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Abstract

Motivation: The success of genome sequencing techniques has resulted in rapid explosion of protein sequences.
Collections of multiple homologous sequences can provide critical information to the modeling of structure and
function of unknown proteins. There are however no standard and efficient pipeline available for sensitive multiple
sequence alignment (MSA) collection. This is particularly challenging when large whole-genome and metagenome
databases are involved.

Results: We developed DeepMSA, a new open-source method for sensitive MSA construction, which has homolo-
gous sequences and alignments created from multi-sources of whole-genome and metagenome databases through
complementary hidden Markov model algorithms. The practical usefulness of the pipeline was examined in three
large-scale benchmark experiments based on 614 non-redundant proteins. First, DeepMSA was utilized to generate
MSAs for residue-level contact prediction by six coevolution and deep learning-based programs, which resulted in
an accuracy increase in long-range contacts by up to 24.4% compared to the default programs. Next, multiple
threading programs are performed for homologous structure identification, where the average TM-score of the tem-
plate alignments has over 7.5% increases with the use of the new DeepMSA profiles. Finally, DeepMSA was used
for secondary structure prediction and resulted in statistically significant improvements in the Q3 accuracy. It is
noted that all these improvements were achieved without re-training the parameters and neural-network models,
demonstrating the robustness and general usefulness of the DeepMSA in protein structural bioinformatics applica-
tions, especially for targets without homologous templates in the PDB library.

Availability and implementation: https://zhanglab.ccmb.med.umich.edu/DeepMSA/.

Contact: zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple sequence alignment (MSA), also called ‘sequence profile’,
is designed to collect and align multiple homologous sequences of a
query protein of interest. Since it contains rich information about
the evolutionarily conserved positions and motifs, which cannot be
derived from the query sequence alone, it has found fundamental
usefulness in various bioinformatics studies. In protein structure pre-
diction, e.g. the MSA is the primary component to derive local sec-
ondary structure (SS) features (Jones, 1999; Wu and Zhang, 2008),
residue–residue contacts (Adhikari et al., 2018; Hanson et al., 2018;

He et al., 2017; Wang et al., 2017) and homologous structural tem-
plates (Soding, 2005; Wu and Zhang, 2008; Zheng et al., 2019);
these are of critical importance for the full-length 3D structure con-
structions (Ovchinnikov et al., 2018; Zhang et al., 2018). In protein
function annotations, the use of MSAs also has major impacts on
the accuracy of Gene Ontology (Cozzetto et al., 2016; Zhang et al.,
2017) and ligand-binding site (Gil and Fiser, 2019; Yang et al.,
2013) predictions.

Due to the critical importance of MSA, much attention has been
paid to the development of various MSA and sequence profile con-
struction methods. While PSI-BLAST is one of the most widely used
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approaches to query-specific sequence profile generation (Altschul
et al., 1997), HHblits (Remmert et al., 2012) from the HH-suite
(Steinegger et al., 2019) recently becomes popular for profile hidden
Markov model (HMM) construction. Meanwhile, Jackhmmer and
HMMsearch tools from the HMMER suite (Eddy, 1998) are com-
mon alternatives for the applications. Both lines of programs have
been heavily used, especially for the contact predictions that are re-
cently found critical for template-free (or ab initio) protein structure
prediction (Ovchinnikov et al., 2017; Schaarschmidt et al., 2018;
Wu et al., 2011). Most recently, a hybrid MSA generation approach
combining HHblits and Jackhmmer searches is shown to improve
contact prediction by MetaPSICOV2 (Buchan and Jones, 2018).
There was also evidence showing that MSAs collected from metage-
nome protein sequences can increase the coverage of sequence
homologies and be useful for contact-assisted de novo structure pre-
diction (Ovchinnikov et al., 2017; Wang et al., 2019).

Despite the importance of MSA construction, few standalone
pipelines exist which can efficiently generate sensitive MSAs from a
query input sequence, especially when multiple large sequence data-
bases are involved. To address this urgent need, we developed and
release DeepMSA, a new open-source program that constructs deep
(in the sense of more sequences with a high diversity) and sensitive
MSAs by merging sequences from three whole-genome and metage-
nome databases through a hybrid homology-detection approach. In
this approach, HHblits from HH-suite 2.0.16 (Steinegger et al.,
2019) and Jackhmmer/HMMsearch, which were modified from
HMMER 3.1b2 (Eddy, 1998) package to make the output format
more compact in order to reduce file input/output, are used to per-
form homologous sequence search, and the alignments are further
refined by a custom HHblits database reconstruction step. Large-
scale benchmark experiments have showed that, compared to the
widely used HHblits, PSI-BLAST and Jackhmmer programs,
DeepMSA can consistently improve the accuracy of contact and SS
predictions, and threading programs, which is particularly import-
ant for distant-homology proteins.

