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Abstract
On a scientific concept hierarchy, a parent con-
cept may have a few attributes, each of which
has multiple values being a group of child con-
cepts. We call these attributes facets: clas-
sification has a few facets such as applica-
tion (e.g., face recognition), model (e.g., svm,
knn), and metric (e.g., precision). In this
work, we aim at building faceted concept hi-
erarchies from scientific literature. Hierar-
chy construction methods heavily rely on hy-
pernym detection, however, the faceted rela-
tions are parent-to-child links but the hyper-
nym relation is a multi-hop, i.e., ancestor-to-
descendent link with a specific facet “type-of”.
We use information extraction techniques to
find synonyms, sibling concepts, and ancestor-
descendent relations from a data science cor-
pus. And we propose a hierarchy growth algo-
rithm to infer the parent-child links from the
three types of relationships. It resolves con-
flicts by maintaining the acyclic structure of a
hierarchy.

1 Introduction

Concept hierarchies play an important role in
knowledge discovery from scientific literature.
Concepts are expected to be organized in a hi-
erarchical structure like chapters-to-sections-to-
subsections in textbooks. In this work, we propose
a new representation of scientific concept hierar-
chy, called faceted concept hierarchy. Under this
hierarchy, the links should not only carry parent-
to-child relations but also the semantic relations
(facets) between the concepts. Figure 1 presents a
part of the faceted hierarchy in Data Science. The
parent node is “classification” and the child con-
cepts of it are excepted to be grouped into three
facets, each of which has three child-concepts.
One example of the faceted relation we define is
as follows:

parent(“classification”, “svm”): “models”,

support_vector
_machines; svm

decision
_trees

fraud
_detection

text
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Figure 1: The idea of faceted concept hierarchy
from Data Science publications: For student learn-
ing, concepts are expected to be organized in a hi-
erarchical structure. For example, here the nine
child-concepts of “classification” (in dashed line
blocks) should be grouped into three facets (“mod-
els”, “applications”, and “metrics”).

which is more complete than “type-of” relations in
the works that focused on taxonomy or ontology
induction (Liang et al., 2017; Gupta et al., 2017;
Zhang et al., 2018; Liu et al., 2018) like this:

type-of (“svm”, “classification model”).

The basic units of the hierarchy include concept
nodes and their parent-to-child relations. Three
types of essential structural relations are expressed
in paper texts and can be used to infer the parent-
to-child relations. The relation types include (1)
synonym (concept names on the same node), (2)
sibling (concept nodes having the same parent),
and (3) ancestor-to-descendant (nodes on the di-
rect descending line). The task of hierarchy con-
struction has three challenges. First, there is no
sufficient human annotated data or available dis-
tant supervisory sources to feed into (deep) learn-
ing models. It is necessary to extract the concepts
and relations in an unsupervised manner. Second,
the extracted relations could be noisy at the long
tail of the frequency distribution. When inferring



the parent-to-child relations, the algorithm should
consider the trustworthiness of the synonym, sib-
ling, and ancestor relations. Also, it is important to
detect redundant or conflicting relations (links) on
the hierarchy. Third, it requires a joint process of
clustering child-concepts into the parent concept’s
facets and identifying words as facet indicators.

We propose a novel framework HiGrowth that
grows faceted hierarchies from literature data. The
framework has five modules: (M1) scientific con-
cept extraction, (M2) concept typing, (M3) hierar-
chical relation extraction, (M4) hierarchy growth,
and (M5) facet discovery. The M1–M3 NLP mod-
ules were implemented in an unsupervised man-
ner. First, we use two complementary keyphrase
mining tools to extract concepts: one is rule-based
and the other is a statistical learning method. Sec-
ond, we use a KNN-based method, simple and ef-
fective, to assign types (e.g., $Problem, $Method)
to the concepts. Third, we use textual patterns
to extract the hierarchical relations (i.e., synonym,
sibling, and ancestor). To address the second chal-
lenge, we design an efficient algorithm that grows
a concept hierarchy by scanning the set of relation
tuples (sorted by their frequency from the high-
est to the lowest) just once and inferring parent-
to-child relations. This algorithm will be able to
identify unnecessary, invalid, and redundant links
during the process of hierarchy growth in spite of
serious noise at the long tail. Finally, we use a
word clustering method to discover the facets of
every parent concept and assign child concepts to
each of the facets.

