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Abstract: Advanced detector R&D requires performing computationally intensive and detailed

simulations as part of the detector-design optimization process. We propose a general approach to

this process based on Bayesian optimization and machine learning that encodes detector require-

ments. As a case study, we focus on the design of the dual-radiator Ring Imaging Cherenkov

(dRICH) detector under development as a potential component of the particle-identification system

at the future Electron-Ion Collider (EIC). The EIC is a US-led frontier accelerator project for nuclear

physics, which has been proposed to further explore the structure and interactions of nuclear matter

at the scale of sea quarks and gluons. We show that the detector design obtained with our automated

and highly parallelized framework outperforms the baseline dRICH design within the assumptions

of the current model. Our approach can be applied to any detector R&D, provided that realistic

simulations are available.
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1 Introduction

Applications of methods based on Artificial Intelligence (AI) are becoming ubiquitous in all areas of

our society; in particle and nuclear physics in particular, detector Research and Development (R&D)

can certainly benefit from AI and this manuscript provides an explicit example of its usefulness.

In this paper we propose a general approach based on Bayesian optimization (BO) [1, 2] to

optimize the design of any detector starting from its R&D phase. BO is particularly useful for global

optimization of black-box functions that can be noisy and non-differentiable. The BO approach

allows to encode detector requirements like mechanical and geometrical constraints and efficiently

maximize a suitable figure of merit used to improve the detector design. We apply this general

method to a specific use-case: the design of the dual-radiator Ring Imaging Cherenkov (dRICH)

detector within the current Electron-Ion Collider (EIC) large scale initiative.

The future EIC [3, 4] will be a unique experimental facility that will open up new frontiers

for exploring Quantum Chromodynamics (QCD), e.g. the 3D structure of nucleons and nuclei in

terms of quarks and gluons, and the behaviour of nuclear matter at unprecedented saturated gluon

densities. A key challenge for EIC detectors involves particle identification (PID) — especially

hadron identification — which is required for studying many of the most important experimental

processes at the EIC. For example, the simulated phase space for pions and kaons in deep inelastic

scattering (DIS) processes shows the need for hadronic PID over a momentum range up to 50 GeV/c

in the hadron endcap, up to 10 GeV/c in the electron endcap, and up to 5–7 GeV/c in the central

barrel [5].

The purpose of the EIC-PID consortium is to develop an integrated PID system that satisfies

the requirements imposed by the EIC science program. The current baseline design of the EIC-PID

system, shown in figure 1, includes the dRICH and a modular-aerogel RICH (mRICH) that uses a

Fresnel lens placed in the electron endcap [6, 7]. In addition, the Detection of Internally Reflected
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Cherenkov light (DIRC) detector [8] is located in the barrel region, where a fast time-of-flight

(TOF) system is foreseen to provide PID for low-momenta particles.

In what follows we show that the new dRICH detector design obtained with our automated

and highly parallelized framework based on BO outperforms the baseline dRICH design within the

assumptions of the present simulated model.1

2 Dual-radiator RICH

The goal of the dRICH detector is to provide full hadron identification (π/K/p better than 3σ

apart) from a few GeV/c up to ≈ 50 GeV/c in the (outgoing) ion-side endcap of the EIC detector

(see figure 1), covering polar angles up to 25 degrees; it will also offer e/π separation up to about

15 GeV/c as a byproduct [6]. The dRICH concept was inspired by the HERMES [10] and LHCb

(RICH1 in Run 1) [11, 12] dual-radiator RICH detectors. The baseline design (see figure 2) consists

of a large conical-trunk tank (∼ 160 cm height, ∼ 180–220 cm radii) divided into 6 identical, open,

sectors (petals); the tank contains an aerogel radiator at the entrance and is filled by C2F6 gas

acting as a second radiator. The photons from both radiators share the same outward-focusing

spherical mirror and highly segmented (≈ 3 mm2 pixel size) photosensors located outside of the

charged-particle acceptance. The baseline configuration is the result of simulation analyses taking

into account the geometrical and physical constraints; it can be summarized by the following key

parameters: i) maximum device length 1.65 m; ii) aerogel radiator refractive index n(400 nm) = 1.02

and thickness 4 cm; iii) C2F6 gas tank length 1.6 m; iv) polar angle coverage [5◦,25
◦]; v) mirror

radius 2.9 m.

