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Abstract: We present cosmological parameter measurements from the publicly
available Baryon Oscillation Spectroscopic Survey (BOSS) data on anisotropic galaxy
clustering in Fourier space. Compared to previous studies, our analysis has two main
novel features. First, we use a complete perturbation theory model that properly
takes into account the non-linear effects of dark matter clustering, short-scale physics,
galaxy bias, redshift-space distortions, and large-scale bulk flows. Second, we employ
a Markov-Chain Monte-Carlo technique and consistently reevaluate the full power
spectrum likelihood as we scan over different cosmologies. Our baseline analysis as-
sumes minimal ΛCDM, varies the neutrino masses within a reasonably tight range,
fixes the primordial power spectrum tilt, and uses the big bang nucleosynthesis prior
on the physical baryon density ωb. In this setup, we find the following late-Universe
parameters: Hubble constant H0 = (67.9 ± 1.1) km s−1Mpc−1, matter density frac-
tion Ωm = 0.295 ± 0.010, and the mass fluctuation amplitude σ8 = 0.721 ± 0.043.
These parameters were measured directly from the BOSS data and independently
of the Planck cosmic microwave background observations. Scanning over the power
spectrum tilt or relaxing the other priors do not significantly alter our main con-
clusions. Finally, we discuss the information content of the BOSS power spectrum
and show that it is dominated by the location of the baryon acoustic oscillations and
the power spectrum shape. We argue that the contribution of the Alcock-Paczynski
effect is marginal in ΛCDM, but becomes important for non-minimal cosmological
models.
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1 Introduction

Density fluctuations traced by galaxies are an important source of information about
our Universe. They can be used to probe perturbations on scales similar to those
measured in the cosmic microwave background (CMB) observations, but at a very
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different epoch of cosmic evolution and in a very different physical environment.
Future galaxy surveys with their increasingly larger volumes have a great potential
to provide the most stringent tests of ΛCDM and possibly lead to new discoveries [1–
4].

The increasing precision of the large-scale structure (LSS) surveys calls for a
consistent and accurate theoretical modeling which is easy to implement in the
data analysis pipeline. In this paper we focus on some aspects of this problem.
In particular, we use a rigorous perturbation theory model for the redshift-space
galaxy power spectrum (PS) to measure cosmological parameters from the publicly-
available1 Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12)
published in 2016.2 Similar full-shape (FS) analyses of the power spectrum multipole
moments [5, 6] or position-space correlation function and redshift-space wedges [7–9]
have been already done in the past. Our motivation to repeat this exercise is twofold.

First, despite significant progress in understanding the nonlinear evolution of
large-scale structure and biased tracers, many recently developed theoretical tools
are not routinely used in the data analysis. These new results can be roughly split
into two categories. The first category comprises consistent perturbative descriptions
developed to improve matter clustering modeling in the mildly nonlinear regime. This
includes nonlinearities in the dark matter fluid [10, 11], the bias model [12–15] (for
a review see [16]), and redshift space distortions [17, 18]. In all these cases one can
systematically, order by order in perturbation theory, write down all independent
contributions to the nonlinear density field. These contributions are derived using
equations of motion and general symmetry arguments, such as mass and momentum
conservation, and the equivalence principle. The functional form of these contribu-
tions is entirely fixed by these arguments, but the amplitudes are unknown. These
contributions are related to the familiar bias parameters and less popular “countert-
erms,” whose purpose is to capture the impact of unknown small-scale physics on
the long-wavelength fluctuations. Any consistent theoretical model has to keep all
these parameters in the fit in order to obtain unbiased estimates of cosmological
parameters.

The second category of analytical results is related to the accurate description of
the baryon acoustic oscillations (BAO). It has long been known that the shape of the
BAO peak is very sensitive to large displacements or bulk flows [19–21]. Their effect
on the density field can be significant since the typical displacements of galaxies are
of order ∼ 10 Mpc. However, the basic formulation of Eulerian Perturbation Theory
[22] treats bulk flows only perturbatively.3 This problem has recently been resolved

1We use the data that can be accessed via https://fbeutler.github.io/hub/hub.html, see also
http://www.sdss3.org/science/boss_publications.php .

2We use directly the power spectrum multipoles provided by the BOSS collaboration. The
details of the data are given in Sec. 3.

3In Lagrangian Perturbation Theory (LPT) this is not the case since the bulk flows correspond
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in a number of works within different but equivalent perturbation theory schemes
and in various approximations [25–31]. In a nutshell, large bulk flows are induced by
the long-wavelength or “infrared” modes, whose dominant physical effect is a simple
translation of matter. This allows for an exact treatment beyond perturbation theory,
which was called infrared (IR) resummation [25]. Using IR-resummation the shape
of the BAO wiggles can be predicted to very high precision (including higher order
loops if necessary). Crucially, this procedure requires no fitting parameters. This
is very different from usual, more phenomenological methods to predict the spread
of the BAO peak and this difference is relevant even for the analysis of data from
current surveys. We implement all these novel results in our theoretical model for
the power spectrum.

Let us stress that the theoretical description of non-linear BAO damping may
not be the most optimal way to extract cosmological information. Rather than mod-
eling the damping of the BAO peak, one can undo this damping by means of BAO
reconstruction at the catalog level [32, 33]. This procedure effectively transfers in-
formation from higher order n-point functions to the 2-point function. The standard
BAO reconstruction does sharpen the BAO wiggles, but it also introduces some dis-
tortions in the broadband part, which are hard to model analytically. Even though
some progress towards a consistent reconstruction of the full initial density field has
recently been made [34–36], the available methods have not been extensively tested
for biased tracers in redshift space and we leave exploration of this direction for
future work.

Our second motivation to reanalyze the BOSS data is to perform a consistent
Markov-Chain-Monte-Carlo (MCMC) study that samples all relevant cosmological
and nuisance parameters without assuming the CMB priors. This is not a standard
practice in the FS studies, in part due to a relatively high computational cost of a di-
rect numerical evaluation of perturbation theory loop integrals. Some exceptions are
BOSS analyses of the position-space correlation function and redshift-space wedges
[7–9] where all relevant parameters in the MCMC chains were varied, but only in
combination with the Planck CMB likelihood. A more conventional approach to
FS analysis is to compute the power spectrum shape for one fiducial cosmology and
parametrize deviations from it by means of the following scaling parameters:

α∥ ≡
Hfid

Htrue

⏐⏐⏐⏐⏐
zeff

rd, fid

rd, true
, α⊥ ≡ DA,true

DA,fid

⏐⏐⏐⏐⏐
zeff

rd, fid

rd, true
, fσ8(zeff) , (1.1)

where zeff is the effective redshift of the data, rd is the sound horizon at the drag

to the linear displacement and they are resummed by construction. This is the reason why even in
the Zel’dovich approximation the shape of the BAO peak is described rather well. For some more
recent progress in modeling the BAO peak for dark matter and biased tracers in real and redshift
space using models based on LPT see [23, 24]. One practical disadvantage of LPT-based models is
that evaluation of power spectra is numerically rather demanding.
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epoch (which sets the BAO frequency), H is the Hubble parameter and DA the
angular diameter distance, f is the logarithmic growth rate (f ≡ d lnD/d ln a, where
D is the linear growth factor and a is the scale factor), σ8 is the late-time rms mass
fluctuation in the spheres of comoving radius 8 Mpc/h. The parametrization above
is motivated by the BAO studies, in which rd/DA and rdH are the most relevant
parameters. However, the use of these scaling parameters is not entirely correct in the
case of the full-shape analysis. To see this, let us consider a variation of the physical
dark matter density ωcdm with all other parameter fixed. This variation will have an
impact not only on rd, but also on the amount of the short-scale baryon suppression
and the position of the PS peak. This argument suggests that if the PS shape is
fixed, rd must be fixed as well for consistency. In this case the parameterization (1.1)
becomes a correct description of the Alcock-Paczynski effect [37], which does not
assume any priors on the radial and angular distances.

A rational behind the scaling parameter analysis is that ultimately one intends
to combine LSS and CMB data to constrain a class of non-minimal cosmological
models that are described by the standard physics at early times but modify the
late-time expansion, e.g. dynamical dark energy. The CMB data provide us with
(sub-)percent priors on the physical densities of baryons and dark matter, which
nearly fix the PS shape in the combined analysis. In that case the PS complements
the CMB with the geometric and distance information that is indeed captured by
the α-parameters in Eq. (1.1). The standard analysis thus assumes strong priors on
the early physics, i.e. the physical densities of baryons and dark matter, which are
the most relevant parameters defining the power spectrum shape. These priors will
be referred to as “shape priors” in what follows.

In practice, one may face situations that require a more general treatment. These
cases include the use of different priors, the study of degeneracies between cosmolog-
ical and nuisance parameters, the information content of the power spectrum shape,
and exploring various extensions of the minimal ΛCDM that include physics, which
is not captured by a simple change of the late-time expansion and scale-independent
growth factor. These include, e.g. massive neutrinos or models with non-standard
early physics. In all these cases the common approach becomes inadequate. Besides,
the future LSS data may supersede Planck, which also calls for a reassessment of the
standard analysis pipeline.

In the most general setup it would be ideal to measure cosmological parameters
directly from the shape of the observed multipoles, independently of the chosen pri-
ors. In that case one would have to model the whole evolution of perturbations for
a given cosmological model in the same way as it is usually done in the CMB data
analysis. In this paper we analyze the BOSS data in this general way. This task
requires a numerical routine able to generate theoretical templates for the non-linear
spectrum quickly enough for MCMC parameter estimation. A crucial ingredient to
achieve this goal is a fast and reliable method for evaluating perturbation theory
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loop integrals. Fortunately, significant progress has recently been made in this di-
rection [38–42]. For the purposes of our analysis we implement the FFTLog method
described in [42] as a module in the publicly available code CLASS [43]. This new
module inputs the linear transfer functions computed by CLASS and calculates the
multipole moments of the one-loop power spectrum for biased tracers in redshift
space for a given set of cosmological parameters. The details of the code, perfor-
mance studies, and tests on simulations will be presented in a separate publication.
The code will soon become publicly available.

To summarize, our goal in this paper is to analyze the BOSS power spectrum data
using a consistent perturbation theory model, varying all relevant bias parameters
and counterterms, and including IR-resummation to predict the shape of the BAO
wiggles properly. In this paper we mostly focus on base ΛCDM and analyze several
different priors to explore how they affect our final results. We point out that our
MCMC chains consistently include all the most important cosmological and nuisance
parameters.

This paper is structured as follows. In Sec. 2 we brief our main results. Sec. 3
summarizes our likelihood. It discusses the theoretical model, data, covariance ma-
trices, survey geometry, parameters and prior used in this work. In Sec. 4 we present
a more detailed account of different analyses we ran to explore the parameter space
of the base ΛCDM with massive neutrinos. In Sec. 5 we scrutinize the sources of
information encoded in the power spectrum data. Sec. 6 focuses on distance mea-
surements and establishes the relation between our work and the methods used in
the previous full-shape analyses. There we case study ΛCDM with shape priors and
the model of dynamical dark energy. The study of this Section suggests that a con-
sistent application of the standard analysis requires an accurate implementation of
proper physical priors for a given cosmological model. Section 7 draws conclusions
and points out directions of future research. Some additional material is collected in
Appendices. App. A contains the details of our theoretical model. App. B presents
the tests of our pipeline on mock catalogs. Some additional supplementary ma-
terial and various tests are collected in Appendix C. The extended triangle plots
and marginalized limits for cosmological and nuisance parameters are presented in
App. C.1. App. D describes our implementation of the standard scaling parameter
analysis.

2 Summary of Main Results

Let us briefly summarize our main results before going into the technical details
of the analysis. First, we test our pipeline on mock catalogs and find that our
theoretical model can be used reliably up to kmax = 0.25 h/Mpc with the BOSS
survey covariance. We found that the residual modeling uncertainty coupled with
parameter projection effects may bias our 1d marginalized constraints for individual
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parameters at most by 1σ. It should be stressed, however, that the shifts for different
parameters are correlated, and the actual bias in the full (unmarginalized) parameter
space is much lower than 1σ. This systematic error should be borne in mind when
interpreting our results.

Our main analysis models four independent BOSS power spectrum datasets
across two redshift bins (zeff = 0.38, 0.61) in flat ΛCDM, marginalizing over 7 nui-
sance parameters for each dataset (28 in total) and varying 5 cosmological parameters
(ωb, ωcdm, H0, As,

∑
mν).4 We stress that the baseline constraints derived in this work

are model-dependent and should be interpreted in conjunction with the priors and
assumptions we made:

• The Universe is described by the flat ΛCDM, i.e. it has the standard thermal
history and its late-time expansion is controlled by the cosmological constant.

• The spectrum of primordial scalar fluctuations has a simple power-law form
dictated by basic inflationary scenarios. It is fully characterized by two param-
eters: amplitude As and tilt ns: Pζ = As(k/kpivot)

ns . The initial conditions are
assumed to be adiabatic. We fix the power spectrum tilt to the Planck best-fit
value [44]. This can also be seen as a theoretical prior motivated by inflation,
which predicts that the deviations from scale-invariance must be small.

• We assume an informative prior on the current physical baryon density ωb,
which can be obtained either from Planck or from the BBN.5

• We vary the neutrino mass in the reasonably narrow range (0.06, 0.18) eV, which
is motivated by particle physics6 and by other cosmological measurements, e.g.
of the Lyα forest [49].

Results obtained beyond these base assumptions will be discussed at the end of this
Section and in several Appendices. In particular, in App. C we show what our main
conclusions, e.g. the low prediction H0, hold true in the extended analyses too. It is
important to emphasize that our baseline analysis treats ωcdm as a completely free
parameter, i.e. our priors do not entirely fix the shape of the matter power spectrum.

4Here ωb = Ωbh
2 and ωcdm = Ωcdmh2 stand for the physical densities of baryons and dark

matter, respectively, As is the amplitude of the primordial spectrum of scalar perturbations, H0

is the present-day value of the Hubble parameter in units [km/s/Mpc], and
∑

mν is the sum of
neutrino masses (to be quoted in eV units).

5It is worth mentioning that the measurement of ωb from the shape of the CMB acoustic peaks
is nearly model-independent (see [45, 46] and also Table 5 of Ref. [44]). It is almost not sensitive
to the late-time expansion and early-time physics.

6It is natural to expect that the individual masses are of the same order as the mass splittings
inferred from oscillation experiments ∼ 0.05 eV [47]. Generating masses of this order of magnitude
is a common benchmark of many particle physics models, see e.g. [48] for a review.
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This can be contrasted with the previous full-shape studies, which kept the shape
totally fixed.

In principle, the priors on ωb, ns, and
∑

mν are not necessary for our analysis.
However, given that the BOSS data are not very sensitive to these parameters, we
prefer to fix, or nearly fix them by priors, which are ultimately CMB-motivated.
This is reasonable keeping in mind an eventual combination of BOSS with other
cosmological probes in order to pin down one correct model that would explain all
the observed phenomena in the Universe.
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Figure 1: Left panel : The posterior distribution for the late-Universe parameters
H0,Ωm and σ8 obtained with priors on ωb from Planck (gray contours) and BBN (blue
contours). For comparison we also show the Planck 2018 posterior (red contours) for
the same model (flat ΛCDM with massive neutrinos). Right panel : The monopole
(black dots) and quadrupole (blue dots) power spectra moments of the BOSS data for
high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples, along
with the best-fit theoretical model curves. The corresponding best-fit theoretical
spectra are plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

The outcome of our analyses is shown in Fig. 1, where we display the final
triangle plot (left panel) and best-fit spectra for two BOSS data samples with the
biggest volume7 (right panel). The inferred cosmological parameters are given in
Table 1. We have chosen to present the parameters H0, Ωm and σ8 as our main
results because they are more common in the LSS literature and because they are
close to the actual principal components of the BOSS data.