2 Materials and methods

2.1 Counting the number of effective sequences in

MSAs
A common approach to quantify the homologous sequence coverage
and/or alignment depth of an MSA is by counting the normalized
number of effective sequence (Nf):

Nf ¼ 1ffiffiffiffi
L

p
XN

n¼1

1

1 þ
PN

m¼1;m6¼n I Sm;n � 0:8½ �
(1)

where L is the length of the query protein, N is the number of
sequences in the MSA, Sm;n is the sequence identity between the mth
and nth sequences and I½ � is an Iverson bracket, i.e. I Sm;n � 0:8½ �
equals to 1 if Sm;n � 0:8, and to zero otherwise. While current litera-
ture lacks consensus in terms of the ideal Nf for contact prediction,
we optimize the Nf cutoff as 128 to attain accurate contact predic-
tion, as discussed later. An example to illustrate the mathematical
meaning of Nf is shown at Supplementary Figure S1.

2.2 DeepMSA pipeline for MSA construction
The MSA construction process in DeepMSA can be divided into
three stages, which correspond to the searching of three sequence
databases [Uniclust30 (Mirdita et al., 2017), UniRef90 (Suzek et al.,
2015) and Metaclust (Steinegger and Söding, 2018)] through a com-
bination of the HH-suite and HMMER programs (Fig. 1).

In Stage 1 (Fig. 1 first column), HHblits from HH-suite 2.0.16 is
used to search UniClust30 with the parameters ‘-diff inf -id 99 -cov
50 -n 3’. After testing HHblits MSA generated using the last version
of UniProt20 (2016_02), latest Uniboost30 (2016_09) and three re-
cent versions of Uniclust30 (2017_04, 2017_07, 2017_10), we
found the three versions of Uniclust30 generate MSAs with compar-
able quality, all with a higher contact prediction accuracy than MSA

generated by either UniProt20 or Uniboost30. Therefore, an arbi-
trary UniClust30 version (2017_10) is used for this study.

If Stage 1 does not generate enough sequences, i.e. Nf < 128,
Stage 2 will be performed (Fig. 1 second column), where Jackhmmer
is used to search against UniRef90 with parameters ‘-N 3 -E 10 –
incE 1e-3’. We choose ‘-E 10’ because lowering this e-value cutoff
occasionally results in the inclusion of excessive number of non-
homologous multi-domain hits in edge cases, although the final
number of significant hits in the Jackhmmer alignment is determined
by ‘–incE’. Instead of directly using the alignment generated by
Jackhmmer search, esl-sfetch from the HMMER package is used to
extract full-length sequences according to the list of Jackhmmer hits.
These full-length sequences are converted into a custom HHblits for-
mat database by ‘hhblitdb.pl’ script from HH-suite. After the con-
struction of the custom database, HHblits is again applied to search
this custom database using the same search parameter as in Stage 1
but jump-starting the search from the Stage 1 sequence MSA. If the
MSA from Stage 2 has an Nf higher than that from Stage 1 MSA, it
will replace the Stage 1 MSA for subsequent computation.

DeepMSA implements two time-saving heuristics to reduce time
complexity associated with construction of HHblits format data-
base, which, unlike conventional sequence databases, comprise of
sequence profiles. Each profile can be either one sequence or one
MSA within a family of protein sequences clustered by sequence
identity. The time required to construct a profile database is propor-
tional to the number of profiles and the average number of positions
of the profiles. It may take many hours to construct a custom
HHblits database if the sequences are very long or if there are too
many sequences. To shorten the time for database construction, we
trim the Jackhmmer hits and perform sequence clustering. In par-
ticular, instead of using the full-length Jackhmmer hit, we trim the
Jackhmmer hit to extract the local region aligned to the query in the
Jackhmmer alignment, as well the L flanking residues at both sides
of the aligned regions. Moreover, all trimmed hits from the previous
step are further clustered by kClust (Hauser et al., 2013) into se-
quence clusters by 30% sequence identity cutoff. Next, Clustal
Omega (Sievers et al., 2011) is then used to align sequences within
each cluster into aligned sequence profiles. These profiles are fed
into hhblitsdb.pl to construct the custom HHblits database. As
kClust and Clustal Omega usually take only a few minutes, and the

Fig. 1. Flowchart of DeepMSA. Three stages of MSA generations are performed

consecutively using sequences from HHblits search through Uniclust30 (first col-

umn), Jackhmmer through UniRef (second column) and HMMsearch through

Metaclust (third column)
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number sequences is �10 times larger than the number of kClust se-
quence clusters, it will take less than half an hour to construct the
custom database.

