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Abstract. Our modern digitized socio-technological systems are vulnerable to
destructive events such as disease, floods, and terrorist attacks. Data science
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scribed in this paper can be addressed.
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1 Introduction

Our modern digitized socio-technological systems have enabled dramatic changes in
our way of life, but leave us open to destructive events such as diseases, floods, terrorist
attacks, and just plain human error. While our systems are vulnerable to such events,
the key is how resilient they can become, i.e., how well they are able to recover from
disruptions to return to a “normal” state or close to it, and how quickly they can do so.
Data science has enabled the digital world of rapid communication, intelligent ma-
chines, and instant information. Data science may also hold the key to making our sys-
tems more resilient through the availability of massive amounts of data from sensors,
satellites, and online activities, allowing us to monitor the state of the power grid, get
early warning of emerging diseases, find ways to minimize the effect of flooding, iden-
tify looming problems in supply chains, etc. Tools of machine learning can provide
early warning of anomalies and alert us that a system may be approaching a critical
threshold, thus allowing more time for mitigation that will minimize the effect of dis-
ruptions. However, for tools of data science to help us create more resilient systems,
we will need to overcome a variety of challenges. It is these challenges we discuss in
this paper.

The challenges we present arise in a multitude of applications and the paper will
illustrate them to demonstrate the opportunities to enhance resilience. Applications to
be discussed include spread of diseases such as COVID-19 and Ebola; natural and man-
made disasters such as floods, hurricanes, oil spills, and cyberattacks; counter-terror-
ism; protecting infrastructure such as the electric power grid and the transportation sys-
tem; threats to ecosystems, urban systems, food systems, and agriculture; and varied
modern challenges arising from climate change, self-driving vehicles, and participatory
democracy.



2 The Fusion Challenge

A key to the data revolution is that massive amounts of data are available from a large
number of sources. A key to using data science to enhance resilience is to find effective
ways to utilize all those data, to learn from past disruptions, and to get early warning of
potential new problems.

Fusion Challenge: Many analysis tasks require the fusion of information from
numerous media or sources.

2.1  Urban Health and Climate Change

Many key indicators allow us to monitor the overall health of an urban system. These
include the state and spatial distribution of critical infrastructure such as the
transportation, electricity, gas, and water systems; the capacity of the healthcare system;
the distribution of vulnerable populations (such as those living near flood plains or
without air conditioning during a heat wave). Many of these indicators are enhanced in
importance by climate change.

Climate change affects our urban areas in a multitude of ways. We can expect more
and more severe hurricanes, heat waves, drought, and floods. Sea levels will rise. What
can urban areas do to prepare for them and mitigate their effects? Fusing data from
many sources, can we predict which subways might be flooded? (During “Super Storm”
Sandy in 2012, a massive hurricane, some of the subway tunnels in New York City
were flooded. Mathematical models developed at Columbia University had predicted
exactly which ones [46,48]. Could we have taken precautionary measures knowing
this?) Many power plants are located in low-lying areas near bodies of water. Can we
fuse data from many sources to predict which ones might be flooded with sea level rise
and move them in advance of those floods or otherwise protect them from flood dam-
age? Train tracks leading to the heart of downtown areas are also often in low-lying
areas prone to floods. Can we figure out which tracks are subject to flooding and raise
them in advance? The New York City Climate Change Adaptation Task Force set out
to address these kinds of questions and, according to a New Y ork City Panel on Climate
Change report in 2010, this objective “will require ongoing and consistent monitoring
of a set of climate change indicators. Monitoring of key indicators can help to initiate
course corrections in adaptation policies and/or changes in timing of their implementa-
tion” [47]. Moreover, according to the most recent such Panel on Climate Change report
in 2019, “A centralized, coordinated indicators and monitoring system is essential for
a comprehensive, city-wide risk assessment of trends in climate and impacts and course
correction toward climate change adaptation and resiliency goals and targets” [76].

There are many parameters that determine the normal healthy state of a complex
system, and it is necessary to gather information from numerous sources to monitor the
health of such a system and get early warning of departures from the “normal.” For
example, in predicting floods in urban areas, one needs to consider data from rain
gauges, radar, satellite algorithms, computer models of atmospheric processes, and hy-
drological models. In understanding extreme events that may trigger tidal flooding in
urban areas, one needs to monitor sea level rise, flood insurance claims from businesses
and individuals, urban growth trends, the capacity to restore power after a flood, and



socioeconomic factors. Understanding factors involved in previous floods, and using
them to get early warning about new floods, can help us mitigate impacts and recover
faster. To give just one example, the Peak over Threshold approach uses multiple events
to estimate return periods for such floods [60,82].