Thirty-two junior/senior students who took the
Data Science course in Spring 2018 were asked
to manually label the parent-child concept pairs.
We finalize a set as ground-truth if the pair was la-
belled by more than half of the participants. The
F1 score of building the parent-to-child links is
0.73. The F1 score of 2-hop paths is 0.69. Both
precision values are above 0.99, showing that the
links in the hierarchy are precise because of the
careful design of the growth algorithm, but the
pattern-based methods have limitations of finding
all possible relations.

2 HiGrowth – Part I: Information
Extraction Components (M1 – M3)

2.1 Data Description

We collected full text, all sections including ab-
stract, introduction, and experiments, of 5,850 pa-

Table 1: Neighboring words for concept typing.
Type Triggers on the left Triggers on the right
$Problem problem, problems task, tasks, demands
$Method methods method, model, algorithm
$Object number function
$Metric measure, terms measures, scores, values

support_vector_machine;
support_vector_machines;

SVM; SVMs

synonym(“support
_vector_machines”,
“SVMs”)

sibling(“precision”,
“recall”)

ancestor(“machine
_learning”, “SVM”)

precision recall

machine_learning

SVM

…
…

…

descendant

childchi
ld

Figure 2: Three types of hierarchical relations.

pers in the proceedings of ACM SIGKDD 1994–
2015, IEEE ICDM 2001–2015, The Web Confer-
ence 2001–2015 and ACM WSDM 2008–2015.

2.2 M1: Scientific Concept Extraction

We use phrase mining tools, AutoPhrase (Shang
et al., 2018) & SCHBase (Adar and Datta, 2015),
to extract scientific concepts from data science
papers. AutoPhrase adopted distant supervision
and large-scale statistical techniques; SCHBase
focused on a tendency to expand keyphrases by
adding terms, coupled with a pressure to abbrevi-
ate to retain succinctness in academic writing.

2.3 M2: Concept Typing

We use a simple but effective method to clas-
sify the concepts into four types: $Problem (e.g.,
“fraud detection”), $Method (e.g., “svm”), $Ob-
ject (e.g., “frequent patterns”), and $Metric (e.g.,
“accuracy”). We assume that the neighboring non-
stop word indicates the concept’s type, for exam-
ple, the trigger word “problem” in the sentence
“. . . the problem of fraud detection” suggests that
“fraud detection” is a $Problem. We manually se-
lect a set of 20 trigger words that indicate concept
types when they appear left/right next to the con-
cepts. Table 1 shows a few examples. If in the text
one concept has a left/right neighboring word in
the set, the corresponding type gets one vote. For
each concept, we count the votes on every type and
use the strategy of majority voting (MajVot) to de-
termine the predicted type (i.e., the most voted).



2.4 M3: Hierarchical Relation Extraction

In order to find the relations in an unsupervised
manner on the scientific text, we use textual pat-
terns, mainly Hearst Patterns (Hearst, 1992), to
accurately extract three types of hierarchical rela-
tions, where X and Y are two concept names:
• synonym(X , Y ), if X and Y will be included

in the same concept node on the hierarchy;
• sibling(X , Y ), if the concept nodes of X and
Y will have the parent node;
• ancestor(X , Y ), if there will be a path from

the concept node of X to the node of Y .
Note that synonym and sibling relations are sym-
metric, while ancestor-to-descendant is asymmet-
ric (see Figure 2).
Find synonym(X , Y ). Two ideas to find synonym
concepts: First, the plural form of a noun or noun-
phrase concept can be considered as a synonym,
for example, we have synonym(“SVM”, “SVMs”)
and synonym(“decision tree”, “decision trees”).
Second, the abbreviation inside of parentheses
can be considered as a synonym of the full
name preceding the parenthesis. We have syn-
onym(“support vector machines”, “SVMs”) from
text “. . . Support Vector Machines ( SVMs ). . . ”.
Find ancestor(X , Y ). Hearst patterns such as
• X such as {Y1, Y2, . . . , (and|or)} Yn,
• X {,} including {Y1, Y2, . . . , (and|or)} Yn,

have been often used to find “isA” relation or
called hypernym for taxonomy construction: Yi
(e.g., “dog”) is a kind of X (e.g., “mammal”).
However, we expect to extract faceted hierarchi-
cal relations such as
• ancestor(“machine learning”, “SVM”): models;
• ancestor(“machine learning”, “classification”): tasks;
• ancestor(“classification”, “SVM”): models;

instead of
• isA(“machine learning models”, “SVM”);
• isA(“machine learning tasks”, “classification”);
• isA(“classification models”, “SVM”),

if the text contains
• . . .machine learning models such as SVM. . . ;
• . . .machine learning tasks such as classification. . . ;
• . . . classification models such as SVM. . . ,

especially when “machine learning” has been ex-
tracted as a concept. Note that we are not confi-
dent to say every relation given by pattern match-
ing is parent-to-child. We denote the relation as
ancestor. We expect that “machine learning” con-
nects to “SVM” through “classification” on the hi-
erarchy instead of a direct connection.

