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Abstract

Knowledge graphs (KGs) serve as useful resources for var-
ious natural language processing applications. Previous KG
completion approaches require a large number of training in-
stances (i.e., head-tail entity pairs) for every relation. The real
case is that for most of the relations, very few entity pairs are
available. Existing work of one-shot learning limits method
generalizability for few-shot scenarios and does not fully use
the supervisory information; however, few-shot KG comple-
tion has not been well studied yet. In this work, we propose
a novel few-shot relation learning model (FSRL) that aims at
discovering facts of new relations with few-shot references.
FSRL can effectively capture knowledge from heterogeneous
graph structure, aggregate representations of few-shot refer-
ences, and match similar entity pairs of reference set for ev-
ery relation. Extensive experiments on two public datasets
demonstrate that FSRL outperforms the state-of-the-art.

Introduction

Large-scale knowledge graphs (KGs) such as YAGO
(Suchanek, Kasneci, and Weikum 2007), NELL (Carlson
et al. 2010), and Wikidata (Vrandeci¢ and Krotzsch 2014)
usually represent facts in the form of relations (edges) be-
tween (head-tail) entity pairs (nodes). This kind of graph-
structured knowledge is essential for many downstream ap-
plications such as search, question answering, and seman-
tic web. However, KGs are known for their incomplete-
ness. In order to automate the KG completion process, many
work (Nickel, Tresp, and Kriegel 2011; Bordes et al. 2013;
Socher et al. 2013; Yang et al. 2015; Trouillon et al. 2016;
Schlichtkrull et al. 2018; Dettmers et al. 2018) have been
proposed to infer missing relations by learning existing
ones. For example, RESCAL (Nickel, Tresp, and Kriegel
2011) employs tensor factorization to capture inherent struc-
ture of multi-relational data in KGs. TransE (Bordes et al.
2013) interprets relations as translation operation on the
low-dimensional embeddings of entities. And recently, G-
GCN (Schlichtkrull et al. 2018) models relational structure
by graph neural network.
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The above methods need a good number of entity pairs for
every relation. However, the frequency distributions of rela-
tions in real datasets often have long tails. A large portion of
relations have only few entity pairs in KGs. It is important
and challenging to deal with the relations with limited (few-
shot) number of entity pairs. The few-shot scenario incurs
the infeasibility of previous models which assume available,
sufficient training instances for all relations.

In light of the above issue, Xiong et al. (2018) proposed
GMatching which introduces a local neighbor encoder to
learn entity embeddings. It achieves considerable perfor-
mance in one-shot relation inference yet still has some lim-
itations. First, GMatching assumes all local neighbors con-
tribute equally to the entity embedding, whereas heteroge-
neous neighbors could have different impacts. For example,
the embedding of “Nadella” may have more influence on the
embedding of “Microsoft” than “Apple” as the company has
only one CEO and a number of competitors. Thus the neigh-
bor encoder of GMatching learns insufficient graph structure
representation and impairs the model performance. Second,
GMatching is designed under one-shot learning setting. Al-
though it can be modified to few-shot case by adding a pool-
ing layer over reference set, the general operation ignores
the interaction among few-shot reference instances and lim-
its the representation capability of reference set. Therefore,
it is crucial to design a model to effectively complete rela-
tions with limited reference entity pairs.

To address the above weak points, we propose a Few-
Shot Relation Learning model (FSRL) with the purpose of
learning a matching function that can effectively infer the
true entity pairs given the set of few-shot reference entity
pairs for each relation. To be more specific, first, we pro-
pose a relation-aware heterogeneous neighbor encoder to
learn entity embeddings based on the heterogeneous graph
structure and attention mechanism. It captures both differ-
ent relation types and impact differences of local neighbors.
Next, we design a recurrent autoencoder aggregation net-
work to model interactions of few-shot reference entity pairs
and accumulate their expression capabilities for each rela-
tion. With the aggregated embedding of reference set, we
finally employ a matching network to discover similar entity
pairs of reference set. The meta-training based gradient de-



scent approach is employed to optimize model parameters.
The learned model can be further applied to infer true entity
pairs for any new relation without any fine-tuning step.

