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Abstract:

We introduce a new class of curves and surfaces by exploring multiple variations of Non-Uniform

Rational B-Splines. These variations which are referred to as Generalized Non-Uniform Rational

B-Splines (GNURBS) serve as an alternative interactive shape design tool, and provide improved

approximation abilities in certain applications. GNURBS are obtained by decoupling the weights

associated with control points along different physical coordinates. This unexplored idea brings

the possibility of treating the weights as additional degrees of freedoms. It will be seen that this

proposed concept effectively improves the capability of NURBS, and circumvents its deficiencies

in special applications. Further, it is proven that these new representations are merely disguised

forms  of  classic  NURBS,  guaranteeing  a  strong  theoretical  foundation,  and  facilitating  their

utilization. A few numerical examples are presented which demonstrate superior approximation

results of GNURBS compared to NURBS in both cases of smooth and non-smooth fields. Finally,

in order to better demonstrate the behavior and abilities of GNURBS in comparison to NURBS, an

interactive MATLAB toolbox has been developed and introduced.
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1. Introduction 

Non-Uniform  Rational  B-Splines  (NURBS)  are  perhaps  the  most  popular  curve  and  surface

representation method in Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM).

They were first introduced in 1975 by Versprille [1] as rational extension of B-splines. NURBS

form the backbone of CAD, and are considered the dominant technology for engineering design

[2]; further, they have also been extensively used in several applications including isogeometric

analysis  (IGA)  [3],  NURBS-augmented  finite  element  analysis  [4],  shape  optimization  [5,  6],

topology  optimization  [7,  8],  material  modeling  [9,  10],  reverse  engineering  [11],  G-code

generation [12] etc.

Recent generalizations of NURBS-based technology include T-splines [13, 14] which constitute a

superset  of  NURBS,  and  provide  the  local  refinement  properties  by  allowing  for  some

unstructured-ness.  An  alternative  generalization  of  NURBS,  referred  to  as  Generalized

Hierarchical NURBS (H-NURBS), were introduced in 2008 by Chen et al. [15] by extending the

idea  of  hierarchical  B-splines  to  NURBS.  Similar  to  T-splines,  H-NURBS primarily  bring  the

possibility of local refinement with tensor-product surfaces. A novel shape-adjustable generalized

Bézier curve with multiple shape parameters has been recently proposed by Hu et al. [16], and its

applications to surface modelling in engineering has been studied.  Most  recent  class  of  splines

which removes the limitations of T-splines are Unstructured-splines (U-splines) that  have been

developed by Scott [17].

Other  generalizations  of  NURBS have also been suggested in  the  literature,  even though these

representations have not gained popularity. For instance, Wang et al. [18] propose a generalized

NURBS  curve  and  surface  representation  with  the  primary  advantage  of  representing  smooth

surfaces with genus zero using only one surface patch. This also provides a new method to exactly

generate conic curves and revolution surfaces. Further, it simplifies modelling local features such

as creases and ruled patches.

Historically, NURBS were primarily introduced to represent conical shapes precisely. This is the

critical advantage of NURBS over other polynomial-based classes of splines, and the main reason

for its  prevalence.  This  is  achieved by the introduction of weights into the basis  functions in a

rational  manner.  The  applications  of  this  rational  form,  however,  is  not  limited  to  precise
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construction of conics. According to the literature, there are other applications where the weights

have been employed as additional degrees of freedom for improved flexibility. 

For  instance,  the  weights  can  be  employed  as  additional  design  variables  for  interactive  shape

design so that one can utilize both control point movement, and weight modification to attain local

shape control [19]. Many studies suggest employing the weights as additional design variables in

data-fitting for  better  accuracy [11,  20].  Carlson [20]  develops  a  non-linear  least  square  fitting

algorithm  based  on  NURBS,  and  discusses  multiple  methods  for  solving  this  problem.  His

numerical  results  demonstrate  significant  improvement  in  the  accuracy  of  approximation

compared to B-splines, especially in the case of rapidly varying data. This is in fact one of the other

main  advantages  of  NURBS  over  B-splines.  While  smooth  piecewise  polynomials  such  as  B-

splines  are  poor  in  the  approximation  of  rapidly  varying  data  and  discontinuities,  employing

rational functions is an effective tool for addressing this class of problems [20]. In order to avoid

solving a non-linear optimization problem, Ma [11, 21] develops a two-step linear algorithm for

data approximation using NURBS. 

Despite being an effective technique for improving the performance of NURBS, there is a wide

range of applications where treating the weights as extra design variables is either impossible or

can be problematic. For instance, Dimas and Briassoulis [22] point out that a bad choice of weights

in  approximation  can  lead  to  poor  curve/surface  parameterization.  Piegl  [23]  mentions  that  “

improper application of the weights can result in a very bad parameterization, which can destroy

subsequent surface constructions”. Further, there are numerous applications where employing the

weights  as  additional  design variables  is  essentially  impossible.  We will  discuss some of  these

applications in Section 4. The focus of this paper is to develop new generalizations of NURBS to

primarily address this shortcoming. These proposed generalizations improve the performance of

NURBS, and provide an alternative concept for removing these deficiencies of NURBS. It will be

shown that, unlike T-splines, these generalizations are only variations of classic NURBS, and do

not constitute a new superset of NURBS, making it easy to integrate and deploy them in modern

CAD/CAM systems.

