10
1072 102 1072 1072
T T T T

Fig. 5.1. Maximum error (red) by BDF1 (circle line), BDF2 (star line) and C-N (dotted line); L2 error (blue) by BDF1 (square line), BDF2 (cross line) and C-N
(dashed line). (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

m = 1.5,t=0.5 m=15t=1

Fig. 5.2. The plot of Barenblatt solution for m=1.5 and 3 at t=0, 0.5 and 1 by various schemes (Exact: black solid curve; BDF1: blue square; BDF2: red circle;
C-N: red cross).

0.8 4

0.6 ®

0.4

0.2

4 42 44 46 48 5
TR

Fig. 5.3. Time evolution of the positive interface point xg for the Barenblatt solution for m=1.5 and 3 by various schemes (Exact: black solid curve; BDF1:
blue square; BDF2: red circle; C-N: red cross).
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Table 5.4
The difference between global minimum and ¢ for various m, v and ¢ by BDF1, BDF2 and C-N.
& T m=1.5 m=3
BDF1 BDF2 C-N BDF1 BDF2 C-N
10-8 273 -2.65e-22 -2.90e-22 -1.47e-22 -6.46e-25 -6.59e-25 -2.58e-25
276 -242e-22 -2.93e-22 -9.26e-23 -1.81e-25 -2.58e-26 -2.46e-25
277 -1.31e-22 -2.40e-22 -711e-23 -6.46e-26 -7.75e-25 -1.29e-26
28 -1.04e-22 -2.56e-22 -3.80e-23 -2.58e-26 <le-27 -1.29e-26
279 -5.29e-23 -2.91e-22 -2.81e-23 -1.29e-26 -1.55e-25 -2.58e-26
2710 -1.82e-23 -2.17e-22 -9.93e-24 <le-27 -7.75e-26 le-27
10710 27> <le-27 <le-27 -5.13e-23 <le-27 <le-27 <le-27
26 <le-27 <le-27 <le-27 <le-27 -2.35e-24 <le-27
277 -2.10e-22 -4.17e-22 <le-27 -1.64e-24 -1.29e-26 <le-27
278 <le-27 <le-27 <le-27 <le-27 <le-27 <le-27
279 <le-27 <le-27 <le-27 -6.60e-24 -3.88e-26 -6.60e-24
2710 <1e-27 <le-27 <le-27 <le-27 -3.96e-23  <le-27
m = 1.5 (BDF1) m = 1.5 (BDF2) m = 1.5 (C-N)
-5.5 -5.5 -5.5
\ N\ N
N . N
AN \ AN
-6 N -6 N -6 N
Q \'\ 5 \'\ 3 \'\
E V\\\, E \'\ E \'\
= = N = = ™ M ~ N
6.5 N 6.5 AN 6.5 AN
\\\\ < \\‘\\ \\\\
< < S
-7 -7 -7
0 0.5 1 0 0.5 1 0 0.5 1
t t t
m = 3 (BDF1) m = 3 (BDF2) m = 3 (C-N)
6.5 5N 6.5
\ \ \
AN N \
N N\ \
N N N
AN A N
g N 5 & N
g 7 ™ E NN g 7 N
& S e SO = I
NN AN AN
NN ~N
NN NN ~N
~. ~
~ ~. ~
-7.5 -7.5 -7.5
0 0.5 1 0 0.5 1 0 0.5 1
t t t

Fig. 5.4. The energy evolution of approximate Barenblatt solution for m=15 and 3 by various schemes (t = 2~8: dashed curve; T =279: dotted dashed
curve; T =270 dotted curve).

We observe that the accuracy when m = 3 is better than m = 1.5 since the solution is more regular as m increases.
To verify the uniform boundedness of the numerical solution, we compute the global maximum and minimum by

(5.6)
(5.7)

My :=max{f]':0<i<I1,0<n<N},

my:=min{f':0<i<I,0<n<N}.

It is shown in examples M =1 for all 7, m, ¢ and all schemes. Actually, max f]' is always decreasing over time, and hence
1

My is attained at the initial value. For the global minimum, we show the difference between my and the theoretical lower
bound ¢ in Table 5.4, from which it can be observed my — ¢ is numerically zero (within the machine precision), hence the
uniform boundedness is indeed satisfied.