7These are high-z and low-z north galactic cap (NGC) samples.
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BBN ωb best-fit mean ±1σ

ωcdm 0.1117 0.1113± 0.0046

H0 67.93 67.89± 1.06

Ωm 0.2950 0.2945± 0.0100

σ8 0.722 0.721± 0.043

fσ8(zeff, 1) 0.431 0.434± 0.038

fσ8(zeff, 2) 0.393 0.394± 0.034

Planck 2018 best-fit mean ±1σ

ωcdm 0.1197 0.1201± 0.0013

H0 68.03 67.1+1.2
−0.67

Ωm 0.3071 0.3191+0.0085
−0.016

σ8 0.8224 0.807+0.018
−0.0079

fσ8(zeff, 1) 0.4769 0.4766+0.0062
−0.0053

fσ8(zeff, 2) 0.4714 0.4689+0.0070
−0.0045

Table 1: The results of our analysis for the combined likelihood with the BBN prior
on ωb (left panel). For comparison we also show the results from the final Planck
data release [44] (right table) for the same cosmological model as used in our analysis
(ΛCDM with varied neutrino masses). Note that the first two parameters were used
as actual sampled parameters in our chains, while the last four are derived from them
and from other parameters, which we do not display here (see Sec. 3 and App. C.1 for
the full set of sampled parameters and corresponding limits). The effective redshifts
of the samples are zeff, 1 = 0.38 and zeff, 2 = 0.61.

Our constraints on Ωm and H0 are competitive with the Planck measurements
for the same cosmological model with varied neutrino masses.8 Moreover, the use
of the full parameter likelihood adopted in this work allows for a clear comparison
between the two experiments at the level of the fundamental ΛCDM parameters. Our
measurement of H0 is driven by the geometric location of the BAO peaks, whereas
the limits on Ωm result from the combination of both the geometric (distance) and
shape information. σ8 is measured through redshift-space distortions. We performed
several tests to ensure that our constraints are saturated with these three effects,
and confirmed that distance ratio measurements implemented through the Alcock-
Paczynski effect can only marginally affect the cosmological parameters of ΛCDM.
However, the situation changes in its extensions that modify the late-time evolution,
in which the Alcock-Paczynski effect becomes a significant source of information to
constrain the parameters of these models.

In order to explore the relation with the previous works on the galaxy power
spectrum we ran an analysis with very tight shape priors and obtained essentially

8There are several caveats that should be mentioned at this point. First, we approximate the
neutrino sector with one massive eigenstate, which should be contrasted with the approximation
of three degenerate eigenstates used in Planck 2018. The difference between these two approaches
is a few percent at the matter power spectrum level, and hence can be neglected for our purposes.
Second, the Planck Legacy contours that we show roughly correspond to the variation of the total
neutrino mass in the range (0− 0.24) eV, which is somewhat different from our prior (0.06− 0.18)
eV. However, the effect of weighting the Planck posterior with our prior on

∑
mν is marginal. We

show the original Planck contours for clarity.
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the same results as in Tab. 1. However, in that case Ωm cannot be viewed as an in-
dependently measured parameter, since the shape priors completely fix the relation
between Ωm and H0 in ΛCDM. This suggests that the shape priors are not necessary
for the parameter estimation from the BOSS data. Moreover, the power spectrum
shape itself can be a source of independent measurements of ωcdm and Ωm, whose
precision rivals that of the Planck CMB data. This happens because of two main
reason. First, the parameter ωcdm can be measured directly from the shape of the
galaxy power spectrum with 5% precision. Second, the degeneracy direction corre-
sponding to the angular acoustic scale of the galaxy power spectrum happened to
be more orthogonal to H0 than the angular acoustic scale of the CMB. Thus, even
though the later is measured with Planck much more precisely than the former one,
their projections onto the H0 plane happened to be comparable. In Section 5 we give
some further details on this effect.

Our results agree with the Dark Energy Survey (DES) data on weak lensing
and photometric galaxy clustering [50]. The combination best constrained by DES
S8 = σ8(Ωm/0.3)

0.5 = 0.773+0.026
−0.020 is within 2σ of our limit S8 = 0.703± 0.045.

Let us comment on the neutrino masses. Our analysis shows that the BOSS
data itself can only rule out very large neutrino masses ∼ 1 eV, which produce sig-
nificant scale-dependent modifications to the matter power spectrum. These modifi-
cations are not degenerate with effects of other cosmological and nuisance parameters.
Smaller neutrino masses cannot be constrained with the BOSS data mainly because
of the degeneracy between galaxy bias and

∑
mν , which persists even if we use the

Planck 2018 prior on As. Naively, this degeneracy may be broken by the quadrupole
moment, but its large statistical error along with the strong sensitivity to the finger-
of-God uncertainties do not allow us to derive constraints on the neutrino mass that
could be competitive with the CMB data. Note that the degeneracy between As,∑

mν and the galaxy bias can, in principle, be alleviated by the bispectrum data
[51, 52].

To estimate results from a combined Planck + BOSS likelihood we analyzed the
BOSS data with a multi-variate Gaussian prior on all cosmological parameters of the
minimal ΛCDM (not including the neutrino mass) from the final Planck data release
[44]. We obtained the following limit from the combination of the two biggest BOSS
data samples: ∑

mν < 0.84 eV (95%CL) . (2.1)

This suggests that the BOSS data can only improve the current neutrino mass bounds
by breaking degeneracies internal to the CMB data (e.g. the degeneracy between mν

and H0), and not by actually observing the free-streaming short-scale suppression of
the galaxy power spectrum [53]. It would be curious to see if the full-shape BOSS +
Planck data will give better constraints than the Planck + BAO likelihood.
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Finally, we tested some simple extensions of our baseline analysis, which assumes
a BBN prior on ωb and fixes the power spectrum tilt ns. To that end we explored
the whole likelihood with all relevant parameters (ωb, ωcdm, ns, H0, As,

∑
mν). We

have found that varying the tilt in chains with the BBN priors on ωb degrades the
Ωm constraint but does not significantly alter the H0 and σ8 limits. Moreover, one
can obtain a constraint on ns, which is independent of the Planck CMB data,

ns = 0.88± 0.08 . (2.2)

Instead, if we keep ns fixed but use a very wide prior on ωb, the constraints on H0

worsen by a factor of two, but the limits on Ωm and σ8 remain essentially intact.
This suggests that our main conclusions are stable w.r.t. different prior choices.

3 Methodology and Likelihood

In this Section we discuss technical aspects of our analysis: the theoretical model,
window function treatment, covariance matrices and model parameterization.

3.1 Theoretical Model

Our model for multipole moments of the redshift-space galaxy power spectrum is
based on one-loop perturbation theory. Schematically, it can be written as a sum of
four pieces,9

Pg,ℓ(k) = P tree
g,ℓ (k) + P 1−loop

g,ℓ (k) + P noise
g,ℓ (k) + P ctr

g,ℓ (k) . (3.1)

In this work we limit ourselves to the monopole and quadrupole moments (ℓ = 0, 2).
All multipoles are computed from the 2D anisotropic galaxy power spectrum Pg(k, µ),

Pg,ℓ(k) ≡
2ℓ+ 1

2

∫ 1

−1

dµ Pg(k, µ)Pℓ(µ) , (3.2)

where µ ≡ k̂ · ẑ is cosine of the angle between a Fourier mode k and the line-of-sight
direction ẑ, whereas Pℓ(µ) are Legendre polynomials of order ℓ. For example, the
tree-level contribution to the multipoles P tree

g,ℓ (k) are given by the Kaiser formula [54],

P tree
g (k, µ) = (b1 + fµ2)2Plin(k) , (3.3)

where b1 is the scale-independent linear bias coefficient. For compactness, we sup-
press explicit time dependence in all formulas of this section assuming that all rele-
vant quantities are evaluated at the effective redshift zeff of a given data sample. For

9We use the following convention: ⟨δkδk′⟩ = (2π)3P (k)δ
(3)
D (k + k′), where we introduced the

density (contrast) field δ ≡ ρ(x, t)/ρ̄(t)− 1 (ρ and ρ̄ are the local and background densities, respec-
tively), and ⟨...⟩ denotes the averaging over the cosmological ensemble.
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clarity, all the expressions of this section are presented without IR-resummation and
the Alcock-Paczynski effect, which are properly taken into account, see Appendix A
for more detail.

The next important ingredient of our analytic model is one-loop corrections
P 1−loop
g,ℓ (k) that encapsulate the non-linear redshift-space mapping along with non-

linearities due to dark matter clustering and bias. This model has been described in
detail in Refs. [18, 55, 56] and is summarized in Appendix A. We use the following
basis of bias operators10

δg = b1δ +
b2
2
δ2 + bG2G2 , (3.4)

where δ is the nonlinear matter density field and the Fourier representation of the
tidal field operator G2 is given by

G2(k) =

∫
d3p

(2π)3

[
(p · (k− p))2

p2|k− p|2
− 1

]
δlin(p)δlin(k− p) , (3.5)

where δlin is the linear theory density field. Note that there is one extra bias param-
eter that contributes to the one-loop power spectrum, bΓ3 . We have found that this
parameter is very degenerate with other nuisance parameters and the BOSS data
are not accurate enough to break this degeneracy. For the purposes of this paper we
have fixed it to zero. This choice still allows for a sufficient freedom in the parameter
space exploration. We have checked that fixing bΓ3 or varying it within some priors
has no effect on the cosmological parameter estimates.

The stochastic contribution is modeled as a simple Poisson shot noise with the
constant power spectrum in Fourier space and a free amplitude. Note that in the
absence of the window function only the monopole moment has a constant shot noise
power, i.e.

P noise
g,0 (k) = Pshot , P noise

g,2 (k) = 0 . (3.6)

Finally, the last part of our model are the so-called ultraviolet (UV) countert-
erms P ctr

g,ℓ (k). The counterterms were not included in theoretical models used in the
previous data analyses. For this reason, we discuss them in more detail here. The
purpose of the counterterms is to fix the dependence of the one-loop power spec-
trum on the complicated unknown short-scale physics, which cannot be modeled by
means of perturbation theory. To understand qualitatively why these corrections are
needed let us note that a part of the loop integral comes from integrating over high-k
Fourier modes for which perturbation theory does not apply. This means that results
of loop calculations are necessarily wrong, even though they converge to some finite
values. For the theory to be consistent, there must be counterterms to cancel the

10As pointed out in [14, 57] the evolution of biased tracers is non-local in time, which leads
to appearance of bias operators that cannot be written in terms of tidal tensor ∂i∂jΦ at a finite
time slice. However, these operators appear only at fourth order in perturbation theory and this
important subtlety is not relevant for the one-loop power spectrum that we consider.
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spurious UV-dependence. Besides, standard perturbation theory does not correctly
capture the backreaction of short scales on long-wavelength fluctuations. These ef-
fects are taken into account by the so-called “finite” part of the UV counterterms,
which describes physical effects missing in standard perturbation theory. Since the
loop integrals converge for the ΛCDM linear power spectrum, there is no practical
need to distinguish between these two physically different parts of the counterterms.
Hence, every counterterm can be parametrized by a single free coefficient to be fitted
from the data. Note that the scale-dependence of the counterterms is not free. It is
fully fixed by symmetry arguments at any order in perturbation theory. This state-
ment holds true for pure dark matter [11], dark matter halos [14, 16], and galaxies
in redshift space [17, 18].

At first non-trivial order in the gradient and field power expansion there are two
counterterms needed for the one-loop monopole and quadrupole moments [17, 18],
which can be cast in the following form:

P ctr,LO
ℓ (k) ≡ −2 c2ℓ k

2 Plin(k) , ℓ = 0, 2 . (3.7)

The reason to keep two different free coefficients is that they fix different loops and
capture different physical effects. For instance, the monopole counterterm includes
the contribution of the higher-derivative bias term b∇2∇2δ, which is absent for higher
moments. This should be contrasted with the quadrupole counterterm, which is
dominated by the fingers-of-God effect [58]. Indeed, neglecting other nonlinearities,
the c22-contribution can be related to the short-scale galaxy velocity dispersion σ2

v ,

c22 =
f(5f 2 + 12fb1 + 7b21)

14
σ2
v ≈ 2.5σ2

v , (3.8)

where we assumed b1 = 2 and f = 0.75 typical for the high-z BOSS sample. This
formula is derived by expanding the velocity field into the short and long-wavelength
contributions and averaging the redshift-space power spectrum over the short-scale
modes,

PFoG(k, µ) ≈ −(µfkσv)
2P tree

g (k, µ) + higher orders , (3.9)

which is then matched to our expression for P ctr,LO
2 (k). Note that a similar expression

can be obtained upon Taylor-expanding some simple phenomenological models for
the fingers-of-God with a Gaussian or Lorentzian damping, e.g. [5, 6, 59]. The
typical value for the velocity dispersion for the BOSS-like sample σv ∼ 5 Mpc/h
yields c22 ∼ 60Mpc2/h2. We emphasize that this is just a simple order-of-magnitude
estimate and that the true amplitude (and even the sign) of the counterterms cannot
be predicted.

The one-loop perturbation theory model (3.1) is sufficient to describe the statis-
tics of biased tracers in real space up to kmax = 0.3 h/Mpc for the volume and
redshifts typical to the BOSS survey [60]. While two-loop contributions due to dark
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matter clustering may be sufficiently small, the mapping from real to redshift space
can produce significant correction to the one-loop result because of higher order
short-scale velocity cumulants, whose characteristic momentum scale σ−1

v can be sig-
nificantly lower than the non-linear scale kNL controlling gravitational non-linearities.
This implies that the usual one-loop power spectrum model [17, 18] is not sufficient
for an accurate description of the data even on large scales. One option to get around
is to use some phenomenological model for the fingers-of-God. However, these models
are not derived from first principles and can introduce uncontrollable biases in cos-
mological parameter estimations. To proceed, we choose a different strategy which
fits the spirit of perturbation theory. We introduce an additional counterterm to
capture the redshift space non-linearities at next-to-leading order (NLO),

P ctr,NLO(k, µ) ≡ c̃ k4 µ4 f 4 (b1 + fµ2)2Plin(k) . (3.10)

Let us discuss the form of this expression. As argued above, the non-linear scale for
the velocity dispersion ∼ σ−1

v is smaller than the dark matter nonlinear scale kNL, but
the stochastic velocity field couples with the large-scale density dominantly along the
line-of-sight. Thus, the redshift-space mapping effectively generates an expansion in
powers of (µkσv)

2. The standard one-loop counterterms in Eq. (3.7) correspond to
the term ∇2

zδ(k, µ) in this expansion. From this point of view, the NLO counterterm
in Eq. (3.10) can be naturally viewed as a next-to-leading term in this expansion,
i.e. ∇4

zδ(k, µ) contribution.

It should be stressed that the main objective of introducing the new counterterm
(3.10) is to capture the NLO sensitivity to fingers-of-God. The contributions from
other physical effects (higher-derivative bias etc.) are expected to be sub-dominant
since they have the same order of magnitude as the two-loop corrections to the real-
space matter density. Thus, they can be neglected at the one-loop order that we
use in this paper. Given this reason, we choose the NLO contribution (3.10) to be
universal for all multipole moments, as expected from the redshift-space mapping.

Another way to understand role of the NLO counterterm is to view it as a
simple model for the theoretical error. Marginalizing over the amplitude c̃, we are
marginalizing over the estimated uncertainty due to the fingers-of-God modeling.
While in principle a more elaborate procedure is needed to ensure that the results of
the analysis are unbiased [61], this simple prescription is sufficient given the BOSS
survey volume.

In summary, our model for the power spectrum is based on one-loop perturbation
theory for galaxies in redshift-space supplemented with LO and NLO counterterms.
It includes seven free nuisance parameters: three bias coefficients (b1, b2, bG2), three
redshift-space counterterms (c20, c22, c̃) and the shot noise amplitude Pshot.
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Data Veff [(Gpc/h)3] V [(Gpc/h)3]

low-z NGC 0.84 1.46

low-z SGC 0.31 0.53

high-z NGC 0.93 2.8

high-z SGC 0.34 1.03

Table 2: Effective and comoving volumes for four independent samples of BOSS
DR12.