If the MSA from previous stages still has Nf < 128, Stage 3 is
performed (Fig. 1 third column), where the MSA from the previous
stage is converted into a HMM by HMMbuild from the HMMER
package. This HMM is searched against Metaclust metagenome se-
quence database by HMMsearch, using parameters ‘-E 10 –incE 1e-
3’. Similar to Stage 2, sequence hits from HMMsearch are built into
a custom HHblits database. The MSA from previous stages is used
to jump-start an HHblits search against this new custom HHblits
database to derive the final Stage 3 MSA.

3 Results

3.1 Dataset
DeepMSA is tested on a set of 614 non-redundant proteins curated
from the SCOPe database (Hubbard et al., 2010) according to the
following criteria: (i) any target coming from a fold with only one
superfamily is excluded, because such a target is unlikely to have
any remote structure analog; (ii) redundant sequences with a 30%
pair-wise sequence identity are removed; (iii) each query should
have at least one template structure, detectable by TM-align (Zhang
and Skolnick, 2005), from the PDB which has a TM-score >0.5
with the sequence identity <0.3 to the query. These resulted in 614
proteins, which are classified into 403 ‘Easy’ and 211 ‘Hard’ targets
by the meta-threading program, LOMETS (Wu and Zhang, 2007),
based on the significance of threading alignments between query
and template sequences. While our discussions are mainly focused
on the ‘Hard’ targets which DeepMSA aims to address, the results
for the ‘Easy’ targets are listed in the Supplementary Material for
the completeness of comparisons.

3.2 Coverage and depth of MSAs by DeepMSA
Since one of the initial motivations for DeepMSA to combine
sequences from different sequence databases is to collect more di-
verse sequences, it is instrumental to examine the coverage and
depth of the MSA brought by DeepMSA. To this end, Table 1 lists
the depth results of MSAs generated by six different schemes, includ-
ing DeepMSA, its three stages and three baseline methods. Here, to
obtain data for different stages, we force DeepMSA to perform all
three stages regardless of Nf cutoff. Nevertheless, the final MSA in
DeepMSA is calculated as the normal procedure, i.e. having the
MSA constructed from Stage 1 if its Nf � 128; or from Stage 2 if
Stage 1 has Neff < 128 but Stage 2 has Nf � 128; or from Stage 3,
otherwise. Two of the baseline methods generate MSAs by
Jackhmmer or PSI-BLAST search against the same UniRef90 data-
base as used by DeepMSA. For the last baseline method, denoted as
‘No custom db’ in Table 1, the custom HHblits database construc-
tion and HHblits search in Stages 2 and 3 are replaced by direct con-
catenation of HMMER (Jackhmmer and HMMsearch) MSAs to the

MSA from the previous stage, similar to the approach reported ear-
lier (Ovchinnikov et al., 2017).

As expected, the alignment depth, when measured by Nf and the
total number of detected sequences, gradually increases from Stage
1 to Stage 3. The increase is particularly large for ‘Hard’ targets,
where the final MSAs from DeepMSA are on average 1.5 and 1.8
times deeper than Stage 1 in terms of Nf and number of sequences,
respectively. On the other hand, the alignment depth of DeepMSA is
significantly smaller than ‘No custom db’ and ‘Jackhmmer’. This is
because all HMMER hits are included in the ‘No custom db’ and
‘Jackhmmer’ alignments, while many HMMER hits are discarded
by DeepMSA during HHblits search through custom databases.

It should be noted that the full-length MSA constructions often
cost more memory and slow down the computing processes.
Moreover, due to the composite profile construction and alignment
algorithms, MSAs with greater Nf and sequence numbers do not ne-
cessarily indicate better MSA quality, as shown in later sections. In
fact, there is no single index which can directly assess the perform-
ance of MSA collection programs. To more objectively assess the
quality of MSA builders, below we apply these MSAs to three pro-
tein structure modeling experiments, i.e. residue contact prediction,
SS prediction and protein fold-recognition (i.e. threading).