In this study, we benefited from the experience of several groups that have built similar devices

in the past [10–13], and also from the CLAS12 RICH work which is in progress [14]. The dRICH

baseline detector (see figure 2) has been simulated within a Geant4/GEMC framework [15]. The

Geant4 simulation is based on realistic optical properties of aerogels tested and characterized by the

CLAS12 RICH collaboration [14, 16]. Absorption length and Rayleigh scattering are included in

the simulation, the latter being one of the main sources of background, along with optical dispersion;

the spectrum of the Rayleigh scattering is ∝ 1/λ4, hence this contribution becomes relevant for

photon wavelengths below ∼ 300 nm.2

Photons produced in the aerogel with wavelengths below 300 nm are removed, imitating the

effects of an acrylic filter that will separate the aerogel from the gas, for both filtering and avoiding

chemical degradation of the aerogel. The mirror reflectivity is assumed to be 95% and uniform.

The dRICH is in a non-negligible magnetic field and the charged-particle tracks are bending as

they pass through the Cherenkov radiators, providing an additional source of uncertainty in the

Cherenkov ring reconstruction. The size of this effect is proportional to the path length within

the Cherenkov radiators, and therefore, it is important for gas radiator. The magnetic field used in

1Throughout this article, we refer to the dRICH design prior to this work [6], as the baseline design.

2The ∼300 nm value is the safe, approximate, cut-off coming out from the HERMES [10] and LHCb [11] studies for

their dual-radiator RICHes, where 290 nm and 300 nm have been adopted respectively. The choice of the cut-off is also

influenced by the specific dispersion relation of the aerogel; its final value in dRICH will depend from the prototyping

outcomes, the aerogel characterization, and likely the application of the optimization method described here.
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3 Methodology and analysis

Determining how much space to allocate for various detector components, what kind of sensors to

use, and which configuration provides the best performance, are often dilemmas that need to be

resolved without increasing costs. In addition, for multipurpose experiments like the EIC, opti-

mizing the detector design requires performing large-scale simulations of many important physics

processes. Therefore, learning algorithms (e.g., AI-based) can potentially produce better designs

while using less resources. Nowadays there are many AI-based global optimization procedures

(e.g. reinforcement learning, evolutionary algorithm). Among these learning algorithms, the above

mentioned BOs have become popular as they are able to perform global optimization of black-box

functions, which can be noisy and non-differentiable. These features make BOs particularly well

suited for optimizing the EIC detector design, and, in general, BOs could potentially be deployed

for a variety of critical R&D efforts in the near future.

BOs search for the global optimum over a bounded domain χ of black-box functions, formally

expressed as x∗ = argmin x∈χ f (x).7 The aim of a BO is to keep the number of iterations required to

identify the optimal value relatively small. The BO approach has been applied to solve a wide range

of problems in different areas from robotics to deep learning [19–25]. For example, in experimental

particle physics it has been used to tune the parameters of Monte Carlo generators [26]. When

applied to detector design, each point explored corresponds to a different detector configuration

(design point). The function f can be thought of as a figure of merit that has to be optimized

(e.g., a proxy of the PID performance). Typically Gaussian processes [27] (GP) are used to build

a surrogate model of f , but other regression methods, such as decision trees, can also be used.

For example, Gradient Boosted Regression Trees (GBRT) is a flexible non-parametric statistical

learning technique used to model very-expensive-to-evaluate functions. The model is improved by

sequentially evaluating the expensive function at the next candidate detector configurations, thereby

finding the minimum with as few evaluations as possible. A cheap utility function is considered,

called the acquisition function, that guides the process of deciding the next points to evaluate.

The utility function should balance the trade-off of exploiting the regions near the current optimal

solution, and exploring regions where the probabilistic model is highly uncertain.

We have explored the use of BOs in the optimization of the design of the dRICH. Each point

in the parameter space corresponds to a different detector design, and consists of a vector of values

for the parameters in the table 1. Running the Geant4 simulation and subsequent analysis of a

single detector design point takes about 10 minutes on a single physical core.8 A grid search

with just 8 dimensions even run on 50 cores in parallel looks unfeasible due to the “curse of

dimensionality” [28]. Several open-source tools are available for Bayesian optimization (see, e.g.,

ref. [2]); the results shown in the following are based on the scikit-learn package [29].