3.2 Power Spectra and Covariance Matrices

The BOSS survey has measured the spectroscopic redshifts of 1 198 006 galaxies
using the SDSS multi-fibre spectrographs and multi-color SDSS imaging (see [62]
and references therein). The BOSS-DR 12 galaxy sample spans over the redshift
range 0.2 < z < 0.75. The data include four different selections: LOWZ, LOWZE2,
LOWZE3, CMASS. They are combined into two non-overlapping redshift bins with
zeff = 0.38 and zeff = 0.61. Each redshift bin sample is additionally divided into two
sub-samples depending on the Galactic hemisphere where the galaxies are observed.
These are called “South and North Galactic Cap” (SGC and NGC). To avoid con-
fusion with the previous selections analyzed, e.g. in [5], we will call the two redshift
bins simply “low-z” and “high-z”. Note that each of the four data chunks has a dif-
ferent selection function and therefore represents a different galaxy population [62].
The comoving and effective volumes of the BOSS data samples are listed in Table 2.
To obtain these numbers, the observed angles and redshifts were converted into co-
moving distances assuming the following fiducial parameters: h = 0.676, Ωm = 0.31,
which were also used to create galaxy catalogs.11 Any departure of the real cosmology
from the fiducial one is accounted for by explicitly including the Alcock-Pazcynski
effect in our theoretical model. The mean number density of each sample is ap-
proximately n̄ ∼ 3× 10−4 (h/Mpc)3, implying that the shot noise is not a dominant
contribution to the galaxy power spectrum on the mildly non-linear scales.

We use the redshift space power spectrum monopole (ℓ = 0) and quadrupole
(ℓ = 2) of the publicly available data from BOSS DR12. The spectra are binned
with the bin size ∆k = 0.005 h/Mpc in the wavenumber range [0.0025, 0.25] h/Mpc.
Our baseline analysis is performed for kmax = 0.25h/Mpc, which contains 50 k-
bins in each multipole. We have checked that our method can recover the correct
cosmology from mock catalogs for this choice of kmax (see Appendix B).

Window function. We incorporate the effects of the survey geometry following the
procedure described in [6]. The theory multipoles are first transformed to position

11Throughout this paper we will use h and the present day Hubble parameter
H0 = h · 100 km s−1Mpc−1 interchangeably.
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space via

ξℓ(r) = iℓ
∫

dk k2

2π2
jℓ(kr)Pℓ(k) , (3.11)

and then the corresponding correlation function multipoles are convolved with the
appropriate window functions,

ξ̂0(r) = ξ0W
2
0 (r) +

1

5
ξ2(r)W

2
2 (r) ,

ξ̂2(r) = ξ0W
2
2 (r) + ξ2(r)

[
W 2

0 (r) +
2

7
W 2

2 (r)

]
.

(3.12)

The windowed power spectrum multipoles are then simply obtained by means of an
inverse Fourier transform,

P̂ℓ(k) = (−i)ℓ(4π)

∫
dr r2jℓ(kr)ξ̂ℓ(r) . (3.13)

The integrals in Eqs. (3.11) and (3.13) are computed with the FFTLog method [63].

Covariance matrix. We extract the covariance matrix from patchy mock catalogs,
which are described in detail in Ref. [64]. The patchy algorithm is based on extended
Lagrangian perturbation theory and a stochastic halo biasing scheme calibrated on
high-resolution N-body MultiDark simulations run for a ΛCDM cosmology with the
following fiducial parameters:

Ωm = 0.307115 , Ωb = 0.048206 , h = 0.6777 ,

σ8 = 0.8288 , ns = 0.9611 .
(3.14)

The patchy algorithm uses halo occupation distribution (HOD) to construct cata-
logs which match the BOSS galaxy clustering and its redshift evolution. The patchy
mocks were generated for every data chunk separately. In each case, they were as-
signed the same selection function and survey geometry as the real data.

We are using the covariance matrix extracted from the corresponding mocks,

C
(ℓℓ′)
ij =

1

Nm − 1

Nm∑
n=1

[
Pℓ,n(ki)− P̄ℓ(ki)

] [
Pℓ′,n(kj)− P̄ℓ′(kj)

]
, (3.15)

where Nm = 2048 is the number of mock catalogs and P̄ℓ(k) is the mean power
spectrum,

P̄ℓ(k) ≡
1

Nm

Nm∑
n=1

Pℓ,n(k) . (3.16)

In our analysis we neglect the Hartlap factor correction [65] which affects the covari-
ance matrix at the level of ∼ 1%. For simplicity we will also defer from the standard
practice of rescaling the parameter variances to account for the difference between
the extracted values and the ones used in the mock catalogs [66]. A more accurate
treatement of the covariance matrix would require its recalculation for the best-fit
cosmology, which can be done analytically along the lines of [67].
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3.3 Parameters and Priors

In all our analyses for the base flat ΛCDM we vary 5 cosmological and 7 nuisance
parameters:

(ωb, ωcdm, h, A
1/2,

∑
mν)× (b1A

1/2, b2A
1/2, bG2A

1/2, Pshot, c
2
0, c

2
2, c̃) , (3.17)

where mν is the sum of neutrino masses, A is defined as

A ≡ As

As,Planck
, (3.18)

and As,Planck = 2.099 · 10−9. Since each BOSS data sample has its own selection
function, we allow biases, Pshot and counterterms for each data chunk to be different.

Let us discuss the choice of parameters and the corresponding priors. First, the
initial conditions for fluctuations are described by two parameters, the amplitude
of the power spectrum A and the spectral index ns. The BOSS data can constrain
the amplitude at O(10%) level and the tilt cannot be measured with a reasonable
accuracy. For this reason we fix the spectral index to be

ns = 0.9649 , (3.19)

as measured by Planck [44], and we do not vary it in the MCMC chains. This is why
this parameter does not appear in (3.17). Since we cannot probe the amplitude of
the primordial power spectrum accurately, our eventual results are not very sensitive
to variations of the fiducial value of ns in a reasonable range around ns = 1. In
particular, all main results of our study would remain the same had we chosen the
flat Harrison-Zel’dovich spectrum instead of (3.19). In App. C.2 we analyze the full
power spectrum likelihood and show the effect of varying the tilt. As for the relative
amplitude A, we choose its prior to be uniform in the range (0.04, 4).

Our final results will be presented in terms of the late-time mass fluctuation
amplitude σ8 because (a) this parameter is better constrained than As, (b) it is
close to the actual principal component of the BOSS data and hence is less sensitive
to prior choices, (c) it is more common in the large-scale structure literature. In
Appendix C.1 we show results for both the rescaled primordial amplitude A and σ8.

As far as the neutrino sector is concerned, we approximate it with one state
of mass mν and two massless states.12 Therefore, we will use mν and

∑
mν inter-

changeably in what follows. We assume a flat prior on mν in the range

mν ∈ (0.06, 0.18) eV. (3.20)

The lower limit is inferred from the neutrino oscillation experiments and the up-
per limit is the 3σ constraint obtained from the combination of the Planck 2018

12This approximation is accurate for the matter power spectrum within ∼ 10% precision for
highest neutrino masses considered in this paper, which is sufficient for our purposes.
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TTTEEE+lowE+lensing data and the BAO scale measurements [44]. The BOSS data
are not accurate enough to improve the measurement of the neutrino mass, hence
we marginalize the final results over it. Nevertheless, it is important to keep this pa-
rameter in the chains since the neutrino mass is very degenerate with the amplitude
of the power spectrum. Varying mν in the allowed range can bias the amplitude A

by the amount comparable to the 1σ error on this parameter. We have found that
mν does not affect significantly the limits on H0,Ωm and σ8, which will be quoted
as our final results.13 Specifically, we have repeated our analysis with no priors on
the neutrino mass (mν ∈ (0,∞)), and found very similar results for the cosmo-
logical parameters, see App. C.3 for more detail. Even if we impose the Planck
priors on all cosmological parameters, the neutrino mass can only be constrained
at the level of ∼ 1 eV (95% CL), which is not competitive with other cosmological
probes. Given this reason, we prefer to stick to the realistic prior allowed by other
experiments and/or motivated by particle physics. The use of a somewhat wider
prior mν ∈ (0, 0.24) eV matching the Planck 2018 2σ-allowed region has a negligible
impact on our results.

Finally, assuming the flat ΛCDM, the only additional cosmological parameters
that are needed to describe the matter content of the Universe are physical densities
of baryons and cold dark matter, ωb and ωcdm. The baryons have very distinctive
effect on the CMB power spectrum, which allows one to measure their physical
density with sub-percent accuracy [44] (assuming standard physics before and during
recombination),

ωb = 0.02237± 0.00015 (ωb−CMB prior) . (3.21)

More conservatively, with minimal assumptions about the thermal and expansion
history, the physical baryon density can be inferred using the BBN predictions and

13Note that our analysis constrains the late time fluctuation amplitude σ8 more directly than As

and this is why it is less sensitive to the neutrino mass.
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the measurement of helium and deuterium primordial abundances [44, 68–70],14

ωb = 0.02268± 0.00038 (ωb−BBN prior) . (3.23)

We will see momentarily that both priors yield identical constraints for the BOSS
data.

The physical density of cold dark matter ωcdm can be also inferred from the shape
of the CMB spectra with percent accuracy [44],

ωcdm = 0.1200± 0.0012 . (3.24)

We will not use this prior in our main analysis, and vary ωcdm in the flat range
(0.05, 0.2). The prior (3.24) will only be imposed in a side analysis that compares
our method with the previous BOSS FS pipeline which also fixes ωcdm.

As already pointed out, using the tight CMB priors on ωb and ωcdm effectively
fixes the shape of the matter power spectrum and in this case our analysis reduces
to the standard BOSS analysis. The only remaining difference is in the theoretical
model used. This allows us to investigate the relation between our constraints on
cosmological parameters and the previous BOSS results. It is worth noting that this
choice of priors is equivalent to fixing a prior on the sound horizon at decoupling,
since it can be approximated as [75],

rd ≈
55.154 e−72.3(ων+0.0006)2

(ωcdm + ωb)0.25351ω0.12807
b

Mpc , (3.25)

where ων ≡ mν/(93.14 eV). Note that the sound horizon at the drag epoch is insen-
sitive to the late-Universe physics [45, 76]. Planck gives a sub-percent measurement
of this scale [44],

rd = (147.09± 0.24)Mpc . (3.26)

14One may find different limits depending on nuclear rate predictions. Below we present
constraints obtained using the helium data from [68], deuterium data from [69] and assuming
Neff = 3.046,

(standard) ωb = 0.02268± 0.00038 (68%) ,

(Marcucci et al.) ωb = 0.02197± 0.00022 (68%) ,

(PRIMAT) ωb = 0.02188± 0.00023 (68%) .

(3.22)

The fist limit is obtained using the d(p, γ)3 He nuclear rate from [71] and the PArthENoPE code [72].
The same code but a different nuclear rate taken from [73] yield the second constraint. Finally,
using nuclear rates from [74] and the PRIMAT code (introduced in the same paper) gives the third
constraint. In all the limits quoted above the systematic error is added in quadratures. We prefer
to use the “standard” case in our analysis, although any other choice from (3.22) would produce
very similar results. We are grateful to Julien Lesgourgues for sharing with us the limits (3.22).
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Parameter Prior

Cosmology
ns (not varied) ns = 0.9649

ωb different for each analysis
A1/2 flat(0.02, 2)
h flat(0.4, 1)

ωcdm flat(0.05, 0.2)
mν flat(0.06, 0.18) eV

Biases and shot noise
b1 × A1/2 flat(1, 4)
b2 × A1/2 flat(−4, 2)

bG2 × A1/2 flat(−3, 3)

bΓ3 (not varied) bΓ3 = 0

Pshot flat(0, 104) Mpc3/h3

Counterterms
c20, c

2
2 flat(−∞,∞) Mpc2/h2

c̃ flat(−∞,∞) Mpc4/h4

Table 3: Priors that are common to all baseline ΛCDM analyses. The analyses of
these paper use different priors on ωb, which will be specified separately in each case.
In this table “flat(min,max)” stands for a flat prior in the range (min,max). By
(not varied) we denote the parameters that were not varied in our MCMC chains.

Regarding the bias parameters, we adopt flat priors centered around the values
expected from N-body simulations. The previous BOSS analyses have already mea-
sured b1 ≃ 2, for which we use a flat prior in the range (1, 4). The second order
biases are varied in the range

b2 ∈ (−4, 2) , bG2 ∈ (−3, 3) . (3.27)

These intervals are motivated by the measurements of biases for dark matter halos
with masses similar to typical hosts for BOSS galaxies [77]. These measurements
roughly predict15

b2 ≈ −0.6 , and bG2 ≈ −0.3 , for b1 ≈ 2 . (3.28)

The halo bias is in general different from galaxy bias, but given that the satellite
fraction is relatively small in the BOSS samples [78], we expect these estimates not

15Note that [77] use a different basis of biased operators. Their values have been appropriately
converted to match our bias prescription.
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to be too far from the truth. In all analyses we set bΓ3 = 0 and we do not vary it. The
reason for this choice is that bΓ3 is very degenerate with the counterterms c20, c22 and
bG2 . The data are not accurate enough to break this degeneracy. We have verified
this using the mock catalogs.

Finally, let us discuss the amplitude of the shot noise. The number density of
the galaxies in the BOSS samples is known, and it is roughly n̄ ∼ 3×10−4 (h/Mpc)3.
However, one might expect some deviations from the Poisson value for the shot noise
amplitude due to effects like exclusions [79]. Detailed comparisons to simulations [60]
show that this deviation for BOSS galaxy number density is not expected to be very
large (at most 50%). For this reason we will vary Pshot in the chains within the flat
prior in the following range:

Pshot ∈ (0, 104)Mpc3/h3 . (3.29)

Another reason to vary the constant Pshot in our analysis is to capture the fiber
collision effect. Indeed, this is a common practice to correct for the fiber collision
residual contributions left after applying the nearest neighbor method [5, 6]. Ref. [80]
pointed out that this practice is not sufficient for the quadrupole, which does not
have a constant shot noise contribution. This reference showed that the problem can
be alleviated by applying the effective window function supplemented with additional
nuisance parameters, which correspond to a stochastic constant contribution for the
monopole and a k2-contribution to the quadrupole. While the first term is accounted
for precisely by Pshot, the second contribution happened to be fully degenerate with
our NLO k4Plin counterterm. We have checked that, to a precision of 0.5%, the
difference between the spectra with and without the effective window function can
be absorbed into the nuisance parameters of our theory model. This difference is
much below the statistical error and can be safely neglected, which is why we proceed
without the effective mask.

All nuisance parameters, A, h and mν have the same priors in all our analyses.
We summarize them in Table. 3. We use different combinations of priors on ωb and
ωcdm in our analyses and we will specify them in each example separately.

Software. Our analysis is based on a modification of the publicly available CLASS
code [43] that incorporates the FFTLog method [42] for fast evaluation of one-loop
perturbation theory integrals. The parameter constraints are obtained with the April
2018 version of the Montepython code [45, 81]. Plots with posterior densities and
marginalized limits are produced with the latest version of the getdist package16,
which is part of the CosmoMC code [82, 83]. We monitor the convergence of our
MCMC chains with the Brooks-Gelman and Gelman-Rubin criteria [84, 85]

16 https://getdist.readthedocs.io/en/latest/

– 20 –

https://getdist.readthedocs.io/en/latest/


4 Constraints on Base ΛCDM

In this section we present measurements of parameters of the minimal flat ΛCDM
with massive neutrinos. Our final results are quoted in terms of σ8, H0 and Ωm since
these parameters are most common in the large-scale structure literature. Another
reason for the use of these particular parameters is that they are close to the actual
principal components of the BOSS data17. Our main analysis does not assume CMB
priors on ωcdm (equivalently, rd). We use several different priors on ωb. These are
the CMB prior (3.21), a slightly weaker BBN prior (3.23), and the CMB prior with
a 30-times bigger variance. We impose the latter prior in order to check to what
extent the ωb prior is crucial for our results.

We start with the first case (the CMB prior on ωb). The reduced triangle plot
with the relevant cosmological parameters for four different BOSS datasamples are
shown in the left panel of Fig. 2. The full triangle plot and the 1d marginalized limits
are given in Appendix C.1. There we also present results for parameters fσ8(zeff),
H(zeff), DA(zeff) and DV (zeff), derived from our MCMC chains.
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Figure 2: The 2d posterior distribution for cosmological parameters extracted from
the BOSS DR12 power spectrum likelihood. We show results for four independent
samples of the BOSS data separately (left panel) and the combined likelihoods (right
panel). In the latter case we also plot the posterior distribution for the parameters
of a similar model (ΛCDM with massive neutrinos) measured from the final Planck
2018 CMB data. H0 is quoted in units [km/s/Mpc].