Therefore, we modify the patterns as below:
• X <pl> such as {Y1, . . . , (and|or)} Yn,

X
AX DX

Y
AY DY

PX

PY

CX

CY

child
child

descendant desce
ndant

child
child
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Figure 3: Check if the relation is unnecessary
(“PASS”) or invalid (“STOP”) for updatingH.

• X <pl> including {Y1, . . . , (and|or)} Yn,

where <pl> is the plural form of a noun or noun
phrase, e.g., “models” and “tasks”. We extract an-
cestor(X , Yi) from the above patterns. We will
infer concrete parent-to-child relations and parent
concept’s facets in the next section.

Find sibling(X , Y ). Shorter patterns in which the
ancestor concept names are missing occur more
frequently in the text, for example:

• (<pl>) such as {Y1, Y2, . . . , (and|or)} Yn,
• (<pl>) including {Y1, Y2, . . . , (and|or)} Yn,

and other patterns like

• Y1, Y2, . . . , and|or (other) <pl>.

We extract sibling(Yi, Yj) from these patterns.
The number of sibling relations is more than the
number of the ancestor relations, and the sibling
relations, e.g., sibling(“precision”, “recall”), bring
useful information to hierarchy induction, say, Yi
and Yj have the same parent concept node.

We use the strategy of majority voting to choose
one relation type for each pair of concepts. We as-
sume that a pair of concepts can have no or only
one relation among synonym, sibling, and ances-
tor. However, the relational extractions may still
be noisy due to the long tail. Next we discuss how
to construct a high-quality concept hierarchy from
a set of the three types of relations with noise.
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Figure 5: Remove redundancy when adding ances-
tor(X , Y ) to the hierarchy.

3 HiGrowth – Part II: Hierarchy Growth
(M4) and Facet Discovery (M5)

3.1 M4: The Hierarchy Growth Algorithm

Given a set of relations rel(X , Y ) and their sup-
port (i.e., frequency), construct a hierarchy H in
which the links are directional indicating parent-
to-child relations between concepts, where rel ∈
{synonym, sibling, ancestor}. H should have no
unnamed nodes, and have no unnecessary or in-
valid or redundant links. Specifically, the unnec-
essary means that the relation is correct but it does
not contain extra information for the hierarchy.
We will define these characteristics when we in-
troduce each step of it in details. An overview of
the algorithm comes as below.
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Figure 6: Two scenarios that NIL nodes can be
eliminated when finalizing the hierarchy.

• InitializeH as empty;
• Scan the relations from the highest support to

the lowest:
– Check if the relation is unnecessary or

invalid to be added into H (see Fig-
ure 3). Skip it if yes.

– Grow the hierarchy H with this relation
(see Figure 4).

– Remove redundant links when the rela-
tion is ancestor (see Figure 5).

• Narrow down ancestor relations to parent-to-
child when the scan completes (see Figure 6).

We denote different sets of connected nodes
given a concept node X as below (see Figure 3):
• PX is the set of parent nodes of X: there is

at least one direct link from ∀Z ∈ PX to X;
• CX is the set of child nodes of X: there is at

least one direct link from X to ∀Z ∈ CX ;
• AX is the set of ancestor nodes of X: there

is at least one path but no direct link from
∀Z ∈ AX to X;
• DX is the set of descendant nodes of X: there

is at least one path but no direct link from X
to ∀Z ∈ DX .

Check if a relation is invalid (Figure 3). Given a
new relation synonym(X , Y ), if there has been any
other relation between X and Y such as ancestor
(i.e., X ∈ DY or Y ∈ DX ) or sibling (i.e., PX ∩
PY 6= ∅), this new relation is invalid to be added
to the H. Given sibling(X , Y ), if X and Y have
at least one parent, we skip; if there has been an
ancestor relation between X and Y , the sibling
relation is invalid. Given ancestor(X , Y ), if there
has been path from X to Y (i.e., Y ∈ DX ), we
skip it; if there has been a sibling relation (i.e.,
PX ∩ PY 6= ∅) or a descendant relation (i.e., X ∈
DY ), the ancestor relation is invalid.
Grow the hierarchyH with a new relation (Fig-



Table 2: Data science concept examples extracted
by two complementary phrase mining tools.

