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ABSTRACT: Protein rotamers refer to the conformational isomers taken
by the side-chains of amino acids to accommodate specific structural folding
environments. Since accurate modeling of atomic interactions is difficult,
rotamer information collected from experimentally solved protein structures
is often used to guide side-chain packing in protein folding and sequence
design studies. Many rotamer libraries have been built in the literature but
there is little quantitative guidance on which libraries should be chosen for
different structural modeling studies. Here, we performed a comparative
study of six widely used rotamer libraries and systematically examined their
suitability for protein folding and sequence design in four aspects: (1) side-
chain match accuracy, (2) side-chain conformation prediction, (3) de novo protein sequence design, and (4) computational time
cost. We demonstrated that, compared to the backbone-dependent rotamer libraries (BBDRLs), the backbone-independent
rotamer libraries (BBIRLs) generated conformations that more closely matched the native conformations due to the larger
number of rotamers in the local rotamer search spaces. However, more practically, using an optimized physical energy function
incorporated into a simulated annealing Monte Carlo searching scheme, we showed that utilization of the BBDRLs could result
in higher accuracies in side-chain prediction and higher sequence recapitulation rates in protein design experiments. Detailed
data analyses showed that the major advantage of BBDRLs lies in the energy term derived from the rotamer probabilities that
are associated with the individual backbone torsion angle subspaces. This term is important for distinguishing between amino
acid identities as well as the rotamer conformations of an amino acid. Meanwhile, the backbone torsion angle subspace-specific
rotamer search drastically speeds up the searching time, despite the significantly larger number of total rotamers in the BBDRLs.
These results should provide important guidance for the development and selection of rotamer libraries for practical protein
design and structure prediction studies.

■ INTRODUCTION

Protein structures and their stabilities are essentially
determined by the packing interactions of the side-chains of
amino acids along the sequence. Protein side-chain packing
(PSCP) is thus of great significance in computational and
structural biology, e.g., protein structure prediction,1,2

structure-based protein and enzyme design,3−5 and structure
refinement.6 The three key components of a typical PSCP
method are (1) a rotamer library, (2) an energy function, and
(3) an optimization algorithm. Solving a PSCP problem
involves identifying a sequence of rotamers from a rotamer
library that minimizes the folding energy calculated by the
energy function using an optimization algorithm. Over the past
few decades, many studies have been dedicated to the PSCP
problem, but the emphases have been mainly focused on the
latter two components,7−17 with only a handful of studies
specifically addressing the rotamer library construction.18−21

Overemphasis on the energy functions and searching methods
has seemingly undervalued the importance of the rotamer
libraries. In fact, the quality of a rotamer library significantly
affects the PSCP performance.22 Unfortunately, to the best of
our knowledge, there is no systematic and quantitative study

on how rotamer libraries impact PSCP and which rotamer
library is most suitable for this task.
Historically, there have been backbone-independent rotamer

libraries (BBIRLs)20,22,23 and backbone-dependent rotamer
libraries (BBDRLs).18,19,21 Good PSCP performance was
achieved using BBIRLs in the earlier years.7,23 BBDRLs were
first proposed by Dunbrack and Karplus18 and have been more
popular and widely used ever since. The latest Dunbrack
BBDRL21 was released in 2010, and many PSCP programs use
this library.14,15,17 These programs achieve quite similar
performance on side-chain torsion angle prediction by
correctly predicting 84∼86% of the χ1 dihedral angles and
71∼75% of the χ1+2 using a tolerance criterion of 40°.
Meanwhile, the overall side-chain root-mean-square-deviation
(RMSD) between the predicted and native conformations
range from 1.46 to 1.65 Å.14,15,17 Using a very detailed BBIRL
consisting of more than 7000 rotamers, Xiang and Honig22

reported that 87% and 74% of χ1 and χ1+2 angles were
predicted to be within a stricter cutoff of 20° to the native
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angles and the overall predicted RMSD was 1.32 Å. Peterson et
al.24 showed that the packing accuracy reached 89% for χ1 and
78% for χ1+2 using the 40° criterion and an overall RMSD of
1.27 Å by using a BBIRL that had more than 50 000 rotamers.
Therefore, from the viewpoint of prediction accuracy, the
performance reported for using high-resolution BBIRLs is even
more impressive than that reported for using BBDRLs. In a
protein−ligand interaction redesign study, Boas and Harbury25

found that the design algorithm could predict protein
sequences that bound well with the target ligand only when
they used a detailed BBIRL consisting of more than 5449
rotamers. It was also reported that the catalytic geometries of
native enzyme active sites could be reproduced only when a
BBIRL containing more than 7000 or even 11000 rotamers
was used.26,27 Pupo and Moreno28 performed an extensive
statistical comparison of ten rotamer libraries (e.g., including
the Dunbrack 2002 BBDRL29 and the detailed Honig
BBIRLs22), excluding the influence of energy functions and
searching methods; their results showed that only the Honig
BBIRLs were able to correctly reproduce the experimental
side-chain conformations for most of the analyzed residues on
peptidic ligands using a strict criterion of 20°.28 However, side-
chain reproduction rates between the newer Dunbrack 2010
BBDRL21 and the detailed Honig BBIRLs on a set of
experimental protein structures have not been compared.
Moreover, the performance of the two kinds of rotamer
libraries on side-chain prediction and protein sequence design
has never been quantitatively compared.
In this work, we systematically compared the Dunbrack

2010 BBDRL and two of its derivatives to the Honig BBIRLs
in four aspects: (1) capability of reproducing native residue
side-chain conformations, which was independent of the
energy function and searching method, (2) ability to perform
side-chain prediction, (3) native sequence recapitulation
performance through de novo protein sequence design, and
(4) running time for 2 and 3. To accomplish tasks 2 and 3, we
utilized a simulated annealing Monte Carlo (SAMC) based
searching method30 and a physics- and knowledge-based
energy function (EvoEF231), which was extended from the
previously developed EvoEF.3 To compare the quality of
sequences designed using different libraries, we used the state-
of-the-art protein structure prediction suite, I-TASSER,32 to
examine the foldability of the designed sequences.

■ METHODS
Data Set Construction. We collected a set of monomeric

structures from previous PSCP14 and protein design
studies,3,26,33 excluding structures with discontinuous chains
or missing atoms. To remove redundancy, the protein
sequences were clustered using CD-HIT34 with a sequence
identity cutoff of 30% and the duplicated sequences in each
cluster were removed. A total of 136 structures were retained
and this set of proteins was used for side-chain reproduction
analysis, side-chain prediction, and de novo sequence design in
this work; the proteins in this data set shared <30% sequence
identity with every member from the data set used to train
EvoEF2.31 To check if the data set was biased for side-chain
reproduction by a rotamer library, we also collected another
larger set of single-chain structures from the Top8000
database,35 where the members shared <70% sequence identity
with each other. Proteins with discontinuous chains or missing
atoms were discarded and a larger set of 3719 structures was
retained for side-chain reproduction analysis.

Definition of Core and Surface Residues. It has been
shown that the side-chain prediction accuracy is quite different
for residues located in distinct regions (e.g., core and surface
residues) of a protein.1,15,17,22 In this work, the core and
surface residues were defined using criteria similar to that used
in refs 36 and 37. Specifically, we defined core residues as those
positions that had more than 20 Cβ atoms within 10 Å of the
Cβ atom of the residue of interest, while the surface residues
were required to have less than 15 Cβ atoms within the same
region. Cα atoms were counted for glycine.

