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Abstract:

We introduce a new class of curves and surfaces by exploring multiple variations of Non-Uniform
Rational B-Splines. These variations which are referred to as Generalized Non-Uniform Rational
B-Splines (GNURBS) serve as an alternative interactive shape design tool, and provide improved
approximation abilities in certain applications. GNURBS are obtained by decoupling the weights
associated with control points along different physical coordinates. This unexplored idea brings
the possibility of treating the weights as additional degrees of freedoms. It will be seen that this
proposed concept effectively improves the capability of NURBS, and circumvents its deficiencies
in special applications. Further, it is proven that these new representations are merely disguised
forms of classic NURBS, guaranteeing a strong theoretical foundation, and facilitating their
utilization. A few numerical examples are presented which demonstrate superior approximation
results of GNURBS compared to NURBS in both cases of smooth and non-smooth fields. Finally,
in order to better demonstrate the behavior and abilities of GNURBS in comparison to NURBS, an

interactive MATLAB toolbox has been developed and introduced.
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1. Introduction

Non-Uniform Rational B-Splines (NURBS) are perhaps the most popular curve and surface
representation method in Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM).
They were first introduced in 1975 by Versprille [1] as rational extension of B-splines. NURBS
form the backbone of CAD, and are considered the dominant technology for engineering design
[2]; further, they have also been extensively used in several applications including isogeometric
analysis (IGA) [3], NURBS-augmented finite element analysis [4], shape optimization [5, 6],
topology optimization [7, 8], material modeling [9, 10], reverse engineering [11], G-code

generation [12] etc.

Recent generalizations of NURBS-based technology include T-splines [13, 14] which constitute a
superset of NURBS, and provide the local refinement properties by allowing for some
unstructured-ness. An alternative generalization of NURBS, referred to as Generalized
Hierarchical NURBS (H-NURBS), were introduced in 2008 by Chen et al. [15] by extending the
idea of hierarchical B-splines to NURBS. Similar to T-splines, H-NURBS primarily bring the
possibility of local refinement with tensor-product surfaces. A novel shape-adjustable generalized
B zier curve with multiple shape parameters has been recently proposed by Hu et al. [16], and its
applications to surface modelling in engineering has been studied. Most recent class of splines
which removes the limitations of T-splines are Unstructured-splines (U-splines) that have been

developed by Scott [17].

Other generalizations of NURBS have also been suggested in the literature, even though these
representations have not gained popularity. For instance, Wang et al. [18] propose a generalized
NURBS curve and surface representation with the primary advantage of representing smooth
surfaces with genus zero using only one surface patch. This also provides a new method to exactly
generate conic curves and revolution surfaces. Further, it simplifies modelling local features such

as creases and ruled patches.

Historically, NURBS were primarily introduced to represent conical shapes precisely. This is the
critical advantage of NURBS over other polynomial-based classes of splines, and the main reason
for its prevalence. This is achieved by the introduction of weights into the basis functions in a

rational manner. The applications of this rational form, however, is not limited to precise



construction of conics. According to the literature, there are other applications where the weights

have been employed as additional degrees of freedom for improved flexibility.

For instance, the weights can be employed as additional design variables for interactive shape
design so that one can utilize both control point movement, and weight modification to attain local
shape control [19]. Many studies suggest employing the weights as additional design variables in
data-fitting for better accuracy [11, 20]. Carlson [20] develops a non-linear least square fitting
algorithm based on NURBS, and discusses multiple methods for solving this problem. His
numerical results demonstrate significant improvement in the accuracy of approximation
compared to B-splines, especially in the case of rapidly varying data. This is in fact one of the other
main advantages of NURBS over B-splines. While smooth piecewise polynomials such as B-
splines are poor in the approximation of rapidly varying data and discontinuities, employing
rational functions is an effective tool for addressing this class of problems [20]. In order to avoid
solving a non-linear optimization problem, Ma [11, 21] develops a two-step linear algorithm for

data approximation using NURBS.

Despite being an effective technique for improving the performance of NURBS, there is a wide
range of applications where treating the weights as extra design variables is either impossible or
can be problematic. For instance, Dimas and Briassoulis [22] point out that a bad choice of weights
in approximation can lead to poor curve/surface parameterization. Piegl [23] mentions that *
improper application of the weights can result in a very bad parameterization, which can destroy
subsequent surface constructions”. Further, there are numerous applications where employing the
weights as additional design variables is essentially impossible. We will discuss some of these
applications in Section 4. The focus of this paper is to develop new generalizations of NURBS to
primarily address this shortcoming. These proposed generalizations improve the performance of
NURBS, and provide an alternative concept for removing these deficiencies of NURBS. It will be
shown that, unlike T-splines, these generalizations are only variations of classic NURBS, and do
not constitute a new superset of NURBS, making it easy to integrate and deploy them in modern

CAD/CAM systems.

