Experimental Evidence Extraction System in Data Science with
Hybrid Table Features and Ensemble Learning

Wenhao Yu!, Wei Peng!?, Yu Shu'?, Qingkai Zeng!, Meng Jiang!
IDepartment of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
2College of Computer Science and Technology, Zhejiang University, Hangzhou, China
3School of Computer Science, Sichuan University, Chengdu, China
{wyul,wpeng}l@nd.edu,stellashu98@gmail.com,{qzeng, mjiang2}@nd.edu

ABSTRACT

Data Science has been one of the most popular fields in higher
education and research activities. It takes tons of time to read the
experimental section of thousands of papers and figure out the
performance of the data science techniques. In this work, we build
an experimental evidence extraction system to automate the inte-
gration of tables (in the paper PDFs) into a database of experimental
results. First, it crops the tables and recognizes the templates. Sec-
ond, it classifies the column names and row names into “method”,
“dataset”, or “evaluation metric”, and then unified all the table cells
into (method, dataset, metric, score)-quadruples. We propose hybrid
features including structural and semantic table features as well as
an ensemble learning approach for column/row name classification
and table unification. SQL statements can be used to answer ques-
tions such as whether a method is the state-of-the-art or whether
the reported numbers are conflicting.
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1 INTRODUCTION

Data scientist was selected as the sexiest job of the 21st century!,
and thus many higher education institutions have opened the new
programs for data science training and research. Though data sci-
entists are highly educated - 88% have at least a Master’s degree
and 46% have PhDs, it is not easy to get into the field at all.

One of the data science projects we did was developing algorith-
mic tools for multilabel classification to predict the labels of objects
where multiple labels may be assigned to each object. We started
from literature study in this topic. It cost us as long as 23 days
to collect, read, and digest hundreds of related works. We found

Uhttps://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
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[ Dataset (%) ]| SLEEC | FastXML [ PfastreXML [ PDSparse
AmazonCat  P@1 [[ 90.56/89.19 [ 94.02/93.10 | 86.06/89.94 | 87.43/89.31
-13K P@3 | 76.96/75.17 | 79.93/78.18 | 86.06/77.24 | 87.43/74.03

P@5 || 62.63/61.09 | 64.90/63.38 | 63.65/63.53 | 56.70/60.11
Delicious P@1 || 47.78/47.03 | 48.85/43.20 | 26.66/37.62 | 37.69/34.37
-200K P@3 || 42.05/41.67 | 42.84/38.68 | 23.56/35.62 | 30.16/29.48
P@5 || 39.29/38.88 | 39.83/36.21 | 23.21/34.03 | 27.01/27.04
WikiLSHTC P@1 || 58.34/55.57 | 50.01/49.75 | 57.17/58.10 | 60.70/61.26
-325K P@3 || 36.70/33.06 | 32.83/33.10 | 37.03/37.61 | 39.62/39.48
P@5 || 26.45/24.07 | 24.13/24.45 | 27.19/27.69 | 29.20/28.79

Table 1: Our system found inconsistent precision scores re-
ported by two papers [42] (left numbers) and [36] (right
numbers) in ACM SIGKDD 2017 Research Track for multi-
label classification. Precision differences of bigger than 3%
are underlined, which has been able to be claimed as signif-
icant improvement on the well-accepted benchmarks.

two papers under this topic that were accepted to ACM SIGKDD
2017 Research Track: PPDSparse [42] and AnneXML [36]. Each of
them proposed a new multilabel classification model and compared
with baseline methods. They both reproduced and tested existing
methods (such as SLEEC, FastXML, PfastreXML, and PDSparse) on
publicly available data sets (such as AmazonCat-13K, Delicious-
200K, and WikiLSHTC-325K) using standard evaluation metrics
(such as Precision@1, P@3, and P@5). Table 1 summarizes and
compares the numbers given by the two papers, [42] on the left
and [36] on the right. We find out that almost half of the pairs have
bigger than 3% difference on the scores, which has been able to be
claimed as significant improvement on the well-accepted bench-
marks! This may be due to the random initialization, parameter
settings, or computational environments. We have no idea about
the exact reason, but we argue that it is worthwhile to investigate
the experimental evidences in data science literature.

Since that, we started building a system using data science tech-
niques to extract and structure experimental results in the data
science literature. We hope that researchers and practitioners in the
fields of data science and artificial intelligence will use it to satisfy
their needs of exploring and analyzing the experimental evidences.

The key challenges lie in automating the “reading” of tables in the
experimental section of paper PDFs. First, there was no well-defined
structure of experimental evidence. The tables are embedded in
the PDF format. It takes careful engineering efforts on cropping,
parsing, and cleaning the tables. Second, the tables have different
kinds of templates, so there was no standard of interpreting the
cells. Third, the roles of row and column names (such as SLEEC and
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Figure 1: Workflow of the proposed system: from PDF collec-

tion, to table extraction, to experimental evidence database
construction, to database operations and visualization.

Rule-based classifiers
(three assumptions)

P@1), say, datasets or methods or metrics, are unknown. The gap
between PDF table and queryable database is huge.

Proposed approach. This paper presents a novel system that trans-
forms data science paper PDFs into a structured database of experi-
mental evidences, and support multiple exploratory and analytic
functions over the constructed database for knowledge discovery. It
has three modules. The first module table extraction crops the tables
from PDFs and recognize their templates. The second module table
unification classifies the column names and row names into the
three types of labels (method, dataset, and metric) and then unifies
each cell into a (method, dataset, metric, score, source)-tuple.
The score is the cell’s value and the source is the PDF file name, page,
and number of the table. We propose hybrid features (including
structural and semantic table features) and an ensemble learning
approach for column/row name classification and table unification.
This module constructs a five-column database of the tuples for
every table that contains experimental results. The third module
database operation for QA uses SQL statements (i.e., select and join)
for question-answering on the experimental result database.

Contributions. The contributions and features of the proposed
system are summarized as follows.

o A novel system that extracts experimental evidences from
data science literature in PDF format. This builds up the first
experimental database for related research.

o An effort-light framework that leverages both rule-based and
learning-based methods to unify the tables of experimental
results into (method, dataset, metric, score, source)-tuples.

o Capabilities for exploration and analysis over the structured
knowledge to facilitate research and practice.

