WAVELETS ON COMPACT ABELIAN GROUPS
MARCIN BOWNIK AND QAISER JAHAN

ABSTRACT. Multiresolution analysis (MRA) on a compact abelian group G has been con-
structed with epimorphism as a dilation operator. We show a characterization of scaling
sequences of an MRA on LP(G), 1 < p < co. With the help of the scaling sequence we
construct an orthonormal wavelet basis of L?(G).

1. INTRODUCTION

In recent years there has been a considerable interest in construction of wavelets on locally
compact abelian groups. Dahlke [8] was one of the first to introduce the concept of wavelets
on locally compact abelian groups as he has constructed MRA and wavelets with the help
of self-similar tiles and B-splines. Lang [14, 15| has constructed wavelets on the Cantor
dyadic group. Wavelets on more general p-adic Vilenkin groups were studied by Farkov [9].
J. J. Benedetto and R. L Benedetto [5, 6] studied wavelets on local fields and more generally
on totally disconnected, nondiscrete locally compact abelian group with compact open sub-
group. Wavelets on local fields of zero characteristic, that is a field of p-adic numbers, were
studied by Skopina and her collaborators [1, 13, 21]. Multiresolution analysis and wavelets
on local fields of positive characteristic were given by Jiang, Li, and Jin [12] and Behera and
Jahan [3, 4]. Multiresolution analysis and wavelet bases on abelian zero-dimensional groups
were studied by Lukomskii [16, 17], and more recently by Barg and Skriganov [2] in a general
setting of association schemes on measure spaces.

The underlying theme of these works is that we are given an automorphism on a locally
compact abelian group G which plays a role of a dilation and a discrete subgroup of G
which plays a role of translations. As in the classical setting of wavelets on the real line,
or Euclidean space R? a wavelet system is generated by translates and dilates of a finite
collection of functions in L?(G) over integer scales. In contrast, when the group G is com-
pact, we can no longer require that a dilation is given by an automorphism, but rather by
a surjective endomorphism (epimorphism) of G. The reason is that automorphisms of a
compact group G do not lead to a sensible definition of an MRA. This is already seen in the
construction of periodic wavelets over a finite dimensional torus G = T¢ by Maksimenko and
Skopina [18], where the role of dilation is played by an epimorphism of T¢, which is not an
automorphism. Consequently, wavelets are indexed only over positive scales since stretching
(negative dilates) is not available in the compact case.
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In this paper we assume that we are given a compact abelian group G and an epimorphism
A G — G with a finite kernel such that (J;cy, ker A’ is dense in G. These standing
assumptions are necessary to guarantee that an MRA (V}),en, satisfies the density property
UjZo Vi = LP(G). Inspired by the work of Skopina [22] and her collaborators [18, 19], we
define the concept of a multiresolution analysis (MRA) in this setting. Our first main result
is a characterization of scaling sequences of an MRA for LP(G), 1 < p < oo, which generalizes
the results of Maksimenko and Skopina [18] from a finite dimensional torus T? to a compact
abelian group G. The results in [18] require that an epimorphism A of T? is given by an
expansive d X d matrix with integer entries. That is, all eigenvalues A of A satisfy || > 1.
Even in the setting of the torus G = T?, our results are a generalization of [18] as we impose
a weaker assumption on an epimorphism. We show that our standing assumptions in the
case of the torus T? are equivalent to A having no eigenvalues which are integral algebraic
units. That is, for each eigenvalue A of A, its reciprocal 1/\ is not an algebraic integer.
Beyond the setting of the torus we provide several examples of epimorphisms of compact
abelian groups satisfying our standing assumptions. These include a compact Cantor group
with more general dilations than the backward shift mapping.

Our second main result shows the existence of minimally supported frequency (MSF)
multiresolution analysis for every compact abelian group satisfying our standing assumptions.
This is an important result as it shows that our characterization results are not vacuous
despite the fact the actual constructions of MRAs need to be customized to a specific group
G and an epimorphism A. Moreover, once an MRA is given to us, we show that a rather
standard procedure yields an orthonormal wavelet basis of L?(G).

In Section 2, we present the necessary definitions and properties of epimorphisms on com-
pact abelian groups. We also provide several specific examples of compact abelian groups
and epimorphisms satisfying our standing assumptions. In addition, we characterize epimor-
phisms of the torus T¢ with dense kernel of iterates. In Section 3, we define the concept of
an MRA (V}),en, on a compact abelian group and we prove the characterization of scaling
sequences which is preceded by many results including the construction of a basis in each
space V;. In the last section we construct wavelet bases for L*(G). We also prove the ex-
istence of MSF MRA under our standing assumptions on an epimorphism A. We conclude
the paper by constructing an orthonormal MSF wavelet basis of L*(G).

2. PRELIMINARIES

In this section we give some basic definitions and set our notations which we will use
throughout the article. Let G be a second countable locally compact abelian group. Let G
be its dual group, i.e.,

G= {x : G — C: x is a continuous character of G}

with the additive group operation (x1 + x2)(z) = x1(z)x2(x). For convenience we denote
identity element of this group as 0. The following result can be found in [10, 11, 20).

Theorem 2.1. If G is compact, then G is discrete. If G is discrete, then G is compact.

Definition 2.2. Let H C G be a subgroup of G. We define the subgroup H+*, called the
annihilator of H, as the collection of all characters which are trivial on the subgroup H,

H'={xeG:x(h)=1forall he H}.
2



Definition 2.3. For all f € L!(G), the function f defined on G by

_ /G F(@)X(@)d

is called the Fourier transform of f. Here, dx denotes a left invariant Haar measure on G,
which is also right invariant since G is abelian.

We denote N ={1,2,...} and Ny = {0, 1,2,...}. Let Epi(G) be the semigroup of contin-
uous group homomorphism of G onto GG. Then, we have the following elementary fact.

Proposition 2.4. Let G be a locally compact abelian group and A € Epi(G). Then, the set
U ker A7 is dense in G if and only if (| (ker Aj)L = {0}.

J€No 7€No

Proof. Suppose that |J ker A7 is dense in G. Take y € ) (ker Aj)L, ie., x(x) =1 for all

J€No Jj€No

x € ker A7 and for all j € Ny. By continuity, we have x(z) = 1 for all z € G, which implies
x = 0.

Conversely, suppose H = |J ker A7 is a proper closed subgroup of G. Then, G/H is

Jj€No
nontrivial which implies G/H is also nontrivial. By [20, Theorem 2.1.2], G/H = H* and
hence H' is also nontrivial. Take 0 # xy € HL. Then, x(z) = 1 for all x € ker A7,
j > 0. This implies y € (ker AJ )L for all j > 0, which gives y € ) (ker Al )L. Therefore,
Jj€No

N (ker A7) + {0}, O
J€Ng

As in [7], let Epick(G) be the collection of all A € Epi(G) having compact kernel. Given
G, Epick(G) is a semigroup under composition. Moreover, by [7, Theorem 6.2] there is a
semigroup homomorphism A : Epick(G) — (0, 00) such that

(2.1) /G(foA) /f

for all integrable functions f on G with respect to the Haar measure dz. To obtain A(A),
observe that f +— [,(foA)(x)dx defines a positive translation-invariant linear functional on
the space C.(G) of continuous functions on G' with compact support and use the uniqueness
of Haar measure up to a normalization [11, Theorem (15.5)].