17E.g. the amplitude As is very correlated with the neutrino mass, which degrades the relative
error on As compared to σ8. Moreover, the asymmetric priors on mν make the posterior for As

very asymmetric as well.
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Let us first discuss the consistency of our results. The posterior distributions
seen in the left panel of Fig. 2 overlap within 1σ regions. The observed scatter is
compatible with the hypothesis that all the independent samples are drawn from
a single set of cosmological parameters. This suggests that these samples can be
combined. The combinations of low-z, high-z, and all four samples are shown in
the right panel in Fig. 2, while the corresponding 1d marginalized intervals are pre-
sented in Table 4. For comparison, we also show the Planck 2018 results from the
TT,TE,EE+lowE+lowl+lensing data18, which were derived for ΛCDM with the var-
ied neutrino mass. Overall, we observe good consistency between BOSS and Planck.
The mean values of H0 and Ωm inferred from different BOSS redshift bins are within
1σ distance from each other and from the Planck posterior mean values. One can
notice that the high-z data prefer smaller σ8 than Planck. This tendency has already
been observed in the previous BOSS full-shape analyses [6, 86]. However, the ob-
tained difference between the Planck and our BOSS measurements is still consistent
with a statistical fluctuation.

Plωb
high-z best-fit mean ±1σ

ωcdm 0.1199 0.1201± 0.0082

H0 68.92 68.96± 1.94

Ωm 0.3030 0.3033± 0.0194

σ8 0.6844 0.6862± 0.0589

Plωb
low-z best-fit mean ±1σ

ωcdm 0.1013 0.1014± 0.0075

H0 66.34 66.38± 1.44

Ωm 0.2842 0.2846± 0.0144

σ8 0.7552 0.7604± 0.0634

Plωb
comb. best-fit mean ±1σ

ωcdm 0.1125 0.1127± 0.0046

H0 67.86 67.88± 1.06

Ωm 0.2965 0.2967± 0.0103

σ8 0.723 0.723± 0.043

Plωb+ωcdm
best-fit mean ±1σ

ωcdm 0.1200 0.1195± 0.0012

H0 69.64 68.57± 0.93

Ωm 0.2979 0.3057± 0.0082

σ8 0.721 0.731± 0.042

Table 4: The results for cosmological parameters from the combined likelihoods.
We assume Planck priors on ωb everywhere, whereas the results from the lower right
table were derived upon additionally imposing the Planck prior on ωcdm. H0 is quoted
in units [km/s/Mpc]. The group of first two parameters (ωcdm and H0) display the
parameters which were sampled with flat uninformative priors. The second two
parameters (Ωm and σ8) are derived ones.

The statistical errors of our H0 and Ωm measurement are comparable with Planck
errorbars for the parameters of the same cosmological model with massive neutrinos.
Note that these parameters do not form principal components for the Planck data,

18The MCMC chains for the base_mnu_plikHM_TTTEEE_lowl_lowE_lensing likelihood were
downloaded from the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology.
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and hence are relatively poorly measured, e.g. compared to the combination Ωmh
3,

which controls the angular position of acoustic oscillations in the CMB temperature
power spectrum [87]. This fact is reflected in a well-known degeneracy between H0

and Ωm, which can be clearly observed in the Planck contours shown in the right
panel of Fig. 2. On the contrary, the degeneracy between these two parameters is
not very strong in the BOSS data, which provide us with more direct measurements
of H0 and Ωm than Planck.

Our main conclusions remain exactly the same if we use the BBN prior on ωb.
Even in this case one can measure H0 and Ωm quite well using no information from
CMB whatsoever. Remarkably, our ∼ 3% limit on the late-time matter density
fraction Ωm is one of the best measurements of this parameter from the LSS data.
We emphasize that this constraint is driven by the shape of the power spectrum.
Since there is no difference between our measurements in the case of Planck and
BBN priors on ωb, we prefer to quote the latter ones as our final results because they
use no input from the CMB data. The corresponding posteriors are shown in Fig. 1,
and limits are displayed in Tab. 1.

To test the stability of our results we have run the same analysis assuming the
Planck Gaussian prior on ωb with a 33 times bigger error (ωb = 0.02237 ± 0.005).
In that case the BOSS data are able to deliver an independent constraint on ωb.
Still, this limit is by far superseded by the BBN, and will not be quoted here. Upon
marginalizing over ωb, we obtain the following constraints: Ωm = 0.293 ± 0.012,
H0 = 66.6 ± 2.1 km/s/Mpc, σ8 = 0.713 ± 0.045. Remarkably, our measurement of
Ωm did not degrade once we relaxed the prior on ωb, whereas the measurement of
H0 worsened by a factor of 2. The stability of Ωm is consistent with the observation
that upon marginalizing over ωb the matter density forms a principle component of
the geometric information is ∼ Ω−0.5

m [56]. The degradation of H0 occurs because it
is mainly extracted from rd/DV by using the power spectrum shape (which probes
ωb and ωcdm), which has less constraining power without the ωb prior.

It is important to stress that so far we have not imposed a prior on rd. Moreover,
since rd depends on ωcdm and ωb, our analysis provides an independent measurement
of the acoustic horizon at decoupling, which is consistent with Planck,

rd = (149.1± 1.3) Mpc (BOSS FS+BBN ωb) . (4.1)

To see how much this result depends on the ωb prior, let us also quote the value
obtained in the analysis with a loose non-informative Gaussian prior ωb = 0.02237±
0.005 described in the previous paragraph,

rd = (150.0± 4.5) Mpc (BOSS FS+loose ωb) . (4.2)

Now let us discuss the constraints obtained with the Planck priors on both the
physical baryon and dark matter densities. As argued previously, in this case the
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Figure 3: The posterior contours for the combined analysis assuming the Planck
prior on ωb (in gray), Planck priors on ωb and ωcdm (in light blue). For comparison
also shown are the contours from the Planck CMB data for ΛCDM with massive
neutrinos (in red). H0 is quoted in units [km/s/Mpc].

shape of the matter power spectrum is only allowed to vary within very tight priors,
thus for practical purposes the shape is effectively fixed. This case corresponds to
the standard FS BOSS analysis.

Our results for the 2d posterior contours are shown in Fig. 3, while the 1d
marginalized limits are quoted in the lower right corner of Tab. 4. One may notice
that H0 and Ωm have shifted upwards by ∼ 0.5σ w.r.t. our baseline analysis with the
ωb prior only, while their errorbars reduced only marginally. Obviously, in this case
Ωm is a derived parameter which is almost fully correlated with H0. This should be
contrasted with our baseline analysis without the ωcdm prior, where Ωm is a valid
degree of freedom. Remarkably, the ωcdm prior has a marginal effect on H0 and σ8,
which implies that this prior is not necessary for an accurate parameter estimation
from the LSS data. This result is clear from Fig. 3, which shows that ωcdm is not very
degenerate with H0 and σ8. This effect will be discussed in more detail in Section 5.

Finally, let us discuss some implications of our results. Our measurement of H0
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is consistent with Planck [44] and the recent BAO + BBN analyses of Refs. [70, 88].
However, it is in tension with the results of the local astrophysical measurements of
SNIa [89] and strong gravitational lensing of distant quasars [90]. Our study shows
that the full-shape power spectrum information constrains H0 at 1.6% level, which is
comparable to the SNIa limits. Since there is no rd prior in our analysis, it disfavors
explanations for the “tension” based on modified expansion history at high redshifts
which preserve the shape of the power spectrum, e.g decaying DM.

As for our constraint on ωcdm, it is ∼ 4 times worse than the Plank limit, but
can be used to discriminate various proposals for the resolution of the H0 tension
that involve modifications of the linear power spectrum, such as early dark energy.
We will explore this in more detail in a separate publication.

5 Geometric, Shape and Alcock-Paczynski Information

In this Section we quantify the information content of various effects relevant for the
galaxy clustering data. To that end, we will first roughly classify all the relevant effect
and then give some theoretical background on the difference between the geometric
and the shape information. In the second part of this Section we will analyze several
mock likelihoods mimicking the BOSS data in order to explicitly see how much
different effects contribute to the final constrains. Throughout this Section, we will
be working within base ΛCDM and for simplicity assume that all neutrinos are
massless.

The sources of cosmological information can be roughly classified into four cat-
egories:

• Distance-free shape information. For a fixed ns, the power spectrum shape
mostly depends on ωb and ωcdm (and ων , to a lesser extent), which control
the relative amplitude of the BAO wiggles (through ωb/ωcdm), their frequency
(through rd), the amount of the short-scale suppression due to baryons (through
ωb/ωcdm), and the relative position of the BAO wiggles and the baryon Jeans
scale w.r.t the power spectrum peak (via19 rdωcb). The relative shape does not
depend on the choice of rulers (i.e. H0).

• Geometric (or distance) information. The features discussed above (e.g. the
BAO frequency) can be assigned a (comoving) length scale for a given cosmo-
logical model, which constrains parameters of this model. Indeed, the position
of the BAO wiggles in momentum space as extracted from the monopole is
set by rd(ωcdm, ωb)/DV , where the effective “volume-averaged” distance DV is

19We introduced an obvious notation ωcb = ωcdm + ωb.
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defined as20

DV (z) ≡ ((1 + z)2D2
A(z)z/H(z))1/3 , (5.1)

DA(z) ≡
1

1 + z

∫ z

0

dz′

H(z′)
. (5.2)

Analogously, the location of the monopole power spectrum peak is set by
keqDV ∼ ωcbDV . In ΛCDM the physical densities of baryons and dark matter
are fixed by the transfer functions, thus there is only one parameter H0, which
controls the location of the power spectrum features.

• Alcock-Pazcynski information.21 The radial and angular distances can be mea-
sured separately through the AP effect [37], parameterized by

FAP = (1 + z)DA(z)H(z) .

This parameter in encoded in the power spectrum quadrupole. We will see that
in ΛCDM these distances are fixed by the shape and geometric information,
but they can measured independently of this information in the extensions of
ΛCDM.

• Redshift-space distortions. RSD help to measure the velocity power spec-
trum from the quadrupole power spectrum moment, which constrains fσ8.
The shape and geometric information breaks the degeneracy between σ8 and
f (which mostly depends only on the background expansion, i.e. in ΛCDM
f ≃ Ω0.5

m (z)).

Our main goal is to show how the first two effects contribute to our new constraints.
Let us focus on them.

5.1 Shape vs. Geometry

In this Section we will discuss in more detail the shape information and its distinction
from the distance information. This material will be somewhat pedagogical and
has an overlap with old works on the galaxy clustering that were using the power
spectrum shape for cosmological parameter measurements independent of CMB [92–
94]. Unless otherwise stated, all numerical estimates of this Section will be made for
the Planck best-fit ΛCDM cosmology [44].

It is instructive to review the role of the shape and distance information from the
CMB power spectrum of temperature (TT) fluctuations. The primary CMB spec-
trum has three main sources of information, which can be cast into the amplitude,

20We work in the unit system with c = 1.
21It should be pointed out that the division into “geometric” vs. “AP” information is somewhat

artificial as these two effects cannot be isolated in a real survey. Alternatively, one may discuss the
monopole vs. quadrupole distance information, see e. g. [91].
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shape and geometric distance. The latter two are the relevant ones for our discussion.
They can also be loosely called the “horizontal” and “vertical” information [92]. Ver-
tical information refers to the relative height of the acoustic peaks, i.e. their shape,
which depends only on the physical matter densities ωm and ωb and the tilt ns. The
distinctive physical effects produced by variations of these parameters allow to mea-
sure them regardless of any late-time physics [45, 46]. By horizontal information we
mean the acoustic angular scale, which controls our freedom to shift the spectra in
the horizontal direction (rescaling of angular multipoles ℓ’s). The angular size of the
sound horizon at the drag epoch is given by

θs,CMB =
rs(zd)

(1 + zd)DA(zd)
, (5.3)

(where rs(zd) = rd and DA(zd) are the sound horizon at decoupling and the angular
diameter distance corresponding to the decoupling redshift zd). Although this sin-
gle parameter has been measured by Planck with tremendous precision 0.05% [44], it
depends on multiple cosmological parameters. The numerator of (5.3) is a slow func-
tion of ωm and ωb (see Eq. (3.25)). However, the denominator DA depends sensitively
on the late-time expansion. If one expresses the measurement of θs,CMB in terms of
the late-time parameters Ωm and h, one finds a strong degeneracy corresponding to
fixed Ωmh

3 = ωmh, with projections onto each separate parameter being much wider
than this combination itself. The geometric degeneracy of the CMB gets eventually
broken by the shape information of the power spectrum, i.e. by ωm and ωb being
measured from the relative hight of the CMB peaks.

Analogously to the CMB, the angular position of the BAO in the monopole
power spectrum of galaxies at some zeff is given by

θs,LSS =
rd

DV (zeff)
. (5.4)

If one were to measure only the combination (5.4) just like in the BAO analysis, the
degeneracy between ωm and h could not be broken and one would be left with the
horizontal information only. However, it is precisely the shape (vertical) information
that allows one to decouple h and ωm.

As discussed above, the sound horizon rd depends on ωb, ωm only (though very
weakly, see Eq. (3.25)). These two parameters can be measured directly from the
shape of the matter power spectrum regardless of the late-time expansion just like
in the CMB case. To see this, we display in Fig. 4. the effect of varying these
parameters. One clearly sees that ωb and ωm control the frequency of the BAO,
the shape of the BAO wiggles, the amount of the short-scale suppression due to the
baryon free-streaming before recombination, the overall slope of the power spectrum
and its turnover. In the case of our baseline analysis with fixed ωb and ns, all these
effects depend only on one parameter ωcdm, which results in quite tight constraints.
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Figure 4: The effect of varying the physical baryon (left panel) and cold dark
matter (right panel) densities on the shape of the linear matter power spectrum (at
z = 0). In the first case we adjust ωcdm to keep ωm fixed, while in the second case
we put ωb → 0 to illustrate shape modifications exclusively due to ωcdm. All other
cosmological parameters are fixed to the Planck best-fit values [44]. The scale rage
that dominates the constraints presented in this paper is [0.01, 0.25] hMpc−1.

It is precisely the shape information on ωm (and hence, rd) that allows one to
break the degeneracy between DV and rd and measure DV directly from θs,LSS. The
crucial point is that in ΛCDM DV is an extremely slow function of ωm at small
redshifts relevant for galaxy surveys. Indeed, using Eq. (5.1) one finds22

DV (z = 0.38) ∝ h−0.78ω−0.11
m . (5.5)

Since ωm is absolutely fixed by the shape information, DV reduces directly to H0.
Overall, the situation is very similar to the CMB temperature fluctuation spectrum,
whose ωm−H0 degeneracy gets broken by the vertical shape information. Crucially,
the degeneracy direction between ωm and H0 in the galaxy BAO is more perpendic-
ular to H0 than that of the CMB acoustic scale, which results in better constraints
even though at face value the precision of LSS measurement is worse than that of the
CMB. This fact was pointed out long ago in Refs. [92–94]. Let us explicitly illustrate
this. Using the expressions (3.25) and (5.1), we get

∂ ln θs,LSS
∂ lnh

⏐⏐⏐⏐⏐
z=0.38

= 0.78 ,
∂ ln θs,LSS
∂ lnωm

⏐⏐⏐⏐⏐
z=0.38

= −0.14 . (5.6)

This implies that the acoustic peaks in the galaxy spectrum constrain the combina-
tion hω−0.18

m . A similar calculation carried out for the CMB acoustic peak (5.3) gives
22The Alcock-Paczynski effect also allows one to independently measure DA(zeff) from the

quadrupole. However, it turned out to be quite insensitive to ωm either, DA(z = 0.38) ∝
h−0.83ω−0.08

m . This shows that the low-redshift AP effect is a very weak probe of ωm.
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hω0.8
m (see Ref. [87]). Clearly, unlike the CMB, the LSS acoustic angle is a very weak

function of ωm and hence it allows one to accurately measure h.
Importantly, the galaxy power spectrum contains additional geometric informa-

tion on top of the BAO wiggles. The first piece of this information is given by the
angular position of the power spectrum peak,

θeq = 1/(keqDV ) . (5.7)

The second piece of additional information beyond the BAO is given by the same
sound horizon scale θs,LSS, which also marks the location of the baryon free-streaming
scale (see the left panel of Fig. 4). Thus, in principle, one could derive constraints on
H0 and Ωm even if the BAO were not present in the matter power spectrum. This
point will be illustrated in a mock data analysis of the next subsection.