Evaluation of Side-Chain Reproduction. We used two
metrics to evaluate the ability of a rotamer library to reproduce
the native side-chain conformations. First, we considered that a
rotamer library was able to reproduce a given set of side-chain
χ angles from a native residue if it contained at least one
rotamer that had all of its corresponding χ angles within 20° of
the native values. Second, to evaluate the performance of each
rotamer library to reproduce the native residue geometries, we
generated all of the possible conformations using the rotamer
dihedral angles defined in rotamer libraries L1−L6 and
calculated the RMSDs between each residue and its
corresponding set of rotamers from each library, keeping the
lowest RMSD value. The RMSDs were only calculated for
side-chain, non-hydrogen atoms, excluding Cβ atoms. There
are two ways to calculate RMSD among a set of proteins:
overall and average RMSD. The overall RMSD is calculated by
summing over all of the residues in all of the proteins, while the
average RMSD is simply the average value of the sum of
RMSDs for each of the proteins from the set. The value of
overall RMSD is usually larger than that of average RMSD and
was used in this work. The symmetry of residues Asp, Glu,
Phe, Arg, and Tyr were considered for RMSD calculation.
Alanine and glycine were excluded from analysis, as they are
not rotatable.

EvoEF2 Energy Function and Parametrization. The
EvoEF231 energy function was extended from EvoEF, which
was first proposed and implemented in our evolutionary
profile-based protein design algorithm, EvoDesign.3 EvoEF
consists of five energy terms, including van der Waals energy,
electrostatic interactions, orientation-dependent hydrogen-
bonding interactions, desolvation energy, and the reference
energy:
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Here, EVDW, EELEC, EHB, EDESOLV, and EREF represent the total
van der Waals, electrostatic, hydrogen bonding, desolvation,
and reference energy terms for a protein system, respectively.
The protein reference energy term, EREF, is used to model the
energy of a protein in its unfolded state and is calculated as the
sum of amino acid-specific reference energy values. Evdw(i, j),
Eelec(i, j), Ehb(i, j), and Edesolv(i, j) are the pairwise interactions
between nonbonded atoms i and j, where wvdw, welec, whb, and
wdesolv are their relative weights. Eref(aal) is the amino acid-
specific reference energy used to model the energy of an amino
acid in the unfolded state, where aal is the amino acid identity
at position l. The detailed mathematical equations for Evdw(i,
j), Eelec(i, j), Ehb(i, j), and Evdw(i, j) are identical to what was
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previously described3 and are listed in Text S1 to provide a
complete description of the energy function.
In EvoEF2, the above terms were preserved, but the weights

and reference energies were optimized using an improved
method. Moreover, four new terms were introduced to make
EvoEF2 capable of tackling more difficult design cases and to
fully utilize the structural information present in a given
protein backbone. First, disulfide bonds exist in many proteins,
but in EvoEF there is no term to model the possible formation
of disulfide bonds. Since the length of a disulfide bond is
around 2 Å, which is much less than the sum of the van der
Waals radii of two sulfur atoms, possible disulfide-bond
configurations in EvoEF may incur large clash penalties.
Hence, we consider explicitly modeling disulfide bonds in
EvoEF2. Second, the 20 canonical amino acids have different
side-chain groups, and for the same amino acid, there may exist
different rotamers. The different amino acids and rotamers
exhibit distinct propensities and may occur at various
frequencies at different protein backbone positions. To
model this propensity, we introduced amino acid propensity,
Ramachandran, and rotamer probability terms into EvoEF2.
The complete EvoEF2 energy function is written as

= + + + +

+ + + −

E E E E E E

E E E E
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Here, ESS describes the disulfide bonding interactions, which
are modeled as follows:
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where wSS is the weight factor, atom pair i and j represent the
two Sγ atoms from two different cysteines, dij

Sγ1Sγ2 is the distance
between them, θij

Cβ1Sγ1Sγ2 is the angle between atoms Cβ1, Sγ1, and
Sγ2, θij

Cβ2Sγ2Sγ1 is the angle between atoms Cβ2, Sγ2, and Sγ1,
χij
Cβ1Sγ1Sγ2Cβ2 is the torsion angle between atoms Cβ1, Sγ1, Sγ2, and
Cβ2, χij

Cα1Cβ1Sγ1Sγ2 is the torsional angle between atoms Cα1, Cβ1,
Sγ1, and Sγ2, and χij

Cα2Cβ2Sγ2Sγ1 is the torsional angle between atoms
Cα2, Cβ2, Sγ2, and Sγ1. The distance dij

Sγ1Sγ2 must be within [1.95,
2.15] in order to calculate ESS(i, j), and ESS(i, j) = 0 if ESS(i, j)
> 0 or dij

Sγ1Sγ2 ∉ [1.95, 2.15].
EAAPP represents the energy for calculating amino acid

propensities at given backbone angles (ϕ/ψ) by
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where waapp is the weight parameter, l is the design position, aal
and (ϕl, ψl) are the amino acid type and backbone torsional
angles at position l, respectively. P(aal|ϕl, ψl) and P(aal) are
the probabilities of observing amino acid aal at a given (ϕl, ψl)
and any backbone torsional angle, respectively. The statistics
were obtained from the Top8000 data set35 using a grid step of
10° for ϕ and ψ. Following a similar strategy to ref 14 for the
N-terminal residue and other residues whose ϕ angle cannot

be determined by the backbone (due to missing backbone
atoms), ϕ is set to −60°, and similarly, for the C-terminal
residue and other residues whose ψ angle cannot be
determined by the backbone (due to missing backbone
atoms), ψ is set to 60°. This is also applicable to the
calculation of ERAMA and EROT.
ERAMA is the Ramachandran term for choosing specific

backbone angles (ϕ, ψ) given a particular amino acid:

∑ ϕ ψ= − |
≤ ≤

E w P aaln ( , )
l L

l l lRAMA
1

rama
(5)

where wrama is the weight parameter. This term is used to
calculate how suitable the backbone (ϕl, ψl) is given aal. The
statistics were obtained using the same data set and grid step
mentioned above.35

Finally, EROT is the energy term for modeling the rotamer
probabilities from a Dunbrack BBDRL:

∑ ϕ ψ= − |
≤ ≤

E w P rotln ( , )
l L

l l lROT
1

rot
(6)

where wrot is the corresponding weight, l is the design position,
(ϕl, ψl) is the backbone torsional angle at position l. P(rotl|ϕl,
ψl) is the probability of seeing rotamer rotl at a given (ϕl, ψl)
for an amino acid type, which is directly taken from the
Dunbrack 2010 BBDRL21 without further modification. To
evaluate EROT for a native rotamer (see Results), we calculate
its side-chain dihedrals and check if they are reproduced by the
rotamer dihedrals taken from the BBDRL. If reproduced, the
native rotamer is assigned the probability of the library
rotamer. If not, a very low probability of 10−7 is assigned to the
native rotamer, which results in a large positive EROT value.
EROT = 0 for rotamers from the Honig BBIRLs because no
rotamer probability information can be obtained from these
libraries.
EvoEF was originally optimized and tested on two large sets

of thermodynamic mutation data,3 but we found that using this
strategy to optimize EvoEF resulted in poor performance on de
novo sequence design. We therefore reoptimized EvoEF2 for
protein design using a procedure similar to the one-at-a-time
approach used by Rosetta.38 Specifically, the weights for each
energy term and the 20 reference energies were determined by
maximizing the product of e−Emin(AAnat|w)/∑i e

−Emin(AAi|w) across all
of the residues positions on a training set of 222 monomers
using a gradient descent optimization procedure, where
Emin(AAnat|w) was the energy of the best rotamer for the
native amino acid, AAnat, given the weight set, w, Emin(AAi|w)
was the energy of the best rotamer for amino acid AAi using
the same weight set, w, and the partition function was over all
20 amino acids at each position. The 222 monomers shared
<30% sequence identity to any of the 136 test monomers in
this work. The rotamers were taken from the Dunbrack 2010
BBDRL L3 (see Results)21 or the Honig BBIRL L4 (see
Results).22 The energies for the rotamers at each position were
calculated in the context of fixed surrounding residues. The
determined weights and reference energies were then refined
based on the results of complete sequence design for the same
training proteins to reduce the deviation of the 20 amino acid
distributions between the designed sequences and the native
sequences. Similarly, optimization of the weights for interchain
interactions was first determined by maximizing the product of
e−Emin(AAnat|w)/∑i e