Definition 2.5. Let G be a locally compact abelian group and A € Epi(G) has a finite
kernel. Define the periodization operator P acting on functions f on G by

Z fly+a) where y € A 'z, z € G.

ac€ker A

Proposition 2.6. For all integrable functions f on G, the periodization operator P satisfies

/GPf( z)dr = | ker A|(A /f

Proof. By (2.1), we have
(2.2) /GPf(Ax)dx = A(A)/GPf(m)dm
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Using the translation invariance of Haar measure, we have

(2.3) /Pf (Ax)dr = ) /fx+adx—ykerAy/f

a€ker A
The result follows from equations (2.2) and (2.3). O
In this article we mainly concentrate on compact abelian groups. If G is compact, then
by taking f = 1, we deduce that for any epimorphism A we have A(A) = 1 in Proposition
2.6. In fact, the standing assumptions in the paper are that:

e (5 is a compact abelian group,

e A € Epi(G) has a finite kernel,

e |J ker A7 is dense in G.

J€No
First, we will consider the classical case when G is a finite dimensional torus T¢ = R?/Z.

Let A be a d x d matrix with integer entries. Then, A induces an endomorphism 7" = T
of T4 = R?/Z%, and every endomorphism of T¢ is induced in this way. Moreover, T is
an epimorphism of T? if and only if A is an invertible matrix, see [23, Theorem 0.15].
The following result, which was communicated to the authors by J. Kwapisz, classifies all
epimorphisms on T? satisfying our standing assumptions.

Theorem 2.7. Let A be a d x d invertible matriz with integer entries. Suppose that Ty is
a surjective endomorphism (epimorphism) on T¢. Then the following are equivalent:
(i) {x € Td: (Tq)"z = 0 for some n > 0} # T<,
(i1) A has an eigenvalue X\ € C which is an mtegml algebraic unit, i.e., both A and 1/X\ are
algebraic integers.

We were unable to find Theorem 2.7 in the literature and hence we present its proof. First,
we need to show a basic lemma.

Lemma 2.8. Let A be a d x d invertible matriz with integer entries. Suppose that Ty is a
surjective endomorphism (epimorphism) on T¢ and K C T? is a set. Then

TN (K) =T, (K)

Proof. One side of the inclusion is obvious, i.e., T, (K) C Ty (K) since T;'(K) C T;*(K).
We claim that
T'(K) C T{H(K).

To prove this, let * € T;'(K). Then we have y € K such that y = Thx. There exists
a sequence (y,) in K which converges to y. Since T4 is a local homeomorphism, there
exists a neighborhood W of x and a neighborhood U of y such that Tx|lw : W — U is a
homeomorphism. Hence, (Ta|w) 'y, converges to (Ta|w) 'y. Since (Talw) 'y = z, we
have z € (Talw)Y(K) C T H(K). O

Proof of Theorem 2.7. Since A is invertible, it induces a surjective endomorphism (epimor-
phism) T4 on T Let g = |det A|. Then, T4 is g-to-1 mapping. That is, for every z € T¢,
(Ta)~ () consists of ¢ points. Also T4 is a local homeomorphism. If ¢ = 1, then the result is
trivial since we necessarily have ker T4y = {0} and all eigenvalues of A are integral algebraic

units. Hence, we can assume that ¢ > 2.
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Let

H:={zx e Td: (Ty)"x =0 for some n > 0}.

Then, H is a closed subgroup of T¢ and (T4) '(H) = H, by Lemma 2.8. Let Hy be the
connected component of H containing 0. Thus, H, is a closed connected subgroup of T¢,
hence a subtorus. Moreover, G := H/H, is a discrete compact group on which 74 induces a
surjective endomorphism, hence an automorphism. We also have Tx(Hy) = H,.

We claim that

(2.4) (T4)"'(Hy) = Hy.

Suppose that Hy # (Ta) *(Hyp). Since Hy C (Ta) '(Hy) C H, there exists h € H \ Hy such
that h + Hy C (T4)"'(Hop). Thus, Ta(h + Hy) C Hy, which contradicts the fact that Ty is
an automorphism on G.

A subtorus Hy C T lifts to a rational A invariant linear subspace K, C R¢, ie., K
a linear span of rational vectors and A(K,) = K,. The formula (2.4) implies that the
endomorphism T4 restricted to the subtorus Hj is g-to-1 mapping. Consequently, the linear
map A restricted to Ky has determinant =+q.

The matrix A also induces a linear mapping A R?/Ky — R4/K,, which corresponds
to endomorphism of the torus T¢/H,. Hence, A can be identified with an integer matrix,
see [23, Theorem 0.15]. The characteristic polynomial of A is the product of characteristic
polynomials of A|g, and A. These polynomials have all integer coefficients. Since the
constant coefficients of A and A|g, are £¢, the characteristic polynomial of A is an integral
monic polynomial with the constant term £1. This proves (i) = (ii).

To prove the converse implication we assume (i7). Thus, the characteristic polynomial
p € Z[zx] of A is divisible by a monic polynomial py € Z[z] with constant coefficient +1.
Hence, p; := p/py € Z|x] is a monic polynomial with constant coefficient +¢q. Consider the
invariant subspaces Ky and K; corresponding to py and py, i.e.,

KOZ{[L'GRdeo[A]$:O}, Kl :{J/’Edel[A]QZ’:O}

Then, K, and K, are rational subspaces of R? which are invariant under A. Moreover, the
characteristic polynomial of A restricted to K; is p;, ¢ = 0,1. The matrix A has a block
diagonal form with respect to subspaces Ky and K;. So does any power A", n > 1. Let H;
be a subtorus of T¢ corresponding to a subspace K;, i = 0,1. Since A, has determinant
+1, Talp, is an automorphism of Hy. Hence, ker Ty C H;. Likewise, ker(T4)" C H; for any
n > 1. Since H; is a proper subtorus, this yields (7). O

As a corollary of Theorem 2.7 we obtain

Corollary 2.9. Let A be a dxd invertible matriz with integer entries such that no eigenvalues
of A are integral algebraic units. Then the epimorphism Ty satisfies our standing assumption,
1.€.,

(2.5) {x €Td: (Ty)"x =0 for somen >0} = T

In particular, for any expansive matriz A, i.e., all its eigenvalues X of A satisfy |A| > 1, the
corresponding epimorphism Ty satisfies (2.5).
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Proof. If A is a d x d invertible matrix with integer entries such that no eigenvalues of A are
integral algebraic units then by Theorem 2.7, (2.5) holds. To prove the second part of the
corollary, assume that A is expansive. But suppose that (2.5) fails, i.e.,

{z € Td: (Ty)"x = 0 for some n > 0} # T<.