The power spectrum peak (turnover) itself gives a complementary way to break
the degeneracy between ωm and DV . Indeed, one can notice that the two angular
scales (5.4) and (5.7) have very different sensitivity to ωm and h. Indeed, the BAO
angle constrains hω−0.18

m . However, the power spectrum turnover fixes a combination
hω−1.14

m ,
∂ ln θeq
∂ lnh

⏐⏐⏐⏐⏐
z=0.38

= 0.78 ,
∂ ln θeq
∂ lnωm

⏐⏐⏐⏐⏐
z=0.38

= −0.89 . (5.8)

Therefore, the following two combinations of these angles would directly measure ωm

and h,
θs,LSS
θeq

∝ ω0.75
m ,

θ6.4s,LSS

θeq
∝ h4.2 . (5.9)

This shows that even in the case where the measurement of ωm from the slope
is complicated by marginalizing over the power spectrum tilt ns (see App. C.2), ωm

can still be inferred from the power spectrum peak.
Finally, in order to get convinced that our constraints are indeed driven by the

shape we have performed the following exercise. We have taken the best-fit power
spectrum from the NGC high-z datasample (which has the biggest volume) and
compared it to the spectrum computed for a model with ωcdm shifted by 3σ away
from the best-fit value. At face value, this leads to an extremely large difference in
χ2 because ωcdm enters various normalizations. However, much of this difference is
absorbed into the nuisance parameters and cosmological parameters. Thus, we have
refitted all the parameters of the “shifted” trial model. The results are shown in Fig. 5,
where one can see the two trial spectra and the difference between them in terms of
the statistical error on the power spectrum σPℓ

(k). The difference between χ2 values
of the two models is ∆χ2 = 13.6. Clearly, the variation in ωcdm is detectable. It
cannot be undone by a simple shift in h: either the BAO wiggles or the slope will be
wrong.
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Figure 5: Upper left panel: the high-z NGC data along with the best fitting theory
curves (solid lines) and a prediction of the test model with ωcdm shifted by 3σ (dotted
lines), for which we have refitted the other parameters. Upper right panel: the
residuals between the two models ∆Pℓ = Pℓ, shifted − Pℓ, best−fit divided by the data
errors. Lower panels: the residuals between the models Pℓ, best−fit (left panel), Pℓ, shifted

(right panel) and the data.

5.2 Mock data analysis

In this Section we will be mainly focused on disentangling the shape, geometry and
AP information, which are most relevant for the constraints on Ωm and H0. To quan-
tify the amount of information coming from them we analyze several mock BOSS-like
likelihoods. We use our theoretical pipeline to generate datavectors for a random set
of cosmological and nuisance parameters extracted from the MCMC chains for the
low-z NGC mocks.23 We analyze these mock spectra using the same pipeline in order
to obtain the reference posterior distribution. We assume the same priors as in our

23These are: ωb = 0.02215, ωcdm = 0.1194, σ8 = 0.867, b1 = 1.73, b2 = −0.34, bG2
= 0.06, c20 =

36.7 [Mpc/h]2, c22 = 53.3 [Mpc/h]2, Pshot = 3.2 · 103 [Mpc/h]3, c̃ = 382 [Mpc/h]4. Note that these
parameters are within 1σ-distance from the fiducial values used in mock catalogs.
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main analysis (see Tab. 3), and additionally put the following Gaussian prior on ωb:

ωb = (2.214± 0.015)× 10−2 , (5.10)

which is equivalent to the BBN (or Planck) prior on ωb used in our baseline analysis,
but centered at the fiducial value used in the mocks. The reference posterior contours
are shown in Fig. 6, the 1d marginalized limits are given in Table. 5. Note that they
match the results of our analysis of the mock catalogs and the real data for the same
data chunk.

Reference best-fit mean ±1σ

ωcdm 0.1154 0.1157± 0.0105

H0 71.26 71.39± 3.15

Ωm 0.271 0.271± 0.021

Pnw only best-fit mean ±1σ

ωcdm 0.1207 0.1125± 0.0140

H0 69.06 69.28± 6.23

Ωm 0.291 0.284± 0.038

Fake AP best-fit mean ±1σ

ωcdm 0.1191 0.1157± 0.0108

H0 71.26 73.84± 4.55

Ωm,AP 0.277 0.189+0.066
−0.165

Ωm 0.278 0.255+0.025
−0.035

Table 5: The outcomes of our mock data analysis for a fiducial datavector with
the NGC low-z covariance. The shown are: the reference sample (upper left table)
that corresponds to the actual BOSS data, the sample without the BAO wiggles
(‘Pnw only’, upper right table), and the results obtained in the analysis of the ref-
erence sample assuming that the AP effect is controlled by a separate parameter
Ωm,AP, which has nothing to do with the real Ωm (‘fake AP’). H0 is quoted in units
[km/s/Mpc].

To estimate the information content of the BAO wiggles, we generate and analyze
a datavector without them. A similar approach was previously employed in Ref. [56,
95]. To that end we use the same wiggly-smooth decomposition procedure that
performs IR resummation. These mock non-wiggly data are then analyzed with a
modified pipeline that does not have the BAO wiggles in theoretical template too.24

The results of this analysis and the reference posteriors are shown in Fig. 6. The 1d
marginalized limits are given in Table. 5.

First, we see that the constraints on ωcdm are similar in the BAO and no-BAO
cases. This means that the BAO wiggles represent only a part of the shape infor-
mation. However, their presence is crucial for constraining H0 through the geomet-
ric information. To see this, let us focus on the degeneracy directions seen in the

24We emphasize that we only removed the BAO wiggles from the power spectrum templates. All
other baryonic effects, e.g. the Jeans suppression, are present in our theory model.
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ωcdm − H0 panel. These are ωcdm/H0 for the no-BAO case and ωcdm/H
2.5
0 with the

BAO. The first one exactly corresponds to the power spectrum shape (or the location
of the power spectrum peak in units Mpc/h). The second one is likely a combination
of the location of the power spectrum peak and BAO wiggles (set by ωcdm/H

5
0 , see

(5.6)). As a consequence, in the realistic BAO case the projection of the degeneracy
contour onto the H0 plane is twice more narrow compared to the no-BAO contour.
We point out once again that in the BAO case the principle component of the ge-
ometric information happens to be quite perpendicular to Ωm, which explains why
this combination of ωcdm and H0 is well constrained. Once we remove the BAO, the
principal component changes and the projection onto the Ωm plane becomes twice
larger than before.
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Figure 6: The 2d and 1d posterior distributions for the parameters of the mock
likelihood analysis. Black dashed lines reflect the fiducial values used to generate the
mock datavectors. See the text for further details. H0 is quoted in units [km/s/Mpc].

Now let us focus on the Alcock-Paczynski information. To quantify its amount
we take the reference datavector with the BAO wiggles and analyze it assuming the
matter density fraction that enters the geometric distances and the AP effect Ωm,AP
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to be different from the true Ωm. Technically, it is equivalent to considering a model
where the late-time geometric expansion is controlled by an additional parameter,
which is not related to the ones fixing the shape of the matter power spectrum. We
use the following flat prior on Ωm,AP:

Ωm,AP ∈ (0, 1) . (5.11)

The outcome of this analysis is also displayed in Fig. 6 and in Table. 5 (“fake AP”).
One first notices that the constraints on ωcdm are identical in the reference and the
“fake AP” cases, which implies that the shape information is not diluted by the AP
distortions. This result explicitly proves our intuition that ωcdm is measured directly
from the power spectrum shape regardless of the late-time expansion.

However, since the location of the BAO wiggles mainly constrains DV , the pres-
ence of an additional parameter entering DV makes it harder to translate this con-
straint directly to H0. This explains why the constraints on the physical Ωm and
H0 degrade by ∼ 50%. These limits, however, are not significantly worse than the
reference ones because the degeneracy between H0 and Ωm,AP gets eventually broken
by the quadrupole, which essentially constrains Ωm,AP in our example.25 The reason
why the coupling between DV and H0 does not dramatically worsen the H0 mea-
surement is that DV has a very weak sensitivity to Ωm,AP the redshifts of interest,
and at leading order26 DV ∼ H−1

0 even in our unphysical example with Ωm ̸= Ωm,AP.
Note that the posterior distribution of Ωm,AP is highly asymmetric; its upper limit
is set by the quadrupole information (which decouples H and DA from DV ), while
the lower limit is prior-driven.

The upshot of this discussion is the following. Our constraints on ωcdm are driven
by the power spectrum shape, H0 is set by the geometric information (extracted from
DV ) and Ωm is a combination of the two. As for the AP effect, it is absolutely super-
seded by the shape and geometric information in ΛCDM. The situation is different
for extensions of the minimal ΛCDM, which we discuss now.

6 Distance Measurements

This section has three main objectives:
(a) establish the connection between our method and the one commonly used in

the previous BOSS full-shape analyses with scaling parameters (α-analysis in what
follows),

(b) show that our analysis with the Planck priors on ωb, ωcdm is equivalent to the
α-analysis if one takes into account that DA(zeff) and H(zeff) are coupled in ΛCDM,

25To be more precise, the quadrupole constrains the combination H(zeff)DA(zeff) evaluated with
Ωm,AP instead of actual Ωm.

26At first non-vanishing order in Ωm,AP one finds DV ∝ h−1Ω−0.06
m,AP.
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(c) show that the α-analysis is valid if one wants to constrain some generic late-
time expansion models, for which the distance measurements become a leading source
of information.

The analyses performed in this section have a demonstrative character. They
aim to illustrate the relation between our method and the α-analysis in different
settings. We present results obtained for the BOSS NGC data samples only.
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Figure 7: The posterior contours for H(zeff), DA(zeff), DV (zeff) for the NGC high-z
(left panel) and low-z (right panel) samples. We show the results of our analysis
for ΛCDM and the dynamical dark energy model, both with the Planck priors on
ωb and ωcdm. We also show the results of the model-independent α-analysis without
any priors and with the ΛCDM prior that reflects the coupling between DA and H.
Dashed lines represent the Planck best-fit values. The values of H are quoted in
units of [km/s/Mpc], DA and DV in [Mpc].

For the purposes of this Section we have run an α-analysis using the same
methodology as the previous BOSS FS studies. The details of this analysis are given
in Appendix D. The α-analysis computes the PS shape for a Planck-like cosmology
and does not vary it in the MCMC chains. The main idea behind the α-analysis is
that once the physical densities of dark matter and baryons are fixed, the leading
response to a change in cosmological parameters should be through rdH(zeff) and
rd/DA(zeff). However, fixing the shape is equivalent to fixing ωcdm and ωb, which
also fix rd. Hence, the α-analysis and our method should technically coincide if we
fix rd in the α-analysis and ωb, ωcdm in our analysis. We stress that unlike the pure
BAO-studies, fixing the shape and treating rd as a free parameter in the full-shape
studies is unphysical. In any realistic model rd and the transfer functions’ shape
are controlled by the same parameters. Thus, the α-analysis of the full-shape power
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spectrum actually measures the absolute distances DV and DA and not rd/DV or
rd/DA, which would be the case for the BAO-only study.

Another important observation is that the α-analysis assumes H(zeff) and DA(zeff)

to be completely independent from each other, while in reality they are related by
construction, see Eq. (5.2). In ΛCDM a prior on ωcdm and ωb completely fixes the
relation between DA and H at any redshift. Once we impose this relation,27 the
limits on H and DA from the α-analysis coincide with the limits obtained with our
method (modulo some small difference which can be explained by the use of slightly
different priors and theoretical models, see App. D for more detail). This can be seen
in Fig. 7 and Tabs. 6, 7.

One can notice that the ΛCDM priors have a very dramatic effect on the mea-
surements of H and DA, whose errorbars reduce by a factor of few compared to the
basic α-analysis without any priors. However, the effect on DV is not very strong.28

This reflects the observation that DV is the best measured combination of DA and H,
which is extracted directly from the monopole, while H and DA are measured from
the quadrupole, which has significantly larger statistical errors and features much
less pronounced BAO wiggles. In other words, our analysis shows that the good
constraints on H and DA obtained in ΛCDM are prior-driven, these two parameters
are not measured directly. DV is the only one actually measured prior-independent
distance in ΛCDM.

In order to explicitly illustrate that the principal distance best measured from
our analysis is always given by DV even in extended cosmological models, we analyze
the BOSS data assuming a generic dynamical dark energy (DDE) model, described
by the following Friedman equation:

H2(z) = H2
0

(
Ωm(1 + z)3 + ΩΛ + Ωde(1 + z)3(1+w0+wa

z
1+z )

)
. (6.1)

We assume the following flat priors on wa and w0:

Ωde ∈ (0, 1) , w0 ∈ (−2,−0.33) , wa ∈ (−5, 5) , (6.2)

27To that end we have run mock MCMC chains that fitted DA and H from the Gaussian likelihood
for rd assuming ΛCDM. Then we found the principal component of these variables and imposed
this as a prior in the MCMC chains which sampled α parameters.

28It is useful to compare our limits with the ones obtained in the main BOSS Fourier-space BAO
and FS power spectrum analyses, see Refs. [6, 96]:

DV (zeff = 0.38) = 1493± 28 [Mpc] , DV (zeff = 0.61) = 2133± 36 [Mpc] , (FS) ,

DV (zeff = 0.38) = 1479± 23 [Mpc] , DV (zeff = 0.61) = 2141± 36 [Mpc] , (pre-recon BAO) ,

DV (zeff = 0.38) = 1474± 17 [Mpc] , DV (zeff = 0.61) = 2144± 20 [Mpc] , (post-recon BAO) .

Note that these limits were obtained by using slightly different datasamples (NGC+SGC), kmax

cuts and the theoretical model, and hence should be compared to our results shown in this section
with some caution.
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α-parm. best-fit mean ±1σ

H(zeff) 96.69 94.11± 4.98

DA(zeff) 1395 1364± 47

FAP(zeff) 0.723 0.690± 0.054

DV (zeff) 2118 2109± 40

α-parm.+ΛCDM best-fit mean ±1σ

H(zeff) 97.28 97.34± 1.27

DA(zeff) 1393 1392± 26

FAP(zeff) 0.7278 0.7275± 0.0045

DV (zeff) 2115 2113± 36

DEE best-fit mean ±1σ

H(zeff) 96.03 94.05± 2.81

DA(zeff) 1379 1378± 37

FAP(zeff) 0.710 0.696± 0.028

DV (zeff) 2109 2123± 43

H0 72.9 75.9± 6.2

ΛCDM best-fit mean ±1σ

H(zeff) 96.32 96.85± 1.47

DA(zeff) 1412 1403± 31

FAP(zeff) 0.7304 0.7293± 0.0053

DV (zeff) 2141 2128± 42

H0 68.8 69.4± 2.0

Table 6: Distance measurements for the high-z NGC sample (zeff = 0.61). Upper
panel: α-analysis without and with the ΛCDM priors, in left and right tables, cor-
respondingly. Lower panel: our analysis for the dynamical dark energy model (left
table) and ΛCDM (right table) with the Planck priors on ωb and ωcdm. The values
of H are quoted in units of [km/s/Mpc], DA and DV in [Mpc].