952

Wenhao Yu, Wei Peng, Yu Shu, Qingkai Zeng and Meng Jiang

A B C D E
1 Method Dataset Metric Score Source
10 UserMean Epinions  MAE 0.9319 TOIS1l-paper7-table3
11 UserMean Epinions  MAE 0.9285 TIST11-paper3-table3
12 UserMean Epinions  MAE 0.9285 WSDM11-paperl2-table5
EltemMean Epinions  RMSE [1.1973 TOIS11-paper7-table4
110 ItemMean Epinions RMSE |1.2584 TIST11-paper3-table3
111 ItemMean Epinions RMSE 1.2584 WSDM11-paperl2-table5
112 Trust Epinions RMSE 1.2132 TIST11-paper3-table3
113 |NMF Epinions RMSE [1.1832 TOIS11-paper7-table4
114|NMF Epinions  RMSE [1.1832 TIST11-paper3-table3
115|NMF Epinions RMSE [1.1832 WSDM11-paperl2-table5
116 SVD Epinions RMSE 1.1812 TOIS11-paper7-table4
117|TCF Epinions RMSE 1.1761 TIST11-paper3-table3
118 |PMF Epinions RMSE [1.1760 TOIS11-paper7-table4
119 PMF Epinions RMSE |1.1760 TIST11l-paper3-table3
120|PMF Epinions |RMSE |1.1760 WSDM11-paperl2-table5
121 SoRec Epinions |RMSE 1.1492 TOIS11-paper7-table4
122 |RSTE Epinions  RMSE |1.1256 TIST11-paper3-table3
123 |RSTE Epinions |RMSE |1.1256 WSDM11-paperl12-table5
124|SR1VSS Epinions RMSE 1.1016 WSDM11-paperl2-table5
125|SR1PCC Epinions RMSE 1.1013 WSDM11-paperl2-table5
126|SR2VSS Epinions RMSE 1.0958 WSDM11-paperl2-table5
EISRZPCC Epinions  RMSE |1.0954 .|WSDM11-paper12-tabIe5
165 SoRec MovieLens RMSE

Figure 2: The proposed system generates this experimen-
tal evidence database from data science paper PDFs. For a
dataset and an evaluation metric, one can use the database
to check what the state-of-the-art (highlighted in yellow) is
and whether the reported numbers in existing research are
consistent (green box) or conflicting (red box).

2 THE PROPOSED SYSTEM

In this section, we first introduce the workflow of our proposed
system and explain the experimental evidence database it generates.
Then we introduce details of the three modules of the system.

Overview. Figure 1 shows the overflow. The system collects a set
of data science paper PDFs.? It has three modules to process the
PDF data. It first crops the tables from PDFs, recognizes the table
templates, and cleans the table data. Second, it classifies the row
and column names of each table into three categories (method,
dataset, metric). The experimental evidence database is constructed
through the integration of table cells. Lastly, it designs database
operations for knowledge exploration in the structured database.

Expected output and impact. Figure 2 shows a snapshot of the
experimental evidence database. It has several examples of data
records. They are experimental facts that can be found in tables of
conference and journal papers on building recommender systems
that were published in the same year: TOIS’11 [27], TIST 11 [25],
and WSDM’11 [26]. The tables share popular method names such
as “User Mean”, “NMF”, and “PMF”. Which method performs the
best? Are the reported numbers of their performances consistent
in these tables? When the tables were well structured into such a

This is the research work of new method design, implementation, deployment, and
evaluation, compared to a preliminary proof-of-concept demonstration [45].
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Figure 3: Eight major table templates: We will use the first seven templates which cover more than 95% of the tables in our
dataset. The cells in the table’s body are triplets based on rows/columns/caption. (Best viewed in color)

‘Table 4: Performance on the Twitter testing data
iset by different approaches.

w®) Precision | Recall | F1 P(Q) Accuracy
Textual 0.746 0.693 | 0.727 | 0.722
Visual 0.584 0.F21 ~ET3 ] 0.553

P( ) Early Fusion | 0.730 0. B(, - ')57 0.717
Late Fusion | 0.634 0.610 | 0.622 | 0.604
CCR 0.831 0.805 | 0.818 | 0.809

Figure 4: Table example in [44]: illustration of template (a).

database, the above questions could be easily answered. The number
of publications in the field of data science has been tremendously
increasing because of the great use of data mining and machine
learning in real applications. Practitioners are curious about what
method will generate good performance on a specific task and
dataset. Researchers are wondering whether the baseline methods
are the state-of-the-art and whether the reported numbers on the
baselines are correct when they review papers.

2.1 Table Extraction

We use Tabula to extract tabular content from PDF [14, 34]. Tabula
was created by Manuel Aristaran et al. with the first release made
available early 2013 as an open source project. The developers stated
that they were inspired by academic papers [13, 43] about analysis
and extraction of tabular content. Tabula is available as a Java
library 3. Unfortunately, it does not work for scanned documents,
so we filter those files out.

Table representation and templates. A table T = {R,C,d, B}
has four components: (1) a model of horizontal Rows (identifiable
by name) R, (2) a model of horizontal Columns C, (3) Caption and
the set of words in the caption d, and (4) cells (data elements) in
the table’s Body 8. We observe that the tables in our dataset can be
categorized into eight major templates (with very few exceptions).
Figure 3 visualizes the components of each templates and Table 2
presents symbolized definitions of the table’s components. We use
red/yellow colors to represent the Rows R, green/blue colors to
represent the Columns C, dashed block to represent the Caption d,
and the grey area for the Body 8. Note that R or C may have one

3The Code of Tabula-Java could be found at https://github.com/tabulapdf/tabula-java
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Figure 5: The distribution of table templates.

or two rows (R1, Rz) or columns (Cy, Cz2). So the template “scale”
could be 1 X 1 (templates a-b), 1 X 2 (c—e), 2 X 1 (f-g), and 2 X 2 (h).

Let’s use one of the templates, template (a), to explain the vi-
sualization and symbolized definition. Figure 4 presents the com-
ponents of an example — Table 4 in [44]. On the rows, we have
R = [w®), PR where PR is the set of row names (e.g., “Early
Fusion”, “CCR”) and w®) is an indicating word for row name’s type,
simply called the “row indicator” (e.g., “Algorithm”) that indicates
the type of row-name concepts in P®)_On the columns, we have
C = [-, P(©)] where P(©) is the set of column names. There is no
“column indicator” word in template (a) though the column names
are evaluation metrics, so w(©) = “_” dis the set of words in the
caption. The “body function” B(p'R), p(©), d) : PR) x P©) x d R
is the value in the cell as the intersect of row name p(R) and column
name p(c), when the table has a caption d.