−Emin(AAi|w) over the interface residues positions
on a training set of 132 dimers, where the weights for the
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monomeric energy terms and reference energies were fixed.
The weights were also refined by complete PPI sequence
design simulations for the 132 dimers. The EvoEF2 energy
weights and reference energies for the BBDRLs and BBIRLs
are listed in Tables S1 and S2, respectively. The source code
for EvoEF2 and the SAMC searching method (see below) for
side-chain prediction and de novo sequence design, as well as
the benchmark data sets are available free of charge at https://
zhanglab.ccmb.med.umich.edu/EvoEF/.
Protein Sequence Design and Assessment. We

extended the EvoDesign Monte Carlo (MC) pipeline3 to test
the ability of EvoEF2 to perform protein design. Starting from
a random sequence, a SAMC30 procedure was used to explore
the sequence space for fixed protein backbones, where an MC
move consisted of exchanging one rotamer for another at a
randomly chosen position. All amino acid types were
considered at each design position and their side-chain
conformations were taken from any of the rotamer libraries
L1−L6. A move was accepted or rejected according to the
Metropolis rule, where the acceptance probability for an
unfavorable energy increase, ΔE, was e−ΔE/T. The temperature
T was varied from Thigh = 5 to Tlow = 0.01 with a decrease
factor of 0.8, and three SAMC cycles were performed for the
sake of convergence. We did not use a protein length-
dependent temperature because ΔE did not exhibit strong
length dependency. The number of MC moves at each
temperature was set to 50 000. Because MC-based methods do
not guarantee the global optimum solution, for a given scaffold,
we performed five independent simulations starting from
different random sequences and selected the lowest energy
sequence as the final design and compared it with the native.
The SAMC simulation procedure converged well and in almost
all cases the sequences obtained from different runs shared
>85% sequence identity with similar energies, and the designed
sequences in the core regions were nearly identical.
The ability to produce nativelike sequences is an important

metric for a protein design algorithm. Therefore, we calculated
the sequence identity between each designed sequence and its
native counterpart and evaluated the native sequence
recapitulation rates for all 20 amino acid types and residues
in all, core and surface regions. To further test the design
quality, we used I-TASSER32 to examine the foldability of the
designed sequences.
Protein Side-Chain Prediction and Assessment. The

protein side-chain prediction procedure was similar to the
protein sequence design strategy described above. The major
difference between the two is that the amino acid types were
held constant and only the side-chain conformations could
change at each position for side-chain prediction. Rotamers
were taken from libraries L1−L6. We performed five
independent side-chain prediction trials and reported the
average accuracies and standard deviations.
The accuracy of side-chain prediction is usually assessed in

terms of dihedral angle deviations or RMSD values between
the predicted and native conformations. Most of the time, the
two metrics are not consistent with each other, so both were
used in this work. When analyzing dihedral angle deviations,
usually only the χ1 and χ1+2 dihedral angles are considered and
a dihedral angle is regarded as being predicted correctly if its
value is within 40° of that of the native structure. However, it
seems to be relatively easy to achieve a good accuracy (>85%
for χ1 and >70% for χ1+2) with this loose criteria,1 covering up
the difficulty of the side-chain prediction problem. Here, we

employed the same criteria used to analyze side-chain
reproduction to examine the side-chain prediction accuracy.
Specifically, we considered all dihedral angles (χ1 for Cys, Ser,
Thr, and Val, χ1+2 for Asp, Phe, His, Ile, Leu, Asn, Pro, Trp,
and Tyr, χ1+2+3 for Glu, Met, and Gln, χ1+2+3+4 for Lys and Arg)
and a side-chain was regarded as being predicted correctly if all
of its dihedral angle values were within 20° of that of the native
structure. The calculation of RMSD between the predicted and
native conformations was also identical to that for the side-
chain reproduction analysis and the overall RMSDs are
reported.

■ RESULTS
Rotamer Libraries. The original Dunbrack 2010 BBDRL

and two derivatives of it, as well as three detailed Honig
BBIRLs were used in this study (Table 1). The libraries are

denoted with shorter codes for enhanced clarity (L1−L6). The
original Dunbrack 2010 BBDRL (L1) has 726 939 rotamers
when considering all 1296 10° × 10° ϕ/ψ bins, with on
average 561 rotamers per bin. Two derivatives were created by
removing the rotamers whose probabilities were below 1% and
3%, as given in the library, and denoted as L2 and L3,
respectively. Here, the strategy of excluding rarely seen
rotamers is similar to refs 33 and 36, where it was reported
that removal of these rotamers had a negligible effect on
protein design accuracy but showed much faster speed. L2 and
L3 had 260 500 and 157 190 rotamers in total (on average 201
and 121 per bin), respectively. For the BBDRLs, since each
position is indexed into one 10° × 10° bin depending on the
ϕ/ψ angles at that position, in a protein design problem, the
total number of rotamers for any give position is about 561,
201, or 121 when using L1, L2, or L3, respectively. The three
Honig libraries are denoted as L4−L6 and consist of 3222,
7421, and 11 810 rotamers, respectively. It is worth noting that
the Honig BBIRLs do not contain rotamer probabilities or
deviations of side-chain dihedral angles as the Dunbrack
libraries do because the two classes of libraries were
constructed using different approaches and the rotamers in
the Honig libraries do not always lie at local energy minima.22

In this study, we did not expand rotamer libraries L1−L6 by
varying the χ1 and χ1+2 dihedral angles as reported in some
other studies.39−41

Native Side-Chain Reproduction. The native side-chain
reproduction accuracy, in terms of dihedral angle deviation and
side-chain RMSD for the 136 structures, is shown in Figure 1.
The BBDRL L3 and BBIRL L6 showed the lowest and highest
reproduction rates for all, core and surface residues,
respectively, where L4−L6 reproduced almost all of the side-
chains (Figure 1a), which is in agreement with the statistics by

Table 1. Overview of the Six Rotamer Libraries Used in
This Work

rotamer library number of rotamers refs

L1: Dunbrack2010BBdep 726939 (561 per
bin)

Shapovalov and
Dunbrack21

L2: Dunbrack2010BBdep-
1per

260500 (201 per
bin)

Shapovalov and
Dunbrack21

L3: Dunbrack2010BBdep-
3per

157190 (121 per
bin)

Shapovalov and
Dunbrack21

L4: Honig3222 3222 Xiang and Honig22

L5: Honig7421 7421 Xiang and Honig22

L6: Honig11810 11810 Xiang and Honig22
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Pupo and Moreno.28 The difference between the reproduction
rates for the three categories is quite large for libraries L1−L3
but is negligible for L4−L6. For each rotamer library, the
highest reproduction rates were observed in the core, while the
lowest were observed at the surface, probably because core
residues are more constrained and, thus, more easily
recapitulated. The original Dunbrack BBDRL, L1, reproduced
88.5%, 93.8%, and 83.8% of all, core, and surface residues,
respectively, where the reproduction rates decreased across all
three categories when rotamers whose probabilities were <1%
(L2) or <3% (L3) were excluded. Using L2, the reproduction
rates decreased by 1.6% in the core and 4.4% at the surface,
while using L3 caused the rates to decrease by 5.1% and 10.4%
in the core and surface, respectively, suggesting that rare
rotamers more frequently occur on the surface of proteins. The
Honig BBIRLs L4−L6 showed much higher reproduction rates
at the expense of considerably increasing the number of
rotamers at each position. The largest BBIRL, L6, reproduced
99.4%, 99.8%, and 99.0% of all, core, and surface residues,
respectively, in terms of side-chain dihedral angles.
Having significant dihedral angle deviation does not

necessarily imply that there are significant differences in spatial
geometrical coordinates, since in some cases the individual
differences in χ angles may compensate for each other,
rendering the overall position of the calculated side-chains

close to the native. Therefore, we also measured the minimum
overall RMSD that could be achieved between the native
geometry and a rotamer from each library. As shown in Figure
1b, the BBIRLs L4-L6 reproduced the side-chain geometrical
coordinates much better than BBDRLs L1-L3 with lower
RMSDs. For example, the minimum side-chain RMSDs
obtained by L6 were less than half those achieved by L1.
To check whether the above statistics were biased due to the

relatively small number of structures tested (136 proteins), we
tested the side-chain reproduction performance of each library
using another larger set of 3719 structures, where the results
are presented in Figure S1. Similar results were obtained in
terms of both χ angle deviation and RMSD, suggesting the
statistics for the 136 proteins are representative. Therefore, we
conclude that the selected BBIRLs (L4−L6) are more
complete than the BBDRLs (L1−L3) for native side-chain
reproduction.