3.3 DeepMSA increases contact prediction accuracy
The utility of DeepMSA for contact prediction is assessed using six
state-of-the-art programs: CCMpred (Seemayer et al., 2014),
MetaPSICOV2 (Buchan and Jones, 2018), DeepContact (Liu et al.,
2018), DeepCov (Jones and Kandathil, 2018), PConsC4 (Michel
et al., 2018) and TripletRes (Li et al., 2019). Here, CCMpred is a
representative coevolution-only contact predictor. MetaPSICOV2 is
based on traditional (shallow and fully-connected) neural networks.
The rest of the programs are based on deep convolutional neural
networks. While other predictors with good performance also exist,
we selected the six programs partly because of the availability of
standalone packages, which facilitate the large-scale implement and
comparison of the results.

In Table 2, we list the results of contact predictions by the six
predictors, each having the MSA collected from the six schemes
listed in Table 1. Since MetaPSICOV2 and DeepContact have their
own built-in MSA generation protocols, both of which combine
HHblits and jackhammer, contact precisions from the built-in
MSAs are listed as ‘default’ in Table 2.

Here, as in community-wide Critical Assessment of protein
Structure Prediction (CASP) challenges (Schaarschmidt et al., 2018),
a contact is defined as Cb atoms (Ca atoms for glycine) from a pair
of residues, i and j, being close to each other by <8 Å. Contact pre-
diction accuracies of different methods are evaluated by precisions
of top L, L/2 and L/5 medium-range (12 � i� j � 23) and long-
range (24 � i� j) predicted contacts. In accordance with CASP
convention, Table 2 only lists the long-range contacts of ‘Hard’ tar-
gets, where. For completeness, the results for medium-range con-
tacts for all targets (‘Hard’ and ‘Easy’) are listed in Supplementary

Table 1. Nf and the number of aligned homologous sequences (N) in the MSAs collected by different schemes

Schemesa ‘Hard’ targets ‘Easy’ targets All targets

Nf N Nf N Nf N

DeepMSA 119.67 3046.16 435.52 8869.82 331.20 6868.53

Stage 1 82.22 1698.12 430.49 8765.65 310.81 6336.91

Stage 2 131.30 3158.46 612.83 14 816.79 447.35 10 810.43

Stage 3 346.02 8098.61 1031.95 24 194.26 796.23 18 663.02

Jackhmmer 174.64 3720.27 727.95 17 818.32 537.81 12 973.55

PSI-BLAST 145.02 5032.81 739.06 21 195.11 534.92 15 640.96

No custom db 516.27 11 751.12 1642.74 49 326.13 1255.63 36 413.55

aStages 1, 2 and 3 are three stages of DeepMSA. ‘No custom db’ modifies DeepMSA pipeline by directly concatenating HMMER alignments without custom

HHblits database construction in Stages 2 and 3. ‘PSI-BLAST’ and ‘Jackhmmer’ search UniRef90 with PSI-BLAST and Jackhmmer, respectively.
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Table S1. We also provide a spreadsheet file for per-target assess-
ment result in Supplementary Table S4.

It is shown that the MSA from DeepMSA outperforms the de-
fault MSA for contact prediction in all six contact predictors. For in-
stance, the precisions for the top L contacts generated by TripletRes
and CCMpred increased by 2.7 and 24.4%, respectively, when they
use the MSA from DeepMSA instead of the default MSA.
Furthermore, contact precision improves progressively from Stage 1
to Stage 3 for all the programs, indicating the effectiveness of depth
of MSAs in contact prediction. Contact precisions from DeepMSA
are also consistently higher than those from HHblits (i.e. Stage 1),
Jackhmmer and PSI-BLAST alone.

We note that the output MSA of DeepMSA is not always created
from Stage 3 if previous two stages achieve Nf � 128, which helps
to save the memory and running time of DeepMSA. Interestingly,

this setting does not degrade contact precision significantly for most
predictors. In fact, for TripletRes and DeepCov, the MSA from
DeepMSA yields slightly better contact precision compared to the
MSA from DeepMSA Stage 3. Figure 2 shows the effect of Nf cutoff
in DeepMSA on the precision of contact prediction, where, for all
but one program (CCMpred), increasing the Nf cutoff over 128 has
no obvious improvement on contact precisions. In other words,
when the alignment is already deep (Nf � 128), further inclusion of
more sequences is indeed not beneficial for all five neural network-
based contact predictors. This might be because deeper MSAs are
more prone to contain alignment errors and false positive hits,
where the cutoff of Nf ¼ 128 might be the result of the tradeoff be-
tween the sequence coverage and alignment noises. Moreover, this
result may also suggest that the sequence datasets from the standard
Uniclust30 utilized in Stage 1 is more reliable than the UniRef90