The remainder of this paper is organized as follows: in Sections 2 and 3, we introduce two different

generalizations  of  NURBS,  and  develop  their  theoretical  properties.  We  explore  some  of  the

applications of GNURBS in Section 4, and compare their performance against classic NURBS.
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Further  potential  areas  of  applications  and  extensions  of  GNURBS  are  also  discussed  in  this

section.  An  interactive  MATLAB  toolbox  for  GNURBS  is  discussed  in  Section  5,  and  finally

conclusions are drawn in Section 6. 

2. Generalized NURBS Curves: a non-isoparametric approach

We recall that the equation of a NURBS curve is parametrically defined as

 (1)

where  are a set of  control points and are the corresponding rational basis functions

associated with ith control point defined as

 (2)

where   are  the  weights  associated  with  control  points,  and   are  the  B-spline  basis

functions of degree , defined on a set of non-decreasing real numbers  called

knot vector.  is recursively defined as:

 (3)

The NURBS curve in (1) is a vector equation which, assuming , could be written in

the following expanded form in 3D space 

 (4)
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Observe that NURBS curves are isoparametric representations where all the physical coordinates

are constructed by linear combination of the same set of scalar basis functions in parametric space.

This is the case for all the other popular CAGD representations, e.g. all different types of splines;

and ensures significant properties such as affine invariance and convex hull which are of interest in

geometric modelling. 

We introduce here the concept of Generalized Non-Uniform Rational B-Splines (GNURBS) by

the extension of the above equation as follows

 (5)

where  is now a vector set of basis functions which is defined as

 (6)

where  is  the set  of coordinate-dependent weights associated with control point.

Denoting  the  vector  set  of  basis  functions  in  (6)  by  ,  the

equation of a GNURBS curve can be written in the following compact form

 (7)

where  denotes Hadamard (entry-wise) product of two vector variables. 

Comparison of the above equation with that of classic NURBS shows that the main difference of

the proposed generalized form is assigning independent weights to different physical coordinates

of  control  points.  As  can  be  seen,  the  above  leads  to  a  non-isoparametric  representation.  This

modification  results  in  loss  of  properties  such  as  strong  convex  hull  and  affine  invariance.

However,  it  will  be established that GNURBS are only disguised forms of higher-order classic

NURBS, i.e., all the properties of NURBS can be recovered through a suitable transformation, thus
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ensuring  a  strong  theoretical  foundation.  In  the  following  section,  we  develop  the  theory  of

GNURBS,  and  discuss  how the  properties  of  this  non-isoparametric  representation  compare  to

those of NURBS. 

1

2

2.1 Theory and properties

It  can be easily shown that  many properties  of  NURBS curves elaborated in [19] such as end-

points interpolation, continuity, etc. are similarly satisfied in GNURBS. However, when treated in

the direct form, some of the NURBS properties will be modified or even violated. We first discuss

these, and later show how a simple transformation can be applied to recover all NURBS properties.

1. Affine  invariance:  Due  to  coordinate-dependence  of  the  basis  functions  in  GNURBS,

applying an affine transformation directly to the control points will not result in the same

curve as applying the same transformation to the curve; hence, this property is not satisfied.

2. Strong convex hull: A GNURBS curve need not lie in the convex hull of its control points.

We demonstrate this graphically in Fig. 1 for a cubic curve ( ) constructed on the knot

vector . Fig. 1(a) shows a B-spline curve and a

NURBS curve with  constructed using the same control polygon.

As  observed,  by  increasing  the  middle  knot  span   always  lies  within  the

convex hull of control points {P1, P2, P3, P4}. Fig. 1(b) illustrates an example where the

same knot span of a cubic GNURBS curve constructed with the same control polygon but a

decoupled set of weights  and  exits the

convex hull of its control points. However, we prove that it satisfies a weaker condition

referred to as “axis-aligned bounding box” property described below.
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  (a)

(b)

Fig. 1. (a) A NURBS knot-span lies inside the convex hull of its control points. (b) A GNURBS knot-span

need not lie inside the convex hull of its control points. 

The  function  spaces  corresponding  to  Fig.  1  are  depicted  in  Fig.  2.  Observe  that  the

function space associated with the NURBS curve in Fig. 1(a) is identical for both x and y

physical  components,  i.e.  .  Nevertheless,  in the case of GNURBS curve shown in

Fig. 1(b), the x-coordinate is constructed using the rational set of basis functions ,

while the y-coordinate is constructed using the set of B-spline basis functions . 
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Fig. 2. Cubic function spaces corresponding to Fig. 1: B-spline function space , and 

NURBS function space  with .

1.

2.

3. Axis-aligned  bounding  box  (AABB):  Every  GNURBS  knot  span  lies  within  the  axis-

aligned  bounding  box  of  its  corresponding  control  points.  That  is,  if  ,  then

 lies within the bounding box of the control points .

