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Abstract

This article presents an optimization formulation and experimental validation of a dynamic-joint-strength-based
two-dimensional symmetric maximum weight-lifting simulation. Dynamic joint strength (the net moment capacity as a
function of joint angle and angular velocity), as presented in the literature, is adopted in the optimization formulation to
predict the symmetric maximum lifting weight and corresponding motion. Nineteen participants were recruited to per-
form a maximum-weight-box-lifting task in the laboratory, and kinetic and kinematic data including motion and ground
reaction forces were collected using a motion capture system and force plates, respectively. For each individual, the pre-
dicted spine, shoulder, elbow, hip, knee, and ankle joint angles, as well as vertical and horizontal ground reaction force
and box weight, were compared with the experimental data. Both root-mean-square error and Pearson’s correlation
coefficient (r) were used for the validation. The results show that the proposed two-dimensional optimization-based
motion prediction formulation is able to accurately predict all joint angles, box weights, and vertical ground reaction
forces, but not horizontal ground reaction forces.

Keywords
Lifting, dynamic joint strength, strength percentile, maximum weight, inverse-dynamics optimization, predictive dynamics,
motion prediction, validation, manual material handling

Date received: 18 July 2019; accepted: |3 February 2020

Introduction and force—velocity properties. These muscle properties
change with the joint angles and angular velocities.
Therefore, dynamic joint strength is a three-
dimensional (3D) function of joint angle and angular
velocity. Since joint angle and angular velocity are
time-dependent functions for a given task, dynamic
joint strength is also an implicit function of time. Based
on data from literature, a model incorporating dynamic
joint strengths (torque limits) will therefore be more
accurate than one using static strengths. It is the

Lifting tasks are a necessary and important part of the
construction and shipping industries. However, they
can put workers at risk of serious injury and reduce
revenue for businesses in the form of lost man-hours
from sick leaves, and insurance and disability payouts.
It is therefore desirable to have a model capable of pre-
dicting maximum safe lifting weight. The National
Institute for Occupational Safety and Health (NIOSH)
lifting equation is a simplistic method to estimate the
maximum load that healthy employees can lift over the
course of an 8-h shift without increasing their risk of
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objective of this work to demonstrate and experimen-
tally validate such a model.

Compared to experimental methods,® predictive
methods are more powerful in cause-and-effect studies.
Human predictive simulation methods available in the
literature can be roughly divided into five categories:
forward-dynamics simulations,” inverse-dynamics simu-
lations,'®'""  collocation methods,'>!* control-based
methods,'* and mixed-formulation methods."> Each of
these methods have their individual advantages and lim-
itations in terms of the computational time required,
accuracy, robustness, and the ability to handle different
models.'®  Ayoub,'” Hsiang and Ayoub,'”® and
Aghazadeh and Ayoub'® conducted pioneering research
into lifting simulation using the optimization approach.
Chang et al.®® used an inverse-dynamics optimization
approach to predict sagittal plane lifting motion by
minimizing joint torque squared cost function.
Intermediate postures were used as constraints in the
optimization formulation in Chang et al.>! However,
the dynamic joint strength was not considered in these
optimization formulations. Giindogdu et al.** consid-
ered dynamic joint strength limits in the optimization
formulation for two-dimensional (2D) lifting simula-
tion. The effects of lifting time, box weight, and lifting
strategy were investigated. However, experimental vali-
dation was not conducted.

In this study, inverse-dynamics optimization is
adopted for a 2D symmetric lifting simulation consider-
ing dynamic strength. This method can not only predict
motion but is also more computationally efficient
because the equations of motion (EOM) are directly
evaluated from inverse dynamics in each optimization
iteration.”> In addition, there are various methods in
the literature that predict lifting motion such as the
time finite element method,”* the forward-dynamics
optimization method,? and the inverse-dynamics opti-
mization method.?**'*® However, only a few studies
have considered dynamic strength for lifting motion
prediction.”” By considering dynamic strength, the
symmetric-maximum-lifting weight can be predicted
for injury prevention in joint space. It is noted that
there are other injury criteria in muscle space that
necessitate the use of a musculoskeletal model. One
example of muscle injury is skeletal muscle strain injury
during lifting.*” The other criterion could be lumbar
spine compression stress.*®

The objective of this article is to develop a dynamic-
joint-strength-based maximum weight-lifting simulation
and to conduct experiments to validate the proposed
model.