α-parm. best-fit mean ±1σ

H(zeff) 78.04 77.24± 3.12

DA(zeff) 1072 1069± 23

FAP(zeff) 0.385 0.380± 0.020

DV (zeff) 1473 1475± 22

α-parm.+ΛCDM best-fit mean ±1σ

H(zeff) 82.92 83.95± 1.07

DA(zeff) 1111 1094± 17

FAP(zeff) 0.4240 0.4225± 0.0014

DV (zeff) 1478 1457± 22

DDE best-fit mean ±1σ

H(zeff) 79.68 79.46± 2.19

DA(zeff) 1086 1089± 18

FAP(zeff) 0.398 0.398± 0.013

DV (zeff) 1475 1480± 21

H0 77.7 75.6± 4.7

ΛCDM best-fit mean ±1σ

H(zeff) 83.89 83.16± 1.11

DA(zeff) 1094 1107± 18

FAP(zeff) 0.4225 0.4236± 0.0015

DV (zeff) 1458 1473± 23

H0 68.6 67.7± 1.4

Table 7: Distance measurements for the low-z NGC sample (zeff = 0.38). Upper
panel: α-analysis without and with the ΛCDM priors, in left and right tables, cor-
respondingly. Lower panel: our analysis for the dynamical dark energy model (left
table) and ΛCDM (right table) with the Planck priors on ωb and ωcdm. The values
of H are quoted in units of [km/s/Mpc], DA and DV in [Mpc].
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and keep the Planck priors on rd and ωb. As far as the other cosmological and
nuisance parameters are concerned, we use the same priors as in our baseline analysis,
see Tab. 3. Note that a model similar to (6.1) has been constrained in the previous
BOSS analyses, e.g. [62].

The results for the NGC high-z and low-z data are presented in Fig. 7 and
Tables 6, 7. The first relevant observation is that the background parametrization
(6.1) is sufficient to decouple the radial and angular distances, so that the errorbars
on DA and H become comparable to the ones obtained with a generic α-analysis, and
these two distances are not noticeably degenerate. The second important observation
is that the limit on DV is the same as in the ΛCDM case, which confirms that DV is
an actually measured distance that forms the principal component. Importantly, the
relative precisions of its measurement from separate chunks are 1.4% (low-z NGC)
and 2% (high-z NGC), which is comparable to our precision on H0 in the ΛCDM
analysis. The comparison between the DDE and ΛCDM cases presented in Tabs. 6,
7 allows us to conclude that our precision on H0 in ΛCDM indeed originates from
the precise DV measurements.

As far as the angular diameter distance DA is concerned, its errorbars are the
same in two models, but the mean values are noticeably shifted compared to the
ΛCDM case. This shows that DA is fixed by the shape and geometric information in
ΛCDM, but can take different values in the non-minimal extensions of this model.

Our measurement of H and DA in the DDE model are prior-driven, as can be
deduced from comparing the corresponding DA −H contour with the one obtained
from the α-analysis, which did not assume any priors.29 Indeed, the α-analysis reveals
a clear degeneracy between H and DA that corresponds to fixed DV , while our DDE
posterior does not show any significant degeneracy between DA and H whatsoever.
This merely reflects the fact that the quality of the quadrupole measurement is not
good enough for a decent determination of these distances separately. This is why our
MCMC sampler hits the prior boundaries before it starts seeing the DV degeneracy.
Finally, it is worth pointing out that the constraints on H0 degrade significantly in the
DDE model compared to the ΛCDM case as a consequence of increased parameter
space, which cannot be constrained using the available distance information.

Our study suggests that the model-independent α-parameterization might be too
generic for some purposes. Indeed, even in the case of a very general DDE model with
quite loose priors on its parameters (6.2) we were not able to cover all the parameter
space sampled by the α-analysis. Hence, one always has to impose proper priors on
the α-parameters in order to use the distance information for precision constraints on
non-minimal cosmological models. This is important for consistency when combining
the BAO/FS data with external likelihoods (e.g. CMB, SNe or weak lensing) that

29The limits on the parameters of the DDE model are also prior-dominated, which is why we do
not quote them here.
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Figure 8: The constraints on the AP parameter (y-axis) and the filtered rms velocity
fluctuation fσ8 (x-axis) for two different redshift bins of the NGC BOSS data. The
solid black line shows the prediction of the best-fit Planck 2018 cosmology [44]. We
show the results of the generic α-analysis (in red) and our analysis of the base ΛCDM,
which varies the PS shape (in blue).

assumed certain priors on the ΛCDM extensions, e.g. [44].
Finally, let us briefly comment on the so-called Alcock-Paczynski parameter,

FAP(z) = (1 + z)DA(z)H(z) , (6.3)

which is often used to present the results of galaxy clustering measurements. By
construction this quantity depends only on Ωm in ΛCDM. One can easily check that
by definition FAP must be roughly equal to z at low redshifts, where all cosmology
dependence essentially cancels. However, even for the BOSS high-z effective redshift
FAP has only a logarithmic dependence on Ωm. Thus, the use of this quantity for
comparison might be misleading, since in ΛCDM it always has a very small error
because of a negligible small sensitivity to cosmology. This is illustrated in Fig. 8,
where we show the FAP − fσ8 diagram extracted from our MCMC chains for the
base ΛCDM. The situation changes in extensions of ΛCDM, where FAP can reflect
some non-trivial information.

7 Conclusions and Outlook

We have presented new limits on the cosmological parameters of the minimal ΛCDM
from the BOSS DR12 on the anisotropic redshift-space galaxy clustering. Our study
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features several important improvements. They include the use of a complete theo-
retical model for the non-linear power spectrum and the MCMC technique for param-
eter inference. In contrast to previous Fourier-space galaxy clustering analyses of the
power spectrum multipoles [5, 6, 86], we consistently recompute the full likelihood
as we sample different cosmological and nuisance parameters.

Our analytic model for the galaxy power spectrum is based on one-loop pertur-
bation theory. It includes the non-linearities in the underlying dark matter field, bias
expansion, and redshift-space mapping. In addition, it properly takes into account
the damping of the BAO produced by large-scale bulk flows, which is described by
means of IR resummation. Finally, our model incorporates corrections due to back-
reaction of short-scale modes, which cannot be reliably modeled within perturbation
theory itself. These effects are captured by a number of so-called “counterterms,”
whose shape is fixed by symmetries and whose amplitude is characterized by free
coefficients, which are treated as nuisance parameters in this work. Another feature
of this work is the use of the novel FFTLog algorithm [42], which made computa-
tions of the non-linear galaxy power spectra and related likelihoods highly efficient
and robust. We implemented this algorithm in the Boltzmann code CLASS [43],
which enabled us to quickly produce theoretical templates for a given cosmology.
This code can be easily interfaced with common cosmological MCMC samplers like
Montepython [45, 81] or cobaya30. Thus, the present work is the first practical
application of many recent efforts in large-scale structure theory.

The main outcome of our work is that the so-called shape priors are not actually
necessary in the full-shape power spectrum analysis. The BOSS power spectrum
data alone can be used to constrain the late-time matter density and the Hubble pa-
rameter with precision similar to that of the Planck CMB measurements. Our study
shows that the power spectrum shape contains a considerable amount of information
in addition to the BAO wiggles and the Alcock-Paczynski distortions, which were
the main focus of previous anisotropic galaxy clustering analyses. We stress that
even though our baseline analysis does not directly use the CMB data, it assumes
informative priors on the power spectrum tilt, the physical baryon density, and the
total neutrino mass. On the one hand, they can be seen as theoretical priors strongly
motivated by the CMB measurements. On the other hand, they can be viewed as
a minimal input from the CMB, which allows one to fix some degeneracies poorly
constrained by the BOSS data itself. In this regard, our baseline priors are similar,
by spirit, to the FIRAS prior on the CMB monopole temperature, and the minimal
neutrino mass allowed by the oscillation experiments, which are the key external
priors used to constrain the base Planck ΛCDM model [44].

The parameters of ΛCDM measured in this work are consistent with the results of
the Planck CMB observations [44] and the DES survey [50]. It would be interesting to

30 https://github.com/CobayaSampler/cobaya
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see how much the cosmological parameter constraints can be improved by combining
the data from these experiments with our full-shape power spectrum likelihood. Our
method can also be easily applied to the eBOSS quasar clustering data [97, 98].

The main factor limiting the range of scales used in our analysis was the fingers-
of-God effect. This effect forced us to increase the number of nuisance parameters
and eventually prevented us from employing the modes with comoving wavenumbers
bigger than 0.25h/Mpc. We believe that this problem can be alleviated by using the
redshift-space wedges [7], which can extend the regime of validity of our theoretical
model without having to compute higher-order corrections. Another aspect that
requires improvement is the covariance matrix treatment. Ultimately, it is desirable
to use an analytic expression which can be easily recalculated for a new cosmology
e.g. if the estimated cosmological parameters happen to be different from the ones
used to generate the covariance matrix for the initial analysis. The validation of our
results with different covariance matrices represents a necessary consistency check.
Finally, it would be interesting to see how the analysis can be improved by including
the theoretical error, e.g. [56, 61]. These questions are left for future investigations.

Note added. When the CLASS module for fast perturbation theory calculations
used in this paper was being developed, we became aware of the work [99], which was
applying a similar theoretical model to analyze the BOSS data. This inspired us to
use our code for the BOSS data analysis. We thank the authors of [99] for discussions
and sharing with us their preliminary results. The methodology and theoretical
model used in Ref. [99] are very similar to ours, but the numerical implementation is
completely different. Note that compared to us, Ref. [99] uses slightly different data
selections and prior choices. When overlap, our results agree.
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A Theory Model

Our model for galaxy power spectrum in redshift space is given by

Pg(k, µ) =Z2
1(k)Plin(k) + 2

∫
q

Z2
2(q,k− q)Plin(|k− q|)Plin(q)

+ 6Z1(k)Plin(k)

∫
q

Z3(q,−q,k)Plin(q)

− 2c̃0k
2Plin(k)− 2c̃2fµ

2k2Plin(k)− 2c̃4f
2µ4k2Plin(k) ,

− c̃f 4µ4k4(b1 + fµ)2Plin(k) + Pshot ,

(A.1)

where the redshift-space kernels are given by [22],

Z1(k) = b1 + fµ2 , (A.2a)

Z2(k1,k2) =
b2
2
+ bG2

(
(k1 · k2)

2

k2
1k

2
2

− 1

)
+ b1F2(k1,k2) + fµ2G2(k1,k2)

+
fµk

2

(
µ1

k1
(b1 + fµ2

2) +
µ2

k2
(b1 + fµ2

1)

)
, (A.2b)

Z3(k1,k2,k3) = 2bΓ3

[
(k1 · (k2 + k3))

2

k2
1(k2 + k3)2

− 1

] [
F2(k2,k3)−G2(k2,k3)

]
+ b1F3(k1,k2,k3) + fµ2G3(k1,k2,k3) +

(fµk)2
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+ fµk
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]
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[
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2
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]
,

(A.3)

where k = k1+k2+k3 and the kernel Z3 has to be symmetrized over its arguments.
Now let us discuss our implementation of IR resummation. We follow the ap-

proach streamlined in Refs. [28, 30], which was developed in the context of time-sliced
perturbation theory [100]. IR resummation splits the matter linear power spectrum
into the smooth and the wiggly parts,31

Plin = Pnw(k) + Pw(k) , (A.4)
31In practice, we use the wiggly-smooth decomposition technique introduced in Ref. [95].
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where Pnw is a broadband power-law function, and Pw contains the BAO wiggles.
The IR resummed anisotropic power sepectrum at leading order takes the following
form,

PLO(k, µ) ≡ Pnw(k, µ) + e−k2Σ2
tot(µ)Pw(k, µ) , (A.5)

where we introduced the anisotropic damping factor,

Σ2
tot(µ) = (1 + fµ2(2 + f))Σ2 + f 2µ2(µ2 − 1)δΣ2 , (A.6)

that depends on the following contributions

Σ2 ≡ 1

6π2

∫ kS

0

dqPnw(q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
,

δΣ2 ≡ 1

2π2

∫ kS

0

dqPnw(q)j2

(
q

kosc

)
,

(A.7)

kosc is the BAO wavelenght ∼ 110h/Mpc, kS is the separation scale controlling
the modes which are to be resummed, and jn are the spherical Bessel function of
order n. In principle, kS is arbitrary, and any dependence on it should be treated as
a theoretical error. Following [28] we define it to be kS = 0.2h/Mpc, which gives the
same result as an alternative choice kS = k/2, adopted in [26].

In general, IR resummation in redshift space at next-to-leading (one-loop) order
requires a computation of anisotropic loop integrals which cannot be reduced to
one-dimensional ones. One can simplify these integrals by splitting the one-loop
contribution itself into a smooth and wiggly part. More precisely, one first computes
the one-loop integrals with a smooth part only. At a second step one evaluates these
integrals with one insertion of the wiggly power spectrum and suppresses the output
with a direction-dependent damping factor (A.6) to get

Pg(k, µ) → Pnw, lin(k, µ) + Pnw, 1-loop(k, µ)

+ e−k2Σ2
tot(µ)

(
Pw, lin(k, µ)(1 + k2Σ2

tot(µ)) + Pw, 1-loop(k, µ)
)
,

(A.8)

where P1-loop[Plin] is treated as a functional of the input linear power spectrum, and

Pnw, 1-loop(k, µ) ≡ P1-loop[Pnw] ,

Pw, 1-loop(k, µ) ≡ P1-loop[Pnw + Pw]− P1-loop[Pnw] .
(A.9)

The IR-resummed anisotropic power spectrum should then be used to compute the
multipoles in Eq. (3.2).

To account for the AP effect one has to compute the observable galaxy power
spectrum,

Pobs(kobs, µobs) = Pg(ktrue[kobs, µobs], µtrue[kobs, µobs]) ·
D2

A,fidHtrue

D2
A,trueHfid

, (A.10)
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where ktrue and µtrue are related to wavevectors and angles in the true cosmology,
whereas kobs and µobs refer to quantities obtained for a given set of assumed cosmo-
logical parameters. The relation between the true and observed wavevectors is given
by

k2
true = k2

obs

[(
Htrue

Hfid

)2

µ2
obs +

(
DA,fid

DA,true

)2

(1− µ2
obs)

]

µ2
true =

(
Htrue

Hfid

)2

µ2
obs

[(
Htrue

Hfid

)2

µ2
obs +

(
DA,fid

DA,true

)2

(1− µ2
obs)

]−1

.

(A.11)

During MCMC analysis one tries to find Htrue and DA,true given Hfid and DA,fid that
are fixed by the reference cosmological model used to create galaxy catalogs. The
eventual galaxy multipoles with the AP effect are given by

Pℓ,AP(k) =
2ℓ+ 1

2

∫ 1

−1

dµobs Pobs(kobs, µobs) · Pℓ(µobs) . (A.12)

B Tests on Mock Catalogs

In this Appendix we show the tests of our pipeline on mock catalogs. First, we
will apply our pipeline to the high-resolution mock catalogs based on the N-body
simulation LasDamas, which are characterized by the gigantic volume of (∼ 553

(Gpc/h)3). These are mocks of Luminous Red Galaxies that are desinged to match
the sample observed by SDSS [101]. Second, we will test our pipeline on MultiDark
patchy mock catalogs [64]. On the one hand, they are based on approximate gravity
solvers and HOD models. On the other hand, they are designed to closely reproduce
the data and have the same selection, window function, and fiber collision effects
implemented.