Table 2. Long-range contact prediction precision for 211 ‘Hard’ protein targets

Contact predictor MSA Top L P-value Top L/2 P-value Top L/5 P-value

CCMpred DeepMSA 0.268 * 0.375 * 0.483 *

Stage 1 0.215 3.73E-24 0.307 4.78E-23 0.410 4.21E-15

Stage 2 0.237 2.49E-13 0.333 1.19E-14 0.430 3.45E-13

Stage 3 0.280 1.00 0.381 0.98 0.486 0.79

Jackhmmer 0.227 3.84E-15 0.317 2.37E-15 0.418 1.54E-11

PSI-BLAST 0.208 3.35E-24 0.289 2.18E-26 0.394 5.81E-16

No custom db 0.264 0.187 0.366 4.83E-2 0.468 1.86E-2

Meta-PSICOV2 DeepMSA 0.410 * 0.532 * 0.654 *

Stage 1 0.373 6.66E-13 0.483 1.32E-12 0.595 1.19E-10

Stage 2 0.388 1.43E-6 0.501 2.25E-7 0.618 6.56E-6

Stage 3 0.412 0.93 0.534 0.74 0.653 0.67

Default 0.387 4.75E-5 0.500 1.79E-5 0.612 2.11E-5

Jackhmmer 0.377 2.27E-7 0.490 1.24E-6 0.604 1.07E-5

PSI-BLAST 0.336 1.46E-19 0.441 6.32E-16 0.546 4.42E-13

No custom db 0.400 3.29E-2 0.515 1.43E-2 0.629 7/03E-3

Deep-Contact DeepMSA 0.485 * 0.630 * 0.756 *

Stage 1 0.445 3.43E-15 0.581 4.00E-13 0.716 3.60E-7

Stage 2 0.458 5.07E-10 0.598 3.15E-8 0.730 7.63E-5

Stage 3 0.488 0.99 0.632 0.92 0.754 0.13

Default 0.434 1.37E-13 0.562 1.75E-13 0.681 5.35E-10

Jackhmmer 0.441 1.07E-11 0.576 7.55E-10 0.702 2.76E-6

PSI-BLAST 0.427 1.99E-16 0.553 6.42E-15 0.681 2.77E-9

No custom db 0.472 1.84E-3 0.614 1.88E-3 0.732 5.17E-3

DeepCov DeepMSA 0.439 * 0.588 * 0.738 *

Stage 1 0.408 6.01E-9 0.553 6.85E-7 0.701 3.36E-5

Stage 2 0.420 1.03E-5 0.561 3.51E-6 0.712 5.46E-5

Stage 3 0.439 0.49 0.586 0.35 0.730 9.68E-3

Jackhmmer 0.392 1.21E-11 0.521 4.80E-11 0.662 2.28E-9

PSI-BLAST 0.377 2.96E-18 0.505 7.01E-17 0.649 5.16E-12

No custom db 0.421 7.09E-4 0.563 1.61E-3 0.708 2.21E-3

PConsC4 DeepMSA 0.475 * 0.610 * 0.718 *

Stage 1 0.420 6.64E-17 0.544 4.10E-13 0.653 1.04E-7

Stage 2 0.443 1.19E-8 0.572 5.52E-7 0.681 3.24E-4

Stage 3 0.478 0.97 0.612 0.75 0.719 0.70

Jackhmmer 0.420 2.08E-11 0.545 1.61E-8 0.652 3.69E-6

PSI-BLAST 0.364 8.64E-16 0.474 2.89E-14 0.572 4.55E-12

No custom db 0.462 1.09E-2 0.593 2.38E-2 0.697 3.72E-2

TripletRes DeepMSA 0.610 * 0.759 * 0.860 *

Stage 1 0.594 6.37E-6 0.742 5.78E-4 0.849 2.59E-2

Stage 2 0.601 2.65E-4 0.747 6.65E-4 0.856 0.17

Stage 3 0.610 0.34 0.756 8.34E-2 0.859 0.29

Jackhmmer 0.565 3.11E-8 0.704 1.00E-7 0.815 9.40E-5

PSI-BLAST 0.547 1.35E-13 0.684 2.15E-13 0.790 2.50E-9

No custom db 0.584 1.83E-5 0.728 8.00E-5 0.830 7.85E-4

Note: Bold font indicates the highest value in each category. The standard deviation of the average precision is presented in Supplementary Table S4.

*Each P-value is calculated by one-tailed paired t-test to test whether DeepMSA has significant higher contact prediction accuracy than the respective MSA.
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and metagenomic database, and thus the addition of more sequences
from the latter datasets might have the tendency to introduce more
noises.