Protein Side-Chain Prediction. The reproduction rate by
a rotamer library can be regarded as the maximum accuracy
level achievable by a PSCP algorithm using an identical library,
due to the fact that identical criteria is used to evaluate side-
chain reproduction and prediction in this work. For instance,
the maximum level of dihedral angle recovery should be
≤88.5%, 93.8%, and 83.8% for all, core, and surface residues,
respectively, when library L1 is used. Meanwhile, the overall
RMSD between the packed structures and native should be
≥0.53, 0.48, and 0.57 Å for all, core, and surface residues,
respectively. It is desirable to approach these limits for a side-
chain prediction task. To the best of our knowledge, we are the
first to use both the strict criterion of 20° and consider the
recovery of all side-chain dihedral angles at the same time. To
know where our method stands, as a comparison, we
performed side-chain prediction using three state-of-the-art
programs, SCWRL4,14 CISRR,15 and RASP,17 which were
specifically developed for this task; all of them use library L1
for PSCP.
The prediction accuracy in terms of dihedral angle recovery

and side-chain RMSD are summarized in Table 2. Overall, the
performance of SCWRL4, CISRR, and RASP are comparable;
SCWRL4 achieved the highest overall χ angle recovery rate of
62.3%, while in the core CISRR performed the best with a
recovery rate of 81.4%. It can be seen that the two metrics are
not always consistent as mentioned above (Table 2), i.e., the
highest χ angle recovery rate does not always correspond to the
lowest RMSD. Among the three programs, CISRR achieved
the lowest RMSDs for all, core and surface residues. With a

Figure 1. Dihedral angle (χ1−4) reproduction rates (a) and the
minimal side-chain RMSD achievable (b) using rotamer libraries L1−
L6 on 136 proteins.

Table 2. Dihedral Angle Recovery Rates for Side-Chain Prediction on 136 Structures Using Rotamer Libraries L1−L6a

χ1−4 recovery rate (%) overall side-chain RMSD (Å)

method library all core surface all core surface

CISRR L1 61.8 ± 0.0 81.4 ± 0.0 46.4 ± 0.0 1.68 ± 0.00 0.91 ± 0.00 2.15 ± 0.00
RASP L1 61.1 ± 0.0 78.7 ± 0.0 47.2 ± 0.0 1.72 ± 0.00 1.01 ± 0.01 2.16 ± 0.00
SCWRL4 L1 62.3 ± 0.0 81.0 ± 0.0 47.3 ± 0.0 1.70 ± 0.00 0.95 ± 0.00 2.18 ± 0.00
EvoEF2 L1 60.0 ± 0.1 79.1 ± 0.3 44.2 ± 0.3 1.66 ± 0.01 0.97 ± 0.01 2.12 ± 0.01
EvoEF2 L2 59.3 ± 0.1 77.8 ± 0.3 44.0 ± 0.3 1.69 ± 0.01 1.10 ± 0.02 2.13 ± 0.02
EvoEF2 L3 58.5 ± 0.2 75.9 ± 0.2 43.9 ± 0.3 1.76 ± 0.01 1.27 ± 0.01 2.14 ± 0.01
EvoEF2 L4 34.4 ± 0.4 56.0 ± 0.7 18.1 ± 0.4 1.92 ± 0.02 1.14 ± 0.03 2.44 ± 0.01
EvoEF2 L5 37.8 ± 0.3 60.4 ± 0.7 20.2 ± 0.3 1.82 ± 0.01 1.01 ± 0.01 2.37 ± 0.01
EvoEF2 L6 36.7 ± 0.3 59.2 ± 0.8 19.5 ± 0.5 1.84 ± 0.01 1.01 ± 0.02 2.39 ± 0.01

aThe best performance in each column is shown in bold. Each program was run five times using any of the six rotamer libraries, and the average and
standard deviation are reported.
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stricter criterion of 20° and all χ angles considered, the overall
dihedral angle recovery rates obtained here are much lower
than those reported in literature,14,15,17 where a loose criterion
of 40° and only χ1 and χ1+2 were considered. A huge gap exists
between the overall dihedral angle recovery rates (61.1−
62.3%) and the maximum achievable reproduction rate
(88.5%) using library L1. Similarly, the lowest overall
RMSDs obtained by CISRR were much higher than the best
reproduced RMSDs by L1 (e.g., 1.68 vs 0.53 Å for all residues,
0.91 vs 0.48 Å for core residues and 2.15 vs 0.57 Å for surface
residues). It seems that the difficulty of the side-chain
prediction problem has been underestimated using loose
criteria for success. The current state-of-the-art PSCP
programs are in general good but not perfect.1

The side-chain prediction performances using libraries L1−
L3 were significantly better than those obtained using L4−L6,
with much higher dihedral angle recovery rates and lower
RMSDs (Table 2), although L4−L6 showed much higher
completeness (Figure 1). For example. The worst BBDRL, L3,
achieved an overall dihedral angle recovery rate of 58.5% and
an RMSD of 1.76 Å, while the best BBIRL, L5, obtained a
dihedral angle recovery rate of 37.8% and an RMSD of 1.82 Å.
L1 yielded the best performance among the BBDRLs, while L5
performed the best among the BBIRLs, suggesting it is
necessary to include the rare rotamers to achieve better
accuracy. The best side-chain prediction accuracy for EvoEF2,
in terms of dihedral angle recovery rates, was achieved by
employing library L1, where 60.0%, 79.1%, and 44.2% of all,
core, and surface residue side-chains were recapitulated. These
values were quite comparable to those achieved by SCWRL4,
CISRR, and RASP (Table 2) and, in fact, EvoEF2 obtained
even lower overall side-chain RMSDs than the other three
state-of-the-art methods (e.g., EvoEF2: 1.66 Å, CISRR: 1.68 Å,
SCWRL4: 1.70 Å, and RASP: 1.72 Å), suggesting that EvoEF2
captures the overall PSCP geometries slightly better than them.
It is worth pointing out that EvoEF2 was optimized for
sequence design rather than side-chain prediction, as the other
programs were, but our results demonstrate that EvoEF2 is
generally applicable to side-chain prediction.
Native Sequence Recapitulation. Native sequence

recapitulation is an important metric for evaluating the
performance of protein design algorithms.33,36,38,40−44 We
used EvoEF2 to perform de novo sequence design simulations
on the 136 selected proteins using rotamer libraries L1−L6
and compared the sequence design performance for each
library. The native sequence recapitulation results are
described in Figure 2a. Remarkably, a high percentage
(>27%) of all residues were identical to the amino acids in
the corresponding positions in the native sequences for
libraries L1−L6, which is quite comparable to or even better
than the performance achieved by some other programs for de
novo sequence design.36,45−47 However, all of these algorithms
use more informative BBDRLs, and to our knowledge, this
work is the first to report the ability to recapitulate the native
sequences to such a high extent using both BBDRLs and
BBIRLs, supporting the accuracy of our energy function and
protein design method.
The BBDRLs outperformed BBIRLs by recapitulating more

naturally occurring residues. The highest overall sequence
recovery rates were achieved by library L1, followed by L2 and
L3 (Figure 2a). Using L1, EvoEF2 recapitulated 34.2%, 48.5%,
and 24.8% of all, core, and surface residues, respectively, which
is comparable to the state-of-the-art protein design software,

Rosetta,40 when subrotamers are not included. We also
evaluated the sequence identity between the designed and
native sequences (Table S3), which is a different metric than
the sequence recapitulation rate. The statistical distribution of
sequence identities by libraries L1−L6 are illustrated in Figure
2b. The median sequence identity was close to the native
sequence recapitulation rate for all residues (e.g., the median
sequence identity for L1 was 34.8%), and the distribution of
sequence identities by L1−L3 was quite similar. With respect
to the BBIRLs, L5 yielded the highest native sequence
recapitulation rates by recovering 28.7%, 39.0%, and 22.9%
of all, core, and surface residues, respectively, with a median
sequence identity of 29.0%.