Then by Theorem 2.7, A has an eigenvalue A € C which is an integral algebraic unit, i.e.,

both A and % are algebraic integers. Hence, the characteristic polynomial of A is divisible

by the minimal monic polynomial p of A, which has integer coefficients. Since 1/ is also an

algebraic integer, the constant coefficient of p is 1. Hence, the product of eigenvalues of A,

which correspond to the roots of p, is equal to £1. This gives a contradiction with the fact

that A is expansive. O
The well-known doubling map illustrates the essence of our standing assumptions.

Example 2.10. Let G = T = R/Z. Let m be an integer such that |m| > 2. Define an
epimorphism A : T — T as a multiplication map A(z) = mz mod 1, x € T. Then, ker A is
finite, has cardinality |m|, and for any j € N,

ker A = {k/m’ +Z : k=0,1,...,|m|’ —1}.

Hence, the pair (G, A) satisfies the standing assumptions. In particular, when m = 2, then
A:T — T is a well-known doubling map A(z) =2z mod 1.

Next we give more examples of epimorphisms on compact abelian groups satisfying our
standing hypothesis.

Example 2.11. For a fixed natural number N > 2, let Zy = %Z/Z ~ {0, %, %, ce %}
Consider G = (Zy)N equipped with the product topology. By Tychonoff’s Theorem G is
compact. We define the backward shift mapping S on G, i.e., S(z1,29,...) = (22, 23,...).
It is straightforward to verify that S satisfies the standing assumptions. In fact, we have a

more general example below.

Example 2.12. Consider again G = (Zy)Y, for fixed natural number N > 2. Let A be
an upper triangular matrix such that main diagonal elements are zero, the upper diagonal
elements are 1, and A is the band matrix with upper bandwidth & € N. More precisely,

0 1 13 Ar4 ... Aa1k+1 0 0 0
0 0 1 Q24 Q25 a2 k+2 0 0

(2.6) A=10 0 o0 1 aszs asg o azkes O

With the help of the above matrix A, we define a homomorphism 74 on G by
Ts(Y) =AY

where Y = (y1,92,¥3,...) € G and AY = (Z aiYj, Y a2;Yj, - ) The following lemma
j=1 j=1

shows that T}y satisfies our standing assumptions.

Lemma 2.13. Let G = (Zy)N. Suppose that A is an N x N matriz with integer entries such
that each row has finitely many non zero entries and Ty : G — G is defined by

T4(Y) =AY forY e G.
Then



(1) Ty is a well defined continuous homomorphism G — G.
(i1) If A is of the form (2.6), then Ty is an epimorphism.
(11i) If A is of the form (2.6), then ker Ty is finite and its cardinality is bounded by

(2.7) | ker T4| < N*.

Proof. Since each row of A has finitely many non-zero entries, AY is well defined for any
Y € GG, and T}y is a homomorphism. The group G is metrizable with metric given by

|z — i
d(X,Y)zle—ig”, X = (z1,29,...),Y = (y1,92,...) € G.
i=1

For any n € N we can find m € N such that a;; = 0 for all 1 <7 < n and j > m. Hence,
if X = (21,22,...) € G satisfies z; = 0 for 1 <4 < m, then d(AX,0) < Yy ° 27" =27"
Hence, T4 is continuous at 0 € G and thus everywhere.

To prove (it), we define the projection p, : G — G by

po(T1, 29, ...) = (21,22, ..., 2,,0,0,...).
We have following two claims:
Claim (a): p, o Ta(G) = pu(G)
Claim (b): Ta(G) =G
To prove Claim (a), take any Y = (y1,¥2,...) € G. By (2.6) for any X = (21,29,...) € G
we have

k+1 k+n+1
pnOTA(l'l,ZCQ,...) = (ZEQ—I— E Cl17j$'j,...,l'n+1—|— E an,jxj,O,...)
j=3 j=n+2

We can find X € G satisfying p,0T4(X) = p,(Y') by back substitution. Indeed, let z,,+1 = y,
and z; = 0 for ¢« > n + 1. Having defined x; for ¢ > m, we let
k+m
Tm = Ym—-1 — Z Am—1,5L5.
j=m+1
Proof of Claim (b). For fixed Y € G, we find a sequence (X,,)?%, in G such that
Pn © Ta(Xn) = pu(Y')

By the compactness there exists a subsequence (X, ) which converges to X such that

Pry © Ta(Xn,) = pn, (V).
By continuity of T4, pn, 0T4(X,, ) converges to T4(X) and p,, (Y') converges to Y as k — oo.
Hence, we have
Ta(X)=Y.
Proof of (ii7). We claim that there are exactly N* solutions of the equation
(2.8) pPnoAX)=0 for X € ppyi(G).

Indeed, if we assign values of z,49,...,Z,1k, then the value of x,,,1 is uniquely determined

by the n’th row of A. By back substitution, the values of ws,...,z, are also uniquely

determined. Finally, ; can take any value in Zy. Since we can assign k values in Zy, the

number of solutions of (2.8) is N*. Since A is a band matrix with bandwidth &, if X € ker T,

then p,4x(X) is a solution of (2.8). This implies (2.7). O
7



Example 2.14. Consider G = T? x (Zy)N, for fixed N > 2. Let B be a d x d integer
invertible matrix, which induces an epimorphism T on T?. Assume B has no eigenvalues
which are algebraic integral units. Let i : (Zy)Y — T¢ be a homomorphism with a finite
image. Let S : (Zy)N — (Zy)" be the backward shift. Define a homomorphism A on G by

AX,)Y) = (Tp(X) +i(Y),S(Y))  where X € TYY € (Zy)".

We claim that A satisfies our standing assumptions. It is easy to show that A is an epimor-
phism from the fact that Tz and S are both epimorphisms. Moreover, ker A is finite and its
cardinality

|ker A| = N|ker Tg| = N|det B|.

We only need to prove that |J ker A7 is dense in G. A simple calculation yields
Jj€No

ker A7 = {(X>Y) EGiZ/j+1=yj+2=---=0

(2.9) i1
and T(X) = =Y Tp(i(S7 )))}.

Take any (Xj,Yy) € G such that Yj has finitely many non-zero coordinates. Hence, S7(Yy) =
0 for sufficiently large j > jo. It suffices to find a sequence (X;);en in T such that
(2.10) (X;,Yp) € ker A7 for j > jo and lim X; = Xo.

j—oo
By Theorem 2.7, |J ker(Tp)’ is dense in T¢. Therefore, for every sequence (X})>, in T¢,
Jj€No
there exists a sequence (X;)%, in T? such that X; € T’(X}) and X converges to X as

J—1 ,
j — oo. Taking X} = — 3 T5(i(S7"%(Yp))), this observation and (2.9) yields (2.10).
k=0

Despite our efforts, the following problem remains open.

Problem 2.15. Let G = T" be the infinite dimensional torus. Does there exist an epimor-
phism A on TN such that the standing hypotheses on A hold? That is, ker A is finite and
U ker A7 is dense in T".