Urban heat is a major issue leading to adverse effects not only on public health but
also on the economy. Extreme heat events have been a major topic of concern at the
US Centers for Disease Control and Prevention for at least a decade [20]. Such events
can result in increased incidence of heat stroke, dehydration, cardiac stress, and respir-
atory distress. Individuals under stress due to climate may also be more susceptible to
infectious diseases. Among the data fusion tools designed to determine urban heat ex-
posure for the population in a city is the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM), using both ground sensor temperature and satellite readings
[39,41]. Fefferman [36] led a study of how to evacuate the most vulnerable individuals
to climate controlled environments during a major heat event in an urban area (Newark,
New Jersey, US), aimed at minimizing health effects of such an event. Her goal was to
determine where to locate evacuation centers and whom to send to which center. The
project required a major effort at fusing data as to location of potential centers, travel
routes and times to the centers, population size and demographic distribution per city
block, and at-risk groups and their likely levels of healthcare required.

2.2 Animal Health: Biodiversity and Farmyards

Biodiversity is the variability in the plant and animal life in species, total numbers of
the species, their habitat, and their distribution. Evidence about the health of ecosystems
is often obtained by measuring their biodiversity [73]. Identifying species and individ-
ual animals or plants offers insight into the crisis of biodiversity loss on our planet.
Modern methods of data science allow for the use of a great deal of data to identify
species and, sometimes, even individual animals. Identification of individual animals
is important if we are trying to estimate the population of a given species in a given
region. But how hard is it to identify an individual lion or elephant, especially if we
may only see the animal through a “camera trap” image that may only include part of
their body and often with poor illumination? Automated methods for identification of
species and of individual animals, built on modern methods of artificial intelligence,
enable us to get early warning of disruptions to the population of ecosystems. These
methods depend upon the fusion of large amounts of biometric data, such as identifica-
tion of external body pattern, footprints, scent, acoustics, DNA barcoding, etc. [49].
Biometric techniques have the advantage that they don’t require invasive interventions
since data can be collected without capture, instrumentation or tagging. The amounts
of data can be huge. For example, the project called Snapshot Serengeti, based in Tan-
zania, has collected millions of camera trap images of lions, leopards, cheetahs, ele-
phants, and other animals [63]. Recordings of animal vocalizations can produce over
half a gigabyte of data per hour. Machine learning can be very helpful in classifying
animal calls. For example, it has been used to classify and count syllables in an animal’s
call, and can then be used to distinguish between calls of different species, including
types of frogs, birds, etc. [86]. We are far from being able to identify species, let alone
individual animals, in the wild. However, new methods of artificial intelligence and
machine learning are leading to some successes. For instance, [63] describes the use of
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“deep convolutional neural networks” to identify and count species in the Snapshot
Serengeti dataset of 3.2 million images. Identification is accurate 93.8% of the time.

Identification of individual animals is becoming important for domesticated animals.
As the number of farms decreases but the number of cattle on each farm grows, it be-
comes increasingly important to identify individual animals in an efficient way for
health monitoring, adjusting feeding to enhance milk production, tracking food and wa-
ter consumption, and tracking and registration of cattle. Existing methods such as mi-
crochip embedding or ear tagging can be expensive and are subject to forgeries or dam-
age. Identification of individual livestock is also important to contain spread of disease
and has become recognized as important by international organizations, e.g., in pre-
venting spread of diseases such as Bovine Spongiform Encephalopathy (BSE). Recent
work shows that individual cattle can be identified through a deep learning approach
based on “primary muzzle point (nose pattern)” characteristics. This addresses the prob-
lem of missing or swapped animals (especially during large movements of cattle) and
false insurance claims [52,53]. Tools of face recognition, computer vision, animal be-
havior, pain metrics, and other tools are already useful in identifying diseases of many
domesticated animals, including sheep, and pigs, and to give early warning of poten-
tially devastating epidemics from diseases such as BSE, a critical factor in keeping
modern farms resilient [49,74].

3 The Decision Support Challenge

Decision science is an old subject that was once the domain of social scientists and
economists but is now also the domain of computer scientists and mathematicians who,
working with traditional decision scientists, are developing tools of modeling,
simulation, algorithmics, uncertainty quantification, and consensus. This new data-
driven decision support can allow comparison of a vast array of alternative solutions.
While using data to make decisions is not new, data science has led to many different
techniques to make better decisions, especially new algorithmic approaches. The new
field of algorithmic decision theory aims to exploit algorithmic methods to improve the
performance of decision makers (human or automated) [15,67,71,79].

Decision Support Challenge: Today’s decision makers have available to them
remarkable new technologies, huge amounts of information, and ability to share
information at unprecedented speeds and quantities. These tools and resources will
enable better decisions if we can surmount concomitant challenges: Data is often
incomplete or unreliable or distributed, and involves great uncertainty; many sources
of data need to be fused into a good decision, often in a remarkably short time;
interoperating/distributed decision makers and decision-making devices need to be
coordinated; decisions must be made in dynamic environments based on partial
information; there is heightened risk due to extreme consequences of poor decisions;
decision makers must understand complex, multidisciplinary problems [71].