Method

Human simulation model

The 2D model has n = 10 degrees of freedom (DOFs):
three global DOFs (g1, ¢2, ¢3) and seven physical joints
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Figure 1. 2D human model.

(g4, ---,q10), as shown in Figure 1. The global DOFs
include two translations (¢;, ¢») and one rotation (¢3)
which move the pelvis to the current position in inertial
Cartesian coordinates. Collectively, the DOFs are
defined as q = [qi, ...,qm]T. Because the model is
symmetric in the sagittal plane, only one set of shoulder
(g5), elbow (ge), hip (¢7), knee (gs), ankle (g9), and
metatarsophalangeal joints (gj9) is considered in the
model. In addition, for these symmetric joints, the joint
strength, the corresponding link mass, and the moment
of inertia are doubled. The Denavit-Hartenberg
method?’ is used to build the skeletal model, and recur-
sive Lagrangian dynamics are used to set up EOM for
the model as follows.*

Forward recursive kinematics

A,' = Al‘,lT,’ (1)
JoT;
B,’ = Bi, Ti + Aj, 'i 2
1 Vi (2)
JT; |
Ci=CTi+2Bi1——q
g,
*T; aT;
+ AL = T A — i 3

where ¢; is the joint angle variable; T; is the 4 X 4
Denavit-Hartenberg link transformation matrix from
the (i—1)th link frame to the ith link frame;
A;, B,and C;, are the global recursive kinematics
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position, velocity, and acceleration matrices, respec-
tively; and Ay = [I] and By = Cy = [0].

Backward recursive dynamics

0A; 0A; 0A;
T = ll’<—D,’) 7gT EiffT—FifG’l»TAl;llo

g, g, * 0g;
(4)
D, = LCI + T, D4 (5)
E =mx; + T 1Ei (6)
Fi=rdy + Ti v 1Fi 4 (7)
G = hdjy + G4 (8)

where tr(-) is the trace of a matrix, I, is the inertia
matrix for link 7, D; is the recursive inertia-and-Coriolis
matrix, E; is the recursive vector for gravity torque cal-
culation, F; is the recursive vector for external force tor-
que calculation, G; is the recursive vector for external
moment or torque calculation, g is the gravity vector,
m; 1s the mass of link i, r; is the center of mass of link i,
f,=[0 fi, fi- 0] is the external force applied
on link &, ry is the position of the external force in the
local frame k, hy=[h, 0 0 O ]T is the external

moment applied on link k, o =[0 0 1 0]" fora
revolute joint, zp=[0 0 0 0] for a prismatic
joint, d; is the Kronecker delta, and the starting condi-
tionsare D, | =[0]and E,+; =F,+1 =G, + =10].

Inverse-dynamics optimization formulation
considering dynamic strength

For the inverse-dynamics optimization problem, the
design variables are cubic B-spline control points of
joint angle q. and box weight 7. The objective function
fis the negative box weight which is to be minimized
(maximizing the total weight)

JW)=-w ©)

The lifting optimization problem is subjected to the
following constraints: joint angle limits, where q is the
joint angle profile, and q* and qY are the lower and the
upper bounds, respectively

q"<q(1)<q" (10)

Dynamic strength is considered in the simulation
and is imposed as a set of joint torque limits, where the
lower and the upper torque limits are functions of joint
angle, angular velocity (v), strength percentile (z_score),
and time (1): 7% = 15(q;, vi, z_score, 1) and 7Y = 1Y(qg;,
v;, z_score, t). These two functions are logistic

regression equations obtained from isometric and isoki-
netic strength tests using dynamometers*