Finally, we track the discrete energy of the numerical solutions over time for various 7. We define the discrete energy at
t=nt by

-1

Ep:=hY (ffdnfl'=1)).

i=1

(5.8)

The plot of energy evolution is presented in Fig. 5.4. We observe that the discrete energy of all schemes appears to be
unconditionally dissipative, although the result is only proved for the first-order scheme.
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j=15¢e=10" m=15:c=10" Jn=3ec=10" n=3e=10"1
10 10 10 10

107"
107" 107"
8 8 8 q
102 102
10° h
1074 103 107
1072 107 1072 107" 1072 107
T T T

Fig. 5.5. Maximum error (red) by BDF1 (circle line), BDF2 (star line) and C-N (dotted line); L? error (blue) by BDF1 (square line), BDF2 (cross line) and C-N
(dashed line).

40 m=15,t=0 - m=15,t=0.5 10 m=151t=1
5 5 5
0 0 0
5 5 5
%0 e %o 0 10
10 10 10
5 5 5
0 0 0
-5 -5 -5
"% 0 10 "% 0 10 "% 0 10

Fig. 5.6. The profile of Barenblatt solution computed by C-N for m=1.5 and 3 at t=0, 0.5 and 1.

%1075 %1073

(6]
()]

0 0
5
= -10
-10
10 10
o \//0/10
-10 -10 -10 -10

Fig. 5.7. The error profiles of Barenblatt solution computed by C-N for m=1.5 and 3 at t=1.

Two-dimensional case.

We consider the PME with the Barenblatt solution (5.4) for m = 1.5 and 3 in the two-dimensional domain Q = (-8, 8) x
(-8, 8) and the final time T = 1. We test the effect of various time step T from 2~* to 2~8 with a high spatial resolution
I =1000 in each direction. Also, we test the perturbation parameter & = 108 and 10~'°. Same as the 1-D case, the
maximum error and the discrete L% error are taken as the metric. The errors obtained from various schemes are shown in
Fig. 5.5.

The profiles of 2-D solution computed by modified C-N scheme with ¢ =108 and T =278 are shown in Fig. 5.6. We
observe that the support is expanding with finite speed. The error profiles at the final time are plotted in Fig. 5.7. It can be
observed the error is mainly distributed near the interface.
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0.8

0.6

0.4

0.2

TR

Fig. 5.8. Time evolution of the positive interface point xg for the Barenblatt solution for m=1.5 and 3 by various schemes (Exact: black solid curve; BDF1:
blue square; BDF2: red circle; C-N: red cross).

m = 1.5 (BDF1) m = 1.5 (BDF2) m =15 (C-N)
-30 -30 -30
AN S AN
AN N AN
AN NN NN\
N :
& NN & NN = NN
< -35 NN < -35 RN < -35 RN
<} NN <] NN = NN
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Fig. 5.9. The energy evolution of approximate Barenblatt solution for m=1.5 and 3 by various schemes (7 =2~*: dashed curve; T = 27%: dotted dashed
curve; T =2"8: dotted curve).

We also track and plot in Fig. 5.8 the interface point in the positive x-axis defined by

xg(t) :==sup{x: x>0, f(x,0,t) > 1072} (5.9)

Finally, the plot of energy evolution is presented in Fig. 5.9. We observe again that the computed energy appears uncondi-
tionally dissipative in all cases.

5.3. Solution with waiting time
We now consider the 1-D PME with the following initial function

(==L (a —9)c052x+9cos4x))ﬁ, if —Z<x<Z,

0, otherwise.

Po(X) = (5.10)
It is known that the solution with initial data (5.10) has the waiting time phenomenon for 0 <6 <1, i.e., the interface will
only move after a certain period of time from the start. Specifically, the theoretical waiting time for 0 <6 < 1/4 is given by
[2]

1
2m+1)(1-6)
We solve the PME for m = 6 with initial data (5.10) for & = 0 or 0.25 by the BDF1, BDF2 and C-N schemes with ¢ =108,

7=10"3 and I = 8000 as the parameters. The approximate solutions are plotted in Fig. 5.10. We observe that the support
of profile remains unchanged while the shape of the profile is changing with time.

twaiting =

(5.11)



18 Y. Gu, J. Shen / Journal of Computational Physics 410 (2020) 109378

t=0.3

(b) m=6,0 =0.25

Fig. 5.10. The approximate solution with waiting time for m=6 and 6=0, 0.25 at t=0, 0.15 and 0.3 by various schemes (BDF1: blue curve; BDF2: red circle;
C-N: red cross).

0.25 0.25
0.2 0.2
+« 0.15 -~ 0.15
0.1 0.1
0.05 0.05
158 1.6 1.62 1.64 1.66 158 1.6 162 1.64
TR TR

Fig. 5.11. Evolution of the right interface point xg for the 1-D approximate solution with waiting time for m=6 and 6=0, 0.25 by various schemes (BDF1:
solid curve; BDF2: dashed curve; C-N: dashed dotted curve). The red dashed line represents the theoretical waiting time.