3.1 Ebola and COVID-19

The 2014 Ebola outbreak in West Africa should have reminded us that the world is ill-
prepared for a severe disease epidemic. When in 2020 the COVID-19 pandemic hit, the
world was indeed poorly prepared. The successful fight to contain the Ebola outbreak
was helped by application of data analysis and mathematical models to support decision
makers. Those models accurately predicted how and where the disease was spreading
and how to contain it. The data allowed decision makers to understand things like: how
many beds and lab tests would be needed — and where and when to deploy them.
Important to the success of the Ebola containment was the sheer and unprecedented
magnitude of epidemiological data made available online to researchers and modelers
by the World Health Organization and health ministries of the most affected countries.
Though modelers had analyzed ongoing epidemics before, such as the 2003 SARS
epidemic and 2009 Swine Flu pandemic, they did not have access to such rich sources
of data. Data fed into models showed we could stop this outbreak if 70% of Ebola cases
could be placed in Ebola treatment units, had effective isolation, and had safe burials
[18].

During the COVID-19 pandemic, there has been literally a tsunami of data available
within a short time, enabling scientists and policy makers around the world to fit their
models and simulations. As models show, faster decisions to shelter in place might have
saved a great many lives [66]. However, decision makers have to balance many con-
siderations, which can slow down decisions at potential peril. The more we can develop
tools to make effective decisions faster, the better we can ensure resilience in our sys-
tems.

3.2 Resilient Supply Chains

During COVID-19, there have been major shortages in items such as ventilators,
personal protective equipment and other medical supplies, as well as in consumer goods
such as toilet paper and disinfectant wipes and sprays. Our supply chains have been
dramatically changed in the digital age, with artificial intelligence allowing both the
private sector and the government to minimize inventories due to extremely accurate
knowledge of customer demand. However, these Al tools fail when there is an
anomalous event. A key to making supply chains more resilient is to develop tools to
allow them to identify alternative sources and change priorities in a speedy way [28,55].
Data science will be critical to support decisions involving changed priorities,
alternative suppliers, modified transportation routes or carriers, etc.

3.3  Precision Agriculture

Data science has led to precision agriculture, which allows the farmer to “leverage Al
and fine-grain data about the state of crops” to improve yield, helping to make decisions
as to when to plant, when to harvest, when to water, when to implement pest control or
fertilizer usage, etc. [27]. Thus, using sensors on farm equipment or in the soil can make
agricultural practices sustainable and reduce environmental impact through data-driven
farming, reducing water and fertilizer use and minimizing the use of pesticides. It can
make farms “self-healing” and more resilient. As Daugherty and Wilson [27] observe,
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“The ultimate goal with precision agriculture is that disparate systems can come to-
gether to produce recommendations that farmers can then act on in real time,” and of
course in the future perhaps even have intelligent machines act on those data without
having the farmer in the loop. Being able to modify plans quickly on the basis of data
and corresponding models can make agriculture more resilient. However, if watering a
field is automated, based on embedded sensors and machine learning, but the crops dry
out, entirely new jobs will be needed to recreate what happened in order to improve
decision making in the future.

4 The Combinatorial Explosion Challenge

Combinatorial Explosion Challenge: Data science allows comparison of an array of
alternative solutions to problems. However, the number of alternatives is often so large
that we cannot take all into account in a timely way. We may not even be able to express
all possible preferences among alternatives.

4.1 Counterterrorism: Nuclear Detection

Terrorist attacks are a major potential source of disruption to modern societies. One
challenge is to minimize the effect of terrorism by doing thorough screening and testing,
but designing the most efficient screening protocols can be difficult due to the number
of possibilities. Consider inspecting containers at ports for nuclear materials. There are
a variety of tests that can be performed on containers, for example determining whether
or not the ship's manifest sets off an alarm in an “anomaly detection” program; whether
or not the container gives off neutron or Gamma emissions that are above some thresh-
old; whether or not a radiograph image recognition test comes up positive; whether or
not an induced fission test comes up positive. One can look at tests sequentially, choos-
ing the next test to perform based on the outcome of the previous test. This kind of
sequential diagnosis is common in many fields such as medicine. In container inspec-
tion, one can represent the possible tests in a binary decision tree (BDT), where the
nodes are tests and we take the right arrow after a given test if the result is positive and
left arrow if it is negative. Ultimately, the container is either allowed through or desig-
nated for complete unpacking. One seeks a BDT that is optimal in some sense. How-
ever, even with five tests, there are 263,515,920 possible BDTs, and the number of
possibilities makes it computationally impossible to find an optimal one. Among prom-
ising approaches to this problem is specialization of the class of BDTs and development
of new search algorithms to move from one tree to better ones [6,58,59].