To summarize, our main contributions are:

e We introduce a new few-shot KG completion problem
which is different from previous work and more suitable
for practical scenarios.

e We propose a few-shot relation learning model to solve
the problem. The model performs joint optimization of
several learnable neural network modules.

e We conduct extensive experiments on two public datasets.
Results demonstrate that our model outperforms state-of-
the-art baselines.

Related Work

Here we survey two topics relevant to this work: few-shot
learning and relation learning for KGs.

Few-Shot Learning

Recent few-shot learning models have two categories: (1)
metric based approaches (Koch, Zemel, and Salakhutdinov
2015; Vinyals et al. 2016; Snell, Swersky, and Zemel 2017;
Mishra et al. 2018); (2) meta-optimizer based approaches
(Ravi and Larochelle 2016; Finn, Abbeel, and Levine 2017,
Li et al. 2017; Finn, Xu, and Levine 2018; Lee and Choi
2018; Yao et al. 2019b). The former one learns an effective
metric and corresponding matching function among a set of
training instances. For example, matching networks (Vinyals
et al. 2016) make predictions by comparing the input ex-
ample with a few-shot labeled support set. Prototypical net-
works (Snell, Swersky, and Zemel 2017) classify each sam-
ple by computing the distance to prototype representation of
each class. The later one aims to quickly optimize the model
parameters given the gradients on few-shot data instances.
One example is the model-agnostic meta-learning (MAML)
(Finn, Abbeel, and Levine 2017) which trains model via a
small number of gradient updates and leads to fast learning
on a new task. Another example is the LSTM-based meta-
learner (Ravi and Larochelle 2016) that learns the exact op-
timization algorithm used to train another neural network
classifier in the few-shot regime. Unlike the previous few-
shot learning study that focus on vision (Yang et al. 2018),
imitation learning (Duan et al. 2017), spatiotemporal anal-
ysis (Yao et al. 2019a), sentiment analysis (Li et al. 2019)
domains, we leverage few-shot learning to complete KGs.

Relation Learning for KGs

Many work have been proposed to model relational structure
in KGs and automate KG completion. For example, Nickel
et al. (2011) designed RESCAL to model inherent structure
of dyadic relational data by tensor factorization. Bordes et
al. (2013) proposed TransE that interprets relationships as
translation operating on the low-dimensional embeddings of
the entities. Unlike representing entities with single vectors,
Socher et al. (2013) developed NTN that represents entities
as an average of their constituting word vectors. Later, more
sophisticated models have been proposed, such as DistMul
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(Yang et al. 2015) and ComplEx (Trouillon et al. 2016).
Recently, deep neural network based models like R-GCG
(Schlichtkrull et al. 2018) and ConvE (Dettmers et al. 2018)
have been presented for further improvement. Different from
those models that assume sufficient training instances are
available, Xiong et al. (2018) presented GMatching model
for one-shot relation learning in KGs. In this work, we study
a practical few-shot scenario which deals with long tail or
newly added relations with few-shot reference instances.

Preliminaries

In this section, we formally define the few-shot knowledge
graph completion problem and detail the corresponding few-
shot learning settings.

Problem Definition

A KG G is represented as a collection of triples {(h, 7, )} C
E xR x &, where € and R denote the entity set and relation
set, respectively. The KG completion task is to either predict
the tail entity ¢ given the head entity h and the query relation
r: (h,r,7), or predict unseen relation r between head entity
and tail entity: (h,?,t). In this work, we focus on the for-
mer case as we want to predict the unseen facts of a given
relation. Unlike previous studies that assume enough entity
pairs are available for each relation, this work considers a
practical scenario that few-shot entity pairs (reference set)
are given. The purpose is to rank the true entity 4., higher
than false candidate entities  f415¢, given few-shot reference
pairs (hy,tr) € R, of relation r. Formally, the problem is
defined as follows:

Problem 1 Few-Shot Knowledge Graph Completion
Given the relation r and its few-shot reference entity pairs
(hi,trx) € R, the task is to design a machine learning
model which ranks all tail candidate entities t for each new
head entity h, such that the top ranked t are true tail entities
of h.