We note that the high quality of MSA from DeepMSA is not
merely the result of combining multiple sequence databases. In par-
ticular, apart from the lack of custom HHblits database construc-
tion and search step, ‘No custom db’ uses identical sequence
databases, with the same HHblits and HMMER programs as
DeepMSA. Despite �4 times greater alignment depth (Table 1), ‘No
custom db’ is worse than DeepMSA by 1.0% (CCMpred) to 4.2%
(TripletRes) in terms of top L contact precision (Table 2). These
data suggest again that deeper alignments (with more sequence
homologs) do not necessarily guarantee better contact prediction. It
also indicates that although diverse sequence databases are contribu-
tive to DeepMSA performance, it is also essential to combine mul-
tiple sequence search and alignment algorithms, especially the
custom HHblits database construction subroutines in our case.

DeepMSA also outperforms the default MSAs in DeepContact
and MetaPSICOV. In particular, the Stage 2 MSA yields slightly
more precise (0.3%) top L contact prediction by MetaPSICOV than
its default MSA, even though both kinds of MSAs come from
HHblits search through custom HHblits database constructed from
Jackhmmer hits. This show that our time-saving heuristics
(HMMER hit trimming and kClust clustering, which result in an
overall average DeepMSA running time of 0.7 h per protein,
Supplementary Fig. S2) introduce little compromise to final align-
ment quality.

Apart from benchmark data discussed herein, DeepMSA was
also blindly tested in CASP13 as the MSA generation pipeline for
our TripletRes server (Li et al., 2019), whose average top L contact
precisions on all 31 FM targets increased from 0.332 with HHblits
MSAs to 0.409 with DeepMSA.

3.4 DeepMSA enables more accurate threading
Threading is an important approach to template-based protein
structure prediction, which recognizes proteins with similar fold to
the query proteins. Since most of the state-of-the-art methods use
profiles, in the form of either HMM or position specific scoring ma-
trix, to deduce query-template alignments, we examine whether and
how DeepMSA can impact the performance of two typical threading
programs, HHsearch (Soding, 2005) and MUSTER (Wu and Zhang,
2008), which by default use HHblits and PSI-BLAST to construct se-
quence profile, respectively.

The HHsearch and MUSTER template database is constructed
from the 71 684 non-redundant (pair-wise sequence identity<70%)
protein structures from the I-TASSER (Yang et al., 2015) template
library at https://zhanglab.ccmb.med.umich.edu/library/. To generate

the HHsearch library with default profile and with our new profiles,
we first build MSAs for all templates by HHblits search against
Uniclust30 database and DeepMSA, respectively. The hhmake pro-
gram from HH-suite is then used to convert the MSAs to HHsearch
style HMM library.

In MUSTER, the default sequence profiles are constructed by
searching NR database with blastpgp, i.e. the legacy PSI-BLAST
program (Altschul et al., 1997). Checkpoint files from PSI-BLAST
search is then converted to MTX format sequence profiles.
Conversion of DeepMSA alignments to MTX format is imple-
mented by the ‘a3m2mtx.pl’ script in the DeepMSA package. This
script jump-starts a PSI-BLAST search using the MSA of DeepMSA
against a dummy BLAST format database. The MTX file can then
be recovered from the checkpoint file of the jump-start search.
Similarly, for query proteins, we also construct both DeepMSA pro-
files and default profiles.

In Table 3, we list a comparison of template alignments obtained
by HHsearch and MUSTER using different MSAs. The results are
presented only for ‘Hard’ targets in terms of the average TM-score
(Zhang and Skolnick, 2004), alignment coverage (number of aligned
residues divided by query length) and RMSD of aligned regions,
where all templates with a sequence identity >30% to the query
have been excluded. The results for ‘Easy’ and all targets are listed
in Supplementary Table S2. It is shown that, for ‘Hard’ threading
targets, the TM-score of first template by MUSTER and HHsearch
is increased by 10.9 and 7.5%, respectively, if the DeepMSA profiles
instead of the default PSI-BLAST/HHblits profiles are used. Of note,
the number of ‘Hard’ targets with correctly identified templates
(TM-score>0.5) is increased by 64.0 and 39.4% for MUSTER and
HHsearch, respectively.