Another example of Combinatorial Explosion also arises from counter-terrorism ap-
plications, the problem of comparing the performance of alternative nuclear detection
algorithms. The problem is to design experiments to compare algorithm performance,
taking into account many relevant factors such as type of special nuclear material being
tested, shielding, masking, altitude, humidity, temperature, and speed of vehicle being
screened. For each of these factors, there are several possible values, and there are too
many combinations to test all of them in experiments. This requires development of
tools to design experiments that test together all significant pairs of values [26,50].



4.2  Testing for Disease: COVID-19

An alternative approach to the container inspection problem is a tool called SNSRTREE
[12,13]. This tool involves a large-scale linear programming model for sequential in-
spection of containers that allows for mixed strategies, accommodates realistic limita-
tions on budget and testing capacity and time limits, and is computationally more trac-
table. Recently, research has begun on applying this tool to testing for COVID-19. The
goal is to determine how to optimally select from among the available tests for COVID-
19 according to the person, their work, the results of any prior tests, and current, dy-
namic test availability. The goal is to use SNSRTREE to determine the probability that
a specific individual is, or is not, “infective.” Tests for the COVID-19 infection include
self-reports of symptoms, thermometer readings, clinical observations, nasal swab tests,
saliva tests, etc. Tests vary as to cost, reliability, and assay time to get a result. To
develop optimal testing policies, we first ask for the result of a first test, and depending
on that result, we may reach a decision or choose a second test. After a second test, we
may reach a decision, or choose a third test, etc. Every such policy has a cost, integrat-
ing the expected cost of the tests with the economic and human costs of false positives
and false negatives. SNSRTREE finds the entire set of “optimal” testing policies for all
possible budgets. Read in one ways, it provides least estimated infection at a given cost;
read the other way, it provides lowest estimated cost for a given infection control. What
makes the modification of SNSRTREE or any other algorithm for application to
COVID-19 testing complicated is that infection is a moving (time dependent) target
rather than a fixed property; tests may have different assay times and availabilities over
time; and test results may not be stochastically independent — all of which add to the
combinatorial explosion of possibilities.!

4.3  Ecological Monitoring

Still another example of the Combinatorial Explosion Challenge comes from NEON
(National Ecological Observatory Network), a project that involves gathering data from
20 sites across the US to get a continent-wide picture of the impacts on natural resources
and biodiversity of climate change, land use change, and invasive species. The under-
standing gained from NEON can contribute to the resilience of the ecosystem in nu-
merous ways. How are those 20 sites chosen? NEON divides the country into 8 million
patches. For each patch, the project collects 9 pieces of information about its ecology
and climate, clusters the patches, and chooses a representative patch for each cluster.
But why limit this to 9 pieces of information when one could easily come up with 100
pieces of information about each patch? The problem is that it would then become com-
binatorially impossible to do the clustering [23].

! Thanks to Endre Boros, Dennis Egan, Nina Fefferman, Paul Kantor, and Vladimir Menkov for
discussions and the specific ideas in this paragraph.



5 The Real-time Analytics Challenge

Near-real-time situational awareness (real-time analytics) is becoming increasingly
feasible, based on massive amounts of data from simulation and modeling, mobile
applications, and sensors. Such data can be too rapid for real-time human consumption
or exploration.

Real-time Analytics Challenge: Some data rates are so large that not all the data can
be saved and yet real-time or almost real-time decisions must be made.

5.1 Resilience in the Electric Power Grid

The electric power grid provides an example where real-time analytics can dramatically
improve resilience.” Today’s electric power systems operate under considerable uncer-
tainty. Cascading failures can have dramatic consequences [3]. Algorithmic methods
are needed to improve security of the energy system in light of its haphazard construc-
tion and dynamically changing character and to find early warning of a changed state,
i.e., to rapidly detect anomalies. “Smart grid” data sources enable real-time precision
in operations and control previously unobtainable (see e.g., [2,4,5,23,25,88]): Time-
synchronous phasor data, linked with advanced computation and visualization, will en-
able advances in state estimation, real-time contingency analysis, and real-time moni-
toring of dynamic (oscillatory) behaviors in the system; sensing and measurement tech-
nologies will support faster and more accurate response, e.g., through remote monitor-
ing; advanced control methods will enable rapid diagnosis and precise solutions appro-
priate to an “event.” Status updates that used to come in every two to four seconds are
now approaching ten times a second using new phasor technologies. That rate may be
too rapid for a human alone to absorb the presence of an anomaly in time to act upon
the information, thereby requiring software agent or algorithmic support.

5.2  Smart Transportation Systems

Traffic management in “smart cities” presents many examples of the Real-time Ana-
lytics Challenge.? “Intelligent transportation systems” involve integrated fare manage-
ment, variable road usage charging, and traffic information made available in real time,
all requiring fusion of a great deal of information. Real-time traffic management takes
account of sensors of all kinds, ability to monitor the actual traffic situation (volumes,
speeds, incidents), and the ability to control or influence the flow using that information
to reduce traffic congestion, deal with incidents, and provide accurate information to

2 Much of the following discussion is based on a white paper [1] in [23] and a presentation by
Gilbert Bindewald of the US Department of Energy to the SIAM Science Policy Committee
on October 28, 2009.