4o~ (ai—c3)/ca 4o—(vi—ce)/er

7l =c tec + c
peak-U T T 52 [1 + e—(@en/es]? : [1+ e-(imes)/er)?

be—4i—c3)/ca 4o~ vi—ce)/er
+ cg 3 3
[1+ e~@e)/ea]” [ 4 e-(imc)/er]
(11)
77 = z_score XCVy X Tho (Gin Vis 1) + Thea (Gis Vis 1)
(12)
7,-<frf](q,~, v, z_score,t), i=4,....n (13)

where ¢; — ¢g are regression coefficients, e is the expo-
nential function, T;eak_u is the peak upper torque value
for the ith joint in the positive ¢; direction as defined in
Figure 1, and CV{J is the upper coefficient covariance
for the ith joint.

Similarly, for the lower joint torque limit

46_(‘]1'—[/3)/5/4 46—("1’—615)/[/7

i _
Tpeak L — dy + d 2

[+ e-lad/aP [ + e (ndo)/]

4o~ ai—ds)/da 4o~ vi—ds)/dr
+ dy 3 3
[] + e*(‘h*dB)/dA] [1 + g*("l*dﬁ)/‘ﬂ
(14)
k= z_scoreXCViXTi)eakL(q,-, vi, 1) + Ti)eakL(CIi, Vi, 1)
(15)
7= 75(qi, vi, z_score, t), i=4,...,n (16)

where d; — dg are regression coefficients, e is the expo-
nential function, 77, | is the lower peak torque value
for the ith joint in the negative ¢; direction as defined
in Figure 1, and CV} is the lower coefficient covariance
for the ith joint.

For dynamic joint strength constraints in equations
(11)—(16), the coefficients ¢; — cg, d; — dg, and CV are
obtained from experiments in the literature.*®
However, the participant-specific strength z_score is
obtained from an enumeration process by solving an
optimization problem which is formulated as follows:
given maximum box weight, lifting time duration, and
posture constraints from experimental data, minimize
the sum of the squares of joint torques (the objective
function) subjected to lifting-task-based constraints
including strength limits and enumerate strength
z_score until the optimization problem converges.” The
participant-specific z_score thus obtained is the mini-
mal strength percentile required to lift the correspond-
ing maximum box weight. This z_score is used to build
dynamic joint torque limits in equations (11)—(16).

Balance must be considered during the box-lifting
process. This balance is a zero-moment-point (ZMP)
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constraint. pzyp is the ZMP location, and FSR repre-
sents the foot-support region

pZMP(qa l) € FSR (17)

In addition, the feet are fixed on level ground. pyy, is
the foot position calculated from the 2D skeletal
model, and p}fwl is the foot position measured from the
experiment

(. 1) = pj, (18)
Proot\ 4 P_/oo,

The initial and final box-grasping locations are

derived from experimental data

Prand(@ 1) = Phoy (1), 1=0.T (19)

where ppanq is the calculated hand position and py.,  is
the measured box-handle position.

Finally, the joint angle differences between the model
and the experiment are constrained to a small range
(¢ = 0.1 rad) at the boundaries and to a larger range
(¢ = 0.15rad) at 25%, 50%, and 75% of lifting dura-
tion. q* is the experimental joint angle

|lqi(t) — qF(0)] <e,
T T 3T
4727 4

t=0, T i=4,...,10 (20)

where ¢ = [0,7/4, T/2, 3T/4,T)], t =[0,T/4, 3T/4, 1],
t=1[0, T/2,T], t = [0, T] for 3, 2, 1, and 0 intermediate
joint angle constraints, respectively. The intermediate
joint angle constraint 3 is the default formulation, and
2, 1, and 0 intermediate constraints are studied for the
purpose of drawing comparisons.