The observation that DeepMSA significantly boosts threading
performance for ‘Hard’ targets can be partially explained by
improved quality of query-template alignments. To examine this
point, we curate a subset of 143 ‘enriched’ ‘Hard’ targets, each of
them having at least 30 templates of the correct fold (TM-score
>0.5) detectable by TM-align with <30% sequence identity to the
query. For each of these targets, we calculate average TM-score
with all the templates aligned by HHsearch using DeepMSA se-
quence profile and compare it to that using the default HHblits pro-
file used by HHsearch. Figure 3A lists the average TM-score
difference on the top 30 templates for each of 143 targets. The data
show that DeepMSA generated positive impact on the query-
template alignments for 68.5% (¼98/143) of the cases. Among the
98 cases, 69 (70.4%) have the TM-score difference with P-value
<0.05 in the paired t-test (dark bars in Fig. 3A), showing that the
difference is statistically significant although only about 30 data
points are involved in the paired t-test calculation for each target.

To further illustrate the importance of DeepMSA profile in
threading, we show a case study on query d1hx6a2 and its template
2bbdA. HHsearch threading based on DeepMSA profile correctly
aligns query to C-terminal (residue 167 to 319) of template and
achieves a TM-score ¼0.61 (Fig. 3B); the alignment region is similar
to that by the structure alignment from TM-align, although TM-align

Fig. 2. Nf cutoff of DeepMSA versus top L (A), top L/2 (B) and top L/5 (C) long-

range contact prediction precision. The Nf cutoff of 0 and inf correspond to always

using Stage 1 and Stage 3 MSAs, respectively

Table 3. Benchmark results for the first threading template on 211

‘Hard’ targets

Method TM-score P-value RMSD

(Å)

Coverage #(TM-score

>0.5)

HHsearch 0.308 5.70E-03 11.15 0.665 33

HHsearcha 0.331 * 11.17 0.697 46

MUSTER 0.311 7.40E-04 13.62 0.872 25

MUSTERa 0.345 * 12.87 0.851 41

Note: Bold font indicates the highest value in each category.
aIndicates threading with DeepMSA profile.

*Each P-value is calculated by one-tailed paired t-test to test whether

DeepMSA results in significantly more accurate threading result than the de-

fault profile.
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has an even higher TM-score (¼0.82, see Supplementary Fig. S3). On
the other hand, HHsearch threading with the default HHblits profile
only gets a TM-score¼0.15 due to complete mis-alignment of query
to the N-terminal (residue 27 to 188) of template (Fig. 3C). Such dif-
ferences can be explained by depths of MSAs for both query and tem-
plate: the default HHblits run only detects 133 homologs for the
template and no homolog for the query. On the other hand,
DeepMSA profile is much deeper, with 624 and 118 homologs for
the template (Fig. 3D) and the query (Fig. 3E), respectively. The
lack of template homologs in the default run is particularly severe at

the C-terminal of the template, driving HHsearch to align the query
to the template N-terminal instead.

In addition to the creation of correct alignments, another reason
for the performance improvement by DeepMSA on threading is that
better MSA profiles can help improve the ranking of the template
alignments. In Figure 4, we show an example from the query protein
(d1yvua1) which is aligned on the template 3f73A2 using
HHsearch. Although both default and DeepMSA profiles resulted in
reasonable query-template alignments with a TM-score >0.5, their
alignment scores are very different. While the HMM probability on
the DeepMSA profile is 77.5% which puts the template as ranked
No. 1, the probability score is 0.2% using the default profile which
is ranked at 19 825th position among all templates. Thus, although
the default profile can generate correct alignment on this query-
template pair, the correct template cannot be selected by the
threading program due to the poor alignment scores. In this case, an
unrelated protein (3iz6D3, TM-score¼0.08) was selected as the first
template when using the default HMM profile alignments.

3.5 DeepMSA profiles improve SS prediction over

traditional PSI-BLAST profiles
In this section, we further test the performance of DeepMSA in SS
prediction by PSIPRED 4.0 (Jones, 1999) and PSSpred (Yan et al.,
2013). By default, PSIPRED and PSSpred construct MTX format se-
quence profiles by searching UniRef90 or NR database with PSI-
BLAST program (Altschul et al., 1997). MTX format DeepMSA
profile for these two programs can also be obtained by a3m2mtx.pl.

The accuracy of the SS predictions by PSSpred (Table 4) and
PSIPRED (Supplementary Table S3) is evaluated by Q3 accuracy
and SOV segment overlap measure (Zemla et al., 1999). Compared
to the default profiles, sequence profiles from DeepMSA improve
the Q3 accuracy by 1.2 and 1.0% for PSSpred and PSIPRED, re-
spectively. Similarly, SOV scores by PSSpred and PSIPRED are
improved by 1.8 and 1.5%, respectively, when MSAs from
DeepMSA are used. The differences are statistically significant, since
the P-values in Student’s t-test are all below 0.002.