3 Many of the ideas on traffic management here are taken from the talk “Smart Cities — How can
Data Mining and Optimization Shape Future Cities,” by Francesco Calabrese of IBM Ireland,
at the DIMACS/LAMSADE workshop on Smart Cities, Paris, Sept. 2011.
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drivers and authorities. Sensor data depends heavily on GPS data that needs to be re-
lated to the underlying network by map matching algorithms that are computationally
expensive. GPS data is sampled at irregular intervals, possibly with large gaps — which
requires advanced analytics to reconstruct GPS trajectories. Also, GPS data is inaccu-
rate, needs “cleaning.” Additional complexity arises from the need to combine the
“hard” numerical readings of sensors monitoring vehicle movements with the “soft”
natural language utterances of drivers and tweets of the public. Understanding human
transit demands/needs in real-time involves challenges to help design adaptive urban
transportation systems, help citizens navigate the city, detect and predict travel demand,
and offer real-time alternative routings in case of problems. The ability to offer such
real-time adjustments can make today’s smart transportation systems more resilient.
For some relevant references, see [8,40].

5.3 Food Security

The food system has multiple components: producers of food, those who process, ship,
or sell food products, and those who shop for food and consume it. At all steps “from
farm to fork” there are possible disruptions [83]. Such disruptions include extreme
weather events, animal diseases, terrorist attacks, and disease events such as COVID-
19, which has both closed down meat packing plants, leading to shortages, and rapidly
changed demand, leading to farmers plowing under crops and pouring out milk. To-
day’s sensing and computing capacities allow us to monitor the food system in real time
and to take action to maintain security of the food supply. Such monitoring includes
observational data (soil conditions, land use) and data on social processes and prefer-
ences. Automatic image processing of satellite data [56], information from crop and
soil sensors, and real-time reports of changing supply chain conditions, can be used to
gain real-time awareness and make changes. Such methods have been used for example
to estimate the resilience of the wheat market to potential ruptures in the global trans-
portation system [34]. For more on real-time monitoring of the food system, see [51]*.

5.4  Resilient Ecosystems

Ecosystems are subject to increasing disturbances in the face of global change (climate
change, land use change, migration patterns, increasing urbanization, etc.). Resilience
of ecosystems allows them to bounce back from perturbations [85]. Is it possible to
judge in real-time when an ecosystem is at the brink of suffering a perturbation that
would irreversibly disrupt it, i.e., when it is on the edge of collapse [9,11]? Examples
of such dramatic “state changes” in an ecosystem are desertification of certain parts of
the earth [21,33], coral bleaching [10], lake eutrophication [16], major disruption of the
atmospheric chemistry as a result of agriculture [38], and the transformation of tropical
forests under slash and burn agriculture [54]. One approach is to study satellite images
over a long period of time (many years) and use “deep learning” methods to identify
ecosystems that are stressed and that might have undergone a shift from a stable state
to another. By identifying general characteristics of an ecosystem including climate

4 Thanks to Hans Kaper for many of the ideas in this paragraph.
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fluctuations, biogeochemical cycles or vegetation-atmosphere interactions, it may be
possible to identify those characteristics that indicate a shift is about to occur.’

6 The Vulnerabilities Challenge

Modern society is critically dependent upon data from manufacturing and production
systems, power and water, transportation, financial transactions, medicine, etc.
Vulnerabilities are ever present, enhancing cyberattacks on our infrastructure, causing
cascading failures, leading to rapid spread of anomalies and exacerbating the impacts
of all kinds of failures. It is the very ability to utilize and benefit from large amounts of
data that sometimes creates vulnerabilities.

Vulnerabilities Challenge: How do we identify new vulnerabilities caused by usage of
data? How do we develop tools for monitoring and minimizing such vulnerabilities?

6.1 Medical Facilities

Electronic medical records are a case in point. They lead to being able to share data
about a person’s medical condition rapidly and with a variety of medical personnel.
However, these electronic medical records lead to vulnerabilities. Recently several hos-
pitals have had to postpone surgeries after having lost access to electronic medical rec-
ords in a cyberattack, and had to pay ransom to regain access to these records [61].
During times of uncertainty and confusion, especially disasters, criminals take full ad-
vantage. That is particularly true of the COVID-19 pandemic. An FBI release says that
criminals are “using COVID-19 as a lure to deploy ransomware ... designed to lock”
hospital or public health department computers [35]. There have already been examples
of ransomware attacks on hospitals and labs treating COVID-19 patients or working on
treatments, vaccines, etc. [37]. Numerous other frauds and scams by criminals during
the COVID-19 pandemic also seek to take advantage of the situation. The FBI release
describes offers of sham treatments and vaccines, bogus investment opportunities in
medical companies, and people impersonating doctors demanding payment for treat-
ment.