The ground reaction forces (GRF) are calculated
from an inverse procedure based on joint kinematics,
gravity, and external loads'' during the optimization
iteration. The total time 7 is obtained from experimen-
tal data.

Experimental data collection

Participants. A total of 23 male volunteers between 20
and 50 years of age were recruited for participation in
the lab experiments. Capture data collected from four
participants were found to be incomplete due to inter-
mittently missing marker data during post-processing
and therefore discarded. Finally, 19 participants were
used for this study (age: 31 *= 11 years; height: 180.8 =
6.2 cm; body mass: 82.17 = 11.87 kg, all reported as
mean * standard deviation). The participants were
required to have had no recent musculoskeletal disor-
ders, to be able to perform the scripted task, and to not
be on any medication that might impede their perfor-
mance during the box-lifting task. The experimental
procedures were approved by the Institutional Review

Board of Texas Tech University, and all participants
gave written informed consent.

Experimental protocol. 3D kinematic data were collected
at 100 Hz using a Vicon Nexus motion capture system
(Vicon, Oxford, UK). Five cameras were placed around
the room, with one in each corner and one in the middle
front of the room. A plug-in-gait model with added iliac
crests,! yielding a total of 42 markers, was used for the
marker protocol.*® There were two force plates—one
under each of the participants’ feet—that collected
GREF at 2000 Hz. The following anthropometric mea-
surements were taken for each participant used for the
plug-in-gait model during post-processing: height,
weight, leg length, ankle width, knee width, wrist width,
elbow width, shoulder offset, inter-ASIS distance, and
waist circumference.”®?

For the lifting study, each participant was asked to
psychophysically determine their maximum weight-
lifting capability by gradually increasing the load (start-
ing from a comfortable weight) until the participant
requested to stop any further increase. The real maxi-
mum (lifting capacity) was not used in order to avoid
injury during the experiment. Therefore, the maximum
weight refers to maximum safe-lifting weight in this
study. Once the weight was determined, the lifting
study was initiated. The participant was asked to lift a
box (65 cm X 35 cm X 15 cm) forward, symmetrically,
in three trials, with a 5-min break after each. As the
box did not have handles, it was placed in front of the
participant on top of a 1-inch-tall weighted disk resting
on the floor so that they could reach under the box to
grab it with their fingers. They then lifted the box in a
manner that felt the most comfortable and natural to
them and set it down on a I-m-tall table in front of
them, as seen in Figure 2. All participants used the
same table as there was only a small variation in their
heights. Following the experiment, the data were pro-
cessed in the Vicon Nexus motion capture software.

Data processing. All markers were labeled, and the data
were smoothed and converted into a C3D file, which
was then imported into Visual 3D (C-Motion, Inc.,
Germantown, MD, USA). A skeletal model, created
following the marker protocol used in the experiments
and consisting of 15 segments, was used to output coor-
dinates and joint angles.

The experimentally measured heights and weights of
each of the 19 usable participants were used to generate
their body segments’ lengths, centers of mass, and iner-
tial properties using GEBOD™, a regression-based
interactive utility.>* The six joint angles (spine, shoulder,
elbow, hip, knee, and ankle) and the box weight
obtained from the experiments for each individual parti-
cipant, in combination with the generated anthropo-
metric data, were used to calculate the strength
percentile (z_score) for each participant using the
enumeration-based dynamic optimization algorithm
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Figure 2. Maximum weight-lifting experiment.

described in section “Inverse-dynamics optimization
formulation considering dynamic strength.” Finally, the
proposed 2D symmetric inverse-dynamics-based motion
simulation was used to predict motions, GRF, and
maximum box weights.

Results

In this study, we validate the proposed model in three
different ways: (1) compare the simulation results with
experimental data participant-by-participant, as each
participant used a different maximum lifting strategy;
(2) calculate the root-mean-square error (RMSE)
between the predicted results and the experimental
data; and (3) calculate Pearson’s coefficient (r) between
the simulation results and the experimental data.
Furthermore, we have compared the results from dif-
ferent formulations such as dynamic strength limits,
static strength limits, and NIOSH equation.