Keyword Count Keyphrase Count
clustering 22,607 data mining 8,120
classification 19,488 machine learning 4,195
accuracy 18,108 feature selection 3,320

(a) AutoPhrase finds quality keywords/phrases of good
statistical features (e.g., frequency, concordance).

Keyword Count Keyphrase Count
SVM 5,774 least squares support vector machine 4
LDA 3,548 root-mean-square error 3
AUC 2,542 block coordinate gradient descent 1

(b) Some typical examples of acronyms and abbreviation
expansions found by SCHBase.

ure 4). We sort valid relations by their frequen-
cies. For synonym(X , Y ), we merge node X and
Y in H: if neither was in H, we create a new iso-
lated node named “X , Y ”; if one of them existed
in H, we update the name of the existing node as
“X , Y ”; if both existed, we merge their ancestor
nodes as the new ancestor nodeAX ∪AY , and we
merge their descendant nodes as the new descen-
dant node DX ∪ DY .

For sibling(X , Y ), if neither of the concepts ex-
isted, we create a “NIL” node as the parent node
to each concept node; if one of them existed, for
each parent node in PX , we add Y as a child node
of it; if both existed, we merge their parent nodes
as the parent node of each and eliminate the NILs.

For ancestor(X , Y ), we add a descendant link
from X to Y . When X and Y are in H, we elimi-
nate the NILs and remove the redundant links.

When adding a new relation sibling(X , Y ), we
merge their parent nodes. If there has been at least
one non-NIL node in the set of parent nodes, we
remove the NILs. When adding an ancestor node
of either X or Y , if they share a NIL parent node,
we remove the NIL node.
Remove redundant links when growing with
ancestor(X , Y ) (Figure 5). On the concept hi-
erarchy, we allow only one path from an ancestor
node to a descendant node. Therefore, when we
add a new ancestor(X , Y ), there are three situa-
tions of having a redundant link. First, if there has
been a path from X to Y , the new relation is re-
dundant. For example, suppose on H, A (“svm”)
is a descendant node of X (“classification”) and
Y (“ls-svm”) is a descendant node of A (“svm”).
Then a new relation ancestor(“classification”, “ls-
svm”) is actually inferable so it is redundant. We
do not add it to the hierarchy. For the other two
situations, we also remove the existing, redundant

Table 3: Performance of concept typing.
Accuracy (True/False)

MajVot 0.874 (188/27)
MajVot+Grouping 0.963 (207/8)

Table 4: False type predictions in red.
Concept Prediction Ground Truth
topic model $Method $Method
topic models (synonym) $Problem $Method
mean absolute error $Metric $Metric
area under the curve (sibling) $Method $Metric

(a) MajVot: 27 false predictions.

Concept Prediction Ground Truth
frequent patterns $Object $Object
principal components $Method $Object
information gain $Metric $Object
cluster analysis $Method $Problem

(b) MajVot+Grouping: 8 false predictions.

link in the hierarchy.

3.2 M5: Facet Word Discovery using Context
Word Clustering

For each parent node, we decompose a 3-order
tensor, child node by type of child node by con-
text word, in which each entry is the count of
the context word (e.g., “models”) used in the pat-
terns (e.g., “$Problem:classification models such
as $Method:naı̈ve bayes and $Method:svm”) that
indicate the semantic relation between the parent
node (e.g., “classification”) and child node (e.g.,
“svm”). The decomposition assigns a cluster of
context words to each group of child nodes. We
consider the most frequent context word in the
cluster as the facet of the child nodes group. We
find three groups of context words:
• {“algorithm(s)”,“model(s)”,“method(s)”,

“approach(es)”, “technique(s)”. . . };
• {“application(s)”,“problem(s)”,“task(s)”. . . };
• {“measure(s)”,“metric(s)”. . . }.

4 Experiments

We conduct experiments to answer three ques-
tions: (1) Are the three NIP modules effective in
extracting hierarchical relations? (2) Does the hi-
erarchy growth algorithm generate a hierarchy of
better quality than existing methods? Are NIL
nodes and redundant link removal necessary? (3)
What does the result hierarchy look like?