The candidate entities set is constructed based on the entity
type constraint (Xiong et al. 2018), and we only consider
a closed set of entities which excludes the unseen entities
when predicting facts of new relations in test period.

Few-Shot Learning Settings

The purpose of this work is to design a machine learn-
ing model which could be utilized to predict the new
facts with few-shot reference instances. Following the stan-
dard few-shot learning settings (Ravi and Larochelle 2016;
Snell, Swersky, and Zemel 2017), we can access to a set of
training tasks. In the problem, each training task corresponds
to a KG relation » € R with its own training/testing en-
tity pairs data: D, = { PI"*" P!t} We denote this kind
of task set as meta-training set, 7,,,;-. To imitate the few-
shot relation prediction in evaluation period, each P!rei"
only contains few-shot entity pairs (hx,t) € R,. Besides,
pPrest = {(h;,t;,Ch, )|(hi,7,t;) € G} contains all test-
ing entity pairs of 7, including true tail entities ¢; of each
query (h;,r) and the remaining candidate entities t; €
Ch, » where t; is an entity in G. The proposed model thus



could be tested on this set by ranking all candidate enti-
ties given the test query (h;,7) and the few-shot reference
pairs in PI"%" We denote the ranking loss of relation r as
Lo(hi, t;|Ch, », P, where © is the set of model pa-
rameters. Thus, the objective of model training is defined as:

Lo (hi; ti|Ch, r, PF™)
|Ptest|
r

>

(hiti,Cn, r)EPLeS?

minekr,,,,

D
where | P!*!| represents the number of tuples in P/**. In
next section, we will detail how to formulate and optimize
the above objective function.

After sufficient training, the learned model can be utilized
to predict facts of each new relation 7’ € R’. This step is
called the meta-testing. The relations in meta-testing are un-
seen from meta-training, i.e., R N R’ ¢. The same as
meta-training relations, each relation 7’ in meta-testing has
its own few-shot training data P’/ and testing data P/¢*".
These relations form a meta-testing set which is denoted as
Tmte. In addition, we leave out a subset of relations in 7;,,¢,
as the meta-validation set 7,,,;,,. Furthermore, the model can
access to a background KG G’, which is a subset of G that
excludes all the relations in 7,4 Tinte and Trnto-

Model

In this section, we present the detail of FSRL. FSRL con-
sists of three major parts: (1) encoding heterogeneous neigh-
bors for each entity; (2) aggregating few-shot reference en-
tity pairs for each relation; (3) matching query pairs with ref-
erence set for relation prediction. Figure 1 shows the frame-
work of FSRL.

Encoding Heterogeneous Neighbors

Although many work (Nickel, Tresp, and Kriegel 2011;
Bordes et al. 2013; Yang et al. 2015) have been proposed
to learn entity embeddings by using relational information,
Xiong et al. (Xiong et al. 2018) demonstrated that explic-
itly encoding graph local structure (i.e., one-hop neigh-
bors) can benefit relation prediction. The proposed neigh-
bor encoder takes the average of feature representations of
all relational neighbors as the embedding of given entity.
Despite the desirable performance, it neglects the differ-
ent impacts of heterogeneous neighbors which may help
improve entity embedding (Zhang et al. 2019). In light
of this issue, we design a relation-aware heterogeneous
neighbor encoder. Specifically, we denote the set of rela-
tional neighbors (relation, entity) of given head entity h
as Ny, = {(ri,t;)|(h, i, t;) € G'}, where G’ is the back-
ground knowledge graph, r; and ¢; represent the i-th relation
and corresponding tail entity of h, respectively. The hetero-
geneous neighbor encoder should be able to encode N}, and
output a feature representation of h by considering different
impacts of relational neighbors (r;,t;) € Nj,. To achieve
this goal, we introduce an attention module and formulate
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the embedding of / as follows:
fo(h) =0 (Zaieti )

