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Abstract

Motivation: Protein domains are subunits that can fold and function independently. Correct domain boundary as-
signment is thus a critical step toward accurate protein structure and function analyses. There is, however, no effi-
cient algorithm available for accurate domain prediction from sequence. The problem is particularly challenging for
proteins with discontinuous domains, which consist of domain segments that are separated along the sequence.
Results: We developed a new algorithm, FUpred, which predicts protein domain boundaries utilizing contact maps
created by deep residual neural networks coupled with coevolutionary precision matrices. The core idea of the algo-
rithm is to retrieve domain boundary locations by maximizing the number of intra-domain contacts, while minimiz-
ing the number of inter-domain contacts from the contact maps. FUpred was tested on a large-scale dataset consist-
ing of 2549 proteins and generated correct single- and multi-domain classifications with a Matthew’s correlation
coefficient of 0.799, which was 19.1% (or 5.3%) higher than the best machine learning (or threading)-based method.
For proteins with discontinuous domains, the domain boundary detection and normalized domain overlapping
scores of FUpred were 0.788 and 0.521, respectively, which were 17.3% and 23.8% higher than the best control
method. The results demonstrate a new avenue to accurately detect domain composition from sequence alone, es-
pecially for discontinuous, multi-domain proteins.

Availability: and implementation: https:/zhanglab.ccmb.med.umich.edu/FUpred.

Contact: zhng@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

can typically be categorized into three general groups. The first
group is mainly based on machine learning, with representative
examples including DOMPro (Cheng et al., 2006), DoBo (Eickholt
et al., 2011), ConDo (Hong et al., 2018) and DNN-dom (Shi et al.,

1 Introduction

Protein domains are the basic building blocks of protein structures,
which fold and function independently. Therefore, correct detection

of the domain boundaries of proteins is an essential step for deter-
mining their structural folds, understanding their biological func-
tions and/or annotating their evolutionary mechanisms.

Due to the importance of the problem, many methods have been
proposed to determine the domain boundaries of proteins. One class
of methods delineates and defines domains directly from the experi-
mental structures of proteins; these methods include PDP
(Alexandrov and Shindyalov, 2003), DomainParser (Guo, 2003),
DDOMAIN (Zhou et al., 2007) and SWORD (Postic et al., 2017).
Another important class of methods predicts domain boundaries
from the amino acid sequences. These domain prediction methods

2019). Here, DOMpro trains recursive neural networks for domain
models with training features including sequence profiles, predicted
secondary structure and solvent accessibility, while DoBo, which
was developed by the same lab, detects domain boundaries using
similar features but is based on support vector machines. ConDo uti-
lizes neural networks that are trained on long-range, coevolutionary
features in addition to conventional local window features. DNN-
dom adopts a hybrid deep-learning method to predict protein do-
main boundaries based on features such as protein position-specific
matrices, secondary structure and solvent accessibility. Additionally,
balanced random forests are used to solve the classification problem.
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The second group of methods is based on structural templates
detected from the PDB, typically by threading (Soding, 2004; Wu
and Zhang, 2008). For example, ThreaDom (Xue et al., 2013) dedu-
ces domain boundary locations based on multiple threading align-
ments (Wu and Zhang, 2007), where the profile distribution of a
domain conservation score, which combines the template domain
structure and terminal/internal alignment gaps, is used to assign the
domain boundary locations. Because ThreaDom cannot directly de-
tect discontinuous domains beyond the templates, an extended ver-
sion, ThreaDomEx (Wang et al., 2017), was further developed to
assign discontinuous domains by domain-segment assembly. Here, a
discontinuous domain is defined as a domain that contains two or
more segments from separate regions of the query sequence. Finally,
the third group is based on 3D structure prediction (Cheng, 2007;
George and Heringa, 2002; Kim et al., 2005; Wu et al., 2009),
which first models the full-length 3D structures by ab initio folding,
where the domain boundaries are then deduced from the 3D struc-
ture models.

Despite their successes, each of these methods have their own
limitations. The methods, which deduce domains from experimental
protein structures, e.g. generally have higher accuracies than the
methods that start from sequences but can only be applied to a small
portion of proteins that have known experimental structures.
Furthermore, the methods that predict domain boundaries from
sequences are in principle more generally applicable but have their
own restrictions depending on the approach. For machine learning-
based methods, e.g. the accuracy of prediction is often low, although
they have the advantage of being able to generate de novo predic-
tions from sequence alone. The threading-based methods generally
have higher accuracy when close templates are identified, but the ac-
curacy decreases sharply for targets lacking homologous templates.
Finally, 3D model-based methods rely on the quality of the ab initio
3D models, which can only be applied to proteins with short lengths
because of the limited ability of ab initio structure prediction.
Furthermore, most approaches cannot deal with the prediction of
discontinuous multi-domains, except for ThreaDomEx.