Here we present a few specific settings of table templates. First,
templates (a-b) of the scale 1 X 1 have caption, while others have
no caption. Second, templates (c—e) have two column models C;
and C; and no caption, so the body function is B(p'®), p(C1), p(C2)).
Similarly, templates (f-g) have two column models R; and R and no
caption, so the body function is B(p'R1), p(R2)_ p(C1)) Third, template
(c) has one column indicator for C; and C; and template (e) has no
column indicator. Similarly, template (f) has one row indicator for
R; and Ry and template (g) has no row indicator. Lastly, the body
functions should have three variables/concepts, and we expect their
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l “ Template (a) [ Template (b) [ Template (c) [ Template (d) ‘
Rows R (W), pR)] [-, P [-, P(R)] [wB), pR)]
Columns C [-, PO [, PO [w(CD, plCD], [w(C), p(C2)] [-, P©CV], [, PG
Caption d d d - -

Body B B(p(R),p(C), d) B(p(R),p(C), d) B(p(R)’p(Cl)’P(CZ)) B(p(R)’p(Cl)’p(Cz))

l H Template (e) ‘ Template (f) ‘ Template (g) ‘ Template (h) ‘
Rows R [-, P [wRD, PRI [w(Re)| p(R2)] [-, PRI, [, PR} [wRD, p(RO] [w(R2)| p(R2)]
Columns C || [-, PV, [-, P(] [ PO [ P9] [-, PC], [, P
Caption d - - - N
BOdy B B(p(R)’p<C1)’p(C2)) B(p(Rl)’p<R2)’p(C)) B(p(Rl)’p<R2)’p(C)) N/A

Table 2: Symbolized definitions of a table’s four components (rows, columns, caption, and body) for each template in Figure 3.
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types include all the three labels “method”, “dataset”, and “metric” to
position the cell value. So template (a—g) have valid body functions
but (h) does not have it.

Distribution of table templates. Among the 456 tables we have,
450 tables can be matched to the eight templates (at a high rate of
98.7%). Figure 5 presents the number of tables in our dataset (450
tables) for each template. Templates (a-g) take as many as 96% of
the tables, so there will not be a serious problem if we drop the
tables of template (h) that has no valid body function. Templates of
scale 1 X 1 (a—b) take 25%; templates of scale 1 X 2 (c—e) take 65%,
and templates of scale 2 x 1 (f-g) take 7%. We will unify the tables
of templates (a—g) for cell value integration and experimental result
database construction.

2.2 Table Unification

Based on the template representation, we define the set of concept
items that can be found as row names or column names:

P = Ur(g,c.d,81 P U PO,

1

where T is a table, P(R0) is the set of row names (no matter single
row or double rows), and P(C0) s the set of column names. We
denote by L by the set of three labels for the concept items:

L = {“method”, “dataset”, “metric”}.

@

Then we define table unification as a two-step problem.

PROBLEM (TABLE UNIFICATION). Given a set of tables {T} and
each table has been well defined based on its template (as shown in
Table 2), (1) classify the concepts into three categories, or say, find
a classification function f:P—L; (2) unify the cells into (method,
dataset, metric, score)-quadruples, or say, find a function of three
variables g: p(‘method”) 5 p(“dataser™) P(“me”’.c”)—ﬂR, where the
target value is a score (a real number) in the Table’s body function B.

We assume that for data science papers, each concept in # has a
label in L. So P is the union of three exclusive sets of concepts:
P = P(“method”) U P(“dataset”) U P(“metric”)’ 3)

where PU) = {p|f(p) = 1}, VI € L).

Take Figure 4 as an example. The body function is B(p®), p(©), d),
so for the first cell in the table body “0.746" is the output of B when
p®) = “Textual”, p'©) = “Precision”, and d = “Twitter”. (In our
method design, we assume the word “Twitter" can be found in other
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tables and predicted to be a “dataset”, so we can match it in the
caption to have this concept in the body function.) The first-step
of this problem is to predict the label of the three concepts. We
expect the output to be f(“Textual”) = “method”, f(“Precision”) =

“metric”, and f(“Twitter”) = “dataset”. Then the second step will

align the concepts in B with the function g. We will have a value
in function g: g(“Textual”, “Twitter”, “Precision”) = 0.746, which
can be easily transformed to one row in the experimental result
database (as shown in Figure 2) and added with the source of this
information as an additional column.

We will address this problem in Section 3.

2.3 Database Operations for QA

Once the experimental result database was constructed by module
1 (extraction) and 2 (unification), we would be able to use SQL
statements to answer interesting questions from researchers and
practitioners in the data science field. There could be many ques-
tions and corresponding SQL queries. Here are three examples.

QUESTION 1. How many methods were used/proposed on the Epinions
dataset? And how many metrics were used?

QUESTION 2. What are the top three methods on the Epinions
dataset if the evaluation metric is RMSE?

QUESTION 3. Are there conflicting reported numbers in the data-
base? What are they?

SQL consists of many types of expressions, predicates and state-
ments such as select, join, and distinct, based upon relational algebra
and tuple relational calculus. Suppose the experimental result data
table is constructed and named as “ERD". Here are the SQL queries
that find answers to the above questions.

SQL QUERIES 1.
select count(distinct Method) from ERD where Dataset="Epinions”;
select count(distinct Metric) from ERD where Dataset="Epinions”;

SQL QUERY 2. select * from ERD where Dataset = “Epinions” and
Metric = “RMSE” order by Score desc limit 3;

SQL QUERY 3. select distinct d1.Method, d1.Dataset, d1.Metric,
d1.Score, d1.Source from ERD as d1, ERD as d2 where d1.Method =
d2.Method and d1.Dataset = d2.Dataset and d1.Metric = d2.Metric
and d1.Score <> d2.Score order by d1.Method, d1.Dataset, d1.Metric;

The term count is used for question “how many”; order by is used
for ranking/finding “top three”; and the third query uses self-join
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to compare values in a column (“Score”) with other values in the
same column in the same table (“ERD”).

We developed user-friendly functions to answer the questions.
For example, users can fill the values in the questions, the SQL
queries will be updated, and then answers will be returned.

3 THE PROPOSED METHOD

In this section, we address the problem defined in Section 2. We
first give an overview of our approach and then present its details.

3.1 Overview

Our proposed approach has two parts. The first part concept classi-
fication is to classify the concepts (i.e., row/column names) into the
three aforementioned categories. The second part tuple extraction
is to extract the quadruples from table cells after the row/column
names are well categorized. When the first part is done, the second
part is not hard to do. Details will be given in Section 3.4.