In this work, eight parameters are considered when optimizing the dRICH design, inspired by

the previous studies done in ref. [6]: the refractive index and thickness of the aerogel radiator; the

focusing mirror radius, its longitudinal (which determines the effective thickness of the gas along the

beam direction) and radial positions (corresponding to the axis going in the radial direction in each

of the six mirror sectors, see figure 2); and the 3D shifts of the photon sensor tiles with respect to the

7Here, we assume one is searching for a global minimum.

8Model name: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz, two threads are run per core.
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Table 1. The main parameters injected in the Bayesian Optimizer. The regions of parameter space explored

are based on previous studies [6]; definition of the parameter reference systems can be found in text and

footnote 9. The tolerances refer to the expected feasible construction tolerances; variation of the parameters

below these values are irrelevant.

parameter description range [units] tolerance [units]

R mirror radius [290,300] [cm] 100 [µm]

pos r radial position of mirror center [125,140] [cm] 100 [µm]

pos l longitudinal position of mirror center [−305,−295] [cm] 100 [µm]

tiles x shift along x of tiles center [−5,5] [cm] 100 [µm]

tiles y shift along y of tiles center [−5,5] [cm] 100 [µm]

tiles z shift along z of tiles center [−105,−95] [cm] 100 [µm]

naerogel aerogel refractive index [1.015,1.030] 0.2%

taerogel aerogel thickness [3.0,6.0] [cm] 1 [mm]

mirror center on a spherical surface, which contribute to determine the sensor area and orientation

relative to the mirror.9 These parameters, reported in table 1, cover rather exhaustively the two

major components of the dRICH: its radiators and optics. They have been chosen to improve the

dRICH PID performance, under the constraint that it is possible to implement any values resulting

from the optimization with (at worst) only minor hardware issues to solve. We assume 100 µm as

the minimum feasible tolerance on each spatial alignment parameter, whereas for the aerogel, we

assume 1 mm on the thickness and 0.2% on the refractive index.

A relevant parameter has been essentially neglected in the optimization: the gas refractive

index, whose tuning would require a pressurized detector making this choice hardly convenient. We

also postpone the optimization of the TOF-aerogel transition region, since at the moment these are

two separate detectors with different simulation frameworks. The parameter space can be extended

once detailed results from prototyping and tests will be available.

Since the aim of the design optimization is to maximize the PID performance of the dRICH,

it is natural to build the objective function using the separation power between pions and kaons,

defined as

Nσ =
| |〈θK 〉 − 〈θπ〉| |

√

Nγ

σ
1p.e.

θ

, (3.1)

where 〈θK 〉 and 〈θπ〉 are the mean Cherenkov angles for kaons and pions, respectively, obtained from

the angular distributions reconstructed by Inverse Ray Tracing [10]. Here, Nγ = (Nπ
γ +NK

γ )/2 is the

mean number of detected photo-electrons and σ
1p.e.

θ
the single photo-electron angular resolution;

the reconstructed angles are approximately Gaussian distributed, hence σ
1p.e.

θ
/
√

Nγ corresponds to

the averaged RMS of the above mean angles, i.e. the ring angular resolution.

In order to simultaneously optimize the combined PID performance of both the aerogel and

gas parts in the dRICH, two working points have been chosen based on the performance of the

baseline design. In particular, we chose one momentum value with ≈ 3σ π/K separation each for

the aerogel and the gas: p1 = 14 GeV/c and p2 = 60 GeV/c, each close to the end of the curves

9 The Cartesian reference frame of the tile shifts has the origin in the center of a dRICH conical-trunk sector (see

figure 2), z is along the beam, x along the sector radii, and y derived accordingly; the single sector detector is then

replicated six times to build the whole detector (namely, a standard Geant4 procedure).