Here, it important to note that the original models of PSSpred
and PSIPRED were trained based on 2011 and 2016 sequence data-
bases, respectively. Although SS predictions, as well as the contact
and threading programs studied in previous sections, are usually sen-
sitive to the sequence databases and MSAs that the models are ori-
ginally trained on, we do not attempt to re-train the models using
the new DeepMSA profiles. In this context, the performance im-
provement should be mainly attributed to the sensitive and compre-
hensive information that DeepMSA provides, compared to the
MSAs generated by other default programs.

4 Conclusion

We developed an open-source pipeline, DeepMSA, aiming to collect
deep and sensitive MSAs from whole-genome and metagenome se-
quence databases. Large-scale benchmark experiments show that
DeepMSA consistently improves protein contact prediction, fold-
recognition and SS prediction, compared to the widely used
HHblits, Jackhmmer and PSI-BLAST sequence searching
programs. For example, the use of MSAs from DeepMSA improves

Fig. 3. Contribution of DeepMSA to query-template alignment in HHsearch thread-

ing. (A) For each template of a ‘Hard’ target, we calculate the TM-score of

HHsearch guided by default profile minus that by DeepMSA profile (DTM-score).

The y-axis is the average DTM-score for each target, ranked in ascending order (x-

axis) of average DTM-score. To calculate the statistical significance of DTM-score

for each target, we perform a paired t-test between TM-score pairs (i.e. TM-score

by DeepMSA versus TM-score by default profile) for all templates of the target.

Targets with significant DTM-score are colored in black. (B, C) Alignment of query

d1hx6a2 (cartoon) to template 2bbdA (upper left and lower right ribbons for N and

C-terminal regions, respectively) using DeepMSA profile (B) and default profile (C).

(D, E) Number of non-gap residues (y-axis) at each position (x-axis) in the

DeepMSA profile (grey) and in the default HHblits profile (black) for query

(d1hx6a2) (D) and template (2bbdA) (E)

Fig. 4. Contribution of DeepMSA to HHsearch template ranking for query

d1yvua1. (A and B) Threading alignment between query (cartoon) and template

3f73A2 (ribbon), guided by DeepMSA profile (A) and by default HHblits profile

(B). (C) Ranking of nine correct templates (TM-score>0.5, black vertical lines)

among all 70 977 templates (grey horizontal bands) after excluding template pro-

teins with a sequence identity >30% to the query. Template rankings guided by

DeepMSA profile and that by the default profile are shown in upper and lower

bands, respectively. The same template in the two cases is connected by a thin arrow

Table 4. Summary of SS prediction by PSSpred for 211 ‘Hard’

targets

MSA Q3 P-value SOV P-value

PSI-BLAST þ UniRef90 80.518 1.38E-03 77.257 1.05E-03

DeepMSA 81.472 * 78.660 *

Note: Bold font indicates the higher value in each category.

*Each P-value is calculated by one-tailed paired t-test to test whether

DeepMSA results in significantly more accurate SS prediction than the default

profile.
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top L long-range contact prediction precision of CCMpred by
24.4% compared to the default use of the HHblits MSAs by the pro-
gram. Similarly, MUSTER threading identifies correct templates for
64.0% more ‘Hard’ targets by switching the default PSI-BLAST
profiles to the DeepMSA profiles. Notably, all improvements in con-
tact prediction, SS prediction and threading have been achieved
without re-training predictor model and parameters in neural net-
works or dynamic programing alignment.

The high quality of MSA by DeepMSA is partly due to the
greater coverage and alignment depth resulted from the combination
of diverse source of sequence databases. However, benchmark study
shows that deeper MSA with more sequence homologs does not al-
ways lead to better contact prediction, since the final effect of MSAs
is often a tradeoff of sequence coverage and alignment accuracy.
Further analysis reveals that appropriate incorporation of multiple
sequence search and alignment algorithms is the key to generate
high quality MSAs by DeepMSA. In particular, HMMER alignment
reconstruction by custom HHblits database generation is found to
be especially helpful: a baseline method (‘No custom db’ in Tables 1
and 2) without the custom HHblits database generation step results
in 1.0–4.2% worse top L long-range contact prediction accuracies
than DeepMSA, even when both methods use identical sequence
databases.

The on-line server and the standalone program of DeepMSA
have been made freely available at https://zhanglab.ccmb.med.
umich.edu/DeepMSA/. The continuous developments of robust
MSA and profile construction methods should help enhance the use-
fulness and impacts of the whole-genome and metagenomics initia-
tives on the structure and function prediction studies of the
community. For example, the current DeepMSA program runs only
with monomer proteins, while an extension of the program for pro-
tein–protein complex MSA constructing is important and under
progress.
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