exrp {UZ; (Wrt(eri D eti) + bre ) }

5, eom {udy Wraler, i) +bre) |
where o denotes activation unit (we use Tanh), & represents
concatenation operator, e;,, e,, € RI*1 are pre-trained em-
beddings of ¢; and r;. Besides, u,; € R¥!, W,, € R4*2d
and b,;, € R¥*! (d: pre-trained embedding dimension) are
learnable parameters. Figure 1(b) illustrates the detail of het-
erogeneous neighbor encoder. According to Eq. 2, the for-
mulation of fy(h) considers the different impacts of het-
erogeneous relational neighbors via attention weight «v; and
leverages both embeddings of entity ¢; and relation r; to
compute ;.

2

Q; =

Aggregating Few-Shot Reference Set

The current models (e.g., GMatching) are not able to model
the interactions of few-shot instances in reference set, which
limits model capability. Thus, we need to design a module
to effectively formulate the aggregated embedding of refer-
ence set I, for each relation r. By applying the neighbor
encoder fp(h) to each entity pair (hg,tx) € R,, we can
obtain the representation of (hg,t;) in the form &, 4, =
[fo(hk)® fo(tr)]. Learning the representation of a reference
set R, with few-shot entity pairs is challenging as it requires
modeling interactions among different entity pairs and ac-
cumulating their expression capability. Inspired by the com-
mon practices in learning sentence embeddings (Conneau
et al. 2017) in natural language processing and aggregating
node embeddings (Hamilton, Ying, and Leskovec 2017) in
graph neural networks, we tackle the challenge and formu-
late the embedding of R, by aggregating representations of
all entity pairs in R, :

fe(R,) = AG (hy )R, {5hk¢k } @)

where AG is an aggregation function which can be pool-
ing operation, feed-forward neural network, etc. Motivated
by the recent success of recurrent neural network aggre-
gator in order-invariant problems such as graph embed-
ding (Hamilton, Ying, and Leskovec 2017), we design a re-
current autoencoder aggregator which achieves good capa-
bility. Specifically, the entity pair embeddings &, ;, € R.
are sequentially fed into a recurrent autoencoder by:

Ehipy > My = - = mg =>dg = —=dy (4)
where K is the size of reference set (i.e., few-shot size). The
hidden states my, and dj, of encoder and decoder are com-

puted by:
mp = RNNencoder (Ehk,tk 5 mkfl) (5)
dk—l - RNNdecoder (dk)
where RNN ¢y coder and RNNgecoder represent recurrent en-
coder and decoder (e.g., LSTM (Hochreiter and Schmidhu-

ber 1997)), respectively. The reconstruction loss for optimiz-
ing autoencoder is defined as:

ﬁre(Rr) = Z ”dk - 5hk,tk-, H; (6)
k
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Figure 1: (a) The framework of FSRL.: it first generates entity embedding via heterogeneous neighbor encoder, then aggregates
few-shot reference entity pairs and generate reference set embedding, finally employs a matching network to compute similarity
score between query pair and reference set; (b) the relation-aware heterogeneous neighbor encoder for entity; (c) the recurrent
autoencoder aggregation network for reference set; (d) the recurrent matching network for query pair and reference set.

L. will be incorporated to the relational ranking loss for
refining the representation of each entity pair, as we will
describe later. In order to formulate the embedding of ref-
erence set, we aggregate all hidden states of encoder and
extend them by adding residual connection (He et al. 2016)
and attention weight. Formally, f.(R,.) is computed by:

m?c = mz + ghkvtk
cap {uh, W+ ) )
> exp {uf Wrmj, +br ) }
fe(Ry) = Zﬂkm%
k

B 7

where up € R¥™Y, Wi € R9*2% and by € R¥*! (d: aggre-
gated embedding dimension) are learnable parameters. Fig-
ure 1(c) illustrates the detail of recurrent autoencoder aggre-
gator. The formulation of f.(R,) aggregates all representa-
tions of &, ¢, € R, and each component in this module
will make effect for better performance, as we will show in
the ablation study experiment.