4.1 Results on Three IE Components

M1: Scientific concept extraction. Table 2
shows examples of data science concepts the tools



Table 5: Number of concepts of each type.
$Problem $Method $Object $Metric

Count (predicted) 52 104 9 50
Count (ground truth) 53 100 13 49

Table 6: Number of relations for each type.
synonym sibling ancestor

# unique concept pairs 41 234 138
# extractions 1,966 1,379 381

extracted. The learning module in AutoPhrase can
segment words and phrases of good statistical fea-
tures like high frequency. There is often no am-
biguity when we lowercase them but the phrase
lengths tend to be short. SchBase has a different
philosophy: it looks for abbreviation expansions
that could be long and of very low frequency. We
show some case studies in Table 2. For result of
AutoPhrase, some 1-gram and n-gram high qual-
ity phrase are in Table 2a. For results of SchBase,
some acronyms and typical abbreviation expan-
sions we selected are in Table 2b. With these two
complementary tools, we harvest a collection of
215 data science concepts.
M2: Concept typing. Table 3 shows that the
accuracy of concept typing (a 4-class classifi-
cation task) is 0.874. Table 4a gives two of
the 27 MajVot’s false predictions. We observe
that some synonym/sibling concept names like
“topic model” and “topic models” have inconsis-
tent predicted types due to the sparsity of their
neighboring words. Therefore, we leverage the
synonym/sibling relations discovered in the next
subsection to group the related concept names
together and determine their type based on the
neighboring words of all the concepts in the group
(called MajVot+Grouping). The accuracy is im-
proved significantly to 0.963. Table 4b shows
three of the 8 false cases among 215 predictions.
Table 5 shows the number of concepts of each type
we have for hierarchy induction.
M3: Hierarchical relation extraction. Table 6
gives the number of relation tuples we extracted
for each type. The relation synonym has the high-
est number of extractions while sibling gives the
most unique concept pairs.

4.2 Results on Hierarchy Quality Evaluation

Evaluation metrics. Based on the manually la-
belled parent-to-child relations, we evaluate the
quality of the resulting hierarchy with three stan-
dard IR metrics, precision, recall, and F1 score,
on extracting concept pairs that have a 0-hop path

Table 7: Comparing HiGrowth with baselines on
building hierarchy from data science literature.

Method Path Precision Recall F1
0-hop 1.0 .5034 .6697

TAXI 1-hop 1.0 .4004 .5719
2-hop 1.0 .1831 .3095

HiGrowth 0-hop 1.0 .5294 .6923
w/o “NIL” 1-hop .9482 .4583 .6179

2-hop .9499 .3038 .4603
0-hop 1.0 .5294 .6923

HiGrowth 1-hop .9926 .5781 .7307
2-hop .9987 .5253 .6885

(i.e., synonyms), a 1-hop path (i.e., “parent-to-
child” relation), and a 2-hop path (i.e., ancestor
relation as parent’s parent). A higher score means
better performance.
Baseline method. It is not fair to compare with
taxonomy construction methods because we are
targeting a different problem, that is to generate
a concept hierarchy of facets with three kinds of
hierarchical relations. Therefore, we choose to
compare with a hierarchy induction method, called
TAXI (Panchenko et al., 2016), and we feed it with
all the relations we mined so that we only com-
pare on the performance of hierarchy induction al-
gorithms. However, TAXI has no module to con-
sider the sibling relations but we have the “NIL”
mechanism. TAXI goes through all the relations
several times, removes cycles, and links discon-
nected components to the root, while we consider
the relation weights and generate the hierarchy in a
growth manner for one scan. Therefore, compared
with TAXI, HiGrowth is a more efficient algorithm
on generating a facet concept hierarchy.

Quality analysis. As shown in Table 7, Hi-
Growth consistently outperforms TAXI on all three
kinds of paths: it improves synonym detection by
3.4%, parent relation extraction by 27.8%, and 2-
hop ancestor relation extraction by from 0.31 to
0.69. Actually, the HiGrowth variant that disabled
the generation and removal of “NIL” node can
still outperform TAXI because the hierarchy grows
with relations from the most confident to the least
confident. With the “NIL” nodes, HiGrowth im-
proves the 1-hop relation by 18.3% and 2-hop re-
lation by 49.6%. This shows that it is important to
carefully consider the sibling relations.