Foldability Assessment of the Designed Sequences.
Protein design aims to create new protein molecules that adopt
specific folds and perform desired biological functions.
Therefore, it is important to examine to what extent a
designed sequence can fold into the scaffold structure on which
the design was performed. High native sequence similarity
does not necessarily guarantee the designs are of high quality.
To further examine the design quality, we used the state-of-
the-art protein structure prediction suite, I-TASSER,32 to test
the foldability of the designed sequences and to examine how
close the predicted models were to the native scaffolds. The
sequences designed using libraries L1−L6 with the lowest
EvoEF2 predicted free energies were modeled by I-TASSER in
order to assess their foldability. A test protein was defined as
foldable if the designed sequence was predicted to fold into a
structure with a TM-score48 to the native scaffold structure
greater than a specified threshold, where a TM-score >0.5
indicates that two structures share a similar fold topology.49

Alternatively, RMSD was also used to calculate the similarity
between two structures, and generally, two structures share a
similar fold when the RMSD is <4 Å.47 The TM-scores and
RMSDs between the 136 predicted and native proteins for
libraries L1−L6 are listed in Tables S4 and S5, respectively.
The TM-scores and RMSDs as a function of sequence identity
between the designed and native sequences are illustrated in
Figures S2 and S3, respectively.
We used three TM-score thresholds, >0.5, >0.7, and >0.9

and three RMSD cutoffs, <4, <2, and <1 Å for the foldability

Figure 2. Native sequence recapitulation (a) on 136 proteins and the
distribution of sequence identities (b) between the native and
designed sequences obtained using rotamer libraries L1−L6.
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assessment, where the results are summarized in Table 3.
Generally, more than 96% of the proteins designed using

libraries L1−L6 were predicted to fold into structures with
TM-scores >0.5 or, alternatively, RMSDs < 4 Å to their native
counterparts, thereby suggesting that all of the tested libraries
are reasonably good for sequence design. Nevertheless, on
average, higher percentages of proteins designed using
BBDRLs were predicted to be foldable, and this became
more evident when using stricter RMSD thresholds. For
example, when we set the RMSD threshold to <2 Å, which is a
reasonable upper bound for regarding protein design as
successful,50,51 94.1%, 93.4%, 94.1%, 86.0%, 90.4%, and
91.9% of the designs using libraries L1−L6 passed this
criterion, respectively. Moreover, about 20% less of the designs
were predicted to fold into structures within 1 Å of their
corresponding native scaffold on which design was performed.
According to the I-TASSER assessment results, BBDRLs are
better at producing foldable designs than BBIRLs. It is worth
noting that different protein structure prediction packages have
different search algorithms and energy functions,52−55 which
may lead to discrepancies in terms of foldability assessment.
One important reason for using I-TASSER in this study is that
the designed sequences shared very high sequence identities to
their native counterparts and, therefore, template-based
structure modeling from methods such as I-TASSER should
be relevant for such assessments.
Computational Time. The trade-off between accuracy and

speed should be considered for PSCP. When not using the
native conformer, the best side-chain prediction and de novo
sequence design accuracy was obtained by L1 for the BBDRLs
and L5 for the BBIRLs. In general, the larger the rotamer
library is, the longer time it takes to perform PSCP. The
computational time required to perform side-chain prediction
and de novo sequence design on the 136 proteins using libraries
L1−L6 is presented in Figure 3; each structure was repacked
and completely designed using a single 2.50 GHz Intel Xeon
CPU on the Extreme Science and Engineering Discovery
Environment (XSEDE) cluster.56

The median time required for side-chain prediction using
L1−L3 were 0.9, 0.6, and 0.4 min, respectively, which were all
much shorter than the time consumed by L4−L6 for the same
task (Figure 3a). Although it is very efficient for EvoEF2 to
repack the residue side-chains of a structure using L1−L3, it is
still much slower than SCWRL4, CISRR, and RASP, which
were specifically designed for this task. The most efficient
method, RASP, can finish repacking each of the 136 structures

within one second, while still yielding quite reasonable results.
These packing programs use very simple energy functions and
efficient heuristic optimization strategies to search for good
solutions instead of exhaustively probing the global energy
minimum using a global optimization technique like SAMC.
With respect to de novo sequence design, the median times
used to completely design the 136 structures were 13.8, 7.5,
and 5.1 min using BBDRLs L1, L2, and L3, respectively, which
were all much shorter than the times required to perform
sequence design using BBIRLs L4−L6 (Figure 3b). Addition-
ally, the SAMC optimization method used here is much faster
than deterministic searching algorithms (e.g., dead-end
elimination7 and mixed-integer linear programming26) for
protein design. In short, when using EvoEF2, BBDRLs are
more advantageous than BBIRLs for efficient and effective
side-chain prediction and protein design.

Advantage of Using Rotamer Probabilities from
BBDRLs. From the above results, we can see that the BBDRLs
considerably outperformed the BBIRLs in both side-chain
prediction and de novo sequence design with shorter
computational time following the same computational
procedure. We note that a big difference between the BBDRLs
and the detailed BBIRLs is that the BBDRLs provide rotamer
probabilities as well as the rotamer dihedral angle values. In the
side-chain prediction and sequence design experiments with
BBDRLs, an energy term (i.e., EROT in EvoEF2) derived from
rotamer probabilities was utilized and the weight of this term
was a nonzero value, suggesting rotamer probabilities are
important for these experiments. To check the impact of
rotamer probability, we also performed side-chain prediction
and sequence design for the 136 structures using libraries L1−
L3 by disabling the EROT term, and the results are shown in
Table 4 and Figure 4, respectively. The sequence identities
between the native and designed sequences achieved using
L1−L3 with EROT disabled are listed in Table S6. For all three
BBDRLs L1−L3, the side-chain prediction performance was
worse when the rotamer probability term was disabled in terms
of both the dihedral angle recovery rate and overall side-chain
RMSD (Tables 2 and 4), suggesting that the rotamer
probability term is important to identify the correct
conformations that are close to native. The impact on
prediction performance was greater by removal of EROT for a

Table 3. Percentage of Designed Sequences That Were
Predicted to Fold within the Given TM-Score and RMSD
Thresholds Using Rotamer Libraries L1−L6a

Success Rate (%)

TM-score RMSD

library >0.5 >0.7 >0.9 <4 Å <2 Å <1 Å

L1 100.0 98.5 89.7 98.5 94.1 74.3
L2 98.5 98.5 89.0 98.5 93.4 73.5
L3 100.0 98.5 91.1 99.3 94.1 72.8
L4 98.5 95.6 86.0 96.3 86.0 66.9
L5 98.5 97.8 89.0 96.3 90.4 72.1
L6 98.5 97.1 89.0 97.1 91.9 69.1

aThe best performance in each column is shown in bold.
Figure 3. Average CPU time for side-chain prediction (a) and de novo
sequence design (b) on 136 proteins.
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larger library (e.g., L1), partly because a larger rotamer library
may result in higher difficulty discriminating correct from
incorrect conformations.
In terms of dihedral angle recovery rate, L1 performed the

worst without EROT (Table 4), while it yielded the best
performance when this term was considered (Table 2). From
Table 4, L1 obtained the lowest RMSD for the core residues
but the highest RMSD for the surface residues, while in Table
2, L1 consistently outperformed L2 and L3 by achieving lower
RMSDs for residues in all three categories. Bear in mind that
libraries L2 and L3 are subsets of L1 with less rotamers, thus all
the conformations in L2 and L3 are also included in L1, but L1
has some rare rotamer conformations that are excluded from
L2 and L3. Due to the removal of EROT, all rotamers in the
libraries were considered equally probable, and thus, whether
or not a rotamer was chosen at a position was completely
determined by the physical interactions between the rotamer
and its surrounding context. Since core residues are more
constrained and have more contacts with spatially adjacent
residues than surface residues, the rotamer conformations of