Matching Query and Reference Set

With the heterogeneous neighbor encoder fy and the refer-
ence set aggregator f., we now present how to effectively
match each query entity pair (h;,¢;) € Q, (Q, is the set
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of all query pairs of relation ) with the reference set R,.
By applying fp and f, to the query entity pair (h;,¢;) and
the reference set R,, we can obtain two embedding vectors
Enpty = [fo(h) ® fo(t))] and f.(R,.), respectively. In order
to measure the similarity between two vectors, we employ a
recurrent processor (Vinyals et al. 2016) f,, to perform mul-
tiple steps matching. The ¢-th process step is formulated as:

g;, Cy = RNNmatCh(Ehz,tla [gt—l S fe(Rr)L Ct—l)
gt = gzlf + ghz,tz

where RNN,,,4¢cn 18 LSTM cell (Hochreiter and Schmid-
huber 1997) with input &, +,, hidden state g; and cell state
c¢. The last hidden state g after 1" “processing” step is the
refined embedding of query pair (h;,t;): Ex, 1, = gr. We
use the inner product between &y, 4, and f.(R,) as the simi-
larity score for later ranking optimization procedure. Figure
1(d) shows the detail of matching processor. This module
is effective for improving model performance, as we will
demonstrate in the ablation study experiment.

®)

Objective and Model Training

For the query relation r, we randomly sample a set of
few positive (true) entity pairs {(hx,tx)|(hi, 7, tx) € G}
and regard them as the reference set R,. The remaining
positive entity pairs PE, = {(hy,t)|(h, ) € G N



Algorithm 1: FSRL Meta-Training

input : Meta-training task (relation) set 7,4
Pre-trained KG embeddings
Initial model parameters 6, € and p
1 while not done do
2 Shuffle tasks (relations) in 7,4,
3 for 7, € Trir do
4 Sample few-shot entity pairs as reference set
5 Sample a batch of query entity pairs (h;, ¢;)
6
7
8
9

Pollute the tail entity of (%, t;) to get (hy,t;")
Accumulate the loss by Eq. 10
Update parameters by Adam optimizer

end

end
return Optimal model parameters 6*, ¢* and p*

-
-

(hi,t;)) ¢ R,} are utilized as positive query pairs. Be-
sides, we construct a group of negative (false) entity pairs
NE, = {(hy,t])|(hi,r,t;) ¢ G} by polluting the tail enti-
ties. Therefore the ranking loss is formulated as:

Lrank =D, >

[f + Sthasty ~ S(’Ll,tl)] 4
” (hl,tl)67357~(hl,tf)EN5r
©

where [z]; = max[0,z] is standard hinge loss and & is
safety margin distance, s, +,) and s, ¢y are similarity

scores between query pairs (hy,t;/t,”) and reference set R,..
By leveraging the reconstruction loss L. of reference set
aggregator, we define the final objective function as:

Ljoint = Acrank + ’YLr'e (10)

where 7 is trade-off factor between L., and L,... To min-
imize L ;o and optimize model parameters, we take each
relation as a task and design a batch sampling based meta-
training procedure. The detail of this process is summarized
in Algorithm 1.

Experiments

In this section, we conduct extensive experiments to evaluate
the performance of proposed model and verify the effective-
ness of each component in the model. Few-shot size impact
analysis and embedding visualization are also provided.