Proof:

Eq. (5) can be easily written in the following form:

 (8)

Accordingly, Eq. (7) could be written as

 (9)

where ,  and  are simply classic NURBS curves. From a geometric

standpoint, each of these curves is the projection of the original non-isoparametric curve

onto  the  corresponding  physical  axis.  The  following  figure  shows  a  graphical
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representation of above equations for a 2D cubic curve constructed over the knot vector

. 

Fig. 3. Graphical representation of the bounding box property of a 2D cubic GNURBS curve with

 and .

Since each of these curves is a classic NURBS curve, they satisfy the convex hull property.

Therefore, the middle knot span of the curve which is marked in Fig. 3, must lie within the

convex  hulls  of  its  corresponding  control  points  on  both  projected  curves.  That  is,  if

,  then  lies  within  the  convex  hull  of  the  control  points 

which is the region between the two vertical lines in Fig. 3. Similarly,  lies within

the  convex  hull  of  the  control  points   which  is  the  area  between  the  two

horizontal lines in this figure. Consequently,  is contained in the intersection of these

two convex hulls, which is the rectangular area shown in Fig. 3, referred to as the bounding

box of . 
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4. Local Modification: Similar to NURBS, one can show that, in GNURBS, if a control point

 is moved, or if any of the weights  is changed, it affects only the curve

segment over the interval . However, unlike NURBS, changing the weights will

only affect the parameterization of the curve along the corresponding physical coordinate

, while the curve parameterization in the other directions will be preserved. This is, in

fact,  the  key  difference  between  GNURBS  and  NURBS  which  increases  control.

Assuming , if  is increased (decreased), the curve will move closer to

(farther  from)  .  Further,  for  a  fixed  ,  a  point  on   moves  along  a  horizontal

(vertical) straight line as a weight  is modified; see Fig. 1(b). This can be easily

concluded from the proposed decomposition in (8) and the properties of classic NURBS

curves. 

5. Variation Diminishing Property: Due to loss of convex-hull property, this property is also

not preserved in the direct form of GNURBS; that is, since the curve does not need to lie

within  the  convex  hull  of  its  control  points,  there  can  be  a  plane  (line  in  2D)  which

intersects  the  curve  multiple  times  without  having  any  intersections  with  the  control

polygon. 

6. NURBS Inclusion: If the weights in all directions are equal for each control point, then the

GNURBS curve reduces to a NURBS curve.

Having discussed the properties of GNURBS in the direct form, we now develop a transformation

of GNURBS into an equivalent NURBS of a higher order. Towards this end, we first review two

lemmas on the multiplication of Bézier, as well as B-spline functions. The proofs of these lemmas

can be found in [24].

Lemma 1:

Let  and  be  two  Bézier  functions  of  degree  p  and  q,  respectively.  Their  product

function is a Bézier function of degree p+q which can be computed as [25]
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 (10)

where  denotes kth Bézier basis function of degree p+q, and

  (11)

End of Lemma 1

Lemma 2:

Let  and  be two univariate B-spline functions of degree p and q, respectively. Their

product function  is a B-spline function of degree p+q, i.e.

 (12)

where  are the ordinates of the product B-spline function. 

End of Lemma 2

Specific to Lemma 2, numerous algorithms have been proposed in the literature for evaluating the

ordinates;  see  [26–29],  for  instance.  In  this  paper,  we  will  use  a  straightforward  algorithm

proposed by Piegl and Tiller [25] including three steps of

- Performing Bézier extraction

- Computation of the product of Bézier functions

- Recomposition of the Bézier product functions into B-spline form using knot removal.

The  product  of  Bézier  functions  in  the  second  step  can  be  computed  analytically  employing

Lemma  1.  Further,  one  can  construct  the  knot  vector  of   as  described  in  [25].  A  more

advanced algorithm referred to as Sliding Windows Algorithm (SWA) recently proposed by Chen

et al. could be found in [27]. 

The decomposition in (8) together with the above two Lemmas lead to the following interesting

theorem on the equivalence of NURBS and GNURBS.
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Theorem: Every GNURBS curve of degree p and dimension  can be transformed exactly into a

NURBS curve of degree . 

Proof. We provide the proof here for a 2D curve, however, it can easily be extended to any higher

dimension. The proof relies on the lemma that the summation of two NURBS curves is a higher

order NURBS curve [25]. We rewrite Eq. (8) for a 2D curve in the following form:

 (13)

Extracting the common denominator leads to:

(14)

As can be observed,  evaluation of (14) involves performing the multiplication of univariate B-

spline functions. According to Lemma 2, the product functions in (14) are B-spline functions of

degree 2p. Therefore, we can obtain the equivalent higher order NURBS representation of (13) in

the following form

 (15)

where

 (16)
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in which  are the coordinates and weights of the equivalent higher order NURBS curve,

which  can  be  obtained  using  the  algorithm  described  in  Lemma  2,  and   is  the  number  of

control points. 

End of proof

In the special case of Rational Bézier (R-Bézier) curves, one can obtain straightforward analytical

expressions for the coefficients of the equivalent higher order R-Bézier curve in (15). For this case,

Eqs. (15) and (16) can be written as

 (17)

where

 (18)

Using relations (10) and (11) in Lemma 1, the weights and control points in these equations are

obtained as

 (19)

where . 