For the first part, we propose an ensemble method that iteratively
use two different methodologies (and two different classifiers) to
predict the concept’s label: one is a rule-based method and the
other is learning-based. It has been widely observed and accepted
that these two methodologies are complementary in solving real
application problems. For example, a successful auto-driving car
combines rule-based control system based on driving policies and
deep learning techniques with big data for end-to-end decision
making on the road [3, 22].

The first methodology is to predict the probability of a row/column
name p belonging to the class-specific set PU) (I € £), which is de-
noted as ¢(p € P1) : P x £ — R, based on the three assumptions
(see the introduction section). Given a set of concepts that have
been labelled, we predict the unknown ¢ scores for the remaining
concepts. Only when ¢(p € P1)) is ranked at the top @ among
all the remaining concepts, where I* = argmax;¢(p € D), we set
f(p) = 1", i.e, add p into the set of labelled concepts.

The second methodology is to predict ¢(p € Py by training a
supervised learning model with the set of labelled concepts. The
idea is to extract useful features of the concepts from the data
including both paper text and tabular structure. We also use the
parameter « to control the amount of newly labelled concepts for
high precision.

The iterative process needs to be initialized with a set of seed
labelled concepts though the set could be very small. We apply
Assumption 1 with just one header indicator word for each label:
“Methods” for label “method”, “Datasets” for label “dataset”, and
“Metrics” for label “metric”. We use the top five frequent concepts (as
row/column names) per label type as seeds, where the frequency is
defined as the number of tables that have the concept whose header
is the corresponding indicator word. Here are the seed concepts
(and their frequencies in the brackets) for each label type:
“method”: SVM (100), LR (72), RF (64), KNN (56), DT (42);
“dataset”: Amazon (34), Wiki (30), DBLP (30), Iris (18), Google (16);
“metric”: Precision (120), Recall (104), F1 (32), MAP (32), MAE (20).

In our ensemble learning approach, we adopt the boosting strat-
egy to iteratively learn the above two classifiers that are relatively
weak as individuals and add them to a final strong classifier.
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3.2 Rule-based Classifier with Tabular
Structure Assumptions

We will give the objective function that optimizes the predictor
$(p € PD) for each of the assumptions.

AsSUMPTION 1 (ROW/COLUMN HEADER INDICATION). If the upper-
leftmost cell of the table has a specific word (e.g., “Methods”, “Dataset”),
the names on the corresponding columns/rows are more likely to have
the label as the word indicates.

Objective 1. The first assumption utilizes the indicator words on
the row/column headers to predict the label of row/column names.
Suppose we have the set of all the indicator words as below:

W = Ur_z.c.a.8){wF) € R,wC) e C). (4)

Similarly as Eq.(1) and (3), each word in ‘W indicates one label in
L. So W is the union of three exclusive sets of words:

W = W(“method”) U W(“dataset”) U W(“metric”)’ (5)

Based on Assumption 1 (“Row/column header indication”), we have
the following objective, which is the least square of error between
the probabilities of label prediction ¢ and word indication

minj(gy) = )
¢y T=[R.C....] (w.P)eRUC i€ L
2

D dpe Py =Pl ypwew )|, (o)
peP
where /(w € W) : W x £ — Ris the probability of the word w
indicating the label I. For each table T, (w, P) can be found in rows
R and columns C in Table 2.

AssUMPTION 2 (ROW/COLUMN TYPE CONSISTENCY). The concept
items on the same column/row are likely to have the same type of
label. For example in Figure 4, if we know “Precision” is a “metric”,
then “Recall” is likely to be a “metric”.

Objective 2. The second assumption suggests that for a specific
table, the names on the rows/columns should have the same label
type. For the set of names on the rows/columns of table T, we first
find the most frequent label type:

I*(P) = argmax, Z $(p € PD), @)
peP
where P is in either R or C for table T. Based on Assumption 2
(“Row/column type consistency”), we measure the type consistency
as below and we will maximize the consistency by optimizing ¢:

mxh@)= ), 2 peP @

T=[R,C,...|PeRUC p€eP

where ¢(p € PU(P)y js the probability that the label of concept p is
consistent with the label of the majority of the concepts on the same
row/column [*(P). If the consistency is higher, the rows/columns
are more likely to have good purity in terms of the label types.

AssuMPTION 3 (CELL CONTEXT COMPLETENESS). A table often
covers all the three types of labels on its columns, rows, and caption, in
order to provide complete contexts to explain the values in the cells. For
example, if the caption has a metric name (i.e., “MAE”) and the row
names are methods, then the column names are likely to be datasets.
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Objective 3. In Table 2, for each table template, we represent the
cell values as a function of the table body 8. This function has
three variables. For example, the table body function of template
(a) is B(p(R), p(c), d): the three variables are a row name, a col-
umn name, and the table’s caption. The function for template (c)
is B(p(R), p(cl), p(CZ)): the variables are a row name and a column
name for each of the two column headers. The idea of Assumption
3 is that when researchers carefully presented the tables, each table
cell can explain a fact with full contexts including method, dataset,
and metric. Therefore, if we have known the label types of two of
the variables, we can use the completeness assumption to infer the
label type of the third. For example, in Figure 4, if we know the
label of the row names is method (because of the indicator word
“Algorithm”) and we find a dataset name “Twitter” in the table’s
caption, we can infer that the label type of the column names such
as “Precision”, “Recall”, or “F1” is metric.

Now we denote By (k = 1, 2,3) as the three variables of table
body function 8. Each of them is actually a set of concept names
(in the rows, columns, or caption). We first find the most frequent
label type l;g for each variable By:

I; = argmax; Z ¢(p € PU). 9)
PEBk

Based on the above assumption, we have the following objective
function to optimize ¢:

maci= Y

T=[...,8(B1.By,Bs)]

| Uke{1,2,3} l;i|‘ (10)

Because | L] = 3, maximizing J3 is equivalent to making I} (k =
1, 2, 3) different from each other.

Optimization. Joint optimization of the three objectives has a high
computational complexity. Therefore, we adopt the strategy of
greedy algorithms to iteratively optimize each objective, find lo-
cally optimal choice at each stage, and terminate in a reasonable
number of steps. The idea is to build a classifier that utilizes the
information inside the tabular structures for label prediction. Its indi-
vidual performance could be a bit weak but the final prediction will
be significantly improved by the ensemble framework (including
the complementary, learning-based classifier in Section 3.3).