The eight parameters (spine, shoulder, elbow, hip,
knee, and ankle angle profiles, and vertical and hori-
zontal GRF) are plotted for Participants #15 and #9,
as shown in Figures 3 and 4, respectively (the solid line
denotes model simulation and the dashed line denotes
experimental data). Note that the metatarsophalangeal
joint angle was always zero during the lifting process
because the foot did not move relative to the ground,
and it was hence not plotted. Figure 5 shows stick-
diagrams of lifting for all the participants.

Figures 6 and 7 depict the predicted joint torque pro-
files based on dynamic strength limits for Participants
#15 and #9, respectively. Figure 8 depicts the predicted
joint torque profiles for Participant #9 using static joint
strength limits.

For Participants #15 and #9, all six predicted joint
angles in Figures 3 and 4 follow the same trend as the
experimental data. The predicted joint angles are also
close to the experimental values (Pearson’s r averaged
across the six joints for Participants #15 and #9 are
0.98 and 0.99, respectively). The predicted vertical GRF
shown in Figures 3(g) and 4(g) have similar magnitude
to the experimental data, but the experimental GRF
have a wavering nature to some extent—likely a result
of the postural control that is always observable in
experimental data. The experimental horizontal GRF
shown in Figures 3(h) and 4(h), however, deviate to
some extent from their corresponding prediction values
at the initial stage of lifting. Participants usually initiate
maximum weight lifting with a large acceleration. In
addition, due to the large dimension of the box in the
sagittal plane, participants had to hold the box between
their legs to reduce the distance between the box center-
of-mass and their body in the initial posture in experi-
ments. The large initial acceleration has a relatively
large effect on the horizontal GRF, which is much less
than the vertical GRF. However, in our optimization
formulation, we imposed static initial and final condi-
tions. This results in a difference in the horizontal GRF
at initial stage when compared to the experimental data.
Once this stage is passed, the trend and values of hori-
zontal GRF are similar to the experimental data. For
the other participants, the predicted joint angles also
match the experimental data well, but the horizontal
GRF do not, as shown in Supplemental Data.

Figure 6 depicts the predicted joint torque profiles
for Participant #15. It is seen that the spine, hip, and
ankle joint torques are all activated. Hip joint torque is
activated for almost the entirety of the first half of the
lifting time (0%—46.63% and 74.03%-82.16%). In con-
trast, the spine is only active for the period in middle of
the lifting task (59.2%—77.0%). The ankle is active for
both beginning and middle of the task (0%-2.96%,
48.85%—53.29%, and 74.02%-82.90%). Note that the
dynamic joint strength curve is time-dependent, and its
instantaneous value can be greater than or less than the
static strength value at different times. Figure 7 shows
the predicted joint torque profiles for Participant #9. It
is seen that the hip (7.09%-48.94%), spine (48.23%—
65.25%), and ankle (0-1.42% and 51.06%—63.83%)
joint torques are activated for certain periods during
the lifting process. For Participant #15, the total hip
joint torque activation time period is larger than that
of Participant #9 by 12.91%. The total spine activation
time periods are similar between two participants
(17.02% for Participant #15 and 17.08% for
Participant #9), but their starting times are different.
The ankle joint has different activation time periods.
The spine has a similar activation history for both par-
ticipants. Therefore, the kinetic lifting strategy between
Participants #15 and #9 is different. In addition, Figure
8 depicts the lifting motion prediction with static joint
strength for Participant #9. It is seen that the activated
joint torques are bounded by static strength limits
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Figure 3. Kinetic and kinematic results for Participant #15.

rather than dynamic strength limits. Therefore, the pre-
dicted maximum lifting weights using static and
dynamic strengths are quite different because of differ-
ent torque histories.