Figure 4 shows a quadratic GNURBS curve, and its equivalent quartic NURBS curve obtained

using the above theorem. 
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Fig. 4. Equivalence of a 2D quadratic GNRUBS curve with  and 

, with a quartic NURBS curve with 

.

It needs to be pointed out that, despite the apparent violation of some properties of NURBS, the

above  theorem  establishes  that  GNURBS  are  merely  disguised  form  of  higher  order  classic

NURBS, thereby inheriting all the properties of NURBS indirectly. For instance, as can be seen in

Fig.  4,  the  curve  violates  the  global  convex-hull  of  the  original  control  polygon  of  GNURBS,

however, it does lie within the convex-hull of the control polygon associated with its equivalent

higher order classic NURBS. 

2.2 Partial decoupling for 3D curves

One can easily extend the above theorem and formulation to 3D curves with independent weights

along all three physical directions. However, a more practical case, which will be the emphasis for

the rest of this paper, is to perform partial decoupling of the weights. In particular, in 3D, one can

use the same set of weights in x and y directions, denoted by , and a different set of weights in z

direction . Accordingly, Eq. (5) could be written as 
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 (20)

where 

 (21)

Observe that owing to this decoupling of the in-plane and out-of-plane weights, unlike in classic

NURBS,  one  can  now  freely  manipulate  the  weights  along  z  direction,  for  instance,  without

perturbing  the  geometry  or  parameterization  of  the  underlying  curve  in  x-y  plane.  For  better

insight,  we provide a graphical  visualization of  designing a 3D curve with an in-plane circular

shape in Fig. 5. 

Fig. 5. A 3D GNURBS curve with an underlying precise circular arc: 

and .
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As can be clearly seen in Fig. 5, treating the independent set of out of plane weights can provide

better  flexibility  and  control.  As  a  simple  example,  one  can  use  this  representation  as  an

intermediate interactive shape design tool, and finally convert it to a higher order classic NURBS,

if  desired,  to  recover  affine  invariance  and  other  properties.  In  this  paper,  we  will  focus  on

demonstrating superior approximation abilities of this representation in certain applications where

a height function, field or set of data points need to be approximated over an underlying 2D curve. 

To derive the equivalent higher order NURBS representation of (20), we rewrite this equation in

the following form

 (22)

Following a very similar procedure as for 2D curves, we can easily derive the expressions for the

equivalent higher order NURBS curve to the generalized form in (20) as

 (23)

where

 (24)

 in these equations can be obtained using a similar algorithm as for 2D curves in the

following form 

 (25)

and 
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 (26)

where .

It  should  be  noted  here  that  the  properties  of  classic  NURBS  which  are  lost  in  this  proposed

generalization are not critical or even of interest in many applications of NURBS. Nevertheless, in

some applications, these properties can be crucial. In order to make GNURBS applicable to such

applications, we develop an alternative variation of NURBS which can be directly derived from

the generalization proposed above. 

3. Generalized NURBS curves: an isoparametric approach via order-elevation 

Note that the equivalent higher order NURBS representation in (15) or (23) itself provides another

variation of NURBS which can be directly employed as another alternative to NURBS with better

flexibility in some applications. 

In order to clarify how these equations provide additional flexibility than classic NURBS, we first

derive a more generic form of these equations via an alternative approach using an extension of

order elevation technique. 

Assume a 2D R-Bézier curve of degree p is given as follows 

 (27)

In  order  to  elevate  the  degree  of  this  curve  by  q,  we  can  simply  multiply  both  numerator  and

denominator of this equation by any arbitrary expression in the following form
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 (28)

Recalling Lemma 1, we can obtain the higher order R-Bézier curve with q degree elevations as

 (29)

where

 (30)

in which  and  can be obtained using (31) and (32) 

 (31)

 (32)

where .

Observe  that  this  procedure  can  be  seen  as  a  trivial  extension  of  the  classic  order  elevation

techniques in the literature [19, 30]. In fact, one can simply recover the common order elevation

algorithm by assigning  in (28). We will refer to this procedure as generalized order

elevation hereafter. Now suppose we intend to add another dimension to the representation in (29)

in an isoparametric manner. Again, this extra dimension can be viewed as the height function of a

parametric  curve  in  2D,  or  may  represent  a  field  or  set  of  data  points  which  needs  to  be

approximated over a 2D curve. For this purpose, we extend (29) as
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 (33)

It is interesting to notice that, although Eq. (33) apparently seems to be a classic R-Bézier curve, it

provides  additional  flexibility.  Observe  that  in  the  above  procedure,  are  arbitrary  variables

which can be freely chosen without perturbing the geometry or parameterization of the underlying

curve in x-y plane. 

In order to better demonstrate the effect of these weights on the behavior of GNURBS curves, we

generate a 3D quartic GR-Bézier curve by performing the above process with  on a quadratic

R-Bézier circular arc and assigning the heights of control points as shown in Fig. 6. 

(a)
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(b)

Fig. 6. A 3D isoparametric GNURBS curve with (a) , and (b) 

.

The  obtained  results  with  (classic  order  elevation)  and 

 are represented in Figs. 6(a) and (b), respectively. As observed, the heights of control

points in both cases are identical. For more clarity, the size of control points is plotted proportional

to their weights. Further, the corresponding sets of basis functions are plotted in Fig. 7. 