Experimental Design

Datasets We use two public datasets for experiments. The
first one is based on NELL (Mitchell et al. 2018), a sys-
tem that continuously collects structured knowledge from
webs. The second one is based on Wikidata (Vrandeci¢ and
Krotzsch 2014). Table 1 lists the statistics of two datasets.
The same as (Xiong et al. 2018), we select the relations
with less than 500 but more than 50 triples as few-shot
tasks. There are 67 and 183 tasks in NELL and Wiki data,
respectively. In addition, we use 51/5/11 task relations for
training/validation/testing in NELL and the division is set to
133/16/34 in Wiki.
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Table 1: Statistics of datasets. # Ent. denotes the number of
all unique entities and # triples denotes the number of all re-
lational triples. # Rel. represents the number of all relations
and # Tasks represents the number of relations selected as
few-shot tasks.

Dataset || #Ent. | #Triples | #Rel. | # Tasks
NELL 68,545 181,109 358 67
Wiki 4,838,244 | 5,859,240 | 822 183
Baseline Methods We consider two categories of baseline

methods for comparison:

e Relational embedding methods. This type of model
learns entity/relation embeddings by modeling relational
structure in KG. We employ four widely used methods:
RESCAL (Nickel, Tresp, and Kriegel 2011), TransE (Bor-
des et al. 2013), DistMul (Yang et al. 2015), and ComplEx
(Trouillon et al. 2016). All entity pairs of background re-
lations and training relations, as well as few-shot training
entity pairs of validate and test relations are used to train
models.

e Graph neighbor encoder methods. This type of model
joints graph local neighbor encoder and matching net-
work to learn entity embeddings and predict facts of new
relations. We employ state-of-the-art model GMatching
(Xiong et al. 2018) for comparison. Note that there are
few-shot embeddings of entity pairs in reference set, we
use max/mean pooling (denoted as MaxP and MeanP)
to obtain the general embedding of reference set. More-
over, we also consider taking the maximum of similarity
scores between a query and all K references as the fi-
nal ranking score of this query. Thus in total, this type
of model includes three baseline methods which are de-
noted as GMatching (MaxP), GMatching (MeanP), and
GMatching (Max).

Reproducibility Settings The above relational embed-
ding methods can be utilized to pre-train KG embeddings,
which are further used as the input for GMatching and
FSRL. We select ComplEx for pre-training as GMatching
and FSRL with it achieve best performances in most cases.
For the proposed model, we tune hyper-parameters on the
validation dataset. The embedding dimension is set to 100
and 50 for NELL and Wiki dataset, respectively. The maxi-
mum number of local neighbors in heterogeneous neighbor
encoder is set to 30 for both datasets. In addition, we use
LSTM as the reference set aggregator and matching proces-
sor. The dimension of LSTM’s hidden state is set to 200 and
100 for NELL and Wiki dataset, respectively. The number
of recurrent steps equals 2 in matching network. We use the
Adam optimizer (Kingma and Ba 2015) to update model
parameters. The initial learning rate equals 0.001 and the
weight decay is 0.25 for each 10k training steps. The mar-
gin distance and trade-off factor in the objective function
are set to 5.0 and 0.0001, respectively. In entity candidate
set construction, we set the maximum size to 1000 for both



Table 2: The overall results of all methods. GMatching is the best baseline. Our model has the best performances in all cases.

I Data: NELL \ Data: Wiki

Model | Hits@l | His@5 | Hits@l0 | MRR | Hits@l | Hits@5 | Hits@10 | MRR

RESCAL .069/.141 | .160/.313 | .204/.383 | .119/.223 | .259/.057 | .297/.090 | .309/.126 | .279/.081
TransE .056/.119 | .112/.256 | .189/.320 | .104/.193 | .186/.069 | .352/.134 | .431/.176 | .273/.111
DistMult .066/.164 | .123/.306 | .178/.375 | .109/.231 | .271/.069 | .419/.156 | .459/.195 | .339/.112
ComplEx .049/.129 | .092/.223 | .112/.273 | .079/.185 | .226/.085 | .315/.117 | .397/.145 | .282/.106
GMatching (MaxP) .244/.198 | .418/.370 | .524/.464 | .331/.279 | .313/.095 | .402/.235 | .468/.324 | .346/.171
GMatching (MeanP) .257/.186 | .455/.360 | .542/.453 | .341/.267 | .290/.128 | 407/.274 | .484/.350 | .352/.203
GMatching (Max) 179/.152 | .391/.335 | .476/.445 | 273/.241 | .279/.135 | .396/.284 | .477/.374 | .342/.214
FSRL (Ours) H .345/.211 ‘ .502/.433 ‘ .570/.507 ‘ 421/.318 ‘ .338/.155 ‘ .430/.327 ‘ .486/.406 ‘ .390/.241

datasets. We employ Pytorch' to implement our model and
further conduct it on a server with GPU machines.