JEN
3. MRA AND SCALING SEQUENCES

In this section we give the definition of a multiresolution analysis (MRA) in the setting of a
compact abelian group G and an epimorphism A satisfying the standing assumptions. Then
we give the characterization of scaling functions. Our definition of an MRA is motivated
by the definition of a periodic multiresolution analysis due to Skopina [22] and Maksimenko
and Skopina [18] in higher dimensions; see also [19]. However, our definition differs slightly
from [19, Definition 9.1.1] since it explicitly mentions a scaling function.

Definition 3.1. We define the shift operator 7}, y € G, acting on functions f on G by

Ty f(z) = f(x —y).
A multiresolution analysis (MRA) of LP(G) for 1 < p < oo is a sequence (V) en, of closed

subspaces of LP(G) satisfying the following properties:
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MRI1. V; C V4, for all j € Ny,
MR2. UZ,V; = L7(G),
MR3. f € V; if and only if T), f € V}, for v € ker A’ and j € Ny,
MRA4. there exists a function ¢; € V; such that (7,¢;)scker 4 forms a basis of V;, j € Ny,
MR5. a) f € V; = f(A()) € Vji1;
b) f € Viz1 = Pf €V}, where P is as in Definition 2.5.

A sequence of functions (¢;),en, as in MRA4 is called a scaling sequence of an MRA (V});en,-

Let A be the adjoint homomorphism to A, which is defined by A\(X) =yoAfor y € G.

Then, Aisa topological isomorphism of G onto the annihilator of ker A, see [7, Proposition
6.5].

Definition 3.2. Any set containing only one representative of each coset, G /(ker A)t =

G/A(G), is called a set of digits of A, which is denoted by D(A). Let m = |ker A| be the
cardinality of D(A). Then, we define recursively the set D(A7), j € N, of representatives of

distinct cosets of G /(ker A7)L by
(3.1) DAY = {Alr +r:r € D(A),m € D(A)}.

To prove that D(A71) is a set of representatives of distinct cosets of G/(A)*(G), take
any 7,7’ € D(A) and r,r" € D(A?) such that
Al 47 — (Aa +1) € (APTHG).
We can deduce that r = ' and then 7 = 7/. Hence, elements of D(A7™!) represent dis-
tinct cosets of G/(A)7T(G). Moreover, its cardinality |D(A7™!)| = |D(A)||D(A7)| = m?*T.
Therefore, (3.1) defines representatives of all such cosets.
The main result of this section is a characterization of scaling functions associated to an

MRA (V})en,, which is a generalization of a result of Maksimenko and Skopina [18, Theorem
7] to compact abelian groups G, see also [19, Theorem 9.1.4].

Theorem 3.3. Functions (¢;)jen, C LP(G) form a scaling sequence for an MRA of LP(G),
1 <p < oo, if and only if:
(1) Po(x) =0 forall x # 0, x € G. |
(2) For any j € Ny and any n € G, there exists x € (ker A7)* +n such that $;(x) # 0.
(3) For any x € G, there exists j € Ny such that p;(x) # 0.
(4) For any j € N and any n € G, there exists a number 1, such that $;_1(x) = ) $;(x)
for all x € (ker A7)+ + 1.
(5) Fgr any j € Ny and any n € G, there exists a number 7} # 0 such that $;11(A(x)) =
W@ (x) for all x € (ker AV)* + 1.

The proof of Theorem 3.3 follows a similar scheme as in [18] with necessary changes
imposed by the more general setting of this theorem. The following lemmas are useful in
proving the main results.

Lemma 3.4. Suppose V; C LP(G), 1 < p < o0, j € Ny and azioms MR1, MR2, MRS and

MR5 b) of Definition 3.1 hold. Then the space Vi consists of constants.
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Proof. The space Vj is one-dimensional by property MR3. Let f € Vi such that || f] # 0.
First we will show that f(0) # 0. Consider ¢ = Pf. By Proposition 2.6

30) = P10) = [ Pfa)ds = ker ] [ fa)de = ker Af(0)

Let go € V;. Then by MR5 b), ¢1 := Pgy € Vi_1,...,9; := Pgj_1 € V. If we assume
f(O) =0, then g;(0) = 0. This implies that any function from any V; has zero mean, which
contradicts axiom MR2 of Definition 3.1.

Next suppose that f(xo) # 0 for some xo # 0. Since f € Vp, using MR1, we have f € Vi,
hence by MR5 b), g € Vj. Since Vj is a one-dimensional space, therefore, for some constant

A it follows that g = Af and hence g(x) = Af(x). From the above calculation A = | ker A|.
We define the A-dilation operator on LP(G) for 1 < p < oo by
Daf(x) = f(Azx) for all x € G.

By [7, Lemma 6.6], we have
B = { JA0N) forx € AG) = (s

0 otherwise.

Hence, for y € (ker A)*,
Daglx) = / P f(Az)x(w)

Z/fx+a dx

a€ker A

= Y x@)f() = lker Alf(x).

acker A
Therefore, for y € (ker A)*, R
 fw=Fat).
Equivalently, for any n = A7(x) € G, we have f(An) = f(n). Hence, for any m € N we
have

(3.2) 0# f(xo0) = f(Axo) = -+ = [(A"X0).

We claim that XO,A\XO, izl\QXO, ... are all distinct. On the contrary, suppose that for some
m > 1 we have yo = A™xo. Since xo(x) = xo(A™z) for all z € G, we necessarily have
Yo(z) = 1 for all € ker A*™, k € N. By our standing assumptions, Proposition 2.4 implies

that xo(x) = 1 for all x € G, which contradicts the assumption that xo # O.
Combining the above claim with (3.2) leads to the contradiction with the fact that the

Fourier transform maps L'(G) D LP(G) into C’o(@). Consequently, f(x) = 0 for all y # 0,
and hence, f is constant. 0

Definition 3.5. Define the operators w) on L'(G), for j € Ny and 7 € G, as follows

SNf = f,
. 1 -
Ghfe) = e 2 M@t

a€ker AJ

Note that unlike [19], the operators w] are not defined recursively.
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Lemma 3.6. Let f € L'(G), j € Ny, and n € G. Then, w% has a Fourier series representa-
tion

(3.3) wif ~ Y F+r)m+ k).

rE(ker AJ)L
That is, for any x € @,
wy FOO if x € (ker A): 4,
3.4 ; = .

In addition, let V; C LP(G) for j € Ny be such that MRS of Definition 3.1 holds. If f € V,
for fixed jo, then wf?f €V, forallj=0,...,75.

Proof. We start by the following calculation.
A0 = T /fora

aeker AJ

1
- | ker AJ| /f

aeker AJ

The product of two character is also a character on G. Therefore using [11, Lemma 23.19],
the sum on right hand side is | ker A7| if x —n € (ker A7)+ and 0 if x —n & (ker A7)*. This
proves (3.4).