Participants #1, #13, #17, and #18 in Figure 5 used
a back-lifting strategy which is advised against by com-
mon guidelines for lifting. In this study, we did not
instruct participants to use any particular strategy for
maximum weight lifting—the participants each used
the technique that they felt most comfortable with.
They might have been able to lift a greater weight had
they been trained appropriately. Since our optimization

formulation imposes part of experimental postures as
constraints, the maximum weight predicted corre-
sponds to the strategy the participant used. Four cases
with boundary conditions (BC) in constraint equation
(20) are tested: Case 0, having zero intermediate pos-
ture constraints (only BC); Case 1, having one inter-
mediate posture constraint at 50% time duration with
BC; Case 2, having two intermediate posture con-
straints at 25% and 75% time duration with BC; and
Case 3, having three intermediate posture constraints
at 25%, 50%, and 75% time duration with BC (the
default formulation in this study). Table 1 lists the
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Figure 4. Kinetic and kinematic results for Participant #9.

compared results for RMSE and Pearson’s correlation
coefficient (r) between the predicted and the experimen-
tal results for the four cases mentioned above.

In addition, by considering Case 3, predicted box
weights are compared using dynamic strength limits,
static strength limits, and NIOSH equation in Table 2.

Discussion and conclusion

The major contribution of this study is to predict and
validate the participant-specific maximum weight lift-
ing considering the dynamic joint strength limits.”

Although experimental postures were used in the opti-
mization formulation, the optimization algorithm suc-
cessfully predicts joint angles and GRF profiles, as well
as box weight. Although the rationale for dynamic
strength has been proposed before,'*? its application
to lifting prediction has not been fully studied. This
work is new since lifting prediction with full body
dynamic strength has not been reported in previous
studies.'®2%21-242¢ [p the literature, experimental meth-
ods have often been used to estimate the maximum lift-
ing weights; however, real maximum weights cannot be
obtained in a laboratory setting due to the potential for
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(pi #21)

(pi #22)

(pi #23)

Figure 5. Snapshots of the predicted lifting motion: Participants #l, #13, #17, and #18 use a back-lifting strategy, while the other
participants use the more common squat-lifting strategy (pi: participant index).

injuries.* More importantly, the current formulation
sets up a foundation for future work, such as using a
musculoskeletal model,”®** including injury risk fac-
tors, and using a multi-objective cost function including
an energy term to reduce the required experimental
postures in the formulation.>® This model can be used
to conduct sensitivity studies for different input para-
meters to predict 2D symmetric maximum weight lift-
ing. In addition, the same optimization formulation
can be applied to musculoskeletal models to study mus-
cle biomechanics for maximum weight box lifting.

In Table 1, Case 3 has the smallest RMSE for joint
angles and GRF, and Case 0 has the largest RMSE.
Case 2 and Case 1 have intermediate errors. Case 1 has

RMSE comparable to Case 2 for all upper body joints
except the spine. For the lower body joints, Case 1 has
smaller RMSE than those of Case 2. This indicates that
the mid-task 50% intermediate posture constraint is
important to the proposed optimization formulation.
Considering Pearson’s correlation coefficient (r) for the
different cases, Case 3 has the largest value for joint
angles and vertical GRF, which indicates Case 3 is a
more accurate model. For upper body joints, r-values
for Cases 0, 1, and 2 are similar. For lower body joints,
r-values decrease following the order of Case 3, 1, 2,
and 0. It is noted the vertical GRF have a smaller
r-value than that for the joint angles, because no inter-
mediate force constraints are imposed on GRF—only
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Figure 6. Joint torque profiles for Participant #15 using dynamic joint strength limits.

intermediate posture (joint angle) constraints are used.
For horizontal GRF, r is negative, indicating that the
predicted average horizontal GRF and the experimental
value have different directions. This is because the large
initial impact acceleration applied to the box directed
toward the center-of-mass of the participant for the
maximum weight lifting as observed in the experiment
has not been considered in the simulation formulation.
It is concluded that imposing postural constraints—
especially the boundary and mid-time constraints—from
experiments is important to accurately predict kinetics

and kinematics. This observation is consistent with the
findings in the literature.*'*’