6.2  Cybersecurity of Supply Chains

Information and communication devices have enabled rapid information sharing, cre-
ated the ability to make financial transactions from anywherre, and provided access
from the workplace to markets worldwide. However, the very nature of these devices
as tools, which use, process and share huge amounts of data rapidly, has led to vulner-
abilities. In recent years, there has been a major concern about cyber threats to infor-
mation and communication devices and processes. A report of the US Department of
Homeland Security Cybersecurity and Infrastructure Security Agency (CISA) Infor-
mation and Communications Technology (ICT) Supply Chain Risk Management
(SCRM) Task Force [22] gives a great deal of detail about the importance of and new

5 Many of the ideas in this paragraph are due to Paolo D’Odorico and Wayne Getz.
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approaches to supply chain risk assessment in the information and communication tech-
nology (ICT) domain, as do reports from the US National Institute of Standards and
Technology (NIST) [14] and the US National Counterintelligence and Security Center,
Supply Chain Directorate [62]. The CISA report makes it clear that cyber is a key issue.
As a supply chain is only as strong as its weakest link, all components of the supply
chain have to be engaged in cybersecurity issues, but how to achieve this goal is a major
challenge. A disruption in one device connected to the supply chain can cascade
through the entire system, and the development of protection against such cascading
effects of cyberattacks is of central importance. The maritime transportation system is
key to the world’s supply chains. See Rose [75] for some work on models of cascading
impacts of cyberattacks on the maritime transportation system. Some of those cascad-
ing effects on supply chains result from supply substitutions. How can the potential for
supply substitutions to lead to cascading failures be minimized? Models such as those
of [31,32] of how to control the cascading impact of power grid disruptions are very
relevant here, and could lead to improved resilience of many types of supply chains.

6.3 Autonomous Vehicles

Due to the ready availability of data, there is a huge increase in number of cyber-
physical systems. Today’s cars are more like computers on wheels. Yet, the very ability
to utilize large amounts of data to perform better leads to vulnerabilities. Cyber-
physical systems control much of how a car operates. This makes today’s cars already
semiautonomous, taking decisions away from the driver, and thereby frequently aiding
in preventing accidents. But could a criminal or terrorist take control of a car remotely
through a cyberattack and use it to cause damage? This seems to be a serious challenge
as in-car technology becomes more sophisticated. And it is likely to become even more
of a challenge as we develop fully autonomous vehicles. In 2013, Miller (Twitter) and
Valasek (IOActive) demonstrated they could take control of a Toyota Prius and a Ford
Escape from a laptop [42]. They were able to remotely control the smart steering,
braking, displays, acceleration, engine, horn, lights, and so on. As we move to self-
driving cars, similar vulnerabilities might exist. This is not just hypothetical. Already
in our seaports, trucks and cranes operate in driverless mode, and there have been
cyberattacks on cranes in ports [29,30]. One approach to minimizing the impact of
attacks on self-driving cars begins with risk assessment of different kinds of attacks.
See [72] for an approach.

6.4  Oil Rigs

The failure of a blowout preventer on an oil rig in the Gulf of Mexico in 2010 led to the
devastating Deepwater Horizon oil spill, the largest oil spill in US history. That was not
due to a cyberattack. However, there have been cyberattacks on oil rigs. According to
security company ThetaRay, a cyberattack on a floating oil rig off the coast of Africa
managed to tilt the rig slightly and as a result it was forced to shut down. It took a week
to identify and fix the problem [87]. In another drilling rig event, in 2010, a drilling rig
being moved at sea from South Korea to South America was infected by malicious
software. Its critical control systems could not operate and it took 19 days to fix matters
[24,87]. The cyberattack infected the computers controlling the blowout preventer, the
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system at fault for the Deepwater Horizon accident. The results could have been disas-
trous. Oil rigs are critically dependent on GPS for stability, yet hackers have been able
to tilt an oil rig, putting it out of commission for days at high cost. Modern GPS, dy-
namic positioning systems, and other technologies that depend on large amounts of data
have made it possible to manipulate oil rigs in efficient ways, yet open them up to
attacks and outages [29]. How can we minimize the impact of such attacks? That will
be crucial to make oil rigs and other systems more resilient.

7 The Information Sharing Challenge

Secure information sharing is a key to enable organizations and individuals to work
together on a wide range of issues. Such information sharing is a critical component of
ensuring resilience of systems and networks.

Information Sharing Challenge: Information sharing requires appropriately
safeguarding both systems and information; selecting the most trusted information
sources; and maintaining secure systems in potentially hostile settings. How can one
best accomplish these things?