3.3 Learning-based Classifier with Semantic
and Structural Concept Embeddings

The idea of the learning-based classifier is to consider the task as a
standard classification problem and solve it in two steps: feature
extraction and supervised learning. For each iteration in the pro-
posed ensemble framework, the output of the former classifier (i.e.,
the rule-based classifier) provides training labels as supervision. So
we will focus on how to generate features of the concepts and what
classification models we use for training and prediction.

We use two kinds of low-dimensional representations of the
concepts and concatenate them into a long feature vector.

Structural concept embeddings. We construct the table body
function B into a hyper-edge heterogeneous network. This net-
work has two types of nodes: one is concept on the rows, columns
or in the caption; the other is cell value. Each cell value is connect-
ing to three concepts that are the three objects in the function 8.
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We use HyperEdge-Based Embedding (HEBE) [15] to learn object
(concept) embeddings with events (quadruples) in heterogeneous
information network that models proximity among objects in each
event. The insight is that structurally related objects are more likely
to participate in the same event. For instance, in Data Science pa-
pers, it is more frequently to observe performance score with “CNN”
method and “F-score” or “Accuracy” metrics in “MINST” dataset.

HEBE learns a function M that projects each object to a low
dimension space R? that preserves structural roles of each concepts
participating in a quadruple of generating the cell value in the
experimental result table, where d < |P|, i.e, M : ? — R? HEBE
aims to predict a target object out of all alternative objects given
the other participating objects on the same hyperedge as context.
We denote the target object u, context concepts set as C. Obviously,
|C| = | L] — 1 for quadruples and u ¢ C. The conditional probability
of predicting the target object u is defined as:

exp(S(u, €))
Pu|C) = ————————,
UO= 5 e expl5.0) v
L
S(u,C) = cosine(wu, (L - ! chl)), (12)
=1

where wy, € R is the embeddings of u, S(-) is a scoring function
reflecting the similarity between target object u and contextual
concepts C. Suppose C = {cy, ..., ¢| £|-1}- Intuitively, Equation (11)
could be understood as given contextual concepts C selecting g
from the pool of concept candidates.

Then, we take all unlabelled concepts D = {di,da, ...,dm} as

candidates, where dp,, is m-th concept in the set of unlabelled con-
cepts. Then we retrieve m concepts in D to generate a ranking R,
s.t. higher probabilities appear at the top of the list. In the experi-
ment, we choose a simple method Top-« to select similar concepts,
where a could control the amount of new labelled concepts with
highest probabilities during each iteration in order to reduce errors
propagation.
Semantic concept embeddings. Our dataset was collected from
a specific domain, i.e., Data Science, which is why we observed that
pre-trained embeddings (on general corpora like Wiki and news)
could not give satisfactory performance. We fine-tuned word em-
beddings with the paper’s full text data by the state-of-art language
model [11]. Note that the concepts on the table’s rows/columns,
no matter they are words or phrases, were regarded as units in
training. These embeddings carry the semantic information of the
concepts in the paper text through the introduction, methodology,
to experiment sections. The advantage of semantics compared with
other information/assumption we use is that the concepts of similar
meanings have similar semantic embeddings. For example, the clas-
sifier will be aware of the potential acronyms/abbreviations such
as “Prec” and “Precision”, “F-score” and “F-measure”.

For each concept p € P, we learn a low dimensional vector
vp. Therefore, we predict ¢(p € 20! by training a classification
model g (e.g, logistic regression, random forest) with all labelled
concepts obtained after each rule-based iteration, then take all
labelled concepts as candidates D = {vy, vy, ..., v}, where v, is
the vector of n-th concept in the set of labelled concepts. For each
unlabelled concept p,, where m = n + 1,...,|P|, we retrieve n
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Method

[

Micro F1

[ Avg. Precision [ Avg. Recall [

Macro F1

| Micro AUC | Macro AUC |

TableUni-R

0.6908 (0.0040)

0.6479 (0.0044)

0.6807 (0.0058

0.6542 (0.0047)

0.8879 (0.0023)

0.8601 (0.0029

TableUni-L

0.6333 (0.0024)

0.5921 (0.0021)

0.6187 (0.0023

0.6072 (0.0021)

0.7611 (0.0033)

0.7264 (0.0035

TableUni-(R+E1

0.7505 (0.0039)

0.7007 (0.0049)

0.7443 (0.0018

0.7115 (0.0053)

0.8901 (0.0018)

0.8705 (0.0027

- |

TableUni-(R+E2

0.8175 (0.0021)

0.7821 (0.0025)

0.7777 (0.0035

0.7798 (0.0029)

0.9087 (0.0017)

TableUni-(A1+L

0.6980 (0.0024)

0.6531 (0.0025)

0.6756 (0.0029

0.6612 (0.0026)

0.8316 (0.0027)

0.8123 (0.0028

~ |~

TableUni-(A2+L

0.7567 (0.0037)

0.7123 (0.0046)

— ||| = ||| ==

0.7250 (0.0047

0.7179 (0.0046)

0.8788 (0.0023)

0.8633 (0.0024

TableUni-(A3+L)

0.6474 (0.0032)

0.6052 (0.0035)

0.6306 (0.0037)

0.6129 (0.0038)

0.7766 (0.0039)

)
)
)
0.8920 (0.0018)
)
)
)

0.7443 (0.0052

TableUni-(R+L) [ 0.8307 (0.0022) [ 0.8195 (0.0025) | 0.8053 (0.0024) | 0.8104 (0.0023) [ 0.9112 (0.0011) [ 0.9000 (0.0013) |

Table 3: Performances on classifying the concepts into three categories (dataset, method, and metric): We compare the proposed
method with its multiple variants. We report the mean as well as the standard deviation in the brackets.

concepts in D, use above neutral network classifier g to generate an
optimal ranking R, s.t. similar concepts appear at the top of the list.
Similar with structural concept embeddings, we choose a simple
method Top-a to select similar concepts, where « could control the
amount of new labelled concepts with highest probabilities during
each iteration in order to reduce errors propagation. A detailed
parameter insensitivity discussion of « is in Section 4.1.2.

4 EXPERIMENTS

In this section, we first present experimental results to demonstrate
the effectiveness of the proposed solution (called TableUni) to the
problem of table unification (in Section 2.3). We also study a few
cases of discovering quantitative knowledge in the literature.

4.1 Experiments on Annotated Data before
Deployment

We first introduce a carefully-annotated dataset and the setting of
experiments including ground truth, evaluation methods, compet-
itive methods, and parameter settings. Then we present method
performances and give observations and analysis.