B.1 Tests on LasDamas N-body simulations

We will fit the monopole and quadrupole of the galaxy power spectrum of LasDamas
Oriana simulations at redshift z = 0.34. This redshift is lower than the ones used in
our analysis and therefore it provides a more stringent test of our theoretical model
because the non-linear effects are stronger. The cosmological parameters used to
generate mock catalogs are h = 0.7, Ωm = 0.25, Ωb = 0.04, σ8 = 0.8 (As = 2.22·10−9),
ns = 1, and

∑
mν = 0. The details of LasDamas simulation can be found at.32

We fit the mean of power spectra extracted from 40 independent simulation
boxes, whose volume is (2400 Gpc/h)3 each. This totals to 553 (Gpc/h)3 volume,
which is almost 100 times bigger than the cumulative volume of BOSS. However,
the statistical error corresponding to this tremendous volume is so small that the

32 http://lss.phy.vanderbilt.edu/lasdamas/overview.html
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two loop corrections supersede cosmic variance already on very large scales. The
situation is different for low-volume surveys like BOSS, where the statistical error
is expected to be bigger than the systematic one down to very high kmax. Hence,
in order to be realistic, we will assume a covariance that corresponds to the BOSS
survey and not to the actual Las Damas volume. Since 40 realizations are not enough
to accurately estimate the covariance, we will use a theoretical prediction obtained
in the Gaussian approximation (see, e.g. [56]),

C
(00)
ij =

2

Nk

(
P 2
0 +

1

5
P 2
2

)
δij , C
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ij = C
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2
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2
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δij ,

C
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7
+

15P 2
2

7

)
δij ,

(B.1)

where we introduced the number of modes Nk = 4πk2∆kV , the binning step of
Las Damas simulations ∆k = 0.0025 h/Mpc and the survey volume V . Note that
the monopole moment P0 includes the shot-noise contribution, which is equal to
n̄−1 = 1.0× 104 [Mpc/h]3 for the LasDamas mocks. We will consider two particular
choices,

VBOSS−like = 6 (Gpc/h)3 and V10×BOSS−like = 60 (Gpc/h)3 . (B.2)

VBOSS−like is the total volume of the BOSS survey across all redshifts and sky parts,
whereas V10×BOSS−like is simply a 10 times bigger volume, which will be used to better
pin down the theory systematic error. Using an approximate Gaussian covariance
also provides an additional challenge to our approach: neglecting the off-diagonal
terms artificially reduces the error and makes one reject the true model more often
than it should be.

To make a closer contact to our analysis, we will keep ωb, ns and
∑

mν = 0 fixed
to the true values and scan over ωcdm, H0, A1/2 = (As/As, fid)

1/2 in our analysis. We
use the same nuisance parameters and assume the same priors for them as in our
baseline analysis.

Our results are presented in Fig. 9 and in Table 8. In Fig. 9 we show the
contours obtained for two choices of kmax = 0.2 h/Mpc and kmax = 0.25 h/Mpc.
Table 8 displays the marginalized one-dimensional limits for kmax = 0.25 h/Mpc,
which will be eventually selected as a baseline data cut.

Let us focus on the case corresponding to the total BOSS volume VBOSS−like (left
panel of Fig. 8). One can see that our pipeline correctly extracts the cosmological
parameters within 1σ for both choices of kmax. Remarkably, the errobars are very
similar to the ones obtained in the analysis of the real data. The difference between
the two choices of kmax is marginal, which merely reflects the fact that the errorbars
cannot be further improved due to the shot noise. Given that the results for kmax =
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Figure 9: Results of our analysis of the galaxy power spectrum of the LasDamas
N-body simulations with the errorbars scaled to the total BOSS volume (left panel)
and 10× the total BOSS volume (right panel). Dashed lines represent the true values
used in simulations. The values of kmax are quoted in units of h/Mpc, H0 in units
[km/s/Mpc].

0.25 h/Mpc are somewhat better, we prefer to adopt it as our standard cut. We
have checked that going to kmax = 0.30 h/Mpc gives very minor improvement on the
errorbars and produces posteriors that are more shifted w.r.t. the true values. Given
this reason, we prefer to stick to kmax = 0.25 h/Mpc in order to be more conservative.

Finally, to better understand the validity of our model we have repeated our
analysis with a covariance reduced by a factor of 10. The results are shown in the
right panel of Fig. 9 and Table 8. One can see that even in this case our model
correctly reproduces the input parameters of the simulations. At kmax = 0.2 h/Mpc
all the parameters are recovered within 1σ of the reduced errors, whereas for kmax =

0.25 h/Mpc we observe a 2σ shift in σ8, while the H0 and Ωm are accurately recovered.
However, one may notice that at kmax = 0.2 h/Mpc the means of the posteriors for
H0 and Ωm are more shifted with respect to the true values as compared to the
kmax = 0.25 h/Mpc case. At the same time, the best-fit parameters are very close to
the true ones. This implies that the observed shifts of the posterior means are caused
by parameter marginalization (parameter volume) effects. Comparing this with the
results for the actual BOSS volume we see that the means of the distributions are
even further shifted w.r.t. the true values. This shows that for the BOSS errorbars
the marginalization effects are more significant than the theory-systematic error.
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VBOSS best-fit mean ±1σ

A 1.126 1.15+0.15
−0.17

H0 70.05 69.4± 1.3

ωcdm 0.1044 0.09871+0.0053
−0.0056

b1 × A1/2 2.161 2.164+0.047
−0.046

b2 × A1/2 −1.418 −1.927+0.69
−0.94

bG2 × A1/2 −0.1763 −0.1598+0.13
−0.21

c20 −0.0208 1.548+34
−28

c22 38.2 15.0+39
−27

c̃ 681 857+210
−260

10−3Pshot 1.344 4.485+2
−3.8

σ8 0.857 0.830± 0.057

Ωm 0.2527 0.2457+0.0085
−0.0087

10× VBOSS best-fit mean ±1σ

A 1.157 1.160± 0.059

H0 69.95 69.86+0.46
−0.4

ωcdm 0.1024 0.1017+0.0025
−0.0018

b1 × A1/2 2.173 2.165+0.017
−0.015

b2 × A1/2 −1.462 −1.664+0.38
−0.3

bG2 × A1/2 −0.2252 −0.194+0.035
−0.05

c20 −2.0 −3.125+9.7
−8.8

c22 41.6 32+15
−10

c̃ 355 541+200
−288

10−3Pshot 0.9192 2.094+0.7
−1.9

σ8 0.861 0.853± 0.020

Ωm 0.2494 0.2486+0.0033
−0.0028

Table 8: The results of our MCMC analysis for the LasDamas mock data with
kmax = 0.25h−1Mpc. H0 is quoted in units [km/s/Mpc]. The parameters c20 and
c22 are quoted in units [Mpc/h]2, c̃ in units [Mpc/h]4, Pshot in units [Mpc/h]3. The
fiducial values for cosmological parameters used in the simulations are H0 = 70, Ωm =

0.25 (ωcdm = 0.1029), σ8 = 0.8 (A = 1).
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2d posterior contours and 1d marginalized distribution for cosmological parameters.
Dashed lines represent the true values used in simulations. The values of kmax are
quoted in units of h/Mpc, H0 in units [km/s/Mpc].
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high-z NGC best-fit mean ±1σ

A 1.300 1.186+0.192
−0.249

H0 67.0 67.3± 2.3

102ωb 2.213 2.214± 0.015

ωcdm 0.1104 0.1111± 0.0095

b1 × A1/2 1.9412 1.951± 0.065

b2 × A1/2 −1.99 −1.81+0.81
−1.77

bG2 × A1/2 −0.13 −0.0014+0.25
−0.43

c20 17.2 17.4+37.8
−30.2

c22 28.6 21.3+52.7
−29.9

c̃ 230 286+124
−164

10−3Pshot 4.39 4.54+2.44
−3.00

σ8 0.900 0.855± 0.074

Ωm 0.295 0.294± 0.022

low-z NGC best-fit mean ±1σ

A 1.110 1.031+0.200
−0.250

H0 67.7 67.2± 2.4

102ωb 2.211 2.214± 0.015

ωcdm 0.1132 0.1093± 0.0100

b1 × A1/2 1.775 1.791± 0.068

b2 × A1/2 −1.197 −1.467+0.93
−1.62

bG2 × A1/2 −0.129 −0.016+0.203
−0.375

c20 22.4 22.3+34.5
−30.3

c22 39.2 16.9+55.0
−26.9

c̃ 355 541+200
−288

10−3Pshot 3.28 4.92+2.74
−2.96

σ8 0.847 0.788± 0.081

Ωm 0.296 0.291± 0.020

Table 9: The results of our MCMC analysis for the high-z (left table) and low-z (right
table) NGC patchy mocks data samples with kmax = 0.25h−1Mpc. H0 is quoted in
units [km/s/Mpc]. The parameters c20 and c22 are quoted in units [Mpc/h]2, c̃ in units
[Mpc/h]4, Pshot in units [Mpc/h]3. The fiducial values for cosmological parameters
used in the simulations are H0 = 67.77, Ωm = 0.307115 (ωcdm = 0.118911), 102ωb =

2.214, σ8 = 0.8288 (A = 1).

B.2 Tests on Patchy Mocks

Now let us focus on Patchy mocks and consider the NGC mock datasets, which have
bigger volumes. We fit the mean of 2048 mock power spectra with the covariance
matrix of a single simulation box. This allows us to significantly reduce the statistical
scatter among different realizations. For the analysis we assumed the same base
ΛCDM priors as the ones discussed above (see Tab. 3), along with the Gaussian
prior ωb = 0.02214 ± 0.00015. Note that we excluded the neutrino masses from the
fit as the simulations were run for massless neutrinos. The multipoles of the mock
catalogs were produced assuming a fiducial cosmology with Ωm = 0.31, which is
different from the true value used in the simulations. This is designed to introduce
an additional anisotropy to be constrained through the AP effect.

We focused on four different choices of kmax = 0.15, 0.20, 0.25, 0.30 h/Mpc. Sim-
ilarly to the case of LasDamas, our analysis suggests that at kmax = 0.3 h/Mpc the
systematic error becomes comparable to the statistical one, whereas at kmax = 0.15

h/Mpc our model has too much freedom, and thus requires more narrow priors on the
nuisance parameters in order to reduce the eventual errorbars. Given these reasons,
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we focus on kmax = 0.20, 0.25 h/Mpc in what follows. The posterior distribution
obtained with our MCMC analysis is displayed in Fig. 10. The marginalized limits
for the cosmological and bias parameters obtained in our mock catalog analysis for
kmax = 0.25 h/Mpc (which is used in our baseline analysis) are displayed in Table. 9.

One observes that for kmax = 0.25 h/Mpc the best-fit and mean values of the in-
ferred cosmological parameters are within 1σ from the true values, but some ∼ 0.5σ

shifts w.r.t the true value are clearly visible. There are two sources of these shifts.
First, there is a parameter projection effect, which can drive the mean values away
from the best-fit along degeneracy directions. Put simply, these effects reflect that
fact that the statistical error of the data is not good enough to break certain degenera-
cies among model parameters. We stress that this effect is somewhat different from
the so-called prior volume effect. This effect takes place if the constraints on some
parameters are prior-dominated, so that the mean values shift in certain directions
allowed by the priors.

To study the projection effect we have run the same analysis with the survey
volume of the mock covariances increased by a factor of 9. Just like in the LasDamas
case, we have found the inferred means of H0 and Ωm to be much closer to the true
values, but still offset at the level ∼ 1σ of the new variance, which is reduced by
a factor of 3 compared to the actual BOSS volume. Another test was described
in Section 5, where we analyzed mock datavectors generated with our theoretical
model. Although the best-fit parameters obtained with our MCMC scans coincide
with the input values, the means of some parameters (e.g. Ωm and σ8) were noticeably
shifted. This suggests that the parameter projection effects are inevitable for the
BOSS covariance, but can be reduced in future surveys with bigger volumes.

The second effect responsible for the shifts is a real systematic error related
to higher-order corrections omitted in our theoretical model. We have found that
our theoretical model can correctly recover the true cosmology of the mock data at
kmax = 0.20 h/Mpc even for survey volumes ∼ 10 times bigger than the actual BOSS
survey. However, it gives a biased estimate of σ8 if we go to higher kmax’s. This
shift reaches ∼ 5% at kmax = 0.25 h/Mpc, which is still marginally smaller than our
final statistical error on this parameter obtained by combining all the BOSS data
samples. The systematic shifts observed in the estimated Ωm and H0 are negligible
(see the discussion above). Given these reasons, we decided to stick to kmax = 0.25

h/Mpc because in this case the total marginalized error (statistical + systematic,
added in quadratures) on the cosmological parameters is smaller than the similar
error at kmax = 0.20 h/Mpc, which is dominated by the statistical component.

Note that once we inflate the error to match the actual BOSS volume, the sys-
tematic error couples with volume effects, which shift the inferred value of Ωm instead
of σ8 along the degeneracy direction between them. This correlation explains why
the shifts of σ8 are negligible in Fig. 10, but become a leading systematic effect once
we increase the survey volume in the covariance for the mock catalogs. The observed

– 48 –



picture is, essentially, the same at kmax = 0.20h/Mpc for both redshift bins of the
BOSS data.

All in all, we believe that the choice of kmax = 0.25, h/Mpc represents a good bal-
ance between systematic and statistical errors. We emphasize that the 1d marginal-
ized limits presented in this paper should not be over-interpreted beyond the level of
∼ 1σ uncertainty related to the inaccuracies of the theoretical modeling and param-
eter projection effects. Our tests on LasDamas mocks with higher volumes suggest
that the shifts in the full parameter space (before marginalization) are actually much
smaller than 1σ for the BOSS covariance.
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Figure 11: The triangle plot for cosmological and nuisance parameters of four
independent BOSS datasets.
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Figure 12: Comparison of the data for the monopole and the quadrupole with the
best-fit models, whose parameters are listed in Table 10. The goodness of fit can be
assessed by the reduced χ2 given in Table 10.

C Supplementary Material

In this Appendix we present some additional material. It includes full parameter
constrain tables and corner plots for the baseline analysis, along with the results of
the extended analyses that waived priors on the primordial power spectrum tilt ns

and the neutrino mass. Finally, we show that are constraints are not sensitive to the
data on very large scales, which are susceptible to systematics.

C.1 Full Triangle Plot and Constraint Tables

Let us present some additional material related to the baseline analysis with the
Planck prior on ωb. The results for the BBN priors are the same. The full triangle
plot for four non-overlapping BOSS data chunks can be found in Fig. 11. We do not
show the contours for mν and ωb as they are prior-dominated. The corresponding 1d
marginalized limits can be found in Table 10. For completeness, we also show the
spectra for the SGC datasets along with the best-fit theoretical curves in Fig. 12.
Similar plots for the NGC data were shown in Fig. 1.