7.1  The Terror Attacks of September 11, 2001

Failure to detect and prevent the September 11%, 2001 attacks in New York City was,
in many ways, a result of an intelligence failure due to lack of information sharing. At
the time, there was no coordinated way to "connect the dots." Subsequent analyses,
detailed in the Report of the National Commission on Terrorist Attacks Upon the
United States, also known as the 9/11 Commission Report [84], resulted in an emphasis
on information sharing to facilitate situational awareness and understanding. In addition
to the loss of life, the 9/11 attacks had a major economic impact in the US, in particular
on the transportation system, from which it took a long time to recover. The hope is
that information sharing will prevent successful terrorist attacks or criminal behavior,
or at least minimize their impacts, i.e., make the country and its various systems more
resilient.

In order to gain situational understanding when there are many organizations or in-
dividuals each having some relevant information, one can create an ‘information shar-
ing environment’ (ISE) - a decentralized, distributed, coordinated milieu that connects
existing systems and builds on their capabilities, while protecting individuals’ privacy
[19]. In the US, for example, “fusion centers” were created to share information among
numerous agencies and the private sector following the September 11 attacks. They
can have thousands of federal, state and local partners, and utilize information from
numerous government agencies and the private sector, to aid in counter-terrorism and
anti-crime efforts. Successful creation of an ISE requires implementation of both tech-
nical and operational components. Technical components (like interoperability and
rules as to who can gain access and how) are necessary, but also fundamental are the
human components and procedures that ultimately allow an ISE to succeed. An ISE
requires coordination and integration of information-sharing through collaboration and
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cooperation. However, there have to be shared standards for identification, access, and
utilization of information, there have to be policy, procedures, and technical solutions
for safeguarding information, and there need to be standards and accountability proce-
dures for the protection of privacy, civil rights, and civil liberties.

7.2  “Participatory Democracy”

Information sharing is coming to be a key component of what some people are calling
“participatory democracy.” Here, the idea is that participation by all stakeholders, in-
cluding the public, can lead to better policies for governments. While the concept of
participatory democracy goes back to Athenian days [7] it is becoming more and more
important in this digital age. The book [70] develops the concept of “e-democracy,”
which, among other things, includes web-based participation leading to changes in pub-
lic policy. The underlying assumption is that decisions reached through public partici-
pation can lead to more stable societies, smarter cities, etc. Such participatory democ-
racy has been explored in the context of water usage, power supply, health care, and
other applications, but it requires the development of methods of sharing information
and views, beliefs, and preferences. Tools for reaching good decisions using participa-
tory methods have been explored by various authors, for example [69]. The goal is to
develop tools to facilitate stakeholders’ participation and achieve collective commit-
ment, which in turn would seem to lead to greater stability and resilience.

7.3  “Super Storm” Sandy

After “Super Storm” Sandy, the massive hurricane that hit New York City in 2012, the
port of New York/New Jersey was left dramatically damaged. Yet, it was very resilient
and recovered quickly. In a report on the resilience of the port [81], the authors point
out that “soft” resilience strategies were vital in its recovery after Hurricane Sandy.
Such strategies “include ways to reduce vulnerability and improve response and recov-
ery capability through planning, people, partnerships and policy” and “planning for re-
sponse and recovery; increasing access to high quality data; and developing a web of
bonds, ties and relationships across sectors - that is, building what scholars have called
‘social capital’ through collaboration.” Thus, a stronger social infrastructure (keyed by
good information sharing) led to a more resilient port.

7.4  Secure Multi-party Computation

One theoretical approach of note has come to be called “Secure Multiparty Computa-
tion [89], an area aiming at allowing parties to jointly compute something over their
inputs while keeping those inputs private. It is a model for “secure information shar-
ing.” We have begun to see a new effort in systematizing secure computation to allow
decision makers to understand essential strengths and weaknesses of different secure
computation solutions (e.g., whether or not they guarantee fairness and their prerequi-
sites regarding correctness, auditability, and compliance) and determine which best ap-
plies in a given scenario [68].
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8 The Trustworthiness Challenge

Data comes from multiple sources and some are more accurate than others. Multiple
information sources often provide inconsistent or conflicting information — whether
maliciously, or due to noise. This is especially so in emergency situations where
heterogeneous information streams describe damage, physical needs, information
needs, etc. in different locations. To utilize the vast amounts of data available to us in
this age of Big Data, we have to understand what sources we can trust. We need precise
definitions of factors contributing to trustworthiness: accuracy, completeness, bias. For
work along these lines, see for example [64,65]. Work is also needed to develop claim
verification systems, with automated claim verification by finding supporting and
opposing evidence.

The Trustworthiness Challenge: How can we develop computational frameworks and
other tools that address the problem of trustworthiness in disasters and other situations?