core residues are easier to correctly position based on the
physical interactions with one another. In this situation, the
library with more abundant rotamers (e.g., L1) yielded lower
RMSDs and this explanation can also be partly demonstrated
by the side-chain prediction results directly using BBIRLs L4−
L6. On the other hand, surface residues, which are more
exposed to the bulk solvent, have fewer contacts with other
residues and their conformations are not easily determined by
the physical energy alone because the solvent molecules are
not explicitly modeled in the energy function. In this situation,
the near-native conformations were not well identified and
usually much higher overall RMSDs were obtained for surface
residues whether or not EROT was considered (Tables 2 and 4).
Another interesting finding is that, compared with libraries
L4−L6, the predicted side-chain RMSDs obtained using L1−
L3 by removal of EROT were quite comparable to those
achieved using libraries L4−L6 (Tables 2 and 4).
For protein sequence design, the performance of recapitulat-

ing native residues also became much worse using libraries
L1−L3 when the rotamer probability term was disabled
(Figures 2 and 4). For example, the best performance achieved
by L3 with EROT disabled, resulted in 27.6%, 40.0%, and 20.2%
of all, core, and surface residues being predicted to be identical
to the naturally occurring amino acids at the same design
positions. But when EROT was included, using library L3, the
native sequence recapitulation rates for all, core, and surface
residues were 33.6%, 47.1%, and 24.7%, respectively. These
results emphasize that the energy term derived from rotamer
probabilities also plays a significant role in distinguishing
amino acid identities for protein sequence design as well as
discriminating different rotamer conformations of an amino
acid for protein side-chain prediction.

Limitations of Current Rotamer Libraries. A huge gap
exists between the real side-chain prediction performance
achieved and the maximum accuracy level attainable. It has
been argued that energy functions are the main obstacle to
achieving better accuracy.1 From a different perspective, we

Table 4. Dihedral Angle Recovery Rates and Overall RMSDs for Side-Chain Prediction with the Rotamer Probability Term
(EROT) Disabled on 136 Structures Using Rotamer Libraries L1−L3a

χ1−4 recovery rate (%) overall side-chain RMSD (Å)

library all core surface all core surface

L1 47.7 ± 0.2 70.3 ± 0.2 29.4 ± 0.4 1.95 ± 0.01 1.08 ± 0.01 2.53 ± 0.01
L2 50.2 ± 0.1 71.3 ± 0.2 32.8 ± 0.4 1.80 ± 0.01 1.16 ± 0.01 2.27 ± 0.01
L3 52.7 ± 0.1 72.3 ± 0.3 36.2 ± 0.2 1.81 ± 0.01 1.28 ± 0.01 2.21 ± 0.01

aThe best performance in each column is shown in bold. Each program was run five times using each of the three BBDRLs (L1−L3), and the
average and standard deviation are reported.

Figure 4. Native sequence recapitulation (a) on 136 proteins and the
distribution of sequence identities (b) between the native and
designed sequences obtained using rotamer libraries L1−L3 when the
rotamer probability term (EROT) was disabled.

Table 5. Dihedral Angle Recovery Rates and Overall RMSDs for Side-Chain Prediction on 136 Structures by Adding Native
Conformers to Rotamer Libraries L1−L6a

χ1−4 recovery rate (%) overall side-chain RMSD (Å)

library all core surface all core surface

L1 72.6 ± 0.2 91.0 ± 0.2 55.5 ± 0.3 1.39 ± 0.00 0.62 ± 0.02 1.92 ± 0.01
L2 74.7 ± 0.2 93.0 ± 0.2 57.4 ± 0.2 1.30 ± 0.01 0.48 ± 0.03 1.83 ± 0.02
L3 77.0 ± 0.1 93.9 ± 0.2 60.7 ± 0.1 1.22 ± 0.01 0.43 ± 0.01 1.72 ± 0.02
L4 45.7 ± 0.4 72.3 ± 0.4 24.5 ± 0.4 1.72 ± 0.01 0.78 ± 0.02 2.31 ± 0.01
L5 43.2 ± 0.2 68.5 ± 0.3 23.1 ± 0.2 1.73 ± 0.01 0.83 ± 0.02 2.33 ± 0.01
L6 41.2 ± 0.3 61.1 ± 0.3 21.8 ± 0.5 1.76 ± 0.01 0.86 ± 0.01 2.35 ± 0.01

aThe best performance in each column is shown in bold. Each program was run five times using any of the six rotamer libraries, and the average and
standard deviation are reported.
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show that rotamer libraries have significant influence on the
PSCP accuracy (Table 2 and Figure 2). Can we continue
improving the PSCP accuracy if we have a better rotamer
library? To answer this question, we repeated the side-chain
prediction and sequence design experiments using libraries
L1−L6 but added the native conformer at each position, where
the results are presented in Table 5 and Figure 5, respectively.
The sequence identities between the native and designed
sequences using experimental rotamers is listed in Table S7.

Remarkably, the side-chain prediction and native sequence
recapitulation performance drastically improved when the
native conformers were included. For example, using the
BBDRL L1, the dihedral angle recovery rate for side-chain
prediction improved from 60.0% to 72.6% for all residues.
Similarly, the native sequence recapitulation rate for all
residues improved from 34.2% to 58.2%, which is the highest
native sequence recapitulation rate reported to date. Similarly,
using the BBIRL L4, the dihedral angle recovery rate for side-
chain prediction improved from 34.4% to 45.7% for all
residues, while the native sequence recapitulation rate for all
residues improved from 27.2% to 31.8%.
These results demonstrate that the current rotamer libraries

are still limited, as the introduction of native rotamers
significantly improved the performance. This can be explained
by the fact that non-negligible side-chain deviations were
observed between rotamers from libraries and the native
conformers (Figure 1). Moreover, in many protein design
studies,33,40 better results were achieved by varying the χ1 and
χ1+2 dihedral angles, suggesting the original rotamer libraries
were not perfect. Unlike the experiments without native
conformers, where better performance was achieved with larger
rotamer libraries (e.g., L1 for the BBDRLs and L5 for the
BBIRLs), the best performance was obtained using the smallest
libraries (e.g., L3 for the BBDRLs and L4 for the BBIRLs)
when the native conformers were added.

■ DISCUSSION
A rotamer library is one of the three key components of the
PSCP problem, which is of great significance in computational
and structural biology. Many rotamer libraries have been

developed for PSCP applications in protein structure
prediction and protein design.7,18−22 Generally good results
have been reported using each of these rotamer libra-
ries.3,14,15,17,40,41 This raises the question of which rotamer
library yields the best PSCP performance. Additionally, since
there is a trade-off between accuracy and speed, which rotamer
library should be chosen for effective and efficient PSCP?
Although Dunbrack suggested using BBDRLs for protein
structure prediction and protein design rather than BBIRLs,29

there was no quantitative support demonstrating that BBDRLs
outperform BBIRLs. Moreover, the statistical analysis by Pupo
and Moreno28 showed that only the high-resolution Honig
BBIRLs could reproduce the experimental geometries for most
of the peptidic ligands and the atomic interactions between the
peptidic ligands and their receptors. Therefore, up until this
point, it seemed that it may be more advantageous to use the
detailed BBIRLs.
To answer the above questions, we systematically assessed

and compared six rotamer libraries in four aspects. In the side-
chain reproduction assessment, we found that the detailed
Honig BBIRLs considerably outperformed the Dunbrack 2010
BBDRLs by reproducing higher percentages of side-chain
dihedral angles using a strict criterion of 20° and achieving
lower side-chain RMSDs, suggesting that the BBIRLs are more
complete and show broader coverage. This is probably because
the Honig BBIRLs were derived to use a small portion of a
complete rotamer library to represent a large fraction of the
native side-chain conformations that were observed in a set of
proteins;22 the approach of creating these BBIRLs is more
relevant to the side-chain reproduction task than the method
to build BBDRLs by conformational clustering.14 In the side-
chain prediction and de novo sequence design tests, which are
more important for real applications, the BBDRLs considerably
outperformed the BBIRLs by recovering more side-chain
conformations with better geometries and recapitulating more
native residue identities. The independent foldability assess-
ment by I-TASSER32 also suggests that BBDRLs show a better
ability to produce proteins that can fold into the same structure
as their native counterparts. Moreover, it takes much less time
to perform PSCP studies using BBDRLs than BBIRLs.
Therefore, it seems that the BBIRLs are only better for side-
chain reproduction statistics but not as good as BBDRLs for
real side-chain prediction and protein design applications.
This raises the question of why the broader coverage of