It is interesting to note that the elbow correlations
for all constraints are low, as seen in Table 1. The
elbow joint has the most widely varying strategy among
participants when compared to other joints in the
experiment. The maximum weight lifting requires the
participant to lift the box to reach the final position on
a table. The participants have different strengths at the
elbow joint, so their elbow kinematics for the lifting
and the reach motions are very different. Therefore, we
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Figure 7. Joint torque profiles for Participant #9 using dynamic joint strength limits.

need to impose more intermediate constraints to
improve the elbow correlations. This is a new finding
for maximum weight-lifting prediction.

In Table 2, the predicted box weights considering
dynamic joint strength are close to the experimental
box weights. This demonstrates that the proposed max-
imum weight optimization formulation and the
enumeration-based participant-specific strength retrie-
val approach work well. Note that in this study, three
intermediate posture constraints (Case 3) were used for
z_score calculations, but our previous study’ used only

a single intermediate posture constraint. The more
intermediate posture constraints are used, the more
accurate the z_score. The participant-specific dynamic
joint strength is the major limiting factor for maximum
weight-lifting prediction. The prediction is sensitive to
the strength limit constraints—as seen in Table 2, the
predicted weights using static strength limits are differ-
ent from those using dynamic joint strength. This fur-
ther demonstrates that dynamic strength is required to
predict maximum lifting weight. The static strength
predicts larger box weights for all participants except
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Figure 8. Joint torque profiles for Participant #9 using static joint strength limits.

Participant #1. From this interesting finding, we may
recognize that Participant #1 is an exceptionally strong
person who can lift more weight under dynamic
strength limits than under the given static strength. We
also compared our predicted box weights with NIOSH
equation results which yields much smaller weights
than our method considering dynamic joint strength.
This is because NIOSH equation considers lifting fre-
quency and working hours. The input parameters for
NIOSH equation in Table 1 include box horizontal
locations, box vertical locations, 0.2 lifts/min

frequency, 1-h working duration, and good coupling
conditions. In contrast, our prediction is a one-time
maximum weight lifting without any fatigue. Muscle
motor fatigue is governed by ordinary differential
equations®® *° which are not included in the current
simulation model. In the future, we will develop a lift-
ing model considering muscle fatigue for repetitive lift-
ing prediction.

There are some limitations to our approach. First,
five lifting postures from experiments are imposed as
constraints in the optimization formulation. This



Rakshit et al.

671

Table |. Accuracy metrics averaged across |6 participants for prediction of joint angle and GRF profiles by simulations with 0, 1, 2,

and 3 intermediate posture constraints from experiments.

Case 0:0 intermediate Case |:| intermediate Case 2:2 intermediate Case 3:3 intermediate

constraint® constraint constraints constraints

RMSE r RMSE r RMSE r RMSE r
Spine 15.61 (2.52) 0.86 (0.10) 14.08 (2.31) 0.77 (0.17) 7.34(0.72) 0.95 (0.04) 7.03 (0.45) 0.96 (0.02)
Shoulder 16.83 (6.82) 0.90 (0.06) 14.29 (5.43) 0.88(0.10) 13.27 (4.01) 0.88 (0.09) 6.82(1.12) 0.98 (0.02)
Elbow 38.64(9.92) 0.59(0.31) 23.17(11.49) 0.30 (0.59) 22.36 (8.58) 0.57 (0.31) 6.62(1.74) 0.7 (0.46)
Hip 27.31 (13.08) 0.81 (0.10) 8.16 (1.43) 0.97 (0.03) 14.06 (4.89) 0.92 (0.05) 6.88(0.96) 0.98 (0.02)
Knee 44.34 (19.13) 0.76 (0.13) 12.29 (4.62) 0.95(0.06) 21.92 (9.66) 0.86 (0.14) 6.60 (1.39) 0.98 (0.02)
Ankle 13.84 (4.81) 0.53(0.28) 5.33 (2.04) 0.92 (0.09) 8.50 (2.84) 0.73 (0.21) 3.81 (1.21)  0.96 (0.04)
Vertical GRF® 154.01 (48.46) 0.02 (0.23) 116.01 (39.25) 0.30 (0.31) 114.89 (27.13) 0.30 (0.32) 93.24 (20.30) 0.57 (0.20)