Next, suppose that f € V;; and j = 0,...,jo. Then by MR3 of Definition 3.1, T, f € Vj,
for a € ker A7 C ker A%. Therefore, wi f € Vj,. O

Lemma 3.7. Let f € LYG) and j € Ny. Then functions T,f, a € ker A, are linearly
independent if and only if w%f # 0 for allm € D(AY).
Proof. Consider m’ x m? matrix (1(a)),ep(ai)acker 47, Which represents the discrete Fourier

transform of the finite group ker A7 C G. Tts characters are elements of G /(ker A7)+, which
we identify with D(A’). The discrete Fourier transform matrix is a multiple of a unitary
matrix, and hence invertible. Therefore, T,f, a € ker A7, are linearly independent if and

only if w) f, n € D(A’) are linearly independent. By (3.4) the supports of whf, n € D(AY),
are disjoint. Hence, their linear independence is equivalent to wi f # 0 for all n € D(A%). O

Lemma 3.8. Let (V})32, be an MRA of LP(G), 1 < p < oco. Then there exists a family of
functions v%, j€eNy, ne @, satisfying the following properties:

Vo. U% = Uz, if n—n' € (ker Aj)L‘ and (v))nep(asy is a basis of V;.

VL. 0} (x) =0 for all x & (ker AT+ | |

V2. If ©)(x0) # 0 for some xo € (ker AL 4, then 07 (x) = @} (x) for all x €

(ker A7)+ + 7.

V3. 9} (x) = 5;\&+1(Ax) for all x € G.

Proof. First we observe that (V3) can be conveniently rewritten as
~it1 1
(V4) i (x) = % (A ') forall x,n € (ker A)*.
11



Define the space
. {feV;: fA(X) =0 for all y & (ker A7)+ 47}
Let f € V;. Then by Lemma 3.6

f= Y wif= > fn

neD(AY) neD(AY)
where f, € V}(n). This implies that V; = D Vj(n. By MR4 of Definition 3.1 and
nED(AY)
Lemma 3.7 we have dim Vj(") > 1. Since dimV; = m? and |D(A7)| = m?, we actually have

dim Vj(n) =

The proof is by the induction on scale j. Assume we have constructed functions (U%) for
Jj=0,...,Jo, satisfying (VO) and (V1) for j < jo, and (V2) and (V3) for j < jo — 1, where
jo € No. Suppose first that 77°(xo) # 0 for some xo € (ker A°*!)= 4 5 and n € G. We set
vt = wlote)o. Then by Lemma 3.6

i}\jo—&-l(x) _ @\%0 (X) for x € (ker AJ:O—H)L + 1,
0 for x & (ker Alo+t1)L 4.

n
Hence, (V1) holds for j = jo + 1 and (V2) holds for j = jo. Next we check that (V4)

holds for j = jo. Let x,n € (ker A)*. If x € (ker A%°*1)L + 5 then by (V2) and (V4) for
7 =Jo— 1, we have

w00 = w00 =75 (AT =7, (A1),
Otherwise, if y € (ker A%0*1)L + 5, then by (V1) we have

a0 =0 =75, (A7),
Either way, (V4) holds for j = jo.
Next suppose that 05 (y) = 0 for all x € (ker Attt 4 and n € (ker A)*. We set

vt () = vl (Ax) Then,

00 = [ o, (Al = Dk, ().

By [7, Lemma 6.6], the right hand side is equal to UJO (E_lx) for x € (ker A)* and 0

otherwise. This proves that (V4) holds for j = jo. L1kew1se, (V1) holds for j = jo + 1 by
the inductive assumption and (V2) need not be verified.
Finally, suppose 07°(x) = 0 for x € (ker A?*™)* 45 and 7y ¢ (ker A)*. In this case we take

for vJo*t, 1 € D(A%*!), any nonzero element from the space V +1, and then let UJ?H = pJot!
if n — 1/ € (ker A1)+ Since 00+ (x) = 0 for all x & (ker AJOH) + 1 we have (Vl) Whlle
(V2) and (V4) need not be checked.

Finally, observe that by the construction all functions v} € V}(") are non-zero and v} = U%’
if n—n' € (ker A)*. Since V; = P Vj(") and dim V;»(") = 1, we conclude that (V0) holds
neD(A7)
as well. ]
12



Proposition 3.9. Let (V})jen, be an MRA of LP(G), 1 < p < co. Let (v))nep(as) be a basis
of V; given by Lemma 3.8. A sequence (p;)52, C LP(G) is a scaling sequence if and only if

55 b= X o

neD(AT)
where o # 0 for all n € D(A7).

Proof. Suppose (¢;)72, C LP(G) is a scaling sequence. By Lemma 3.8 we can write ¢; as in
(3.5). By Lemma 3.6 we have

wlp; = alv] n € D(A).

By Lemma 3.7 we have oz{] # 0.
Conversely, suppose ¢; is given by (3.5), where oz% # 0. Then by Lemma 3.7 the functions
T.pj, a € ker A7, are linearly independent, and hence a basis of V; since dim V; = m/. O

Corollary 3.10. If (goj);";o 1S a scaling sequence, then w%gpj = oz%v%, where a% # 0. In

particular, the functions (W‘%Q@j)neD(Aj) form a basis of the space V;.
We are now ready to give the proof of Theorem 3.3.

Proof of Theorem 3.3. Assume that (p;)32, is a scaling sequence for an MRA (V)52 of
LP(G). Part (1) of Theorem 3.3 follows from Lemma 3.4. For (2), we use Corollary 3.10

noting that for x € (ker A7)+ 4+, n € G,
3i(x) = whei(x) = alvi(x).
By (V1) of Lemma 3.8 there exists x € (ker A7) +7 such that v)(x) # 0. Since o] # 0, we
get ©(x) # 0. To prove (3), suppose on the contrary that @,;(x) = 0 for all j € Ny. This
contradicts the axiom MR2 of Definition 3.1. To prove (4), take any n € G. First consider
the case @;_1(x0) # 0 for some yo € (ker A7)+ + 7. Using Lemma 3.6 and Corollary 3.10 we
have
w%goj = a%v% and w%goj_l = w%w%_lcpj_l = a%_lw%v%_l
for some aJ, a)~' # 0. By (V2) of Lemma 3.8, for x € (ker A7) +17
pi-100 _ i)

- A
ap

o
The above expression implies

Bi-1(x) = 1 2;(x),

where i} = ai_ . In the case when $;_1(x) = 0 for all x € (ker A/)* + 17, we take ) = 0.

To prove (5)n, we use Lemma 3.6
ST F(Ay) = { f(Ax), for x € (ker AT)* 4,

0, otherwise.
13



We again use Corollary 3.10. For any y € (ker A7) + 1, we have p;(x) = aJvi(x) and

nn
gpj+1(Ax) = a”l/\”l(Ax) where o, of ™" # 0. By (V3) of Lemma 3.8, it follows that
AR
- Ay ~
Pj+1(Ax) = —5-8;(x)
n
A
Hence (5) holds with ) = aA—g’:

For the sufficiency part let us assume that functions ¢; € LP(G) satisty properties (1)-(5)
of Theorem 3.3. Set V; = span{T,y; : a € ker A7}. Our aim is to show that (V)% is an
MRA and (y¢,) is a scaling sequence.