4.1.1

Data description. We downloaded from web portals such as ACM
Digital Libraries a PDF file collection of four data science conference
proceedings (WWW, SIGKDD, ICDM, and WSDM) and three ACM
transactions (TOIS, TIST, and TKDD) in the decade (2008-2017).
After careful PDF converting, cropping, and cleaning, we have 450
tables on experimental results for the task of database building.

We carefully label the concepts in the 450 tables. The total num-
ber of concepts is 3,992 and the total count of concepts is 10,944.
So the average number of concepts per table is 24, and the average
number of unique concepts per table is 9.77.

We recruited three volunteers to manually label the concepts into
the three classes, {dataset, method, metric}, and used the strategy
of majority voting to find the suitable label. If there was a tie of
votes, we had another volunteer to make the decision. With heavy
human efforts, we have the final set of labelled concepts as ground
truth: 1,728 datasets, 1,803 methods, and 461 evaluation metrics.

Evaluation metrics. As it is a standard multi-class classification
task, firstly, for each type of classes | € L, we calculate Precision
and Recall, and report Avg. Precision and Avg. Recall. Secondly, we
calculate the F1 score which is the harmonic average of the precision
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and recall. We use Micro F1 which globally counts the TPs, FNs,
FPs, and TNs. In our case, because all the concepts were assigned
to exactly one class in the ground truth, the Micro F1 is the same as
Accuracy. We also use Macro F1 which is the unweighted mean of
the F1 scores per type of classes. Moreover, we plot the Precision-
recall curve per type of classes as well as the Receiver Operating
Characteristic Curve (ROC). We calculate the Area under the ROC
(AUC) for evaluation including Micro AUC and Macro AUC. For all
the metrics above, bigger score means better performance.

Competitive methods. We will compare our proposed method
TableUni with different settings of the components. The ensembled
method includes a Rule-based classifier and a Learning-based clas-
sifier. We have three series of method variants: (1) TableUni-R/L is
a non-ensembled method. (2) TableUni-(R+E1/E2) is an ensembled
method that has a full rule-based classifier and a learning-based
classifier using one of the embeddings. (3) TableUni-(A1/A2/A3+L)
is an ensembled method that has a full learning-based classifier
and a rule-based classifier using one of the assumptions. Lastly,
TableUni-(R+L) is the proposed method of full settings.

4.1.2  Experimental Results.

Rule-based vs Learning-based vs Ensembled. The ensembled
method is TableUni-(R+L), and the rule/learning-based only method
is TableUni-R/L. First, we observe that TableUni-R performs better
than TableUni-L in terms of all the metrics: relatively +5.75% on
Micro F1 and +4.70% on Macro F1. So, the rule-based method (us-
ing three assumptions) is more effective than the learning-based
method. Table structures are important for predicting the con-
cept types. Second, we observe that the ensembled method sig-
nificantly outperforms the rule/learning-based only method: rela-
tively +13.99% on Micro F1, +15.62% on Macro F1, +17.16% on Avg.
Precision, +12.46% on Avg. Recall than TableUni-R and relatively
+19.74% on Micro F1, +20.32% on Macro F1, +22.74% on Avg. Pre-
cision, +18.66% on Avg. Recall than TableUni-L, respectively. We
reasonably come to the conclusion that both classifiers are impor-
tant: by combining the rule-based and learning-based methods, we
can have a much more satisfactory performance.

Rule-based: One vs all assumptions. Here we compare the Table-
Uni methods (TableUni-A1/A2/A3/R+L) that use one of the as-
sumptions or all of them in the rule-based classifier. We still adopt
the ensembled strategy and use the standard learning-based part
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Figure 6: ROC curves comparing the variants of our proposed TableUni methods with respect to the type of classes.

0.85

--Micro F1 -e-Macro F1

0.83
0.81
0.79

0.77

0.75

0 20 40 60 80 100 120 140 160 180
a (the number of newly labelled concepts per iteration)

Figure 7: Our proposed TableUni-(R+L) method is insensi-
tive to the parameter . F1 scores are higher than any of the
variants or baseline methods when «a € [10, 200].

(E1+E2). Compared with TableUni-L that does not use any assump-
tion, TableUni-(A1+L) improves Micro F1 and Macro F1 relatively
by +6.74% and +5.69%, respectively; TableUni-(A2+L) improves the
two metrics relatively by +12.34% and +11.07%, respectively; and
TableUni-(A3+L) improves them by +1.41% and +0.57%. We con-
clude that (1) A2 (Type consistency) plays the most significant role
in predicting the concept type; (2) though the improvement brought
by A3 (Completeness) is not significant, all the assumptions have
positive impact on the prediction. The reason of the first point is
that A2 can infer the type of concepts on an entire row/column if
one of the concepts has been labelled by A1/A3, while the coverage
of Al and/or A3 is limited. Only a small portion of tables have
indicator words. For the second point, A3 mainly contributes to
table template (a): If we only look at the Micro F1 on template (a),
it is improved relatively by as much as +10.1% over A1+A2 only.

Learning-based: Semantic embedding vs structural embed-
ding vs concatenated. Here we compare TableUni-(R+E1/E2/L)
methods: they all adopt the ensembled framework and rule-based
classifier but use one of the embeddings (E1/E2) or both (L). We
observe that TableUni-(R+E2) achieves relatively +5.10% Micro
F1 and +4.48% Macro F1 over TableUni-(R+E1). So structural em-
beddings play a more significant role than semantic embeddings
in this task. Concept co-occurrences may reflect more nature of
the common type than similar meanings in the text. We also ob-
serve that TableUni-(R+L) improves significantly higher than either
of them: relatively +4.04% Micro F1 and +6.79% Macro F1. This
demonstrates that concatenated embeddings perform the best for
its combination of the semantic and structural information.
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Performances on each class type. Figure 6 presents the ROC
curves of the variants of our proposed TableUni with respect to the
three concept types, respectively. TableUni-(R+L) performs the best
for its full ensemble learning from rule-based and embedding-based
methods. The difficulty levels of the types (from highest to lowest)
are method, dataset, and metric.

Performances on parameter insensitivity. Figure 7 presents
the Micro F1 and Macro F1 scores of TableUni-(R+L) when « varies
from 10 to 200. We observe that our method performs better than
any of the variants or baselines (with higher-than-0.80 Micro F1
and Macro F1). When « € [60, 80], the scores are the best.

4.2 Experiments on User Evaluation after
Deployment

Deployment. Users can upload their paper PDFs in the field of
data science to the system. The system will extract tables, recognize
the templates, classify row/column names, and return the list of
(method, dataset, metric, score)-quadruples to the users. With the
tuple list, the system will do two things. One is data collection — it
integrates the list of new tuples with those existing in the system so
that the database becomes bigger and would have more information
and become more accurate on table extraction and unification. The
other is to support QA — users can ask questions related to the
uploaded document. The system will translate the questions into
database queries and return the answers through operations.