The remainder of this paper is organized as follows: in Sections 2 and 3, we introduce two different
generalizations of NURBS, and develop their theoretical properties. We explore some of the

applications of GNURBS in Section 4, and compare their performance against classic NURBS.



Further potential areas of applications and extensions of GNURBS are also discussed in this
section. An interactive MATLAB toolbox for GNURBS is discussed in Section 5, and finally

conclusions are drawn in Section 6.
2. Generalized NURBS Curves: a non-isoparametric approach

We recall that the equation of a NURBS curve is parametrically defined as

(1)
where  are a set of control points and are the corresponding rational basis functions
associated with i control point defined as

(2)
where are the weights associated with control points, and are the B-spline basis
functions of degree  , defined on a set of non-decreasing real numbers called
knot vector. is recursively defined as:

3)
The NURBS curve in (1) is a vector equation which, assuming , could be written in
the following expanded form in 3D space

4)



Observe that NURBS curves are isoparametric representations where all the physical coordinates
are constructed by linear combination of the same set of scalar basis functions in parametric space.
This is the case for all the other popular CAGD representations, e.g. all different types of splines;
and ensures significant properties such as affine invariance and convex hull which are of interest in

geometric modelling.

We introduce here the concept of Generalized Non-Uniform Rational B-Splines (GNURBS) by

the extension of the above equation as follows

&)
where 1s now a vector set of basis functions which is defined as

(6)
where is the set of coordinate-dependent weights associated with ~ control point.
Denoting the vector set of basis functions in (6) by , the
equation of a GNURBS curve can be written in the following compact form

(7)

where  denotes Hadamard (entry-wise) product of two vector variables.

Comparison of the above equation with that of classic NURBS shows that the main difference of
the proposed generalized form is assigning independent weights to different physical coordinates
of control points. As can be seen, the above leads to a non-isoparametric representation. This
modification results in loss of properties such as strong convex hull and affine invariance.
However, it will be established that GNURBS are only disguised forms of higher-order classic
NURBS, i.e., all the properties of NURBS can be recovered through a suitable transformation, thus



ensuring a strong theoretical foundation. In the following section, we develop the theory of
GNURBS, and discuss how the properties of this non-isoparametric representation compare to

those of NURBS.

2.1 Theory and properties

It can be easily shown that many properties of NURBS curves elaborated in [19] such as end-
points interpolation, continuity, etc. are similarly satisfied in GNURBS. However, when treated in
the direct form, some of the NURBS properties will be modified or even violated. We first discuss

these, and later show how a simple transformation can be applied to recover all NURBS properties.

1. Affine invariance: Due to coordinate-dependence of the basis functions in GNURBS,

applying an affine transformation directly to the control points will not result in the same

curve as applying the same transformation to the curve; hence, this property is not satisfied.

2. Strong convex hull: A GNURBS curve need not lie in the convex hull of its control points.

We demonstrate this graphically in Fig. 1 for a cubic curve ( ) constructed on the knot
vector / / . Fig. 1(a) shows a B-spline curve and a

NURBS curve with constructed using the same control polygon.

As observed, by increasing  the middle knot span always lies within the
convex hull of control points {P1, P>, P3, P4}. Fig. 1(b) illustrates an example where the

same knot span of a cubic GNURBS curve constructed with the same control polygon but a

decoupled set of weights and exits the
convex hull of its control points. However, we prove that it satisfies a weaker condition

referred to as “axis-aligned bounding box” property described below.
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Fig. 1. (a) A NURBS knot-span lies inside the convex hull of its control points. (b) A GNURBS knot-span
need not lie inside the convex hull of its control points.

The function spaces corresponding to Fig. 1 are depicted in Fig. 2. Observe that the

function space associated with the NURBS curve in Fig. 1(a) is identical for both x and y
physical components, i.e.

. Nevertheless, in the case of GNURBS curve shown in
Fig. 1(b), the x-coordinate is constructed using the rational set of basis functions

>

while the y-coordinate is constructed using the set of B-spline basis functions

7
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Fig. 2. Cubic function spaces corresponding to Fig. 1: B-spline function space , and
NURBS function space with
1.
2.

3. Axis-aligned bounding box (AABB): Every GNURBS knot span lies within the axis-

aligned bounding box of its corresponding control points. That is, if , then

lies within the bounding box of the control points
Proof:

Eq. (5) can be easily written in the following form:

(8)
Accordingly, Eq. (7) could be written as

9)
where , and are simply classic NURBS curves. From a geometric

standpoint, each of these curves is the projection of the original non-isoparametric curve

onto the corresponding physical axis. The following figure shows a graphical



representation of above equations for a 2D cubic curve constructed over the knot vector
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Fig. 3. Graphical representation of the bounding box property of a 2D cubic GNURBS curve with
and

Since each of these curves is a classic NURBS curve, they satisfy the convex hull property.