Evaluation Metrics Relations and their entity pairs in
training data are utilized to train the model while those of
validation and test data are respectively used to tune and
evaluate model. We use the top-k hit ratio (Hits@k) and the
mean reciprocal rank (MRR) to evaluate performances of
different methods. The k is set to 1, 5, and 10. The few-shot
size K is set to 3 for the following experiments. In addition,
we also conduct experiment to analyze the impact of K.

Results Comparison

Overall Comparison with Baselines The performances
of all models are reported in Table 2, where the best results
are highlighted in bold and the best baseline results are indi-
cated by underline. The former/later score denotes result in
validation/test dataset. According to this table:

e The graph neighbor encoder methods (GMatching) out-
perform the relational embedding methods, showing that
incorporating graph local structure and matching network
is effective for learning entity embeddings and predicting

facts of new relations.

FSRL achieves the best performances in all cases. The
average relative improvement (%) over the best baseline
method is up to 34% and 15% in NELL and Wiki data, re-
spectively. It demonstrates the effectiveness of our model.
The heterogeneous neighbor encoder and recurrent au-
toencoder aggregation network benefit few-shot relation
prediction in KGs.

Comparison Over Different Relations Besides the over-
all performance for all relations, we also conduct experi-
ments to evaluate model performance for each relation in
NELL test data. Table 3 reports the results of FSRL and
GMatching. The better result for each case is highlighted
in bold. According to this table:

e The results of both models on different relations are of
high variance. It is reasonable since different relations
have different sizes of candidate set for evaluation. The

"https://pytorch.org/
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relations (e.g., relation 1) with small candidate set (or are
easily to be predicted) have relative large scores and two
models in these cases are compared.

FSRL has better performances than GMatching in most
cases. It demonstrates that our model is robust for differ-
ent relations and outperforms GMatching for most rela-
tions.

Table 3: The results of GMatching and FSRL for each rela-
tion (RId) in NELL test data.

RId || Model | Hits@1 | Hits@5 | Hits@10 | MRR

1 GMatching | 0.946 1.000 1.000 0.970

FSRL 0.972 0.986 1.000 0.981

2 GMatching | 0.279 0.390 0.451 0.360

FSRL 0.972 0.972 0.986 0.975

3 GMatching | 0.069 0.115 0.152 0.108

FSRL 0.466 0.418 0.357 0.398

4 GMatching | 0.017 0.033 0.070 0.035

FSRL 0.044 0.215 0.343 0.132

5 GMatching | 0.069 0.115 0.151 0.107

FSRL 0.044 0.215 0.343 0.132

6 GMatching | 0.192 0.515 0.581 0.338

FSRL 0.342 0.549 0.617 0.442

7 FSRL 0.478 0.692 0.804 0.575

GMatching | 0.438 0.716 0.842 0.562

3 GMatching | 0.151 0.502 0.669 0.312

FSRL 0.201 0.543 0.681 0.347

9 GMatching | 0.449 0.707 0.737 0.564

FSRL 0.163 0.750 0.838 0.408

10 GMatching | 0.043 0.129 0.206 0.098

FSRL 0.069 0.192 0.291 0.139

1 GMatching | 0.076 0.708 0.736 0.341

FSRL 0.104 0.631 0.781 0.416
Ablation Study

FSRL is a joint learning framework of several neural net-
work modules. To investigate the contributions of different



components, we conduct the following ablation studies from
three perspectives in Table 4, where the results in NELL data
are reported and best results are highlighted in bold:

e (AS_1) We investigate the effectiveness of relation-aware
heterogeneous neighbor encoder. We replace it by a mean
pooling layer over all neighbors” embeddings. As shown
in the table, our model has much better performances than
the variant (in AS_1), indicating the large benefit of het-
erogeneous neighbor encoder.