Comparing Figs. 6(a) and (b), it  can be noticed that by increasing , the weights of the three

interior  control  points  are  increased  which  results  in  out  of  plane  deformation  of  the  curve  as

depicted  in  Fig.  6(b).  However,  as  this  figure  shows,  this  leads  to  automatic  in-plane  re-

arrangement of control points in such a manner that the in-plane geometry of the curve (as well as

its parameterization) remains unchanged. 
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Fig. 7. The function spaces corresponding to GNURBS curves in Fig. 6. 

The above algorithm can be extended to NURBS in a straightforward manner using a similar three

step  algorithm  explained  in  Lemma  2.  That  is,  Eq.  (33)  also  holds  true  for  NURBS  with  the

rational basis functions defined as

(34)

We here note that while the variables in (33) or (34) can be directly treated as design variables

for improved flexibility, the physical meaning and local support of the weights in this variation are

lost. Hence, it might not be suitable for being used as an interactive shape design tool. However, as

will  be  shown in  the  next  section,  it  can  still  be  effectively  employed  as  an  enhanced  tool  for

approximation purposes  where  the  decision on the  optimal  values  of  the  weights  is  made by a

numerical algorithm. 

4. Applications

The proposed  generalizations  of  NURBS in  (20)  and  (33)  provide  alternative  tools  to  NURBS

which can be useful in certain applications such as IGA. Exploring these advanced applications,

however,  is  beyond  the  scope  of  this  paper.  In  this  section,  we  however  investigate  function

approximations  as  an  application.  Hereafter,  we  will  persistently  refer  to  (20)  as  the  first

generalization  of  NURBS  or  non-isoparametric  GNURBS,  while  we  will  refer  to  (33)  as  the
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second generalization of NURBS or isoparametric GNURBS.

Both these variations primarily provide the common and significant possibility of treating the out-

of-plane weights as additional design variables, without perturbing the underlying geometry or its

parameterization.  However,  the difference between them should be clear since the first  form is

obtained via explicit decoupling of the weights along different physical coordinates resulting in a

non-isoparametric  representation  with  the  properties  elaborated  in  Section  2,  while  the  second

variation is obtained by implicit decoupling of the weights within the isoparametric set of basis

functions;  thereby preserving the  properties  of  NURBS.  As discussed above,  the  generation of

these implicitly decoupled set of weights in the second variation requires order elevation a priori.

Finally, we emphasize that although these new representations finally lie in the NURBS space,

obtaining their results in certain class of applications by directly making use of NURBS does not

seem possible. 

3

4

4.1 Approximation over curved domains

There  are  various  applications  where  the  data  or  a  function  needs  to  be  approximated  over  a

parametric  curved  domain.  For  instance,  there  are  numerous  studies  in  the  literature  for  the

approximation of scattered data or functions on curved surfaces; see [31, 32] for a rigorous review.

A  similar  problem  arises  in  other  applications  such  as  modelling  helical  curves  and  surfaces

[33–35], treating the non-homogenous essential boundary conditions in IGA [36–39] etc. In all

these applications the limitation of preserving the underlying parameterization applies. Therefore,

employing the weights as additional design variables is disallowed. In this section, we investigate

the  performance  of  GNURBS  versus  NURBS  in  this  class  of  problems  for  two  cases  of

approximating a smooth function as well as a rapidly varying one.  

4.1.1 Least-square minimization using NURBS and GNURBS

Suppose an in-plane circular arc is given in the following parametric form

 (35)
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where  is  the radius of  the circular  arc.  Eq.  (35) can be precisely constructed using NURBS.

Now, assume a height function  needs to be approximated over this arc with minimum error.

This can be easily posed as a least-square approximation problem leading to optimal accuracy in L

2-norm. Assuming  is the set of  collocation points, the error function

 to be minimized is defined as

 (36)

where  is the approximated NURBS function,  are the corresponding collocation points in

the parametric space,  is the set of indices of non-zero basis functions at and .

In the case of NURBS, the only unknowns to consider are control variables and the problem

leads to a linear least square problem in the following matrix form

 (37)

which can be solved for the  unknowns  by proper choice of collocation points.

To improve the accuracy of approximation, invoking the proposed variations of NURBS, we can

treat  the  out-of-plane weights   as  extra  design variables  without  perturbing the geometry or

parameterization of the underlying precise circular arc. We may refer to these variables as control

weights  hereafter.  With  the  first  generalization  in  (20),  the  vector  of  design  variables  becomes

, where the positivity constraints on control weights ( ) are often

desired to be satisfied for numerical stability. Considering the new set of design variables, Eq. (37)

now becomes a  non-linear  least-square problem which can be solved using any of  the existing

solvers such as Levenberg-Marquardt. 

To  avoid  solving  a  non-linear  problem,  one  can  alternatively  employ  a  two-step  algorithm

developed by Ma [11, 21], which leads to two separate linear systems of equations; a homogenous

system  which  yields  the  optimal  control  weights  and  a  non-homogenous  one  that  yields  the
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corresponding  optimal  control  variables.  The  development  of  this  algorithm  for  GNURBS  is

provided below.