– 7 –
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reported in figure 3 for the aerogel and gas, respectively. The goal here is to optimize the quantities

(Nσ)1,2 corresponding to the working points p1 and p2. One choice of the figure of merit which

proved to be effective is the harmonic mean

h = 2 ·
[

1

(Nσ)|1
+

1

(Nσ)|2

]−1

. (3.2)

The harmonic mean tends to favor the case where the PID performance (i.e. Nσ) is high in both

parts of the detector. The optimization consists of finding the maximum of the figure of merit

(FoM), as defined in (3.2).10 Samples of pions and kaons have been produced with Geant4 [15]

using particle guns with central values of the momentum corresponding to 14 and 60 GeV/c.

In order to cover a larger region of the phase-space in the forward sector of the detector, the

polar angles have been spanned uniformly from 5 to 15 degrees.

Figure 4 shows the posterior distribution after T calls projected in 2-dimensional subspaces of

the design parameter space. These plots illustrate the possible correlations among the parameters.

The optimal point in each subspace is marked with a red star. Notice that the black points,

corresponding to the points evaluated by the BO in its ask-and-tell procedure, tend to form basins

of attraction around the minimum. Recall that the black-box function we are optimizing is noisy in

the Geant4 simulation (see also appendix B for a detailed study on statistical uncertainties). Plots of

the partial dependence of the objective function on each parameter are displayed in figure 4. Given

a function f of k variables, the partial dependence of f on the i-th variable is defined as [30]

φ(θi) =
1

N

N−1
∑

j=0

f (θ1, j, θ2, j, · · · , θi, · · · , θk , j). (3.3)

The above sum runs over a set of N random points from the search space, and the partial dependence

can be considered as a method for interpreting the influence of the input feature θi on f after

averaging out the influence of the other variables.

The search for the optimal FoM with the BO is compared to a standard random search (RS) in

figure 5 (left). A simple optimization technique like random search can be fast but as pointed out

by ref. [31] sequential model-based optimization methods — particularly Bayesian optimization

methods — are more promising because they offer principled approaches to weighting the impor-

tance of each dimension. Figure 5 (right) shows a comparison of the CPU time required for the two

procedures.

In both cases, to make a comparison using the same computing resources, the exploration of the

parameter space at each call has been distributed among M (= 20) physical cores each evaluating a

different point of the design space.11 As the well known main drawback of the BO is that it scales

cubically with the number of explorations, which is mainly due to the regression of the objective

function through GPs (in section 4, we discuss an improved strategy). Despite this, it typically

converges to the optimum in a smaller number of iterations (and as the number of observations

increase, it remains in the basin of attraction). A list of hyperparameters used in this framework

can be found in table 2.

10BOs in skopt search for a minimum, hence we change the sign of (3.2).

11It should be obvious that the duration of each call for a random search is independent of the number of simulations

running in parallel on different cores.

– 8 –
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Figure 4. 2D plot of the objective function (color axis) defined as in eq. (3.2). The optimization strategy

of the dRICH design involves tuning the 8 parameters described in table 1. In order to study possible

correlations, each parameter is drawn against the other. The evaluations made by the optimizer are shown

through an intensity gradient in the point trail ranging from white (first call of parallel observations) to black

(last call). After about 55 calls, the stopping criteria are activated. At the top of each column the partial

dependence of the objective function on each variable is shown separately, defined by eq. (3.3). Intuitively,

the partial dependence provides the importance ranking of each parameter. The dotted red lines correspond

to the projections on each variable of the optimal point found by the BO.

Table 3 summarizes the results of the optimization procedure based on the figure of merit in

eq. (3.2). Figure 6 shows the trade-off between the two regions in terms of PID performance found

during the optimization process, where initially both aerogel and gas increase in separation power,

and eventually after a certain number of calls a gain in the performance of the gas corresponds to a

loss in the performance of the aerogel part. Another interesting feature is suggested by the results

– 9 –
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is less room for a purely geometrical optimization of the system compared to the gas where the

emission error is the dominant one and it is instead purely geometric.

4 Conclusions and future directions

We present for the first time an implementation of BO to improve the design of future EIC detectors,

and we provide a detailed procedure to do this in a highly parallelized and automated way. We show

in this case study that the PID capabilities of the current modeled dRICH detector can be substantially

improved using our approach. In addition, the BO offers interesting hints on the relevance and

correlation of the different parameters and it is possible to estimate the expected tolerances, within

which any variation of the parameters does not alter the detector performance. We expect that

the proposed BO method can provide improvements and hints for the future R&D of the dRICH,

when results from prototype tests will validate and consolidate the current simulated model. More

generally, real-world costs of the components could be included in the optimization process, either

by extending the FoM or by exploring a Pareto optimization with multiple objective functions [32].