Note that the reduced χ2 is a very inaccurate metric for the goodness of fit. First,
it does not include the covariance between different k-bins. Second, the naive reduced
χ2 does not take into account that the cosmological constraints are always driven by
the biggest wavenumbers used in the analysis. This is important to keep in mind
when interpreting our results. Indeed, some of the values quoted in Table 10 (e.g.
for the high-z SGC sample) are noticeably bigger than unity, which naively implies a
bad fit. However, if we compute the reduced χ2 for the same parameters but using,
e.g. kmin = 0.05h/Mpc instead of 0.0025h/Mpc employed in our analysis, we find
different numbers: 61.7/(80−12) = 0.91, 97.4/(80−12) = 1.43, 75.5/(80−12) = 1.11,
69.6/(80− 12) = 1.02 for the high-z NGC, low-z NGC, high-z SGC, and low-z SGC
samples, respectively. Note a significant improvement for the high-z datasamples.
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high-z NGC best-fit mean ±1σ

A 0.744 0.697+0.123
−0.178

h 0.704 0.703± 0.023

102ωb 2.242 2.237± 0.015

ωcdm 0.1334 0.1294± 0.012

mν 0.122 0.119+0.033
−0.057

b1 × A1/2 1.926 1.907+0.068
−0.058

b2 × A1/2 −2.77 −2.27+0.40
−1.70

bG2 × A1/2 0.47 0.49+0.42
−0.71

c20 −53.44 20.5+55.0
−49.3

c22 −21.0 −22.5+59.3
−43.0

c̃ 187 243± 123

10−3Pshot 1.32 3.78+2.38
−3.06

σ8 0.744 0.699± 0.070

Ωm 0.320 0.310± 0.023

χ2
best-fit/Ndof = 106.9/(100− 12) = 1.21

low-z NGC best-fit mean ±1σ

A 1.442 1.289+0.231
−0.302

h 0.662 0.661± 0.016

102ωb 2.240 2.237± 0.015

ωcdm 0.1054 0.1033± 0.0097

mν 0.154 0.120± 0.040

b1 × A1/2 1.895 1.891± 0.060

b2 × A1/2 −2.57 −2.64+0.54
−1.0

bG2 × A1/2 −0.15 −0.12+0.32
−0.44

c20 −22.9 −14.7+34.2
−29.2

c22 15.8 7.06+40.8
−31.1

c̃ 479 579+224
−263

10−3Pshot 2.68 4.15+1.79
−3.44

σ8 0.866 0.808± 0.073

Ωm 0.296 0.290± 0.017

χ2
best-fit/Ndof = 126.7/(100− 12) = 1.44

high-z SGC best-fit mean ±1σ

A 0.934 0.753+0.181
−0.302

h 0.639 0.665+0.022
−0.047

102ωb 2.234 2.237± 0.015

ωcdm 0.1135 0.1120+0.0119
−0.0163

mν 0.077 0.120± 0.041

b1 × A1/2 2.109 2.059+0.140
−0.099

b2 × A1/2 −1.61 −1.32+0.93
−2.63

bG2 × A1/2 0.13 0.26+0.58
−0.86

c20 −14.1 29.2+61.7
−77.0

c22 23.0 −0.17+76.8
−43.0

c̃ 203 319± 195

10−3Pshot 0.97 3.80+1.10
−3.80

σ8 0.744 0.646± 0.107

Ωm 0.334 0.309+0.041
−0.032

χ2
best-fit/Ndof = 130.2/(100− 12) = 1.48

low-z SGC best-fit mean ±1σ

A 0.996 0.875+0.229
−0.385

h 0.683 0.697+0.029
−0.048

102ωb 2.236 2.237± 0.015

ωcdm 0.1082 0.1026+0.0100
−0.0136

mν 0.170 0.122+0.055
−0.027

b1 × A1/2 1.885 1.904+0.120
−0.108

b2 × A1/2 −3.00 −1.90+0.65
−2.10

bG2 × A1/2 0.43 0.61+0.56
−0.78

c20 −18.1 39.0+62.3
−74.3

c22 −12.2 25.0+80.3
−46.9

c̃ 209 414+496
−388

10−3Pshot 5.56 5.56+3.72
−1.99

σ8 0.734 0.658+0.106
−0.126

Ωm 0.284 0.262+0.031
−0.026

χ2
best-fit/Ndof = 95.1/(100− 12) = 1.08

Table 10: The results of our MCMC analysis for different data samples. The
neutrino mass is quoted in units of [eV], H0 in [km/s/Mpc], parameters c20 and c22 are
quoted in units [Mpc/h]2, c̃ in units [Mpc/h]4, Pshot in units [Mpc/h]3. Note that
the limits on ωb, mν , b2A1/2 and Pshot are prior-dominated.
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Note that the choice of kmin within some reasonable range has a very mild effect
on the parameter estimates (less than 1σ). This illustrates that the values quoted in
Table 10 only give a very rough idea on the quality of the fit and hence should be
taken with a grain of salt.

zeff = 0.61 best-fit mean ±1σ

fσ8(zeff) 0.47135 0.4689+0.0070
−0.0045

H(zeff) 95.58 95.16+0.55
−0.29

DA(zeff) 1425.4 1438.9+8.9
−17.1

FAP(zeff) 0.7317 0.7353+0.0025
−0.0045

DV (zeff) 2160.0 2176.7+11.1
−21.4

zeff = 0.38 best-fit mean ±1σ

fσ8(zeff) 0.4769 0.4766+0.0062
−0.0053

H(zeff) 83.319 82.69+0.80
−0.43

DA(zeff) 1102.49 1114.81+8.17
−15.60

FAP(zeff) 0.42284 0.42429+0.0010
−0.0018

DV (zeff) 1468.2 1478.6+9.77
−18.6

Table 11: Planck results for distances to the BOSS galaxy samples in the base
ΛCDM with massive neutrinos. The values of H are quoted in units of [km/s/Mpc],
DA and DV in [Mpc].

high-z best-fit mean ±1σ

fσ8(zeff) 0.393 0.394± 0.034

H(zeff) 96.53 96.84± 2.33

DA(zeff) 1409 1405± 36

FAP(zeff) 0.7307 0.7303± 0.0057

DV (zeff) 2137 2130± 53

low-z best-fit mean ±1σ

fσ8(zeff) 0.4308 0.434± 0.038

H(zeff) 80.23 80.35± 1.8

DA(zeff) 1138 1137± 25

FAP(zeff) 0.4202 0.4203± 0.0018

DV (zeff) 1487 1486± 33

Table 12: The distances and the fluctuation growth parameter for the high-z (left
table), low-z (right table) data samples for the base ΛCDM with the Planck prior on
ωb. The values of H are quoted in units of [km/s/Mpc], DA and DV in [Mpc].

It is instructive to convert our results into the triplet fσ8 −DA −H at zeff com-
monly used in the large-scale structure literature. We focus on the results obtained
with the Planck prior on ωb. The corresponding 2d posterior distribution projections
are displayed in Fig. 13 (upper panels), 1d marginalized limits are given in Table. 12.
For comparison, in Table. 11 we quote the limits extracted from the Planck MCMC
chains run for ΛCDM with a free neutrino mass. Overall, we see that the BOSS
distance information is superseded by Planck, which gives much better constraints
on H(zeff) and DA(zeff). One can notice a significant correlation between DA and
H in the corresponding panels. This degeneracy direction simply reflects the fact
that in ΛCDM these two quantities are related by definition, see Eq. (5.2), such that
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Figure 13: The posteriors for fσ8−DA−H as extracted from our baseline MCMC
chains with Planck priors on ωb (upper panels) and Planck priors on both ωb and
ωcdm (lower panels) at zeff = 0.61 (left panels) and zeff = 0.38 (right panels). The
values of H are quoted in units of [km/s/Mpc], DA in [Mpc].

the product DAH is nearly constant. We stress that the constraints on the distance
parameters shown in Table. 12 do not use the Planck prior on rd.

Finally, we show distance measurements in the case of the joint Planck prior on
ωb and ωcdm, which are presented in Table. 13 and displayed in Fig. 13 (lower panels).

C.2 Full Likelihood including the Power Spectrum Tilt

Our baseline analysis was performed for the fixed power spectrum tilt ns. In this
Appendix we present the results of varying the full power spectrum likelihood. As
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high-z best-fit mean ±1σ

Ωm 0.3007 0.3026± 0.0172

H0 69.13 69.00± 1.93

σ8 0.702 0.686± 0.060

fσ8(zeff) 0.403 0.394± 0.035

H(zeff) 96.64 96.57± 1.38

DA(zeff) 1406 1409± 30

FAP(zeff) 0.7300 0.7305± 0.0052

DV (zeff) 2133 2136± 40

low-z best-fit mean ±1σ

Ωm 0.3032 0.3057± 0.0082

H0 68.99 68.46± 1.07

σ8 0.913 0.783± 0.061

fσ8(zeff) 0.530 0.456± 0.035

H(zeff) 84.32 83.82± 0.91

DA(zeff) 1089 1096± 15

FAP(zeff) 0.4225 0.4229± 0.0011

DV (zeff) 1419 1428± 17

Table 13: The distances and the fluctuation growth parameter for the high-z (left
table), low-z (right table) data samples for the base ΛCDM with the Planck priors
on ωb and ωcdm. The values of H are quoted in units of [km/s/Mpc], DA and DV in
[Mpc].

BBN ωb best-fit mean ±1σ

ωcdm 0.1267 0.1268± 0.0099

H0 68.61 68.55± 1.47

ns 0.874 0.876± 0.076

σ8 0.724 0.728± 0.052

Ωm 0.320 0.321± 0.018

Table 14: The results for cosmological parameters from the full BOSS likelihoods
with all relevant cosmological parameters varied. H0 is quoted in units [km/s/Mpc].
We do not show the limits on ωb and

∑
mν as they are prior-dominated.

in the baseline analysis, we keep the BBN prior on ωb (3.23) and the prior on the
neutrino masses (3.20), but do not assume any prior on ns whatsoever (i.e. we use
a plat prior in the range (−∞,∞)). The results are displayed in Table 14 and in
Fig. 14.

One observes that including ns to the fit notably worsens the precision of the
ωcdm measurement. This is to be expected as both these parameters are extracted
from the power spectrum slope. The correlation between ωcdm and ns backfires on the
posterior distribution for Ωm, which shifts to a higher value almost by 1σ w.r.t. our
baseline analysis (with fixed ns). In turn, Ωm pulls H0 up and somewhat widens
its marginalized posterior. Overall, the shift in H0 is not very significant (≲ 0.5σ).
Note that the independent measurement of ns is consistent within 1σ with the Planck
CMB result.
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Figure 14: 2d posterior distribution and 1d marginalized curves for Ωm, H0, σ8

and ns (gray contours) obtained with the BBN prior on ωb and the tight prior on∑
mν . Analogous contours obtained for a fixed ns = 0.9649 are shown in blue. They

correspond to our baseline analysis. For comparison, we also display the Planck 2018
CMB results (in red) for the same cosmological model (ΛCDM with varied neutrino
masses).

C.3 Effect of Neutrino Masses

In this Appendix we present results of our analysis of the low-z NGC datasample
without informative priors on the neutrino mass

∑
mν ≡ Mtot. Other than that, our

methodology and priors are the same as in the baseline analysis. In particular, we
assume the BBN prior on ωb and fix ns to the Planck best-fit value. The results are
presented in Table 15 and in Fig. 15.

The first relevant observation is that our constraints on H0 and σ8 are almost
insensitive to the neutrino mass. This must be contrasted with the Planck constraints
on these parameters [44], which depend strongly on the neutrino masses. The second
observation is that Ωm is, obviously, correlated with the neutrino mass and in this
sense cannot be treated as an independent parameter. However, our limit on the
late-time cold dark matter and baryon density fraction Ωcb is almost the same in our
baseline analysis and in the analysis with totally free Mtot. Thus, the measurements
of Ωcb, H0, σ8 from the BOSS data are quite robust w.r.t. the priors on the neutrino
mass.

Overall, we conclude that BOSS alone are not very sensitive to the neutrino
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low-z NGC, Baseline + Mtot best-fit mean ±1σ

A 1.68 1.38+0.23
−0.34

ωcdm 0.0986 0.1061+0.09
−0.011

H0 65.26 66.6± 1.7

Mtot 0.262 < 1.17 (95% CL)
σ8 0.862 0.786± 0.077

Ωm 0.291 0.3013+0.019
−0.023

Ωcb 0.285 0.290± 0.018

Table 15: The results for cosmological parameters obtained in our baseline analysis
without imposing a prior on the total neutrino mass Mtot (in eV). H0 is quoted in
units [km/s/Mpc]. Ωcb is the current fractional density of the cold dark matter and
baryons. For comparison, its value inferred in our baseline analysis with the tight
prior on Mtot is Ωcb = 0.288± 0.017 (best-fit Ωcb = 0.292).

mass, and even very large Mtot around 1 eV is allowed. These values are already
excluded by other cosmological probes, e.g. by the Lyα-forest data alone (which sets
a limit Mtot < 0.71 eV [49]), as well as by the particle physics laboratory experiments
like KATRIN [102].

C.4 Effect of Large Scales

The BOSS spectra feature some spurious excess of power on scales k < 0.01 hMpc−1.
In Fig. 16 we show the results obtained from two analyses of the low-z NGC data:
using all the k-bins and having imposed the cut k > 0.01 hMpc−1. The marginalized
posteriors for H0 and σ8 are identical to the ones obtained in our baseline analysis,
whereas the mean value of Ωm is shifted upwards by 0.1σ when imposing the cut.
Clearly, the signal is dominated by wavenumbers k > 0.01 hMpc−1.

D Scaling Parameter Analysis

In this Section we give some details on our analysis in which we followed the standard
parameterization and parameter estimation routine adopted in the previous BOSS
FS analyses. We try to reproduce the analyses performed in Refs. [5, 6] as close as
we could without a drastic modification of our pipeline. Our α-analysis performed in
this paper is only meant to capture some main qualitative features of the standard
pipeline. It is not aimed at accurately reproducing the previous results.

To match the standard methodology we modified our theoretical model to agree
with the one used in the previous analyses. Specifically, we use

Pg(k, µ) = e−(fµσvk)2P 1-loop, SPT, IR resummed
g (k, µ) , (D.1)
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Figure 15: 2d posterior distribution and 1d marginalized curves for the cosmological
parameters of ΛCDM obtained from our baseline analysis without imposing a prior
on the neutrino mass.

and do not introduce any RSD counterterms. The fingers-of-God effect is then de-
scribed by only one parameter - the velocity dispersion σv. We have computed the
theoretical power spectra for a fiducial cosmology with

ns = 0.96 σ8 = 0.8 , h = 0.676 ,

Ωbh
2 = 0.022 , Ωm = 0.31 ,

∑
mν = 0.06 eV ,

(D.2)

which matches the parameters used in the most recent BOSS FS analysis [6]. We
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Figure 16: Corner plot for the cosmological parameters of ΛCDM obtained in our
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Figure 17: The results of our α-analysis for the low-z (left) and high-z (right) NGC
BOSS samples. The values of kmax are quoted in units [h/Mpc].

account for the AP effect by means of the scaling parameters α∥, α⊥, defined as

α∥ =
Hfid

H

⏐⏐⏐⏐⏐
zeff

, α⊥ =
DA

DA, fid

⏐⏐⏐⏐⏐
zeff

. (D.3)

Overall, the cosmology-dependence of this model is parameterized by α∥, α⊥ and
fσ8. The non-linear bias and redshift-space distortion effects are parameterized by
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high-z best-fit mean ±1σ

kmax = 0.15

fσ8(zeff) 0.391 0.392± 0.068

α∥ 1.019 1.027± 0.082

α⊥ 0.964 0.964± 0.042

FAP(zeff) 0.688 0.693± 0.072

H(zeff) 93.42 93.22± 6.76

DA(zeff) 1370.89 1382± 60

DV (zeff) 2120.62 2135± 48

kmax = 0.25

fσ8(zeff) 0.430 0.395± 0.054

α∥ 0.985 1.015± 0.057

α⊥ 0.972 0.952± 0.033

FAP(zeff) 0.723 0.690± 0.054

H(zeff) 96.69 94.11± 4.98

DA(zeff) 1393 1364± 47

DV (zeff) 2118 2109± 40

low-z best-fit mean ±1σ

kmax = 0.15

fσ8(zeff) 0.478 0.467± 0.072

α∥ 1.026 1.051± 0.063

α⊥ 1.004 0.994± 0.037

FAP(zeff) 0.414 0.402± 0.033

H(zeff) 80.86 79.19± 4.66

DA(zeff) 1112.71 1101.77± 40.56

DV (zeff) 1492.12 1493.22± 34.88

kmax = 0.25

fσ8(zeff) 0.452 0.440± 0.048

α∥ 1.063 1.075± 0.044

α⊥ 0.967 0.964± 0.020

FAP(zeff) 0.385 0.380± 0.020

H(zeff) 78.04 77.24± 3.12

DA(zeff) 1072 1069± 23

DV (zeff) 1473 1475± 22

Table 16: The results of our α-analysis for the high-z NGC (left panel, zeff = 0.61)
and low-z NGC (right panel, zeff = 0.38) data samples. The values of H are quoted
in units of [km/s/Mpc], DA and DV in [Mpc].

coefficients b1σ8, b2σ8, Pshot and the velocity dispersion σv. We fix the tidal bias to
the value suggested by the coevolution model [16],

bG2 = −4

7
(b1 − 1) . (D.4)

We use the same priors on the bias parameters as in our main analysis, except for
Pshot, which is allowed to vary in the range [−104, 104] [Mpc/h]3. This is done in
order to agree with the analysis of Ref. [6], which finds preferred values of the shot
noise to be negative.

We studied two different choices of kmax: 0.15 and 0.25 h/Mpc. The results of
these analyses are shown in Fig. 17, where we display the marginalized posterior con-
tours for low-z (left panel) and high-z (right panel) NGC samples. The 1d marginal-
ized limits are presented in Table 16. One clearly sees that the inferred distance pa-
rameters become shifted w.r.t. the fiducial values at kmax = 0.25h/Mpc. Moreover,
the inferred values of the H(zeff), DA(zeff) are more than 1σ-away from the Planck
mean values. The distance measurements obtained with our α-parametrization
should be compared with the analysis of the DDE model, which found H, DA to
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be very close to the Planck values. We believe that this difference is mainly pro-
duced by our choice of priors and the use of a different theoretical model.
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