Therefore, the middle knot span of the curve which is marked in Fig. 3, must lie within the

convex hulls of its corresponding control points on both projected curves. That is, if

/ / , then lies within the convex hull of the control points

which is the region between the two vertical lines in Fig. 3. Similarly, lies within
the convex hull of the control points which is the area between the two
horizontal lines in this figure. Consequently, is contained in the intersection of these

two convex hulls, which is the rectangular area shown in Fig. 3, referred to as the bounding

box of



4. Local Modification: Similar to NURBS, one can show that, in GNURBS, if a control point

1s moved, or if any of the weights is changed, it affects only the curve
segment over the interval . However, unlike NURBS, changing the weights will
only affect the parameterization of the curve along the corresponding physical coordinate

, while the curve parameterization in the other directions will be preserved. This is, in

fact, the key difference between GNURBS and NURBS which increases control.

Assuming , if is increased (decreased), the curve will move closer to
(farther from) . Further, for a fixed , a point on moves along a horizontal
(vertical) straight line as a weight is modified; see Fig. 1(b). This can be easily

concluded from the proposed decomposition in (8) and the properties of classic NURBS

curves.

5. Variation Diminishing Property: Due to loss of convex-hull property, this property is also

not preserved in the direct form of GNURBS; that is, since the curve does not need to lie
within the convex hull of its control points, there can be a plane (line in 2D) which

intersects the curve multiple times without having any intersections with the control
polygon.

6. NURBS Inclusion: If the weights in all directions are equal for each control point, then the

GNURBS curve reduces to a NURBS curve.

Having discussed the properties of GNURBS in the direct form, we now develop a transformation
of GNURBS into an equivalent NURBS of a higher order. Towards this end, we first review two
lemmas on the multiplication of Be zier, as well as B-spline functions. The proofs of these lemmas

can be found in [24].

Lemma 1:
Let and be two Be zier functions of degree p and ¢, respectively. Their product
function isaBe zier function of degree p+¢ which can be computed as [25]

10



(10)

where denotes k7 Be  zier basis function of degree p+¢, and

(1)
End of Lemma 1
Lemma 2:
Let and be two univariate B-spline functions of degree p and g, respectively. Their
product function is a B-spline function of degree p+q, i.e.

(12)

where  are the ordinates of the product B-spline function.

End of Lemma 2

Specific to Lemma 2, numerous algorithms have been proposed in the literature for evaluating the
ordinates; see [26-29], for instance. In this paper, we will use a straightforward algorithm

proposed by Piegl and Tiller [25] including three steps of

- Performing Be zier extraction
- Computation of the product of Be zier functions

- Recomposition of the Be zier product functions into B-spline form using knot removal.
The product of Be zier functions in the second step can be computed analytically employing

Lemma 1. Further, one can construct the knot vector of as described in [25]. A more
advanced algorithm referred to as Sliding Windows Algorithm (SWA) recently proposed by Chen
et al. could be found in [27].

The decomposition in (8) together with the above two Lemmas lead to the following interesting

theorem on the equivalence of NURBS and GNURBS.

11



Theorem: Every GNURBS curve of degree p and dimension  can be transformed exactly into a
NURBS curve of degree
Proof. We provide the proof here for a 2D curve, however, it can easily be extended to any higher

dimension. The proof relies on the lemma that the summation of two NURBS curves is a higher

order NURBS curve [25]. We rewrite Eq. (8) for a 2D curve in the following form:

(13)

Extracting the common denominator leads to:

(14)
As can be observed, evaluation of (14) involves performing the multiplication of univariate B-
spline functions. According to Lemma 2, the product functions in (14) are B-spline functions of
degree 2p. Therefore, we can obtain the equivalent higher order NURBS representation of (13) in

the following form

(15)

where

(16)

12



in which are the coordinates and weights of the equivalent higher order NURBS curve,
which can be obtained using the algorithm described in Lemma 2, and is the number of
control points.

End of proof

In the special case of Rational Be zier (R-Be zier) curves, one can obtain straightforward analytical
expressions for the coefficients of the equivalent higher order R-Be  zier curve in (15). For this case,

Egs. (15) and (16) can be written as

(17)
where

(13)
Using relations (10) and (11) in Lemma 1, the weights and control points in these equations are
obtained as

(19)
where

Figure 4 shows a quadratic GNURBS curve, and its equivalent quartic NURBS curve obtained

using the above theorem.