In this work, we propose a new method, named FUpred (Folding
Unit predictor), to detect domain boundaries from protein sequences
based on contact map prediction, partly motivated by the quick pro-
gress recently achieved in the field of contact prediction (Li et al.,
2019). Following the intuition of domain definition, the major pro-
cedure of FUpred is to derive an FUscore (Folding Unit score) that
maximizes the number of intra-domain contacts, while minimizing
the number of inter-domain contacts. Although there are some
methods that utilize contact information as a machine learning fea-
ture to help predict domains, FUpred is the first method to deduce
domain boundary structure directly from contact map predictions.
The large-scale benchmark results presented in this study demon-
strate the significant advantages associated with employing contact
map-based domain prediction for domain classification and domain
boundary detection, especially for discontinuous domain proteins,
compared to other approaches. In particular, the case study demon-
strates that FUpred can accurately detect domain boundaries for
proteins with complex domain structures.

2 Materials and methods
2.1 Dataset

To train and test FUpred, we collected a set of non-redundant pro-
teins with known domain structures from the SCOPe2.07-stable
database (Chandonia ez al., 2014, 2017, 2019), using a pair-wise
sequence identity cutoff <30% and a sequence length cutoff >30
residues. This dataset contained 3400 single-domain and 1698
multi-domain proteins. For the multi-domain proteins, we further
classified them into a continuous domain subset (1494 entries), for
which every domain of each protein was a continuous segment along
the query sequence, and a discontinuous domain subset (204
entries), for which at least one domain contained discontinuous seg-
ments from separate regions along the query sequence.

Table 1 lists a summary of the 1698 multi-domain proteins,
where the continuous domain proteins are split into seven subsets

Table 1. Breakdown of the 1698 multi-domain entries split into
each category

Continuous multi-domain Discontinuous multi-domain

#Domain #Target #Domain #Target
2 1175 2 129
3 234 3 49
4 63 4 11
5 13 5 7
6 7 6 3
7 1 7 1
10 1 8 2
14 1
15 1
Total 1494 Total 204

ranging from 2- to 10-domain entries and the discontinuous domain
proteins are split into nine subsets ranging from 2- to 15-domain
entries. Note that the number of proteins with >3 domains is rela-
tively small, and there are neither continuous 8-, 9- nor more than
10-domain proteins, nor discontinuous 9- to 13-domain proteins in
the dataset due to the low statistics for high-order domain proteins.
These proteins were randomly split into 849 training and 849 test
proteins. Similarly, the 3400 single-domain proteins were also ran-
domly split and used as the negative control dataset. The split data-
sets can be downloaded at https://zhanglab.ccmb.med.umich.edu/
FUpred.

2.2 Multiple sequence alignment construction and

contact map prediction

Starting from an input protein sequence, FUpred generates a mul-
tiple sequence alignment (MSA) using the DeepMSA program
(Zhang et al., 2019), which searches the query sequence against mul-
tiple whole-genome and metagenomic sequence databases utilizing
an iterative process (see the explanations in Supplementary Fig. S1
and Text S1). Then, using the MSA as an input, the contact map for
the query sequence (with C4—Cp distance <8 A) is predicted using
ResPRE (Li, 2019) by coupling evolutionary precision matrices with
deep residual neural networks. Here, a precision matrix is generated
by the inverse covariance matrix from an MSA, which is represented
by an L x L x 21 x 21 array of evolutionary couplings between L
pairs of residues in a query protein. For each residue pair, the 21 x
21 coupling matrix is fed directly into the deep residual convolution-
al networks composed of a set of 22 residual blocks, each adding the
output of the feedforward neural networks to an identity map of the
input. ResPRE was trained using the Adam method (Kingma and
Ba, 2014) under the supervision of binary cross entropy loss.

2.3 FUscore for continuous two-domain proteins
The FUscore for a continuous two-domain protein, which is the sim-
plest example of a multi-domain protein, is defined as

FUscorey.(I) = 2N1,(]) {%(l) + %(1)} , (1)

where [ is the domain splitting point of a protein, N;(/) and N(/)
represent the number of contacts within the first and second
domains, respectively and Ny »(I) = N3 1(I) indicates the number of
contacts between the first and second domains (Fig. 1).