Employing the concept of homogeneous coordinates, the third component of GNURBS curve in

(20) can be written in the following matrix form

 (38)

where the vector variables are defined as

 (39)

We may refer to  in this equation as weighted control variables.  Also, we have dropped the

subscript p  in denoting the B-spline basis functions, for brevity.  Eq. (38) can be written at the

collocation points in the following form 

 (40)

Denoting the set of data points and B-spline basis functions in the matrix forms of (41) and (42),

respectively

 (41)

 (42)

Eq. (40) can be written in the following compact form

 (43)

which can be re-written as 

 (44)

where
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 (45)

Eq.  (44)  is  an  over-determined  system  of  equations  and  now  represents  a  linear  least-square

problem. Multiplying the sides of this equation by  yields 

 (46)

It is possible to separate the control weights from the control variables by eliminating the lower left

element of (46), which yields

 (47)

where

 (48)

According to (47), the control weights are now decoupled from the control variables and can be

obtained via solving the following homogeneous system of equations  

 (49)

Further details on different algorithms for solving (49) and extracting the optimal real or positive

weights can be found in [21]. Once the unknown weights are found, the optimal control variables

can be subsequently obtained via solving (43). 

With the second generalization in (33), however, the development of a linear algorithm does not

seem easily possible. Therefore, a non-linear least square algorithm needs to be used to find the

optimal set of design variables. Further, since the derivation of analytical Jacobian matrix becomes

complicated  in  case  of  having  internal  knots,  we  limit  our  study  to  GR-Bézier.  The  vector  of

design variables for this simplified case becomes  where . The

imposition of the least square problem is quite straightforward; hence, we do not present it here.

The derivation of Jacobian matrix components with respect to control weights, however, is non-

trivial and requires evaluating the sensitivity using the following expressions 
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 (50)

 The initial conditions for solving the least square problem are specified as follows

 (51)

As previously discussed, by changing  during the optimization process, the in-plane coordinates

of  control  points  also  vary  at  each  iteration.  However,  since  the  in-plane  geometry  and

parameterization are always fixed, one may only re-evaluate and update these coordinates after the

termination  of  the  optimization  process  according  to  the  obtained  optimal  set  of  isoparametric

basis functions. It is important to note that this algorithm yields the combination of optimal weights

and the corresponding arrangement of control points which results in the best approximation over

a  given  parameterization.  To  our  knowledge,  no  such  investigation  has  been  reported  in  the

literature thus far. 

In the next section, we approximate various height functions over the circular arc in (35) modelled

precisely with NURBS. In all cases, the interpolating end control points are prescribed to lie on the

height  function.  Further,  we employ 100 uniformly distributed sample points  in  the parametric

space for setting up the least square problem. The numerical implementations are performed in

MATLAB. Finally, the relative L2-norms of the error are calculated using the following relation 

 (52)

where the numerical integrations are calculated using Gaussian quadrature. 

4.1.2 A smooth function: helix modelling 

As the first numerical example, we consider approximating a smooth height function as
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 (53)

over the parametric curve in (35). In the above equation,  is the center angle of the circular arc in

x-y plane and b is a constant. Eq. (53) together with (35) represent a segment of a helical curve,

shown in Fig. 8 for , and is a classic problem in geometric modelling. We here demonstrate

how the proposed variations of  NURBS can be useful  for  improved modelling of  such type of

problems. 

Fig. 8. A smooth helical curve. 

Helical curves and surfaces do not have an exact representation in terms of polynomials or rational

polynomials [40].  A high accuracy of approximation by NURBS using the minimal number of

control points is of interest, and will make the helix more convenient to use in current CAD/CAM

systems [34]. There is a large number of studies in the literature addressing this problem using R-

Bézier,  NURBS or  other  parametric  representations;  see  e.g.  [33–35,  41]  for  a  review of  these

studies. Having examined these studies, it can be found that there are several considerations for a

suitable  approximation  of  helix  such  as  the  accuracy  of  normal  angle,  curvature,  torsion  and

height,  besides  meeting  certain  geometric  conditions  at  the  end  points  of  each  segment  [34].

However, we only focus here on approximating the height function with maximum accuracy, for
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simplicity. Further, it is desirable that the fitting curve precisely lies on the cylinder surface of the

helix [35]. 

Since  this  is  a  geometric  modelling  problem,  the  properties  of  NURBS  are  important  to  be

preserved  for  this  particular  application.  Therefore,  it  is  an  ideal  candidate  for  employing  the

second variation, i.e. isoparametric GR-Bézier, as the obtained optimal design is directly in the

NURBS space. The obtained results using the above-discussed algorithm for different degrees of

basis functions are presented in Table 1 for comparison. 

Table 1. Error of approximating the helix height function using R-Bézier versus GR-Bézier in relative L

2-norm.