13
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Fig. 4. Equivalence of a 2D quadratic GNRUBS curve with and

, with a quartic NURBS curve with

It needs to be pointed out that, despite the apparent violation of some properties of NURBS, the
above theorem establishes that GNURBS are merely disguised form of higher order classic
NURBS, thereby inheriting all the properties of NURBS indirectly. For instance, as can be seen in
Fig. 4, the curve violates the global convex-hull of the original control polygon of GNURBS,
however, it does lie within the convex-hull of the control polygon associated with its equivalent

higher order classic NURBS.
2.2 Partial decoupling for 3D curves

One can easily extend the above theorem and formulation to 3D curves with independent weights
along all three physical directions. However, a more practical case, which will be the emphasis for

the rest of this paper, is to perform partial decoupling of the weights. In particular, in 3D, one can
use the same set of weights in x and y directions, denoted by , and a different set of weights in z

direction . Accordingly, Eq. (5) could be written as

14



(20)

where

21
Observe that owing to this decoupling of the in-plane and out-of-plane weights, unlike in classic
NURBS, one can now freely manipulate the weights along z direction, for instance, without
perturbing the geometry or parameterization of the underlying curve in x-y plane. For better
insight, we provide a graphical visualization of designing a 3D curve with an in-plane circular

shape in Fig. 5.
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Fig. 5. A 3D GNURBS curve with an underlying precise circular arc:

and
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As can be clearly seen in Fig. 5, treating the independent set of out of plane weights can provide
better flexibility and control. As a simple example, one can use this representation as an
intermediate interactive shape design tool, and finally convert it to a higher order classic NURBS,
if desired, to recover affine invariance and other properties. In this paper, we will focus on
demonstrating superior approximation abilities of this representation in certain applications where

a height function, field or set of data points need to be approximated over an underlying 2D curve.

To derive the equivalent higher order NURBS representation of (20), we rewrite this equation in

the following form

(22)
Following a very similar procedure as for 2D curves, we can easily derive the expressions for the

equivalent higher order NURBS curve to the generalized form in (20) as

(23)
where
(24)
in these equations can be obtained using a similar algorithm as for 2D curves in the
following form
(25)
and

16



(26)

where

It should be noted here that the properties of classic NURBS which are lost in this proposed
generalization are not critical or even of interest in many applications of NURBS. Nevertheless, in
some applications, these properties can be crucial. In order to make GNURBS applicable to such
applications, we develop an alternative variation of NURBS which can be directly derived from
the generalization proposed above.

3. Generalized NURBS curves: an isoparametric approach via order-elevation

Note that the equivalent higher order NURBS representation in (15) or (23) itself provides another
variation of NURBS which can be directly employed as another alternative to NURBS with better

flexibility in some applications.

In order to clarify how these equations provide additional flexibility than classic NURBS, we first
derive a more generic form of these equations via an alternative approach using an extension of

order elevation technique.

Assume a 2D R-Be  zier curve of degree p is given as follows

(27)
In order to elevate the degree of this curve by g, we can simply multiply both numerator and

denominator of this equation by any arbitrary expression in the following form

17



(28)

Recalling Lemma 1, we can obtain the higher order R-Be  zier curve with g degree elevations as

(29)
where

(30)
in which and can be obtained using (31) and (32)

(31

(32)
where

Observe that this procedure can be seen as a trivial extension of the classic order elevation

techniques in the literature [19, 30]. In fact, one can simply recover the common order elevation

algorithm by assigning in (28). We will refer to this procedure as generalized order
elevation hereafter. Now suppose we intend to add another dimension to the representation in (29)
in an isoparametric manner. Again, this extra dimension can be viewed as the height function of a
parametric curve in 2D, or may represent a field or set of data points which needs to be

approximated over a 2D curve. For this purpose, we extend (29) as

18



(33)

It is interesting to notice that, although Eq. (33) apparently seems to be a classic R-Be zier curve, it

provides additional flexibility. Observe that in the above procedure,  are arbitrary variables
which can be freely chosen without perturbing the geometry or parameterization of the underlying

curve in x-y plane.
In order to better demonstrate the effect of these weights on the behavior of GNURBS curves, we

generate a 3D quartic GR-Be  zier curve by performing the above process with on a quadratic

R-Be zier circular arc and assigning the heights of control points as shown in Fig. 6.
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Fig. 6. A 3D isoparametric GNURBS curve with (a) , and (b)
The obtained results with (classic order elevation) and

are represented in Figs. 6(a) and (b), respectively. As observed, the heights of control
points in both cases are identical. For more clarity, the size of control points is plotted proportional

to their weights. Further, the corresponding sets of basis functions are plotted in Fig. 7.