BBIRLs does not benefit the side-chain prediction and de novo
sequence design tasks. A major difference between BBIRLs and
BBDRLs is that the rotamer probability information is not
considered in BBIRLs because of the different strategies used
for library construction and the existence of high-energy
rotamers,22 which may be physically unfavorable.29 Moreover,
the detailed BBIRLs are very likely to be highly redundant as
they include a large number of geometrically similar
conformations. The high redundancy and large sizes of
BBIRLs can result in great difficulty when it comes to
discriminating near-native rotamers from non-native rotamers
at a given position, as demonstrated by the decrease in
performance when using the larger library L6 as opposed to
L5. Therefore, the quality of the BBIRLs may not be as good as
the Dunbrack BBDRLs, even though they include more
rotamers for any given position in a protein. When the native
conformers were added to libraries L1−L6, where all libraries
had identical and complete side-chain coverage but different
sizes, the performance of each library on side-chain prediction

Figure 5. Native sequence recapitulation (a) on 136 proteins and the
average sequence identity (b) between the native and designed
sequences achieved by adding native conformers to rotamer libraries
L1−L6.
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and protein design improved remarkably, where the best
performance was achieved using the smallest BBDRL L3 and
BBIRL L4. This finding implies that the current libraries tested
are limited and confirms that large library sizes can increase the
difficulty identifying native conformations and may weaken
their performance.

■ CONCLUSION

Our quantitative benchmark results demonstrate that, for real
applications like side-chain prediction and de novo protein
sequence design, the Dunbrack 2010 BBDRLs significantly
outperform the Honig BBIRLs with better prediction perform-
ance as well as faster speed, and specifically, compared with the
best BBIRL, the overall side-chain dihedral angle prediction
rate and native sequence recapitulation rate improve by more
than 20% and 5%, respectively, using the best BBDRL. The
advantage of using a BBDRL is largely due to the introduction
of an energy term derived from the rotamer probabilities given
in the library. Therefore, at present, we suggest using the
Dunbrack BBDRL for a PSCP task, and in practice, this library
has been found very useful for protein structure modeling.
Nevertheless, we also report that the current state-of-the-art
Dunbrack 2010 BBDRL is still limited because many native-
like conformations are missing from the library and
introduction of these conformations can improve the side-
chain dihedral angle recovery rate and native sequence
recapitulation rate by more than 10% and 20%, respectively.
With the rapidly increasing number of experimental protein
structures, it may be necessary to build new BBDRLs by
clustering the side-chain conformations from a larger set of
elaborated structures.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.9b00812.

Text S1, Tables S1−S7, and Figures S1−S3, as
mentioned in the text (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*Tel.: +1 734 647 1549. Fax: +1 734 615 6443. Email: zhng@
umich.edu.

ORCID
Xiaoqiang Huang: 0000-0002-1005-848X
Yang Zhang: 0000-0002-2739-1916
Funding
The work was supported by the National Institute of General
Medical Sciences (GM083107 and GM116960), the National
Institute of Allergy and Infectious Diseases (AI134678), and
the National Science Foundation (DBI1564756 and
IIS1901191).

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The work used the XSEDE clusters56 which is supported by
the National Science Foundation (ACI-1548562).

■ ABBREVIATIONS
PSCP, protein side-chain packing; RMSD, root-mean-square-
deviation; BBDRL, backbone-dependent rotamer library;
BBIRL, backbone-independent rotamer library; MC, Monte
Carlo; SAMC, simulated annealing Monte Carlo

■ REFERENCES
(1) Colbes, J.; Corona, R. I.; Lezcano, C.; Rodriguez, D.; Brizuela, C.
A. Protein side-chain packing problem: is there still room for
improvement? Briefings Bioinf. 2016, 18, 1033−1043.
(2) Miao, Z.; Cao, Y. Quantifying side-chain conformational
variations in protein structure. Sci. Rep. 2016, 6, 37024.
(3) Pearce, R.; Huang, X.; Setiawan, D.; Zhang, Y. EvoDesign:
Designing protein-protein binding interactions using evolutionary
interface profiles in conjunction with an optimized physical energy
function. J. Mol. Biol. 2019, 431, 2467−2476.
(4) Huang, X.; Yang, J.; Zhu, Y. A solvated ligand rotamer approach
and its application in computational protein design. J. Mol. Model.
2013, 19, 1355−1367.
(5) Huang, X.; Xue, J.; Lin, M.; Zhu, Y. Use of an Improved
Matching Algorithm to Select Scaffolds for Enzyme Design Based on
a Complex Active Site Model. PLoS One 2016, 11, e0156559.
(6) Chitsaz, M.; Mayo, S. L. GRID: a high-resolution protein
structure refinement algorithm. J. Comput. Chem. 2013, 34, 445−450.
(7) Desmet, J.; Maeyer, M. D.; Hazes, B.; Lasters, I. The dead-end
elimination theorem and its use in protein side-chain positioning.
Nature 1992, 356, 539−542.
(8) Goldstein, R. F. Efficient rotamer elimination applied to protein
side-chains and related spin glasses. Biophys. J. 1994, 66, 1335−1340.
(9) Desmet, J.; Spriet, J.; Lasters, I. Fast and accurate side-chain
topology and energy refinement (FASTER) as a new method for
protein structure optimization. Proteins: Struct., Funct., Genet. 2002,
48, 31−43.
(10) Canutescu, A. A.; Shelenkov, A. A.; Dunbrack, R. L., Jr. A
graph-theory algorithm for rapid protein side-chain prediction. Protein
Sci. 2003, 12, 2001−2014.
(11) Kingsford, C. L.; Chazelle, B.; Singh, M. Solving and analyzing
side-chain positioning problems using linear and integer program-
ming. Bioinformatics 2005, 21, 1028−1036.
(12) Xu, J.; Berger, B. Fast and accurate algorithms for protein side-
chain packing. J. Assoc. Comput. Mach. 2006, 53, 533−557.
(13) Liang, S.; Grishin, N. V. Side-chain modeling with an optimized
scoring function. Protein Sci. 2002, 11, 322−331.
(14) Krivov, G. G.; Shapovalov, M. V.; Dunbrack, R. L., Jr. Improved
prediction of protein side-chain conformations with SCWRL4.
Proteins: Struct., Funct., Genet. 2009, 77, 778−795.
(15) Cao, Y.; Song, L.; Miao, Z.; Hu, Y.; Tian, L.; Jiang, T. Improved
side-chain modeling by coupling clash-detection guided iterative
search with rotamer relaxation. Bioinformatics 2011, 27, 785−790.
(16) Liang, S.; Zheng, D.; Zhang, C.; Standley, D. M. Fast and
accurate prediction of protein side-chain conformations. Bioinfor-
matics 2011, 27, 2913−2914.
(17) Miao, Z.; Cao, Y.; Jiang, T. RASP: rapid modeling of protein
side chain conformations. Bioinformatics 2011, 27, 3117−3122.
(18) Dunbrack, R. L., Jr.; Karplus, M. Backbone-dependent rotamer
library for proteins. Application to side-chain prediction. J. Mol. Biol.
1993, 230, 543−574.
(19) Dunbrack, R. L., Jr.; Cohen, F. E. Bayesian statistical analysis of
protein side-chain rotamer preferences. Protein Sci. 1997, 6, 1661−
1681.
(20) Lovell, S. C.; Word, J. M.; Richardson, J. S.; Richardson, D. C.
The penultimate rotamer library. Proteins: Struct., Funct., Genet. 2000,
40, 389−408.
(21) Shapovalov, M. V.; Dunbrack, R. L., Jr. A smoothed backbone-
dependent rotamer library for proteins derived from adaptive kernel
density estimates and regressions. Structure 2011, 19, 844−858.
(22) Xiang, Z.; Honig, B. Extending the accuracy limits of prediction
for side-chain conformations. J. Mol. Biol. 2001, 311, 421−430.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00812
J. Chem. Inf. Model. 2020, 60, 410−420