Currently, there are many ongoing efforts to simulate and analyse EIC detector designs, and

the approach developed here — being completely general — can be employed for any such study.

There are a variety of ways in which this study could be improved, which will be investigated in

the near future. For example, in appendix C, we introduce criteria for determining when to stop the

optimization procedure, to avoid wasting resources if a suitable optimum has already been found.

This work does not take into account the possible interplay between the dRICH and the other

detectors. There is work ongoing on designing the TOF detector at very good timing resolution,

and this will have an impact on the PID performance at low momentum. Therefore, a multi-detector

design optimization is a possible future direction of this work. Another important aspect involves

the choice of optimizing all the parameters together versus in blocks. For example, in the Pythia

BO tune [26], better precision was obtained by optimizing the parameters in 3 blocks rather than

all of them together. This worked because many observables were unaffected by several Pythia

parameters. Once multi-detector optimizations are considered, it may be prudent to adopt a similar

approach here. In addition, one can certainly test different figures of merit; however, the figure of

merit defined in eq. (3.2) is well suited to optimizing the dRICH design, see appendix A. Novel

Python frameworks for Bayesian optimizations like GPflowOpt [33] could improve the timing per-

formance. This package is based on the popular GPflow library for Gaussian processes, leveraging

the benefits of TensorFlow [34] including parallelization. Recently, optimization packages have

been developed to rely on accelerated CUDA/GPU implementations. For example, Deep Networks

for Global Optimization (DNGO) [35], where neural networks (NNs) are used as an alternative

to GPs resulting in an improved scalability from cubic to linear as a function of the number of

observations needed to explore the objective-function. The choice of hyperparameters of the NN is

not defined a priori and in principle this could also be optimized with BO techniques to maximize

the validation accuracy and inference time.

In conclusion, AI-based tools have been introduced and tested for the optimization of the dRICH

configuration; the preliminary results clearly show a substantial improvement in performance and

may provide useful hints on the relevance of different features of the detector. These same tools

– 13 –
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can be extended and applied to other detectors and possibly to the entire experiment, making the

EIC R&D one of the first programs to systematically exploit AI in the detector-design phase.
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A Angular dispersion in RICH detectors

The error on the Cherenkov angle is given by several contributions, σ
xi
θc

≡ ∂θc
∂xi
σxi ; the error on

the measured Cherenkov angle of a single photon is given by the quadratic sum of all the relevant

contributions:

σθc =

√

√

√

∑

xi

(

∂θc

∂xi
σxi

)2

(A.1)

The single terms in the sum that we consider are the typical relevant contributions taken into

account for similar dual-radiator RICHes in spherical reflecting mirror configuration (see [36, 37]

for a compendium). The reconstruction of the Cherenkov angle in figure 3 is based on the GEMC

simulation and the indirect ray tracing algorithm used by the HERMES experiment (see [10] for

details on the algorithm). The following contributions are taken into account in the simulation.

Chromatic error. The most important aspect in the choice of a Cherenkov radiator for a RICH

detector is the index of refraction of the material and its characteristic optical dispersion. Namely,

one of the terms in A.1 is due to the variation of the refractive index of the materials traveled

by the photon of a given energy (or wavelenght λ). In the case of a dual-radiator (let us assume

aerogel and gas) this error consists of two contributions for the first radiator: the uncertainty on the

photon emission wavelength depending on the dispersion relation (σ
λ(dis)
θc

) and the uncertainty on

the refraction between aerogel and gas surface (σ
λ(ref)
θc

). Therefore we have:

σλ
θc
=

dθc

dλ
σλ ∼

√

(σλ(dis)
θc

)2 + (σλ(ref)
θc

)2 (A.2)

where

σ
λ(dis)
θc

≡ ∂θc
∂na

dna

dλ
σλ (A.3)

with n ≡ n(λ) the refractive index of the considered radiator. For the emission contribution to the

chromatic error, we have
dθc

dλ
=

∂θc

∂n

dn

dλ
=

1

n2β sin θc

dn

dλ
(A.4)

and

σ
λ(dis)
θc

=

1

n2β sin θc

dn

dλ

∆λ√
12

(A.5)