The domain boundary, /4, for a continuous two-domain protein
is predicted to be the position where the lowest FUscore,. is
obtained (Fig. 1C).

argmin

Iy = 1<1< L_lFUscorezc(l) (2)

where L is the protein length. By taking the lowest FUscore,., we
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are maximizing the number of intra-domain contacts, Ny(/4) and
Na(l4), while minimizing the number of inter-domain contacts,
Ni(l4). Furthermore, the secondary structure of the query is
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Fig. 1. Ilustration of FUscore calculation for a continuous two-domain protein
from Chemotaxis protein methyltransferase (PDB ID: 1BC5A). (A) Experimental
structure of the protein. (B) Predicted contact map for the protein. (C) FUscore
versus domain splitting point /. The splitting line in panel (B) corresponds to the
domain boundary id in panel (C) where the lowest FUscore is located
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predicted by PSSpred (Yan et al., 2013). For cases when I, is located
within a helix or a strand, it will be shifted to the coil residue that is
closest to the estimated /; based on Equation (2), since domain
boundaries occur more often at loop regions than on regular second-
ary structures.

2.4 FUscore for discontinuous two-domain proteins

A 2D contact map for a two-domain protein with one continuous
and one discontinuous domain is illustrated in Figure 2. Since there
is no clear splitting point in the map, this type of domain boundary
cannot be directly calculated by Equation (1). However, there is still
some pattern similarity between the two cases since they both have
many intra-domain contacts but few inter-domain contacts (as
shown in Fig. 2A). Inspired by the design principle behind
FUscore;., we derived FUscore,4 for discontinuous two-domain pro-
teins by shifting the C-terminal contact map to the N-terminal and
converting the discontinuous case into a continuous two-domain
case (Fig. 2B), i.e.

FUscorey4(l,s) = 2(Nn2(l,s) + Noc(l,5))
1.0 L 10 3)
Nn(l,s) + Nc(l,s) + 2Nnc(l,s)  Na(lys)]’

where [ and s are the domain splitting point and shifting point for a
protein (I < s), i.e. ([1,/],[s + 1,L]) represents the two regions of the
first discontinuous domain and [/ + 1,s] the region of the second
continuous domain, where L is the length of the protein. Ny(/s),
Na(l,s) and N¢(l,s) represent the number of contacts within the seg-
ments [L/], [[ + 1,s] and [s + 1,L], respectively. Ny c(ls) [or
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Fig. 2. Illustration of FUscore calculation for a discontinuous two-domain protein from bluetongue virus coat protein VP7 (PDB ID: 1BVP1). (A) Experimental structure of the
protein. (B) The contact map shifting procedure for transforming a discontinuous two-domain protein into a continuous two-domain protein. N, in each sub-block of the
panel represents the number of contacts in the sub-block. (C) The 2D FUscore heatmap. The splitting lines in panel (B) correspond to the domain boundaries /; and § 4 in panel

(C) where the lowest FUscore is located
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Fig. 3. Pipeline of the FUpred algorithm. (A) Overall pipeline of the FUpred algo-
rithm. (B) Recursion strategy for domain boundary detection. (C) Case illustration.
The curves on the tops of the domain bars indicate separate regions of a discontinu-
ous domain

Nen(hs)], Naa(ls) [or No n(ls)] and Na o(Ls) [or Ne,a(l,s)] indicate
the number of contacts between the segment pair [1,/] and [s + 1,L],
the segment pair [1,/] and [/ + 1,s] and the segment pair [s + 1,L]
and [/ + 1,s], respectively.

Similar to continuous two-domain proteins, the estimated do-
main boundaries /4, §; for discontinuous two-domain proteins are
predicted to be located at the location where the lowest FUscore,q is
obtained (as shown in Fig. 2C), i.e.

(1217 SAd) argmin

:1glgL—Z;H—lgsgL—lFUscorezd(l’s)'

(4)

The complexity of using FUscore,q to calculate domain bounda-
ries is O(L*), which is time-consuming since we need to repeatedly
count the number of contacts in each block (such as Ny ¢). In order
to improve the efficiency of our algorithm, we implemented a dy-
namic programming algorithm to speed up the procedure, which
uses the recurrence relationship of contact numbers to calculate the
increment of contacts in each block and bypasses the need to repeat-
edly count the number of contacts. As shown in Supplementary Text
S2 and Figure S2, the time complexity of FUscore,q using this strat-
egy was reduced to O(L?).