Curve type
Degree No. of control 

variables

No. of control 

weights
Error Error ratio

R-Bézier 0 2.41E-2

2nd GR-Bézier

2 3
0 2.41E-2

1.0

R-Bézier 0 1.50E-4

2nd GR-Bézier

3 4
2 1.50E-4

1.0

R-Bézier 0 1.50E-4

2nd GR-Bézier

4 5
3 1.23E-6

121.9

R-Bézier 0 2.30E-6

2nd GR-Bézier

5 6
4 1.10E-8

209.1

As  the  table  shows,  the  accuracy  of  approximation  by  GR-Bézier  over  R-Bézier  increasingly

improves by elevating the degree, as a larger number of control weights are added to the design

space. In case of , however, no improvement in the accuracy is gained. This implies that the

optimal values of the control weights for this case are equal to 1; that is, cubic R-Bézier obtained

via order elevation is coincidentally optimal for the approximation of this height function. 

The  initial  and  optimal  sets  of  basis  functions  for  approximation  with  different  degrees  are

represented in Fig. 9. As can be observed in this figure, in both cases, the optimal sets of basis

functions are only slightly different than the initial ones, however, this small deviation results in

dramatic improvement of the accuracy of approximation as reported in Table 1. 
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(a) (b)

Fig. 9. Initial and optimal basis functions for approximating the helix height function using 2nd GR-

Bézier with degree (a)  and (b) .

We remind that in the case of isoparametric generalization (2nd GR-Bézier), the basis functions are

identical  along  all  physical  coordinates.  As  previously  explained,  this  leads  to  automatic  re-

arrangement of the in-plane coordinates of control points, depicted in Fig. 10, in such a manner

that the in-plane geometry and its parameterization remain unchanged.  

     
(a)                                                                            (b)
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(c)                                                                             (d)

Fig. 10. Initial and optimal control nets for approximating the helix height function with (a) R-Bézier 

of degree , and 2nd GR-Bézier of degree (b)  (c)  and (d) . 

We  also  investigate  the  performance  of  GNURBS  compared  to  NURBS  with  respect  to

refining the knot sequence. For this experiment, we use the first variation (non-isoparametric),

for  simplicity  and  as  it  provides  better  flexibility.  The  obtained  results  for   are

represented in Fig. 11. 
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Fig. 11. Convergence rate of 1st GNURBS versus NURBS for approximating the helix height function. 

As the figure shows, by including the control weights to the design space, the convergence rate is

improved  from  3.3  to  4.3,  resulting  in  dramatic  improvement  in  the  accuracy  especially  when

larger numbers of control points are employed. However, as previously mentioned, in the case of

GNURBS there is an extra computational cost for obtaining the optimal weights via solving an

additional homogenous system of equations. 

4.1.3 A rapidly varying function

As the second example, we investigate the performance of the proposed variations of NURBS in

capturing rapidly varying functions. We consider the problem of approximating a rapidly varying

function as in (54) over the same circular arc

 (54)

which is plotted in Fig. 12 for . 

Fig. 12. A rapidly varying function over a circular arc. 

Employing  the  first  proposed  variation  of  NURBS,  we  approximate  the  height  function  using

different degrees of basis functions. The obtained results are presented in Table 2. All these models
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are  obtained  by  performing  uniform  knot  insertion  over  an  initial  R-Bézier  arc  and  therefore

possess maximal continuity. 

Table 2. Error of approximating the rapidly varying function in (54) using NURBS versus 1st GNURBS 

in relative L2-norm.

Curve type Degree (p)
No. of control 

variables

No. of control 

weights
Error Error ratio

NURBS 0 6.86E-2

1st GNURBS
2 18

18 7.43E-3
9.23

NURBS 0 5.35E-2

1st GNURBS
3 19

19 5.46E-3
9.80

NURBS 0 6.27E-2

1st GNURBS
4 20

20 4.38E-3
14.31

NURBS 0 5.48E-2

1st GNURBS
5 21

21 1.35E-3
40.60

According to the table, the accuracy of approximation using NURBS does not change noticeably

by  elevating  the  degree.  On  the  other  hand,  the  obtained  results  with  GNURBS  persistently

improve by elevating the degree, which reveals the superiority of approximation of GNURBS over

NURBS in capturing rapidly varying fields. 

The  approximation  results  for   are  plotted  in  Fig.  13.  The  figure  clearly  shows  the

improvement of approximation in the case of GNURBS especially in the vicinity of existing sharp

transitions in the field. 
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(a) (b)

Fig. 13. Approximation of the rapidly varying function with quintic (a) NURBS and (b) 1st GNURBS. 

Further, the corresponding basis functions are represented in Fig. 14. It is interesting to note that,

unlike the previous case of approximating a smooth function, there is a significant change between

the initial and optimal basis functions. As can be seen, this difference is more substantial for the

basis  functions  effecting  the  behavior  of  the  curve  around  the  existing  sharp  local  gradients,

implying that the corresponding weights tend to take the extreme values in these regions.
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(a) (b)

Fig. 14. (a) Initial, and (b) optimal sets of quintic basis functions associated with Fig. 13. 

1.

2.

3.

4.

4.2 Extensions and further applications

While,  in this paper,  we limited our study to applying the proposed generalizations to NURBS

curves, they can be similarly applied to surfaces and volumes which is the subject of our future

research. Moreover, due to fundamental similarities between different variations of splines, these

generalizations  seem plausible  to  other  rational  forms of  splines  such as  T-splines,  Tri-angular

Béziers, etc. 