MR4 follows by Lemma 3.6, Lemma 3.7, and property (2). MR3 follows then from MRA4.

Indeed, write f € V; as
> T

keker AJ
For a € ker A7,

T.f= Y alTepj= > aToprp;.
keker AJ keker AJ
Hence, T, f € V.
To prove MR1, we restrict ourself to a basis function w? 205, 1 € D(A7). We need to verify
that if f € V}, then f € V,4,. By Lemma 3.6 we have

] — Jj+1
(36) w%@] - z(: )w'r]—i-AMT 77%0-7
meD(A
Using property (4) we can write
j+1 +1
(37) Z 'uzﬂrAJﬂ' Z7+AJ7TQOJ+1
weD(A)
Hence, by Lemma 3.6 we have w’* +AJ ;41 € Vji1, which proves MRI.

Next we claim that there exists a family of functions v%, J € No, n € G satisfying the
conditions (VO0), (V1), (V2) and (V3) of Lemma 3.8. Observe that by properties (2), (4),
and (5), we have

u% = uf], and 7% = 73% if n —n' € (ker A)*, j € Ny,
We define numbers oﬂ ,J€ Ny, ne G recursively with respect to j. Set a := 1. Define
(e g A0,
ol = 2117,41 ) =0 and n € (ker A)*,
i _ 1
1 ph, =0 and n ¢ (ker A)~.
By construction

oz%:ozz]/%o if n —n' € (ker A)*, j € Ng.

Set v] = w”% . Then, (v})nep(as) is a basis since (w]@;)yep(ai) forms a basis of the space Vj

by Lemma 3.7 and property (2). This proves (VO0). Likewise, we deduce that (V1) and (V2)
14



hold. To verify (V3) we rewrite it as (V4). Now, if /™" = 0, then (V4) follows directly
from the definition of /™. Otherwise, we observe the fact that

J+1 £ = 6%()(0) # 0 for some yo € (ker Aj“)L +n.

Then, we can verify (V4) inductively in a similar way as in the proof of Lemma 3.8. We
leave details to the reader.
To prove MR5(a), it suffices to show that it holds for the basis (v)),ep(ai). For x €

(ker A)* we have Davi(x) = 6j(121\_1 ) = AJH( ) by (V3). Otherwise, if x & (ker A)*, then

Davj(x) =0 = A]H( ) by (V1). This implies that v](A-) = vl“ € Vi
To prove MR5(b) we need to show that Pv%“ € V;. We cla1m that

—

(3.8) Pul™(x) = | ker A[57"!(Ay)

To prove (3.8) we use (2.1)

/Pv%+1(A$)X(Ax)dx:A(A)/ Pvfﬁ%m)x(x)dw.
e a

Using the change of variables we have

/GPU%H(AQC)X(Ax)dx = Z /U”lx—i-a (Az)dx

acker A

= Z/v”l x)dx

a€ker A

= |ker A|v%+1(Ax).

Since G is compact, A(A) = 1, which yields equation (3.8).

If 7 € (ker A)*, then we use the property (V3) of Lemma 3.8, which gives 07" (Ax) =
@\%7177@)- By (3.8) we have Pv%“': |kerA|U%7 € V;. If n & (ker A)*, then we use the
property (V1) and (3.8) to get Pv)*t! = 0.

It only remains to prove the property MR2 of Definition 3.1. Take any y € G. By property
(3), there exists jg such that Pio(x) # 0 and for j > jo, $;(x) # 0 by property (4). Hence,

In

(3.4) yields v (x) = 7& 0 for all j > jo. We introduce functions h; for j > jo by
vl (1) ——

(3.9) hj(x):=1- A;‘( )X x), z €Qq.
vy (x)

By taking the Fourier transform, we have
~ - 5)7 + K N
(3.10) h;(k) = / k(x)dr — #, k€ G.
G vy (x)

For k = 0, ﬁj(ﬁ) =0, and ﬁj(ﬁ) # 0 can happen only if x € (ker Aj)L by (V1).
15



Suppose that f € LP(G) is such that ]?(/i) = 0 for all Kk ¢ (ker A7), Equivalently,
f(x) = f(z +a) for all a € ker A% and x € G. For j > j, define

(3.11) S,/ (x) = — S fata),

m] —Jjo )
[a]€ker AT / ker AJO

where the above sum runs over representatives of cosets of ker A7/ ker A% and m = |ker A|.
The Fourier coefficients of the function S;f can be non-zero only if x € (ker A%)L. Hence,
by the fact that the dual of ker A7/ ker A% is (ker A7)+ /(ker A%)* and [11, Lemma (23.19)]
they are equal to

mJi—io _ 0 otherwise.
[a]€ker AF / ker AT0

(3.12) @7(5) _ 1 Z w(a) Flx) = {f(/i) if K € (ker A7)*%,

Moreover, by the triangle inequality we have

(3.13) 1S5 £l < N[ £1]p-
We claim that

310 Siy=hy  fori i
Indeed, by (V2) we have
W +r) =0 (x+r)  forre (ker )5, 5> .

Hence, by (3.10) we have

~ 7 N>
(3.15) hy(k) = {hgo(fi) for k € (ker A7)+, 7 > jo,

0 otherwise.

Combining (3.12) and (3.15) yields (3.14).
Let ¢ > 0. Using the fact that trigonometric polynomials are dense in LP(G/(ker A0)),

there exists a trigonometric polynomial ¢ = ) _a cqx such that ¢, = 0 for all £ ¢ (ker Ado)yt

and ||hj, — ¢||, < €. Since ﬁjO(O) = 0 we can additionally assume that g(0) = 0. By our
standing assumption and Proposition 2.4 we have

() (ker A7)* = {0}.

J€No

Hence, if j is sufficiently large, then S;q is a zero function by (3.12). By (3.13) and (3.14)
we have

hillp = 1155 (hjo = DIy < lhjo — allp < e.

Consequently, the sequence (h;) converges to 0 as j — oo in LP(G) norm. Thus, by (3.9) we

have proved that the character function x(-) is approximated by the functions ff‘—((x)) €V, in
Ux
LP(G) norm. This completes the proof of Theorem 3.3. O
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4. CONSTRUCTION OF WAVELET FUNCTIONS

In this section, we are interested in constructing a wavelet orthonormal basis of L*(G).
Given an MRA (V});en, of closed subspaces of L?(G), we define the wavelet spaces as the
orthogonal complements of V; in V4, and we construct wavelet functions whose shifts form
bases in these spaces. In addition, we show the existence of a special type of an MRA,
called minimally supported frequency MSF MRA, for every choice of an epimorphism of a
compact abelian group satisfying our standing assumptions. This yields the construction of
MSF wavelets on general compact abelian groups.