Comparing Figs. 6(a) and (b), it can be noticed that by increasing , the weights of the three
interior control points are increased which results in out of plane deformation of the curve as
depicted in Fig. 6(b). However, as this figure shows, this leads to automatic in-plane re-
arrangement of control points in such a manner that the in-plane geometry of the curve (as well as

its parameterization) remains unchanged.

20
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Fig. 7. The function spaces corresponding to GNURBS curves in Fig. 6.

The above algorithm can be extended to NURBS in a straightforward manner using a similar three
step algorithm explained in Lemma 2. That is, Eq. (33) also holds true for NURBS with the

rational basis functions defined as

(34)

We here note that while the variables in (33) or (34) can be directly treated as design variables
for improved flexibility, the physical meaning and local support of the weights in this variation are
lost. Hence, it might not be suitable for being used as an interactive shape design tool. However, as
will be shown in the next section, it can still be effectively employed as an enhanced tool for
approximation purposes where the decision on the optimal values of the weights is made by a

numerical algorithm.

4. Applications

The proposed generalizations of NURBS in (20) and (33) provide alternative tools to NURBS
which can be useful in certain applications such as IGA. Exploring these advanced applications,
however, is beyond the scope of this paper. In this section, we however investigate function
approximations as an application. Hereafter, we will persistently refer to (20) as the first

generalization of NURBS or non-isoparametric GNURBS, while we will refer to (33) as the

21



second generalization of NURBS or isoparametric GNURBS.

Both these variations primarily provide the common and significant possibility of treating the out-
of-plane weights as additional design variables, without perturbing the underlying geometry or its
parameterization. However, the difference between them should be clear since the first form is
obtained via explicit decoupling of the weights along different physical coordinates resulting in a
non-isoparametric representation with the properties elaborated in Section 2, while the second
variation is obtained by implicit decoupling of the weights within the isoparametric set of basis
functions; thereby preserving the properties of NURBS. As discussed above, the generation of

these implicitly decoupled set of weights in the second variation requires order elevation a priori.

Finally, we emphasize that although these new representations finally lie in the NURBS space,
obtaining their results in certain class of applications by directly making use of NURBS does not

seem possible.

3
4

4.1 Approximation over curved domains

There are various applications where the data or a function needs to be approximated over a
parametric curved domain. For instance, there are numerous studies in the literature for the
approximation of scattered data or functions on curved surfaces; see [31, 32] for a rigorous review.
A similar problem arises in other applications such as modelling helical curves and surfaces
[33-35], treating the non-homogenous essential boundary conditions in IGA [36-39] etc. In all
these applications the limitation of preserving the underlying parameterization applies. Therefore,
employing the weights as additional design variables is disallowed. In this section, we investigate
the performance of GNURBS versus NURBS in this class of problems for two cases of

approximating a smooth function as well as a rapidly varying one.
4.1.1 Least-square minimization using NURBS and GNURBS

Suppose an in-plane circular arc is given in the following parametric form

(35)

22



where is the radius of the circular arc. Eq. (35) can be precisely constructed using NURBS.

Now, assume a height function needs to be approximated over this arc with minimum error.

This can be easily posed as a least-square approximation problem leading to optimal accuracy in L

2-norm. Assuming _isthesetof  collocation points, the error function

to be minimized is defined as

(36)
where is the approximated NURBS function,  are the corresponding collocation points in

the parametric space,  is the set of indices of non-zero basis functionsat  and

In the case of NURBS, the only unknowns to consider are control variables  and the problem

leads to a linear least square problem in the following matrix form

(37)
which can be solved for the unknowns by proper choice of collocation points.

To improve the accuracy of approximation, invoking the proposed variations of NURBS, we can

treat the out-of-plane weights as extra design variables without perturbing the geometry or
parameterization of the underlying precise circular arc. We may refer to these variables as control

weights hereafter. With the first generalization in (20), the vector of design variables becomes

, where the positivity constraints on control weights ( ) are often
desired to be satisfied for numerical stability. Considering the new set of design variables, Eq. (37)
now becomes a non-linear least-square problem which can be solved using any of the existing

solvers such as Levenberg-Marquardt.

To avoid solving a non-linear problem, one can alternatively employ a two-step algorithm
developed by Ma [11, 21], which leads to two separate linear systems of equations; a homogenous

system which yields the optimal control weights and a non-homogenous one that yields the

23



corresponding optimal control variables. The development of this algorithm for GNURBS is

provided below.