– 14 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
5
0
0
9

The above can be also found in [36] using E instead of λ. Notice that the variation of the

refractive index of the aerogel, namely
dna

dλ
, can be inferred by recent measurements on the latest

generation aerogel (i.e. the one tested by the CLAS12 RICH collaboration [14]). The uncertainty

due to the refraction of the photons between the two materials, σ
λ(ref)
θc

, is in general one order of

magnitude lower than the chromatic aberration; nevertheless it has to be considered and somehow

corrected in any kind of geometric reconstruction algorithm. For the second radiator (the gas in this

case) only the first contribution is present. The chromatic error curves have been obtained using

the following optical parameters:

• aerogel n(λ) and transmittance: the detailed study of the CLAS12 RICH collaboration has

been used to infer the optical properties of recently manufactured aerogel [14]. Also the

scattering length, and the related Rayleigh scattering have been introduced in the GEMC

simulation. The photons with wavelength below 300 nm have been filtered simulating a thin

acrylic slab placed between aerogel and the gas tank, for both shielding and avoiding aerogel

chemical degradation;

• C2F6 properties from [38];

• the mirror reflectance has been assumed the same of CLAS12 HTCC RICH mirrors (this is

the GEMC mirror reference [15], the reflectance varies in the range of wavelength between

190 and 650 nm, consistent with the photon sensor quantum efficiency);

• the quantum efficiency curve of the multi-anode PMT Hamamatsu-H12700-03 [17].

Emission error. The focal plane shape has been chosen to be spherically-tessellated (about

4500 cm2 per sector, 5 × 5 cm2 each tile). Due to the spherical aberrations the real focal plane for

a spherical mirror is no longer a naive sphere. Therefore, the real shape of the focal surface will

depend, point by point, on the angle (with respect to the optical axis) of incidence of the photon

track on the mirror. Namely, this angle is known only statistically due to the fact that the emission

point of each photon in the radiators is unknown.

Pixel-size error. This corresponds to the uncertainty due to the granularity of the pixel detector,

namely 3 mm pixel size in dRICH case.

Magnetic field error. The dRICH is immersed in a non negligible magnetic field and the charged

hadron tracks are bending as they pass through the Cherenkov radiators (and expecially the much

longer gas). This introduces an additional source of error in the Cherenkov angle. The effect is

proportional to the path length within the Cherenkov radiators, and therefore it becomes particularly

important for the gas radiator at large polar angle.

Track error. An angular track smearing of 0.5 mrad (1 mm over 2 m) has been assumed with very

safe margin of technical feasibility.

B Noise studies

We investigated and characterized the statistical noise present on the objective function during the

optimization process. Notice that Bayesian optimization takes into account this noise as an external
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Figure 9. Uncertainties vs the number of tracks for aerogel assuming 10 photoelectrons and 3 mrad single

photon angular resolution. Left: uncertainty on
√

Nγ; right: uncertainty on σ
1p.e.

θ
(in mrad unit).

Number of tracks
500 1000 1500 2000 2500

σ
 /
 N

σ
N

σ

0.01

0.02

0.03

0.04

0.05

0.06 Aerogel

Gas

Number of Tracks
500 1000 1500 2000 2500

 /
 h

h
σ

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Figure 10. Uncertainties vs the number of tracks: (left) Relative uncertainty on the resolution in the

aerogel (red) and in the gas (black), cf. eq. (3.1). (right) Relative uncertainty on the harmonic mean defined

in eq. (3.2).

parameter, e.g. skopt [29] allows to deal with this noise in different ways, for example by adding it

(assumed to be ideal gaussian) to the Matérn kernel [27]. From simulations we have been able to

determine the relative uncertainty on the figure of merit, which as expected scales ∝ 1/√Ntrack (e.g.

∼ 2% if Ntrack = 400).