Proposition 4.1. Let (V});jen, be an MRA of L*(G) with scaling sequence (¢;)jen,- The
following are equivalent:

(1) the system (T,;)acker i 1S OTthonormal,
(ii) the system (mj/2W%¢j>n€D(Aj) 15 orthonormal, where the operators w% are as in Defini-
tion 3.5 and m = | ker A|,
(111) we have

(4.1) (wlpj,wlp;) =m™ for all n € D(A%).
Proof. By Lemma 3.6 we have

(4.2) Thpj= Y wiTugy) = Y nlk)wle;.

n€D(AY) n€D(AY)
By the Plancherel formula and (3.4) for any f,g € L*(G) we have
(4.3) (wif,wlg) = (wif,wlg) =0  forn#n € DA).

Hence, for any k,n € ker A’

(Tepj, Topj) = < > nkwle;, > Wwf}/%>
D(

nED(AT) ' €D(AT)
- Z (k)n 90]? %Spj>'
eD(A

From [11, Lemma 23.19], we have

[ |ker A?|, forn =k,
(4.4) Z n(n —k) = { 0, otherwise.
ne€D(A7)
This gives the required equation (4.1) and this argument can be reversed. U

From now on we will assume that (¢;) ey, is an orthonormal scaling sequence. That is,
(4.1) in the above proposition holds for all 7 € Ny. Recall that by (3.7) we have

Jj+1 ]+1 )
Z ’unJrAJTr n+Ain Pj+1s
meD(A)

where coefficients 4] are defined as in Theorem 3.3. Then, by Proposition 4.1 and (4.3)

1-j  _ j—1 i=1.,.
m = <w77 Pi—1,Wy Pj-1)
17



_ Z:j j ‘Z:j j ,
e < un+ﬁj*1wwn+§j*1w%’ Mn+gj1ﬂ/wn+2jl7r/90j>

reD(A) meD(A)

— § J 2/, o ,

= ’/’l’n_,'_A\j,lW’ <w77+A\j717TS0‘77w77+A\j717TS0J’ >7
me€D(A)

where the last equality is a consequence of Lemma 3.6. Hence, by (4.1) we have

(45) Z ‘M‘Z]_i_;{j—lﬂ.‘z =m.
weD(A)

Now our aim is to find the wavelet spaces and wavelet bases. Let (V;) be an MRA of
L*(G) and (g;) be an orthonormal scaling sequence. We aim to find wavelet functions v,
v =1,...,m — 1 in the space Vi, such that the systems (7,%"),cker 47 are orthonormal,
mutually orthogonal for different values of v, and orthogonal to the space V;. To construct
such functions we follow the procedure described below. ‘

We write D(A) = {m, 71,...,Tm_1}, where mg = 0. We define by, = u;i}jm/\/m, where
n € D(AY), k=0,...,m— 1. By equation (4.5), we have

m—1
D lbokl* = 1.
k=0
1

We can extend this row to an m x m unitary matrix B = (b, x),—,. For example, we can
use Householder’s transform as in [19, (9.19)]. We set

a:]’igjﬁk = v/mb, . forv=1,2,....m—1,ne DA, k=0,...,m — 1.

By (3.1) we have defined %’ for all x € D(A’*"). Then we extend this sequence to G by
setting ‘ A ‘ ‘
ol = oy for x € (ker A7)t 40, n € D(ATT),

X
Now, we define the wavelet functions ¢¥ for v =1,...,m — 1, in terms of Fourier transform
by the formulas
(4.6) V(x) = a7 Bin(x)  for x €G,

and the wavelet spaces by
(v) ._ v, j
W™= span{Tyy); : a € ker A’}
Then we have the following theorem.

Theorem 4.2. Suppose (V});en, is an MRA of L*(G) and (¢;);en, s an orthonormal scaling
sequence. Then, for any j € Ny we have

(4.7) Vin=V,ewWVe...owm?,
and the system (Ta@/);)aekerAj 1s an orthonormal basis of the space Wj(”) forv=1,....m—1.
As a corollary of Theorem 4.2 and MR2 the wavelet system
{Ts s a € ker A7 j € Ng,v =1,...,m — 1},

together with the constant function ¢y = 1 forms an orthonormal basis of L*(G).
18



Proof. For any fixed n € D(A’) and j € NO, by (3.7) we have

(4.8) Z MJ+1 WL Pj+1-

n+Aimy, 77+A] T

Analogously, by Lemma 3.6 and (4.6) we have

m—1

(4.9) Wiy =)l wl P

r]+AJ Tk 17+AJ Tk
k=0

In particular, (4.9) implies that ¢} € V;;; and hence Wj(y) CVipforallv=1,... m—1
We claim that:
(1) Wj(”) 1LViforallv=1,...,m—1,
(17) W-(V) LW('{) for allu;«é/f vik=1,...,m— 1.

For (i), first note that Z Oén+ 2in ,uf:riwr = 0 by the fact that the matrix B constructed
— k
above is unitary. Using (4 1), (4. 3) (4.8), and (4.9) we have
YINRZ _ j+1 Jj+1 Jj+1
<w77¢j ’ wTISOJ> - < Z an+Aka n+Aimy, Pi+1s Z ’unJrAJﬂk/wnJrAJﬂ /SO]+1>
k=0
— o’ J+L < J+1 RARA ) > -0
77+A]7Tk 77+A77rk +A77r SOJ+17 +Aj7rk90j+1 .
k=0
m—1
. : w.J _
This proves (i) by (4.3). Likewise, since B is unitary, we have that kZ:O an+AJ7rkan+AJ7rk =
mo,,, for v,k =1,...,m — 1. Hence,
m—1
JahV (I J+1 J+1 —J
(ot v Z an+AJ7rk 77+AJ7Tk <wn+A77r Pitls ) i, Pir1) =M Ou.
k=0

This proves our claim (ii). Moreover, by Proposition 4.1, (T1} )reker 47 is an orthonormal
basis of Wj(”). Since
dim V; = dim W," =
and 1) (m-1)
‘/J@W] @"'@Wj C‘/‘vj—i-l
the dimension count implies the equality in the above inclusion. 0
Next we tackle the problem of the existence of an MRA for general compact abelian groups.
Let (¢;)jen, be a scaling sequence of an MRA. Note that by Theorem 3.3 the supports of
o, satisfy
| supp p;| > m’ for all j € Ny.
This motivates the following definition of minimally supported frequency (MSF) multireso-
lution analysis.

Definition 4.3. We say that an MRA (V});en, is MSF if its scaling sequence (¢,)en, satisfies

(4.10) | supp @;| = m’ for all j € Ny.
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The following theorem characterizes all minimally supported frequency MRAs.

Theorem 4.4. Suppose that (V;),en, is an MSF multiresolution analysis. Then there exists
a sequence (K;)jen, of subsets of G such that
(4.11) Vi ={f € L*(@) : supp f C K;}
satisfying for all j € Ny the following properties:
(1) Ko = {0}, , A
(i) |K; N (n+ (ker A1) =1 for all n € D(AY),
(1) K; C Kji1,
() A(K;) C Kj11, and
() UL K =G.
Conversely, if a sequence (K;)jen, of subsets ofé satisfies (1) ~(v), then (V;),en, given by
(4.11) is an MSF MRA.