Employing the concept of homogeneous coordinates, the third component of GNURBS curve in

(20) can be written in the following matrix form

(38)

where the vector variables are defined as

(39)

We may refer to in this equation as weighted control variables. Also, we have dropped the
subscript p in denoting the B-spline basis functions, for brevity. Eq. (38) can be written at the

collocation points in the following form

(40)
Denoting the set of data points and B-spline basis functions in the matrix forms of (41) and (42),
respectively

. - (41)

(42)
Eq. (40) can be written in the following compact form

(43)
which can be re-written as

(44)

where
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(45)

Eq. (44) is an over-determined system of equations and now represents a linear least-square

problem. Multiplying the sides of this equation by yields

o - (46)
It is possible to separate the control weights from the control variables by eliminating the lower left

element of (46), which yields

(47)

where

(48)
According to (47), the control weights are now decoupled from the control variables and can be

obtained via solving the following homogeneous system of equations

(49)
Further details on different algorithms for solving (49) and extracting the optimal real or positive
weights can be found in [21]. Once the unknown weights are found, the optimal control variables

can be subsequently obtained via solving (43).

With the second generalization in (33), however, the development of a linear algorithm does not
seem easily possible. Therefore, a non-linear least square algorithm needs to be used to find the
optimal set of design variables. Further, since the derivation of analytical Jacobian matrix becomes

complicated in case of having internal knots, we limit our study to GR-Be zier. The vector of

design variables for this simplified case becomes where . The
imposition of the least square problem is quite straightforward; hence, we do not present it here.
The derivation of Jacobian matrix components with respect to control weights, however, is non-

trivial and requires evaluating the sensitivity using the following expressions

25



(50)

The initial conditions for solving the least square problem are specified as follows

(1)

As previously discussed, by changing  during the optimization process, the in-plane coordinates
of control points also vary at each iteration. However, since the in-plane geometry and
parameterization are always fixed, one may only re-evaluate and update these coordinates after the
termination of the optimization process according to the obtained optimal set of isoparametric
basis functions. It is important to note that this algorithm yields the combination of optimal weights
and the corresponding arrangement of control points which results in the best approximation over
a given parameterization. To our knowledge, no such investigation has been reported in the

literature thus far.

In the next section, we approximate various height functions over the circular arc in (35) modelled
precisely with NURBS. In all cases, the interpolating end control points are prescribed to lie on the
height function. Further, we employ 100 uniformly distributed sample points in the parametric
space for setting up the least square problem. The numerical implementations are performed in

MATLAB. Finally, the relative L»-norms of the error are calculated using the following relation

/

(52)

where the numerical integrations are calculated using Gaussian quadrature.

4.1.2 A smooth function: helix modelling

As the first numerical example, we consider approximating a smooth height function as
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(53)
over the parametric curve in (35). In the above equation, is the center angle of the circular arc in
x-y plane and b is a constant. Eq. (53) together with (35) represent a segment of a helical curve,

shown in Fig. 8 for , and is a classic problem in geometric modelling. We here demonstrate

how the proposed variations of NURBS can be useful for improved modelling of such type of

problems.

a
w

-
‘

o
o

Height function z(¢)

o N, X

Fig. 8. A smooth helical curve.

Helical curves and surfaces do not have an exact representation in terms of polynomials or rational
polynomials [40]. A high accuracy of approximation by NURBS using the minimal number of
control points is of interest, and will make the helix more convenient to use in current CAD/CAM
systems [34]. There is a large number of studies in the literature addressing this problem using R-
Be zier, NURBS or other parametric representations; see e.g. [33—-35, 41] for a review of these
studies. Having examined these studies, it can be found that there are several considerations for a
suitable approximation of helix such as the accuracy of normal angle, curvature, torsion and
height, besides meeting certain geometric conditions at the end points of each segment [34].

However, we only focus here on approximating the height function with maximum accuracy, for
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simplicity. Further, it is desirable that the fitting curve precisely lies on the cylinder surface of the

helix [35].

Since this is a geometric modelling problem, the properties of NURBS are important to be
preserved for this particular application. Therefore, it is an ideal candidate for employing the
second variation, i.e. isoparametric GR-Be zier, as the obtained optimal design is directly in the
NURBS space. The obtained results using the above-discussed algorithm for different degrees of

basis functions are presented in Table 1 for comparison.

Table 1. Error of approximating the helix height function using R-Be zier versus GR-Be zier in relative L

2-norm.
Degree No. of control | No. of control .
Curve type . . Error Error ratio
variables weights
R-Be zier 0 241E-2
2 3 1.0
2nd GR-Be  zier 0 241E-2
R-Be zier 0 1.50E-4
3 4 1.0
2nd GR-Be  zier 2 1.50E-4
R-Be zier 0 1.50E-4
4 5 121.9
2nd GR-Be  zier 3 1.23E-6
R-Be zier 0 2.30E-6
5 6 209.1
2nd GR-Be  zier 4 1.10E-8

As the table shows, the accuracy of approximation by GR-Be =zier over R-Be zier increasingly

improves by elevating the degree, as a larger number of control weights are added to the design

space. In case of , however, no improvement in the accuracy is gained. This implies that the
optimal values of the control weights for this case are equal to 1; that is, cubic R-Be zier obtained

via order elevation is coincidentally optimal for the approximation of this height function.