In addition to the discussed applications in CAD, there are other areas of applications of NURBS

where  employing  the  weights  as  additional  design  variables  for  better  flexibility  can  be

problematic or sometimes impossible. For instance, while we limited our numerical experiments to

approximation over curved domains,  GNURBS may also help circumventing the difficulties of

considering  the  weights  as  degrees  of  freedom  in  general  curve/surface  fitting  problems.  As

previously studied in [22,  23],  employing the weights as additional  degrees of  freedom in data

approximation can deteriorate the surface parameterization, and lead to undesirable results. In this

regard,  existing  studies  suggest  imposing  bounding  constraints  on  the  variation  of  the  weights

explicitly or via regularization [11, 20, 21], to avoid this issue. However, this limits the obtained

improvement in the accuracy of approximation, especially in the case of problems containing rapid

variation in data or field where the weights tend to take extreme values. 

On  the  other  hand,  employing  the  suggested  variations  of  NURBS,  one  can  create  a  good

parameterization and preserve it while including the control weights as design variables for fitting

the curve/surface to 3D data points, without imposing any limitations on the values of the weights.

Further potential applications in CAD where GNURBS can be exploited with improved flexibility
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include NURBS-based metamodeling [42], which is of significant interest in engineering design.

Furthermore,  owing  to  the  inherent  properties  of  NURBS,  they  have  been  extensively  used  in

computational mechanics for the optimization of different fields of interest over a computational

domain. For instance, Qian [43] employs B-spline basis for the representation of density field in

FEM-based  topology  optimization  as  an  intrinsic  filtering  technique.  Within  the  framework  of

IGA, numerous studies have been performed where the same NURBS based parameterization of

computational domain has also been used for the representation of different fields which need to be

optimized  over  the  domain  in  various  applications  such  as  size  optimization  of  curved  beams

[44–46],  topology optimization [8,  47–49],  optimization of material  distribution in functionally

graded materials (FGMs) [50, 51] etc. 

Having  examined  these  studies,  it  can  be  noticed  that  in  this  class  of  applications,  the

parameterization  of  the  design domain  must  remain  fixed throughout  the  optimization process.

Moreover, many of them require linear parameterization of the design domain and achieve this by

placing the control points at their Greville abscissae, see e.g. [43, 50]. Hence, they are only able to

treat the out-of-plane coordinates of control points as design variables, as the variation of weights

alters the underlying parameterization which is disallowed. 

Owing to the proposed GNURBS representations with decoupled weights, one can now treat the

out of plane weights as additional design variables while setting up the optimization problem and

still preserve the underlying geometry as well as its parameterization unchanged. As the presented

numerical results suggest, this idea can lead to significant improvement in the flexibility in both

cases of smooth as well as rapidly varying fields. Exploring these applications is the subject of

future studies. 

5. MATLAB Toolbox: GNURBS Lab

In order to facilitate understanding the behavior of GNURBS and further abilities they provide, a

comprehensive interactive MATLAB toolbox, GNURBS Lab, has been developed. This toolbox is

developed via the extension of an existing NURBS toolbox in MATLAB, Bspline Lab, available

as an opensource package under GNU license at github.com. 
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A snapshot of the GNURBS Lab environment is depicted in Fig. 15, which demonstrates some of

the  available  features  in  this  software.  The  figure  shows  an  example  of  designing  a  quadratic

GNURBS  curve  with  5  control  points  constructed  over  a  uniform  knot-vector.  Employing  the

provided  tools,  one  can  easily  manipulate  any  defining  parameter  of  the  curve,  including  the

locations of control points, knots or weight components, and observe the changes interactively in

both the original GNURBS and its equivalent higher order counterpart, simultaneously. 

Fig. 15. A snapshot of GNURBS lab. 

The  open-source  toolbox  is  available  at  http://www.ersl.wisc.edu/software/GNURBS-Lab.zip 

Detailed instructions for using this toolbox is also available as an additional document Manual.pdf

via the same link. 

6. Conclusion

We  presented  two  generalizations  of  NURBS,  referred  to  as  GNURBS,  by  decoupling  of  the

weights  associated  with  the  control  points  along  different  physical  coordinates.  These

http://www.ersl.wisc.edu/software/GNURBS-Lab.zip
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generalizations,  which  can  be  obtained  using  either  a  non-isoparametric  or  an  isoparametric

concept,  improve  the  flexibility  of  NURBS  and  circumvent  its  deficiencies  by  providing  the

possibility  of  treating  the  weights  as  additional  design  variables  in  special  applications.  It  was

proved that these representations are only variations of classic NURBS and do not constitute a new

superset of NURBS. The superior approximation abilities of these variations for both smooth and

rapidly varying functions were shown via simple examples. However, as pointed out in Section

4.2, there are many other areas of applications which can potentially benefit from GNURBS. A

comprehensive MATLAB toolbox, GNURBS Lab, was developed to demonstrate the behavior of

GNURBS in a fully interactive manner. Further, although we limited our study to NURBS curves,

similar extensions are applicable to surfaces and volumes, as well as perhaps any other rational

form of splines. Overall, GNURBS provides a new powerful technology with superior flexibility

while including NURBS as a special case. 
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