8.1 Trust in Authorities During Disasters

Responses to disasters will work better if people trust those in charge and comply with
instructions, thus allowing more rapid and effective response to disasters and making
society more resilient. Greenberg [44] argues that there are two factors that determine
whether individuals trust organizations, in particular government organizations. One is
perception of the competence of the organization and the second is the perception that
the organization possesses values and intentions consistent with those of the individual
asked to trust it, things like fairness or non-bias or willingness to listen and communi-
cate. In 2013, after Super Storm Sandy, Greenberg [43,44] investigated the New Jersey
public’s willingness to support rebuilding of devastated parts of the state. He asked
residents if they were willing to contribute to a special fund for rebuilding. “The vast
majority were unwilling, and we found that mistrust of the state was a strong predictor
of their unwillingness to contribute. Many did not trust state government to use a ded-
icated fund for the designated purpose” [44]. In the midst of a disaster such as the
COVID-19 pandemic, many technologies are being touted as helpful, e.g., for screen-
ing, testing, contact tracing, enforcing social distancing, etc. If Greenberg is right, is-
sues of fairness and ethics involving the government agencies that will deploy the tech-
nologies will enter just as significantly as issues of technical competence of those agen-
cies and technical performance of the technologies.

8.2  Risk Communication and Human Perception During a Pandemic

COVID-19 reminded us that communications and human behavior are important fac-
tors to consider when preparing for and during a disaster, e.g., a pandemic. How does
human behavior such as panic hoarding of toilet paper, hand sanitizer, and pasta, which
we have seen during the COVID-19 pandemic, arise? To some extent, hoarding is a
rational response to being told not to venture out a lot, in which case it makes sense to
stock up on a lot of goods when you do [57]. How do communications impact hoarding
behavior? Among other things, they can impact our trust in the supply system. In the
US, there were some early inconsistencies in such messaging. For example, the Centers
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for Disease Control and Prevention recommended keeping a 2-week supply of food at
hand and the Federal Drug Administration recommended that people should only buy
enough for the week ahead [57]. Good risk communication is a key to resilience in the
case of a disaster.

One critical element involved in reopening an economy after people are required to
stay home at the height of a disease outbreak such as COVID-19 is the availability of
healthy and willing workers. It is important to understand the workers’ mental models
of the risk of infection, and how they frame decisions related to the safety of the work-
place. This will involve questions relating to workers’ concerns about competence of
those laying out guidelines about workplace safety. For relevant research on how work-
ers might make such decisions after disasters, see [77,78], where the authors studied flu
epidemics and an urban biological catastrophe involving anthrax and explored people’s
decisions about returning to work. Their work demonstrates the importance of risk com-
munication in making the economy more resilient.

8.3  Identity and Access Management

To return to the topic of information sharing discussed in Section 7, another critical
principle underlying a successful information sharing environment (ISE) is trust. This
is both a human and a technical issue. ISEs only work when, over time, participants
learn to work together and trust each other. On the technical side, trust can be accom-
plished through identity credential access management solutions, which are a means
for participants to have confidence in the identity of collaborators. “Trustmarks” are
digitally-signed assertions by a third party assessor that are shared between parties seek-
ing to share information. The parties treat a third party verification as evidence that the
trustmark recipient meets the trust and requirements as set forth in some agreement. For
more information on trustmarks, see [45]. For more on the subject that is coming to be
called identity and access management, see [80]

Proving your identity is part of information sharing. Proving that you have the au-
thority to do something is another component of identity and access management [17],
and this subject can play a role in enhancing recovery during a disaster. Consider a
firefighter from New Jersey who goes to Florida to help in the recovery from a hurri-
cane, an emergency management technician from New Jersey who goes to California
to help treat earthquake victims, or a policeman from New Jersey who goes to New
York City to help control a terrorist standoff. How can these people convince the re-
sponsible people at the disaster scene that they are who they are, but more importantly
that they have official credentials such as a security clearance or a permit to carry a
weapon or a hazardous materials cleanup certificate? The tools of identity and access
management can enable their smart phones to carry encrypted information about their
credentials that will speed up the approval for their involvement by the local authorities
[17]. This is an important, growing field that will help enhance trust and as a result
enhance resilience in disaster situations.
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9 Closing Comments

Today’s world of big data, massive computing capacity, artificial intelligence, and ma-
chine learning makes it possible to learn how to build resilience into systems. The del-
uge of data from in-situ sensors, remote sensing, images, videos, recordings, makes it
possible to observe changes in systems across temporal and spatial scales. These same
sources of data should make it possible to develop tools for characterizing resilience.
However, in addition to the challenges discussed in this paper, another critical one is
that there are no agreed-upon metrics to measure whether a system has become more
(or less) resilient, or many tools for improving a system’s resilience.

As we have observed, resilience of a system can be enhanced by learning from the
past to sense emerging risks. As more data becomes available, this learning can benefit.
We can fuse massive amounts of data of different kinds, combining with machine learn-
ing tools for anomaly detection, to provide early warning that a system might be in
danger. By providing tools for faster awareness of problems, data science can give sys-
tems time to take mitigating actions. This learning can only be useful, however, if we
can identify appropriate features and indicators, determine how to measure them, and
use them as input into tools of data science to learn which parameter configurations
allow a system to recover to a healthy state if it has been disrupted.
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