419

https://pubs.acs.org/doi/10.1021/acs.jcim.9b00812?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00812/suppl_file/ci9b00812_si_001.pdf
mailto:zhng@umich.edu
mailto:zhng@umich.edu
http://orcid.org/0000-0002-1005-848X
http://orcid.org/0000-0002-2739-1916
http://dx.doi.org/10.1021/acs.jcim.9b00812


(23) Ponder, J. W.; Richards, F. M. Tertiary templates for proteins. J.
Mol. Biol. 1987, 193, 775−791.
(24) Peterson, R. W.; Dutton, P. L.; Wand, A. J. Improved side-chain
prediction accuracy using an ab initio potential energy function and a
very large rotamer library. Protein Sci. 2004, 13, 735−751.
(25) Boas, F. E.; Harbury, P. B. Design of protein-ligand binding
based on the molecular-mechanics energy model. J. Mol. Biol. 2008,
380, 415−424.
(26) Huang, X.; Han, K.; Zhu, Y. Systematic optimization model and
algorithm for binding sequence selection in computational enzyme
design. Protein Sci. 2013, 22, 929−941.
(27) Tian, Y.; Huang, X.; Zhu, Y. Computational design of enzyme-
ligand binding using a combined energy function and deterministic
sequence optimization algorithm. J. Mol. Model. 2015, 21, 191−204.
(28) Pupo, A.; Moreno, E. Do rotamer libraries reproduce the side-
chain conformations of peptidic ligands from the PDB? J. Mol.
Graphics Modell. 2009, 27, 611−619.
(29) Dunbrack, R. L. Rotamer Libraries in the 21st Century. Curr.
Opin. Struct. Biol. 2002, 12, 431−440.
(30) Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Optimization by
simulated annealing. Science 1983, 220, 671−680.
(31) Huang, X.; Pearce, R.; Zhang, Y. EvoEF2: accurate and fast
energy function for computational protein design. Bioinformatics
2019, DOI: 10.1093/bioinformatics/btz740.
(32) Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-
TASSER Suite: protein structure and function prediction. Nat.
Methods 2015, 12, 7−8.
(33) Ding, F.; Dokholyan, N. V. Emergence of protein fold families
through rational design. PLoS Comput. Biol. 2006, 2, e85.
(34) Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics 2012,
28, 3150−3152.
(35) Chen, V. B.; Arendall, W. B., 3rd; Headd, J. J.; Keedy, D. A.;
Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.;
Richardson, D. C. MolProbity: all-atom structure validation for
macromolecular crystallography. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 2010, 66, 12−21.
(36) Kuhlman, B.; Baker, D. Native protein sequences are close to
optimal for their structures. Proc. Natl. Acad. Sci. U. S. A. 2000, 97,
10383−10388.
(37) Kortemme, T.; Morozov, A. V.; Baker, D. An Orientation-
dependent Hydrogen Bonding Potential Improves Prediction of
Specificity and Structure for Proteins and Protein−Protein Com-
plexes. J. Mol. Biol. 2003, 326, 1239−1259.
(38) Leaver-Fay, A.; O’Meara, M. J.; Tyka, M.; Jacak, R.; Song, Y.;
Kellogg, E. H.; Thompson, J.; Davis, I. W.; Pache, R. A.; Lyskov, S.;
Gray, J. J.; Kortemme, T.; Richardson, J. S.; Havranek, J. J.; Snoeyink,
J.; Baker, D.; Kuhlman, B. Scientific benchmarks for guiding
macromolecular energy function improvement. Methods Enzymol.
2013, 523, 109−143.
(39) Alvizo, O.; Mayo, S. L. Evaluating and optimizing computa-
tional protein design force fields using fixed composition-based
negative design. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 12242−
12247.
(40) Saunders, C. T.; Baker, D. Recapitulation of protein family
divergence using flexible backbone protein design. J. Mol. Biol. 2005,
346, 631−644.
(41) Alford, R. F.; Leaver-Fay, A.; Jeliazkov, J. R.; O’Meara, M. J.;
DiMaio, F. P.; Park, H.; Shapovalov, M. V.; Renfrew, P. D.; Mulligan,
V. K.; Kappel, K.; Labonte, J. W.; Pacella, M. S.; Bonneau, R.; Bradley,
P.; Dunbrack, R. L., Jr.; Das, R.; Baker, D.; Kuhlman, B.; Kortemme,
T.; Gray, J. J. The Rosetta All-Atom Energy Function for
Macromolecular Modeling and Design. J. Chem. Theory Comput.
2017, 13, 3031−3048.
(42) Schneider, M.; Fu, X.; Keating, A. E. X-ray vs. NMR structures
as templates for computational protein design. Proteins: Struct., Funct.,
Genet. 2009, 77, 97−110.
(43) O’Meara, M. J.; Leaver-Fay, A.; Tyka, M. D.; Stein, A.;
Houlihan, K.; DiMaio, F.; Bradley, P.; Kortemme, T.; Baker, D.;

Snoeyink, J.; Kuhlman, B. Combined covalent-electrostatic model of
hydrogen bonding improves structure prediction with Rosetta. J.
Chem. Theory Comput. 2015, 11, 609−622.
(44) Park, H.; Bradley, P.; Greisen, P., Jr.; Liu, Y.; Mulligan, V. K.;
Kim, D. E.; Baker, D.; DiMaio, F. Simultaneous Optimization of
Biomolecular Energy Functions on Features from Small Molecules
and Macromolecules. J. Chem. Theory Comput. 2016, 12, 6201−6212.
(45) Raha, K.; Wollacott, A. M.; Italia, M. J.; Desjarlais, J. R.
Prediction of amino acid sequence from structure. Protein Sci. 2000, 9,
1106−1119.
(46) Jaramillo, A.; Wernisch, L.; He  ry, S.; Wodak, S. J. Folding free
energy function selects native-like protein sequences in the core but
not on the surface. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 13554−
13559.
(47) Bazzoli, A.; Tettamanzi, A. G.; Zhang, Y. Computational
protein design and large-scale assessment by I-TASSER structure
assembly simulations. J. Mol. Biol. 2011, 407, 764−776.
(48) Zhang, Y.; Skolnick, J. Scoring function for automated
assessment of protein structure template quality. Proteins: Struct.,
Funct., Genet. 2004, 57, 702−710.
(49) Xu, J.; Zhang, Y. How significant is a protein structure similarity
with TM-score = 0.5? Bioinformatics 2010, 26, 889−895.
(50) Dahiyat, B. I.; Mayo, S. L. De novo protein design: Fully
automated sequence selection. Science 1997, 278, 82−87.
(51) Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B.
L.; Baker, D. Design of a novel globular protein fold with atomic-level
accuracy. Science 2003, 302, 1364−1368.
(52) Kim, D. E.; Chivian, D.; Baker, D. Protein structure prediction
and analysis using the Robetta server. Nucleic Acids Res. 2004, 32,
W526−W531.
(53) Kal̈lberg, M.; Wang, H.; Wang, S.; Peng, J.; Wang, Z.; Lu, H.;
Xu, J. Template-based protein structure modeling using the RaptorX
web server. Nat. Protoc. 2012, 7, 1511−1522.
(54) Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.;
Schmidt, T.; Kiefer, F.; Cassarino, T. G.; Bertoni, M.; Bordoli, L.;
Schwede, T. SWISS-MODEL: modelling protein tertiary and
quaternary structure using evolutionary information. Nucleic Acids
Res. 2014, 42, W252−W258.
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