User evaluation design. Forty (40) students in the Data Science
class were invited to test our system. They uploaded data science
papers they collected (which were related to the topics of their
course projects such as recommender systems, fake news detection,
and game result prediction) to test the system’s performance. After
they submitted a paper PDF and got returned with extracted tables
and answers to their queries (as given in Section 2.3), we asked
them a few questions:

Q1-1: Is the extracted and (5-column) unified table correct?

The options are (1) Correct and (2) Incorrect. If the answer was In-
correct, we ask a following question: Q1-2: What are the reason(s) of
incorrectness? The options are (1) Failure if no result could be given;
(2) Missing Cell Value; (3) Misplaced Cell Value, i.e., the row/column
positions of cell value was false recognized; and (4) Wrong Cell
Value, for example, text values were filled in the cells that were
supposed to be numbers.
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Method Poor | Fair | Good | Excellent
TableUni-R 11 212 321 136
1.6% 31.2% | 47.2% 20.0%
TableUni-L 27 244 297 112
4.0% 35.9% | 43.7% 16.5%
TableUni-(R+L) 6 106 | 391 177
0.9% 15.6% | 57.5% 26.0%

Table 4: TableUni-(R+L) performs the better than TableUni-
R and TableUni-L because it uses both rule-based and
learning-based classifiers. 40 users submitted 680 queries in
total; over 83% were rated as “Good” or “Excellent”.

Q2: How is your search & QA experience?

The options are (1) Poor if no answer was returned, (2) Fair if
answers were given but sometimes incorrect, (3) Good if answers
were correct but not complete, and (4) Excellent if answers were
correct and complete. Moreover, uses could optionally submit some
subjective comments. In order to verify our experimental results,
we present our three different results of TableUni-L, TableUni-R,
TableUni-(R+L) randomly, and invite users to evaluate the qualities.

Evaluation results on correctness (feedback on Q1-1). It is not
easy to perfectly extract the tuples from PDF because of the compli-
cated process including table cropping, template recognition, and
column/row name classification. 40 users submitted 728 papers,
and 1003 tables in total. 68% were labelled as correct unified tables.
We analyze the reasons of the 32% not-completely-correct case.

Evaluation results on reason of incorrectness (feedback on
Q1-2). Among the 1003 tables from 728 user submitted papers,
321 tables were reported as incorrect. Among the 321 tables, 35
were reported as Failure — no results were returned (11% among
incorrect tables / 3.5% among all the tables). For the other three
reasons, 164 tables have Misplaced Cell Values problem (51.2% /
16.4%); 96 tables have Missing Cell Values problem (29.9% / 9.6%);
and 26 tables have Wrong Cell Values problem (8.1% / 2.6%). Merged
cell is the main reason that a table was not correctly cropped or
extracted. In the future, we will develop more table templates to
improve the extraction.

Evaluation results on search & QA experience (feedback on
Q2). We observed that rule-based classifier (TableUni-R) has good
precision but the recall is low; learning-based classifier (TableUni-L)
has good coverage but the errors are more frequent than rule-based
results. Overall, the rule-based classifier has better performance
than the learning-based classifier because users are more sensitive
to incorrect results than missing information. The ensemble method
TableUni-(R+L) takes the advantages of both methods and generates
good precision and good recall. So the evaluation is much better
than the other two classifiers.

Suppose we count Poor as 1 point, Fair as 2 points, Good as 3
points, and Excellent as 4 points. TableUni-R makes an average
of 2.86. TableUni-L makes an average of 2.73. And TableUni-(R+L)
makes an average score of 3.09. Fortunately, all the methods achieve
an average score bigger than 2.50 — users are satisfactory with the
performances. Only the proposed TableUni-(R+L) has a bigger-than-
3 average score, showing that it is generally better than Good.
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4.3 Case Studies on Usage

We will give data statistics of the database we build using the
proposed framework. When all of three modules are implemented,
we can use the SQL queries to answer the questions we listed in
Section 2.3. We present the answers given by the database we have.

Statistics of the resulting database. After table unification, our
method has categorized the 3,992 concepts into three classes, {dataset,
method, metric}. We transform each of the cells in the tables into a
value of the function f, or say, a data record in the final experimen-
tal result database (ERD): The data record must have one dataset
name, one method name, one metric name, and a corresponding
score; otherwise, it is invalid and not included in the database.

Currently, the resulting database has as many as 35,137 data
records (or called experimental result facts) from 450 tables in PDF
files. The database includes (a) 1,728 unique datasets in the tables,
(b) 1,803 unique methods in the tables, and (c) 461 unique metric
names in the tables. The count of metric looks incredibly big because
we do not merge similar metrics without prior knowledge, such as
“p@1”, “prec@5”, and “precison”. Each dataset, method, and metric
has 18.9, 17.3, and 64.6 related data records in average, respectively.
Associations among the concepts are rich.

We will use the database to answer the following questions. This
is just to show the power of exploring quantitative knowledge in
the experimental result database and the usefulness of our approach.
Because the database was constructed with only 450 tables, we are
NOT claiming that the answers to these questions are the truths
all over the tons of literature.

Question 1: Find related methods, metrics, and datasets.
Q-1(a) How many methods were used for the Epinions dataset?
select count(distinct Method) from ERD where Dataset="Epinions”;
A-1(a) 36. If one uses more SQL queries to look for the detail, one
will see the method names such as “UserMean”, “ItemMean”, “Trust”,

“NMF”, “SVD”, “TCF”, “PMF”, “SoRec”, and “RSTE”.
Q1(b) How many metrics were used to evaluate on Epinions?
select count(distinct Metric) from ERD where Dataset=“Epinions”;

A-1(b) 7. More queries will find the concrete metric names such as
“F1 score”, “Precision”, “Recall”, “MAE”, and “RMSE”.

Q1(c) How many datasets used with Epinions in the same table?
select count(distinct Dataset) from ERD where Source=(select (dis-
tinct Source) from ERD where Dataset= “Epinions”);

A-1(c) 17. The data names are “Amazon”, “Ciao”, “Douban”, and so
on. They are popular datasets for evaluating recommender systems.

Q-1(d) How many methods were used for the Amazon dataset?
select count(distinct Method) from ERD where Dataset=“Amazon”;
A-1(d) 70. The method names include LDA (Linear Discriminant
Analysis), LR (Logistic Regression), and so on.