4.3 Results on Removing Redundant Links

Figure 7 presents redundant links that HiGrowth
skipped or removed when adding a new relation
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Figure 7: The redundant links that the HiGrowth algorithm removed during hierarchy construction.

ancestor(X , Y ) for each of the three situations, re-
spectively. The most common situation is that, we
have ancestor(A, X) and ancestor(A, Y ) in the hi-
erarchy, and now we have a new link to specify the
relation between X and Y , two descendants of A.
If X is an ancestor of Y , we remove the redundant
link ancestor(A, Y ). We can see a few examples
of the 93 redundant relations. A is a more gen-
eral (ancestor-level) concept. The frequency of A
is often higher than the frequency of X or Y . The
weights of ancestor(A, X) and ancestor(A, Y ) are
bigger than the weight of ancestor(X , Y ). So the
latter relation will be added to the hierarchy when
the other two have been on the hierarchy.

4.4 Visualizing the Concept Hierarchy

Figure 8 presents the concept hierarchy that Hi-
Growth extracted from the Data Science publica-
tions. The hierarchy is not very large but still
not visible in one page, so we enlarge three parts
of the hierarchy, including (1) a set of concepts

as the “measures” facet of “binary classification,”
(2) the “applications” and “algorithms” facets
of the concept “classification,” and (3) the “al-
gorithms” of “community detection,” the “tech-
niques” of “matrix factorization,” and the “meth-
ods” of “feature extraction” and “dimensionality
reduction.” We represent the relations of syn-
onyms by adding different surface names for same
entities in one node. For example, “topic models”
and “topic model” are merged into one node in
Figure 8 because they have the same semantic
meaning.

5 Related Work

5.1 Scientific Concept Extraction

Scientific concept extraction is a fundamental
task (Yu et al., 2019; Jiang et al., 2019). It has been
widely studied on multiple kinds of text sources
such as web documents (Parameswaran et al.,
2010), business documents (Ménard and Ratté,



2016), clinical documents (Jonnalagadda et al.,
2012), material science documents (Kim et al.,
2017), and computer science publications (Upad-
hyay et al., 2018). The phrase mining technolo-
gies have been evolving from noun phrase anal-
ysis (Evans and Zhai, 1996) to recently popular
representation learning methods (Mikolov et al.,
2013; Pennington et al., 2014). Here we combined
two methodologies that have been demonstrated to
be effective in Science IE (Gábor et al., 2018).

5.2 Hierarchical Relation Extraction

There has been unsupervised methods on hyper-
nym discovery and synonym detection (Weeds
et al., 2014): In this work, we combine precise tex-
tual patterns, not only the syntactic patterns (Snow
et al., 2005) but also the typed patterns (Nakashole
et al., 2012; Li et al., 2018; Wang et al., 2019)
to find synonyms and hypernyms. We consider
hypernyms carefully as ancestor-to-descendant in-
stead of parent-to-child relations. Synonyms are
on the same node, and hypernyms are connected
via one- or multi-hop path. Moreover, we extract
the sibling relations which precisely describe the
nodes on the same level. All the three types of
relation tuples are important for inferring concept
hierarchies.

5.3 Hierarchy Construction and Population

There are two kinds of hierarchy construction
methods: one is taxonomy or ontology induc-
tion that infers “isA” relations by machine learn-
ing models (Kozareva and Hovy, 2010; Wu et al.,
2012; Yang et al., 2015; Cimiano and Staab,
2005), and the other is topical hierarchy discovery
that organizes phrases into topical groups and then
infers hierarchical connections between the topi-
cal groups (Wang et al., 2015; Jiang et al., 2017).
For the first kind of approaches, researchers used
syntactic contextual evidence (Anh et al., 2014),
belief propagation for population (Bansal et al.,
2014), and embedding-based inference (Fu et al.,
2014; Nguyen et al., 2014). For the second
part, poincaré embedding and ontology embed-
ding methods have been proposed to learn node
representations from existing hierarchies (Nickel
and Kiela, 2017; Chen et al., 2018).

None of the existing approaches aimed at infer-
ring parent-to-child relations based on the three
types of hierarchical relations (i.e., synonym,
ancestor-to-descendant, and sibling). We propose

a novel hierarchy growth algorithm that addresses
the issues of noisy, redundant, and invalid links.

6 Conclusions

This paper presented the HiGrowth method that
constructs a faceted concept hierarchy from litera-
ture data. The major focus is on growing a hierar-
chy from three kinds of hierarchical relations that
were extracted by pattern-based IE and weighted
by their frequency. The hierarchy growth algo-
rithm handles unnecessary, invalid and redundant
links, even the relation set is noisy at the long tail.
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Figure 8: The resulting faceted concept hierarchy we extracted from Data Science publications, nodes
mean the entities with different surface names (synonyms).
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