We also plot the evolution of right interface point in Fig. 5.11 which clearly shows the waiting time phenomenon: the
interface point stagnates until the waiting time.
Next, we consider the 2-D PME with waiting time for m =3 and 5 with the following initial function

cos| Z./x24+x2), ifx2+x%<1,
po1, %) = (” 1% 1= (512)

0, otherwise.

The evolution of the outer interface point at the x-axis are shown in Fig. 5.12. Similar to the 1-D case, the phenomenon of
stagnation when m =5 is more significant than the case of m =3, and the waiting time of the former also appears longer.

5.3.1. Solution having complex support
Finally we perform two simulations of PME with complex initial data. First, we set the initial solution to be
1
(25(0.252 — (x| — 0.75)2)%)’”’1 . if05<|x<1,x <0,x <0,
1
=

25(0.25% — |x — (0, 0.75)|2)%) , if|x—(0,0.75)| <0.25,x1 >0,

Po(x) = (513)

_1
™1 if|x — (0.75,0)] < 0.25, x5 > 0,

(25(0.252 X —(0.75,0)[%)3
0

, otherwise,
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0.25
0.2

= 0.15
0.1
0.05

1 1.02 1.04

Fig. 5.12. Evolution of the outer interface point at the x-axis xg for the 2-D approximate solution with waiting time for m=3 and 5 by various schemes
(BDF1: solid curve; BDF2: dashed curve; C-N: dashed dotted curve).

m=15t=0 > m=15,t=0.15 2 m = 1.5,t =0.3
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-1
2 0 2 22 0 2 2 0 2
m=3,t=0.15 2 m=3,t=0.3
1 1 1
0 0 0
1 -1 -1
2 0 2 % 0 2 % 0 2

Fig. 5.13. Evolution of the approximate solution with compactly supported initial condition for m=1.5 and 3 at t=0, 0.15 and 0.3.

which has a partial donut shape as depicted in the first figure of Fig. 5.13, and was used in [3].

The second-order C-N scheme is utilized to solve the PME for m = 1.5 and 3 with initial data (5.13) in the 2-D domain
(=1.5,1.5) x (=1.5,1.5) from t =0 to t =0.3. We set £ =10~8, T =27 and I = 1000. The numerical solutions at various
time are shown in Fig. 5.13. It can be seen the support of the solution is spreading over time with a finite speed.

Second, we set the initial condition to be

cos(gs (x1 — 0.4)) cos(g (x2 — 0.4)), if0<x1,x <038,
Po(x) = { cos(g% (X1 4 0.4)) cos(gg (x2 +0.4)), if —0.8 <x1,x <0, (5.14)
0, otherwise,

whose support is two disconnected squares as shown in the first figure of Fig. 5.14, and was used in [15,5]. We set the
domain to be (—1.5,1.5) x (—1.5,1.5) and the final time T = 1. We still apply the C-N scheme with the same parameters
as in the previous example. The numerical solutions are presented in Fig. 5.14. We observe that the two disconnected
squares move closer and eventually merge together. We also observe that the case with m = 1.5 spreads faster than that
with m = 3.

6. Conclusion

We presented in this paper a class of bound preserving and energy dissipative schemes for the porous medium equa-
tion. Our schemes are based on a general approach for Wasserstein gradient flow developed in [23,22] and a perturbation
technique [19,7]. We proved that both semi-discrete in time and fully discrete with finite difference schemes are uniquely
solvable, bound preserving, and in the first-order case, also energy dissipative. We believe that these schemes are the first
which is bound preserving as well as energy (entropy) dissipative.

Moreover, the schemes at each time step can be interpreted as Euler Lagrangian equations of convex functionals, so
they can be efficiently solved by a Newton type iterative method with just a few iterations. Ample numerical results for
well-known benchmark problems are presented to validate the theoretical results and demonstrate the effectiveness of the
new schemes.
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2 m=151t=0 2 m=15,t=0.5 > m=15,t=1.0

1 1 1

0 0 0

-1 -1 -1

2 0 2 % 0 2 % 0 2
5 m=3,t=0 5 m=3,t=0.5 5 m=3,t=1.0

1 1 1

0 0 0

-1 -1 -1
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Fig. 5.14. Evolution of two peaks for m=1.5 and 3 at t=0, 0.5 and 1.
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