Proof. Suppose that (V});en, is an MSF MRA. Define sets K; = supp ;. We claim that
(4.11) holds. Indeed, the inclusion C in (4.11) is trivial. By MR4 and (4.10) the dimensions
of the spaces in (4.11) are both equal to m’. Hence we have an equality in (4.11).

Parts (1), (2), and (3) of Theorem 3.3 imply (), (i7), and (v), respectively. By part (4)
of Theorem 3.3, if x € K,_; for some j € N, then @;_;(x) # 0 implies that @;(x) # 0. This
proves (zii). Likewise, by part (5) of Theorem 3.3, if x € K, then ;(x) # 0 implies that
@Hl(}l\x) £ 0. Hence, Ay € K11, which proves (iv).

Conversely, if a sequence (Kj) e, of subsets of @ satisfies (1)—(v), then we define a sequence
of functions (¢;) by

(4.12) =1k,

Let V; = span{T,p; : a € ker A7}. By Lemma 3.7 dim V; = m?. On the other hand, by (ii)
we have |K;| = m?, which implies (4.11) by the above argument. Likewise, using Theorem
3.3 one can verify that (¢;);en, is a scaling sequence. O

The following theorem proves that there always exist MRAs under our standing assump-
tions.

Theorem 4.5. Suppose G is a compact abelian group and an epimorphism A : G — G

satisfies the standing assumptions: ker A is finite and |J ker A7 is dense in G. Then, there
Jj€Ng

exists an MSF MRA (V});en, associated with (G, A).
Proof. By Theorem 4.4 it suffices to construct a sequence (Kj);en, of subsets of G satisfying

(1)—(v). By the standing assumptions G is a separable compact abelian group and hence G is

discrete and countable. We enumerate G\ A(G) as {x1, X2, ...} Define Ky = {0}. Assume
that we have already defined sets Ko, ..., K, satisfying the following three properties for all
1 <7< Jo

(4.13) K;n(n+ A(G)| =1  forallned,
(414) Kj_l C Kj,
(4.15) AG)NK; = A(K,_y).
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Our goal is to construct a set K 41 such that (4.13)-(4.15) hold for j = jo + 1. Let

K ., = Kj, UA(K,). We claim that
(4.16) |K, 0 N (n + APTHG)) < 1 for all y € G.
By (4.13) we have

1K, N (n+ AHH(G))] < 1 for all y € G,
(4.17) A N (0 + 477G {(1) Ztiefwwe

Hence, (4. 16) might fail only if there exist 7 € AG), & € Kj,, & € A( K;,) such that
&,6€n+ A]°+1(G). This implies that & € A(G). By (4.14) and (4.15),

(A)71&) € Kjp1 C K.

On the other hand, (A)Y(&) € K, and both (A A)~1(&) and (A)~1(&) belong to the same
coset of G/AJO( ) Hence, by (4.13), we have & = &, which proves (4.16).

By (4.16) and (4.17) we have
(4.18) Kl N+ AHHG) =1 for all p € A(G).
Now we find the smallest m € N such that
K1 0 (o + AOTH@)) = 0.
Then, we find the smallest m’ € N such that
(K10 {xm}) 1 O + A7FH(G)) =0,

and we keep adding minimal elements from G \ A(G) until we have constructed the set
Kjyr1 = Ky U{Xm, Xm, - - -} such that (4.13) holds for j = jo + 1. This will happen after
a finite number of steps. The property (4.14) holds for j = jo + 1 by the definition of K, +1.

By the construction of the set K ;1 and the inductive hypotheses (4.14) and (4.15), we have
Kj0+1 N A(G) = (Kjo U A(Kj0)> N A(G) = A(Kjo) U (A(G> 8 Kjo)
= A(KJO) U A(Kjofl) = A(Kjo)'
This proves (4.15) for j = jo + 1, and completes the inductive step. Therefore, we have
constructed sets (k) satisfying (i)-(iv) in Theorem 4.4.
Finally, the property (v) follows by the choice of minimal elements in the above construc-

tion. Indeed, suppose that there exists an element y,, which was never chosen. That is,
there exists jo € N such that xq,..., xm-1 C Kj, and x,, € Kj for all j > jo. Let x € K},

be such that x., € x + A ((A?) Then, by our construction we have

(4.19) Xm € X + A1(G) for all j > jo.
This is shown inductively using the fact that y & X(@) and the decomposition
(4.20) X+AG) = | x+Ar+AHG).

meD(A)
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Indeed, suppose that ., € x + A7(G). Let 7 € D(A) be such that
Xm € X + Alm + AY(G).
Then, by the construction of K, we have
0% KN (x + Alr+ AHYG)) = K; 0 (x + A+ A7Y(Q)).

Since x € K, C K;, by (4.13) and (4.20), the above intersection is a singleton {x}. Hence,
we have 7 = 0 and thus x,, € x + A7 (G), which proves (4.19). By the fact that

ﬂ A(@) = {0}

and (4.19) we have x = Xy, which is a contradiction. This proves (v) and completes the
proof of Theorem 4.5. 0

We finish the paper by illustrating how Theorem 4.2 can be applied in the context of an
MSF MRA given by Theorem 4.5 to produce orthonormal MSF wavelets.

Theorem 4.6. Suppose that (V;)jen, is an MSF MRA associated with (G, A) as in Theorem
4.5. Let m = |ker A|. Then there exists wavelet functions ¢%, j € No, v = 1,...,m — 1,
such that (Taw.?)aekerAj 15 an orthonormal basis of spaces VVj(”) satisfying (4.7) and each (VA
has minimal support in frequency

(4.21) ]supp@-’]:mj foralljeNyg, v=1,... ., m—1.

Proof. Recall that the spaces V; are of the form (4.11) for some sequence (K )en, of subsets

of G satisfying conditions (i)~(v) of Theorem 4.4. Moreover, by (4.12) we can assume that
the sequence of scaling functions (¢;);en, is orthonormal and given by

(4.22) Gj=m 7 1y,
We can then follow the general construction procedure of Theorem 4.2 by observing that the
first row of the m x m matrix B contains exactly one non-zero entry, which is equal to 1.
To guarantee that this matrix is unitary it suffices to choose for B a permutation matrix.
Then, one can show that the wavelets defined by (4.6) satisfy (4.21).

Alternatively, we can give a more direct construction of wavelet functions as follows. Since

(ker ANY- = A(G) = | ] A+ ATYG),
we€D(A)
by (i) of Theorem 4.4 we have for all j € Ny,
|Kjp1 N (n+ A/(G) =m  for all n € D(A).

Hence, we can find disjoint sets KJ(O), e ,K;mfl) such that KJ(O) = K and

(4.23) Kjn =K UK u.. .uK™"
and
(4.24) KN+ A(G)| =1 forallye D(A), v=1,...,m—1.
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Define wavelet functions ¢ by
(4.25) VY =m™1
By Proposition 4.1 (T,9%)aeker 47 13 an orthonormal basis of spaces
W = {f € L*(G) : supp f € K"}
satisfying (4.7) by (4.23). Finally, (4.21) follows immediately from (4.24) and (4.25). O
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