The relative fluctuations of the terms
√

Np.e. and σθ (figure 9) contribute roughly equally in

eq. (3.2) as one can expect from the statistical errors propagation; these fluctuations are largely

independent on the absolute values of the above terms (as demonstrated by the left plot in figure 10)

and therefore on the charged particle momenta (as long as they are above Cherenkov threshold).
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In the results shown in figure 9 and 10, we neglected the uncertainty on the difference between

the mean angles, which is smaller than the uncertainty on
√

Np.e. and σθ .

C Early stopping criteria

Each call is characterized by m design points (generated in parallel), each being a vector in the

parameters space defined in table 1, with d-dimensions. At each call n, we can calculate the average

point (vector) from the m vectors Xk (where k = 1, · · · ,m), as:

®̄X (n)
=

1

m

m
∑

k=1

®X (n)
k
. (C.1)

For a large number of calls (after a burn-in period chosen to be equal to 10 calls), the design

point expressed by eq. (C.1) tends to a global optimum steered by the BO.

In the following we will use the notation X
(n)
k ,i

to express the ith element of the kth point, where

i = 1, · · · , d and k = 1, · · · ,m. At each call, we can also define the sample variance on each

component of eq. (C.1), in the following way:

s2

i

(n)
=

m
∑

k=1

(

X
(n)
k ,i

− X̄
(n)
i

)2

m − 1
(C.2)

Pre-processing of data consists in masking for each component the outliers distant by more than

3σ from the average component. They correspond to very large explorations in the optimization

process. Therefore, the effective number of points for each component and at each call becomes

m
(n)
i
= m − N

(n)
i

(outliers). and we can redefine the masked average and variance expressed in

eq. (C.1) (C.2) after removing these outliers. To simplify the notation, we will dub the masked

mean and variance on every component as X̄
(n)
i

and s2

i

(n)
.13

This allows to define the standardized variable:

Z
(n)
i
=

X̄
(n)
i

− X̄
(n−1)
i

√

s2

i

(n)
+ s2

i

(n−1)
(C.3)

Notice that eq. (C.3) is defined comparing the values in the previous (n − 1th) and current (nth)

calls.14 Now at each call and for each component, we can test the null hypothesis H0 that X̄
(n)
i

and

X̄
(n−1)
i

belong to a population with same mean µi, that is they are converging in the ith component

to the same value. We do d two-tailed p-value tests at 0.3% significance level (corresponding

approximately to |Z (n)
i

| <3) for each component (i = 1, · · · , d) in the parameter space.

χ(n)(X̄) = Πd
i=1
χ
(n)
Z

(Xi) (C.4)

13Standard deviations smaller than tolerances are replaced with the latter in eqs. (C.3), (C.5).

14Rigorously if m < 40 typically one refers to small sampling theory and a t-distibution should be considered. The

stopping criteria have been implemented in a flexible way that allows to use either a standardized Z or t-distribution

depending on the number of physical cores available.
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number of calls reached then the search is stopped. It should be clear that the empirical stopping

criteria expressed in eq. (C.4) and (C.8) are not sufficient to exclude the presence of a local optimum.

Nevertheless Bayesian optimization is one of the most suitable tools to find a global optimum in a

bounded region and we made dedicated studies in appendix B to check the consistency of the values

of our cuts when the stoppers are triggered with the expectations (e.g.,we know that the relative

statistical uncertainty on the harmonic mean for a number of tracks equal to 400 is about 2%). We

can also compare the results obtained using a regressor other than GP (e.g. GBRT, extra trees (ET),

random forest (RF) regressors etc. [29]), as explained in the text. A simple random search is fast

enough to run and can provide useful hints if the candidate point is far from the optimum.

Notice that (C.3) could produce potential issues if the RMS in the denominator is large compared

to numerator. The following combined requirements prevent from these issues: (a) minimum

number of burn-in calls, (b) all the booleans are true in eqs. (C.6) and (C.8), (c) additional request

that the above conditions (a) and (c) are true for a call and check that this holds in the successive

call before activate the early stopping.

Another parameter to define is the maximum number of calls that stops the search in case the

other stopping criteria did not trigger. We consider the heuristic formula ∼ 25 · n(pars) determined

by [26] as a possible lower bound.16 Clearly the total number of calls can be set to any larger value

provided enough computing/time resources.
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