The initial and optimal sets of basis functions for approximation with different degrees are
represented in Fig. 9. As can be observed in this figure, in both cases, the optimal sets of basis
functions are only slightly different than the initial ones, however, this small deviation results in

dramatic improvement of the accuracy of approximation as reported in Table 1.
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Fig. 9. Initial and optimal basis functions for approximating the helix height function using 2" GR-

Be zier with degree (a) and (b)

We remind that in the case of isoparametric generalization (2" GR-Be  zier), the basis functions are
identical along all physical coordinates. As previously explained, this leads to automatic re-
arrangement of the in-plane coordinates of control points, depicted in Fig. 10, in such a manner

that the in-plane geometry and its parameterization remain unchanged.
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We also investigate the performance of GNURBS compared to NURBS with respect to

refining the knot sequence. For this experiment, we use the first variation (non-isoparametric),

for simplicity and as it provides better flexibility. The obtained results for

represented in Fig. 11.
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Fig. 11. Convergence rate of 13t GNURBS versus NURBS for approximating the helix height function.

As the figure shows, by including the control weights to the design space, the convergence rate is
improved from 3.3 to 4.3, resulting in dramatic improvement in the accuracy especially when
larger numbers of control points are employed. However, as previously mentioned, in the case of
GNURBS there is an extra computational cost for obtaining the optimal weights via solving an

additional homogenous system of equations.

4.1.3 A rapidly varying function

As the second example, we investigate the performance of the proposed variations of NURBS in
capturing rapidly varying functions. We consider the problem of approximating a rapidly varying

function as in (54) over the same circular arc
C

(54)

which is plotted in Fig. 12 for

—
- tn

o
o

Height function z(§)

Fig. 12. A rapidly varying function over a circular arc.

Employing the first proposed variation of NURBS, we approximate the height function using

different degrees of basis functions. The obtained results are presented in Table 2. All these models
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are obtained by performing uniform knot insertion over an initial R-Be

possess maximal continuity.

zier arc and therefore

Table 2. Error of approximating the rapidly varying function in (54) using NURBS versus 15t GNURBS

in relative L>-norm.

No. of control

No. of control

Curve type Degree (p) variables weights Error Error ratio
NURBS 0 6.86E-2
2 18 9.23
1st GNURBS 18 7.43E-3
NURBS 0 5.35E-2
3 19 9.80
1st GNURBS 19 5.46E-3
NURBS 0 6.27E-2
4 20 14.31
1st GNURBS 20 4.38E-3
NURBS 0 5.48E-2
5 21 40.60
1st GNURBS 21 1.35E-3

According to the table, the accuracy of approximation using NURBS does not change noticeably

by elevating the degree. On the other hand, the obtained results with GNURBS persistently

improve by elevating the degree, which reveals the superiority of approximation of GNURBS over

NURBS in capturing rapidly varying fields.

The approximation results for

are plotted in Fig. 13. The figure clearly shows the

improvement of approximation in the case of GNURBS especially in the vicinity of existing sharp

transitions in the field.
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Further, the corresponding basis functions are represented in Fig. 14. It is interesting to note that,
unlike the previous case of approximating a smooth function, there is a significant change between
the initial and optimal basis functions. As can be seen, this difference is more substantial for the
basis functions effecting the behavior of the curve around the existing sharp local gradients,

implying that the corresponding weights tend to take the extreme values in these regions.
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Fig. 14. (a) Initial, and (b) optimal sets of quintic basis functions associated with Fig. 13.

4.

4.2  Extensions and further applications

While, in this paper, we limited our study to applying the proposed generalizations to NURBS
curves, they can be similarly applied to surfaces and volumes which is the subject of our future
research. Moreover, due to fundamental similarities between different variations of splines, these
generalizations seem plausible to other rational forms of splines such as T-splines, Tri-angular

Be ziers, etc.

In addition to the discussed applications in CAD, there are other areas of applications of NURBS
where employing the weights as additional design variables for better flexibility can be
problematic or sometimes impossible. For instance, while we limited our numerical experiments to
approximation over curved domains, GNURBS may also help circumventing the difficulties of
considering the weights as degrees of freedom in general curve/surface fitting problems. As
previously studied in [22, 23], employing the weights as additional degrees of freedom in data
approximation can deteriorate the surface parameterization, and lead to undesirable results. In this
regard, existing studies suggest imposing bounding constraints on the variation of the weights
explicitly or via regularization [11, 20, 21], to avoid this issue. However, this limits the obtained
improvement in the accuracy of approximation, especially in the case of problems containing rapid

variation in data or field where the weights tend to take extreme values.