e (AS_2) We analyze the impacts of different modules of
aggregation network in (AS_2a)-(AS_2c). In (AS_2a), we
replace the recurrent autoencoder aggregation with mean
pooling operation. In (AS_2b), we replace the attention
weight of recurrent autoencoder with a mean pooling
layer. In (AS_2c), we remove the decoder part, and only
use encoder for aggregation. According to the results in
table, our model outperforms all of three variants in most
cases, demonstrating the effect of each component in ag-
gregation network.

o (AS_3) We further analyze the effectiveness of matching
network. We remove the LSTM cell and use inner-product
between query embedding and reference embedding as
similarity (ranking) score. From the results in table, our
model largely outperforms the variant (in AS_3), show-
ing that recurrent matching network has good capability
in computing relevance between query and reference.

Table 4: Results of model variants in NELL data. Our model
has better performance than all model variants.

Model || Hits@l | Hits@5 | Hits@10 | MRR

(AS_1) H 121/.179 ‘ .312/.379 ‘ 432/.464 ‘ 212/.272
(AS_2a) 281/.191 | .463/.414 | .538/.504 | .368/.297
(AS_2b) || .298/.219 | .480/.420 | .556/.498 | .382/.315
(AS_2¢) .333/.226 | .478/.418 | .552/.499 | .401/.313
(AS_3) H .282/.205 ‘ .463/.394 ‘ .548/.478 ‘ .370/.299
Ours || .345/.211 | .502/.433 | .570/.507 | .421/.318

Analysis

Impact of Few-Shot Size This work studies few-shot rela-
tion learning in KGs, thus we conduct experiment to analyze
the impact of few-shot size K. Figure 2 reports the perfor-
mances of our model and GMatching (MaxP) in NELL test
data with different settings of K. According to the figure:

e With the increment of K, performances of both models
increase. It indicates that larger reference set can produce
better reference set embedding for the relation.

e Our model consistently outperforms GMatching in differ-
ent K, demonstrating the stability of the proposed model
for few-shot relation completion in KGs.

Embedding Visualization To show a better performance
comparison between our model and GMatching, we visual-
ize the 2D embeddings of positive and negative candidate
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Figure 2: Impact of few-shot size K. Our model consistently
outperforms GMatching.

entity pairs for each relation. Figure 3 shows the visualiza-
tion results of our model and GMatching for two test rela-
tions of NELL data, i.e., “produced_by” and “team_coach”,
which vary from each other in semantic meaning and size
of positive/negative candidate set. According to the fig-
ure, both methods can distinguish embeddings of positive
and negative candidates well. However, it is clear that our
model achieves better performance and embeddings of two
classes are clearly discriminated from each other, which fur-
ther demonstrates the superior performance of our model in
terms of visualization.
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Figure 3: Embedding visualization of positive and negative
candidates of two selected relations. Our model can clearly
discriminate embeddings of these two types of candidates.

Conclusion

In this paper, we presented a new few-shot KG completion
problem and proposed an innovative few-shot relation learn-
ing model, i.e., FSRL, to solve the problem. FSRL performs



joint optimization of relation-aware heterogeneous neigh-
bor encoder, recurrent autoencoder aggregation network and
matching network. The extensive experiments on two pub-
lic datasets demonstrate that FSRL can outperform state-
of-the-art baseline methods. In addition, the ablation stud-
ies verify the effectiveness of each model component. As
a new research problem, there are many opportunities for
the next steps. The future work might consider utilizing a
better model training process such as model-agnostic meta-
learning or incorporating contextual information such as en-
tity attributes or text description to improve the quality of
entity embeddings.
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