Horizontal GRF® 54.64 (14.09)

~0.19 (0.32) 56.09 (15.62) —0.18 (0.34) 51.01 (12.26)

~0.08 (0.36) 51.41 (13.41) —0.15 (0.36)

GRF: ground reaction forces; RMSE: root-mean-square error.All values of root-mean-square error (RMSE) and Pearson’s correlation coefficient (r)

are represented as mean (standard deviation).

Note that Participants #8, #1 |, and #17 did not converge for certain intermediate constraints, so they are excluded from the analysis.
“Boundary conditions with 0 intermediate posture constraints; with | intermediate posture constraint at 50% time duration; with 2 intermediate
posture constraints at 25% and 75% time duration; and with 3 intermediate posture constraints at 25%, 50%, and 75% time duration.

®RMSE values are in Newton, and all other parameters are in degrees.

Table 2. Predicted box weights using dynamic joint strength, static strength, and NIOSH equation.

Participant index Time (s) Z_score Experiment weight (N) Weight 17 (N) Weight 2° (N) NIOSH weight (N)
| 1.36 1.86 343.98 358.13 194.68 90.16
2 1.65 0.53 233.73 23843 360.39 92.12
3 1.77 -0.02 189.63 202.34 418.98 88.20
7 1.80 0.43 255.78 263.36 326.17 81.34
8 1.44 1.05 233.73 237.65 316.98 92.12
9 1.93 0.33 211.68 218.39 344.44 87.22
10 1.55 0.84 233.73 250.17 255.07 86.24
I 1.41 1.55 233.73 226.24 248.83 75.46
13 1.54 -0.22 145.53 150.75 390.59 88.20
14 2.17 0.65 233.73 239.14 252.11 71.54
15 1.41 1.07 255.78 262.89 274.17 71.54
16 1.59 0.59 233.73 237.94 284.34 79.38
17 2.06 0.53 211.68 213.33 291.17 83.30
18 1.57 0.38 145.53 157.87 240.93 79.38
19 1.57 0.14 167.58 178.44 351.12 98.00
20 2.40 0.43 211.68 246.55 365.67 79.38
21 1.70 0.56 211.68 221.82 317.77 85.26
22 1.36 0.76 211.68 229.84 295.88 81.34
23 1.21 1.10 277.83 284.40 293.42 98.98

NIOSH: National Institute for Occupational Safety and Health.

*Weight | is the prediction using dynamic joint strength with three intermediate constraints.
PWeight 2 is the prediction using static joint strength with three intermediate constraints.

reduces the flexibility of the optimization prediction,
that is, there is a tradeoff between the power of predic-
tion and the accuracy of the predicted result.*” Second,
only the box weight is considered in the objective func-
tion, and no energy term is included. Finally, there are
potential inaccuracies in the dynamic joint strength
database from the literature.” ° It is noted that we can-
not test 100% (maximum) lifting weight experimen-
tally, and the same limitation affects the joint strength
database, all of whose data were also obtained under
the safe-maximum-strength condition.

Future work should include the following:
(1) extending the 2D prediction method to the 3D

case to study asymmetric box-lifting tasks; (2) vali-
dating the 3D prediction method through expe-
riments; (3) extending the skeletal model to a
musculoskeletal model; (4) including a fatigue model
in the box-lifting simulation; and (5) a sensitivity
analysis of parameters that result in box-lifting inju-
ries so that regulations can be developed to reduce
injuries for workers.
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