On the other hand, employing the suggested variations of NURBS, one can create a good
parameterization and preserve it while including the control weights as design variables for fitting
the curve/surface to 3D data points, without imposing any limitations on the values of the weights.

Further potential applications in CAD where GNURBS can be exploited with improved flexibility
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include NURBS-based metamodeling [42], which is of significant interest in engineering design.

Furthermore, owing to the inherent properties of NURBS, they have been extensively used in
computational mechanics for the optimization of different fields of interest over a computational
domain. For instance, Qian [43] employs B-spline basis for the representation of density field in
FEM-based topology optimization as an intrinsic filtering technique. Within the framework of
IGA, numerous studies have been performed where the same NURBS based parameterization of
computational domain has also been used for the representation of different fields which need to be
optimized over the domain in various applications such as size optimization of curved beams
[44-46], topology optimization [8, 47—49], optimization of material distribution in functionally
graded materials (FGMs) [50, 51] etc.

Having examined these studies, it can be noticed that in this class of applications, the
parameterization of the design domain must remain fixed throughout the optimization process.
Moreover, many of them require linear parameterization of the design domain and achieve this by
placing the control points at their Greville abscissae, see e.g. [43, 50]. Hence, they are only able to
treat the out-of-plane coordinates of control points as design variables, as the variation of weights

alters the underlying parameterization which is disallowed.

Owing to the proposed GNURBS representations with decoupled weights, one can now treat the
out of plane weights as additional design variables while setting up the optimization problem and
still preserve the underlying geometry as well as its parameterization unchanged. As the presented
numerical results suggest, this idea can lead to significant improvement in the flexibility in both
cases of smooth as well as rapidly varying fields. Exploring these applications is the subject of

future studies.

5. MATLAB Toolbox: GNURBS Lab

In order to facilitate understanding the behavior of GNURBS and further abilities they provide, a
comprehensive interactive MATLAB toolbox, GNURBS Lab, has been developed. This toolbox is
developed via the extension of an existing NURBS toolbox in MATLAB, Bspline Lab, available

as an opensource package under GNU license at github.com.
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A snapshot of the GNURBS Lab environment is depicted in Fig. 15, which demonstrates some of
the available features in this software. The figure shows an example of designing a quadratic
GNURBS curve with 5 control points constructed over a uniform knot-vector. Employing the
provided tools, one can easily manipulate any defining parameter of the curve, including the
locations of control points, knots or weight components, and observe the changes interactively in

both the original GNURBS and its equivalent higher order counterpart, simultaneously.

EX GNURBS Lab [Vertex]

File Edit View Insert Tools Desktop Window Help ¥
scroll to change weight_x: 3.2 &
Main Panel — ;4 _ weight_y: 1 Main Panel
v
Enter number of
control points:
5 or
Enter Degree:
2
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Cont. Point Coord
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I:‘ rotate3d
Selection Mode: OVZ
() Edge 5 Oxz
@ Vertex @ xy
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RESET GRAPH
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Reset Knot Vector 3+ 8\/\[}(
Toggle Labels O 180
Reset Weights oL
Show/Hide knots 2
Show/Hide Grid ’
Show/Hide axis
Cunve Information
0 | | | | | | | | |
Hodograph 0 1 2 3 4 5 6 7 8 9 | =

Base Functions changing knot vecto|

Maove Control Point

Fig. 15. A snapshot of GNURBS lab.

The open-source toolbox is available at http://www.ersl.wisc.edu/software/GNURBS-Lab.zip

Detailed instructions for using this toolbox is also available as an additional document Manual.pdf

via the same link.

6. Conclusion

We presented two generalizations of NURBS, referred to as GNURBS, by decoupling of the

weights associated with the control points along different physical coordinates. These
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generalizations, which can be obtained using either a non-isoparametric or an isoparametric
concept, improve the flexibility of NURBS and circumvent its deficiencies by providing the
possibility of treating the weights as additional design variables in special applications. It was
proved that these representations are only variations of classic NURBS and do not constitute a new
superset of NURBS. The superior approximation abilities of these variations for both smooth and
rapidly varying functions were shown via simple examples. However, as pointed out in Section
4.2, there are many other areas of applications which can potentially benefit from GNURBS. A
comprehensive MATLAB toolbox, GNURBS Lab, was developed to demonstrate the behavior of
GNURBS in a fully interactive manner. Further, although we limited our study to NURBS curves,
similar extensions are applicable to surfaces and volumes, as well as perhaps any other rational
form of splines. Overall, GNURBS provides a new powerful technology with superior flexibility
while including NURBS as a special case.
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