Q1(e) How many metrics were used to evaluate on Amazon?
select count(distinct Metric) from ERD where Dataset=“Amazon”;
A-1(e) 15. (“Precision”, “Recall”, “F1”, “Accuracy”, etc.)

Q1(f) How many datasets used with Amazon in the same table?
select count(distinct Dataset) from ERD where Source=(select (dis-
tinct Source) from ERD where Dataset= “Amazon”);

A-1(f) 53. (“DBLP”, “Wiki”, “Delicious”, “Epinions”, etc.)

Question 2: Find top-performing methods on a dataset.
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Q2(a) What are the top 3 methods on Epinions in terms of RMSE?
select Method, Score from ERD where Dataset = “Epinions” and
Metric = “RMSE” order by Score desc limit 3; // desc is for the fact
that a smaller RMSE means a better performance.

A-2(a) “SR2pcc” (1.0954), “SR2vss” (1.0958), “SR1pcc” (1.1013).

Q2(b) What are the top 3 methods on Amazon in terms of F1?
select Method, Score from ERD where Dataset = “Amazon” and
Metric = “F1” order by Score limit 3; // Compared to Q2(a), desc
was deleted because a bigger F1 means a better performance.
A-2(b) “LEMON” (0.953), “LEMON-auto” (0.91), “LC” (0.815).

Question 3: Find conflicting reported numbers.
The query has been given in Section 2.3. Surprisingly, we found a
large set of conflicting records in the database. A number of them
are worthy of investigation: Firstly, as the example we have given
in the introduction, if the dataset is Epinions, plus the metric is
MAE, then we have three pairs of conflicting numbers reported
by [27] and [25]: (1) UserMean: 0.9319 vs 0.9285, (2) ItemMean:
0.9115 vs 0.9913, (3) Trust: 0.9044 vs 0.9215. Conflicting numbers
for the metric RMSE can be observed as well: (1) UserMean: 1.1968
vs 1.1817, (2) ItemMean: 1.1973 vs 1.2584, (3) Trust: 1.1761 vs 1.2132.
Secondly, as presented in Table 1, the two KDD 2017 papers on
multi-label classification, [42] and [36], gave different numbers for
the same set of methods, the same datasets, and the same metrics,
respectively. Though variance could happen when reproducing the
results, we found many of the precision differences are bigger than
3%, which is often a sufficient margin to claim a new achievement!
Finally, we also find a number of conflicting pairs that were not
correctly aligned because of the missing contexts in the extraction
such as the ratio of training data and the number of dimensions. In
this paper, while claiming the importance of integrating PDF tables,
we are aware of tons of challenging and interesting future works.

5 RELATED WORK

In this section, we review the literature on three relevant topics.

Web Table Mining. Mining knowledge from web tables has been
studied for long [10, 12, 31, 39, 41]. Yang et al. analyzed the struc-
tural aspects of web tables, within which rules are devised to process
and extract attribute-value pairs from the table [41]. Gatterbauer
et al. proposed a method to find tabular structures without HTML
table tags through cues such as onscreen data placement [12]. Later,
researchers started considering table search. Cafarella et al. ap-
proached it as a modification of document search [6, 7]. Banko et
al. applied open-domain information extraction to automatically
discover possible relations of interest [2]. Venetis et al. [37] and
Limaye et al. [24] annotated tables on the Web with column la-
bels and relation labels. Compared with our work, first of all, the
above works focused on Web tables that were designed following a
specific language (i.e., HTML/XML) and semi-structured with tags
and texts [4, 9, 35]. These are not available in our case of working
on experimental result tables in paper PDF files. Mining tables in
PDFs has its special challenges. Second, the Web tables are usually
descriptive tables. In our research, we work on experimental result
tables that are full of digital numbers. We have to find the context
for each number/cell, or say, we need to classify the row/column
names and even words in the captions. Third, the text environment
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was ignored when mining web table information. We propose to
use the text around the tables to better understand the contexts.

Bootstrapping for Information Extraction. Bootstrapping meth-
ods have been widely used for information extraction (i.e., extract-
ing relational tuples from text) since the never-ending learning
came out [1, 5, 20, 21]. The success of this methodology lies in its
ability to learn sufficient patterns and instances simply by itera-
tions starting from a small number of seeds. Its central assumption
is the pattern-relation duality principle that good seed samples
lead to good patterns, while good patterns help to extract good
instances. Here, good patterns are usually referred to patterns that
have high coverage (high recall) and low error rate (high preci-
sion), and good instances are instances that are realized by good
patterns [2, 8, 18, 29, 46]. Gupta et al. [16] and Halevy et al. [17]
proposed Entity-Attribute patterns to apply to users’ fact-seeking
queries. Yahya et al. proposed Subject-Attribute-Object patterns
for human-annotated corpus [40]. Jiang et al. proposed a general
textual pattern, called meta pattern, using semantic type informa-
tion [19]. All these methods were successful for finding information
from text, however, capturing relations from tabular data, especially
for experimental result tables in paper PDFs, brings new challenges
to the bootstrapping framework, which requires carefully method
design based on the unique data structures.

Semantic Embedding Learning. With the success of deep learn-
ing techniques, representation learning becomes popular starting
from practices on text data [28] to other applications [15, 33, 38].
Mikolov et al. proposed the word2vec to learn distributed vector
representations that capture precise syntactic and semantic word
relationships [28]. Pennington et al. proposed GloVe to leverage
statistical information by training only on the nonzero elements in
a word-word co-occurrence matrix, rather than on the entire sparse
matrix or on individual context windows in a large corpus [32].
Le et al. extended the embedded objects from words or phrases
to paragraphs [23]. Recently, Nichel et al. proposed Poincare em-
bedding based on a non-Euclidean space to preserve hierarchical
semantic structures [30]. Devlin et al. proposed BERT for training
deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. We used
semantic embeddings for the task of table unification in our work.

6 CONCLUSIONS

In this work, we proposed a system for building a scientific database
from experimental result tables in data science paper PDFs. Our
framework has three modules. First, it cropped the tables and recog-
nized table templates. Second, it classified column/row names into
“method”, “dataset”, or “metric”, and then combined with each score
cell into a quadruple. We proposed hybrid features and an ensemble
learning approach for column/row name classification and table
unification. Third, it used SQL statements to make inference on
the database. The informative database can facilitate researchers
and practitioners who are interested in the field of data science,
answering questions such as whether the baseline methods are the
state-of-the-art or whether the reported numbers are conflicting.
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