2.5 Pipeline of FUpred

The pipeline of the FUpred algorithm is shown in Figure 3. Starting
from the input protein sequence, a deep MSA is generated by itera-
tive sequence homology searches against multiple sequence data-
bases. Then, using the deep MSA as input, the secondary structure
of a query sequence is predicted by PSSpred (Yan ez al., 2013), and
the contact map (with C;z-Cp distance <8 A) is predicted by the
ResPRE method. Both the contact map and secondary structure in-
formation are used to calculate the FUscore, where the domain pat-
tern and boundary locations are determined by the recursion
procedure outlined in Figure 3B.

As shown in Figure 3B, the recursion strategy is built on the dif-
ference between the distributions of multiple and single domains. In
detail, using the contact map and secondary structure information
for the query sequence as input, both FUscore,. and FUscore,q are
calculated for the input sequence. Due to the subtle differences be-
tween the FUscore distributions for multi- and single-domain pro-
teins in the training set (see Supplementary Fig. S3), FUpred uses
two cutoff parameters, Cutoff;. and Cutoff,y, to distinguish
between continuous multi- and single-domain proteins, as well as
discontinuous multi- and single-domain proteins, respectively.
If the FUscore,/FUscore,yg of the input protein is smaller than
Cutoff,/Cutoff,q, the input protein is predicted to be a continuous/

discontinuous two-domain protein, where the domain boundaries
are generated according to the FUscore; otherwise, the input protein
is predicted to be a single-domain protein. If both the FUscore,. and
FUscore, 4 of the input protein are lower than Cutoff,. and Cutoff,,
respectively, we compare the difference between the value of
Cutoff,. minus FUscore,. and the value of Cutoff,q4 minus
FUscoreyq, and adopt the domain boundaries predicted by the
method with the larger difference. Then, the two possible domains
recursively perform the same procedure as described above. The re-
cursion procedure is stopped when none of the domains can be fur-
ther split.

Figure 3C presents an example to illustrate the applicability of
the FUpred algorithm. The input protein (‘D1-1, D2, D3-1, D4, D3-
2, D1-2’ representing the first part of Domain 1, Domain 2, the first
part of Domain 3, Domain 4, the second part of Domain 3, and the
second part of Domain 1, respectively) had two discontinuous
domains, i.e. ‘D1-1, D1-2’ and ‘D3-1, D3-2’ and two continuous
domains, i.e. ‘D2’ and ‘D4’. First, the input protein was split into
two parts, ‘D3-2, D1-2, D1-1, D2, D3-1" and ‘D4’, based on the
FUscore,q. In detail, ‘D3-2, D1-2’ in the C-terminal was first shifted
to the N-terminal to get ‘D3-2, D1-2, D1-1, D2, D3-1, D4’, and
then ‘D3-2, D1-2, D1-1, D2, D3-1, D4* was split into ‘D3-2, D1-2,
D1-1, D2, D3-1’ and ‘D4’. The ‘D4’ domain could not be further
split, while the ‘D3-2, D1-2, D1-1, D2, D3-1’ segment was further
divided into two parts, ‘D2, D3-1, D3-2’ and ‘D1-2, D1-1°, based
on the FUscore,y. The ‘D1-2, D1-1’ segment could not be further
split, while the ‘D2, D3-1, D3-2’ could be further divided into two
parts, ‘D2’ and ‘D3-1, D3-2’, based on the FUscore,.. Both ‘D2’ and
‘D3-1, D3-2’ could not be split any further. Finally, the input pro-
tein was predicted to be a four-domain protein, with two continuous
domains, ‘D2’ and ‘D4, as well as two discontinuous domains, ‘D3-
1, D3-2’ and ‘D1-1, D1-2’. Unlike methods that predict domains by
homologous protein searching and alignment [e.g. PfamScan
(Mistry et al., 2007)], which assign residues with high confidence
scores to a domain, while the residues with low confidence scores or
in ‘linker’ regions are not assigned to any domain, FUpred is able to
split the entire protein into different domains. This means each residue
(even those in ‘linker’ regions) is assigned to a domain by FUpred.

A multi-domain protein may have more than one distinct split-
ting order when generating the final domain boundaries. Taking a
three continuous domain protein, ‘D1, D2, D3’, as an example, the
FUpred algorithm may first split ‘D1’ from ‘D2, D3’, and then fur-
ther split ‘D2’ and ‘D3’. On the other hand, it can also first split
‘D3> from ‘D1, D2’, and then further split ‘D1’ and ‘D2’.
Nevertheless, different types of splitting orders do not influence the
final domain boundary results. To illustrate this, we assembled a
subset of 38 three-domain proteins from our dataset, where the total
length of the two adjacent domains was less than the length of the
third one. We also modified the original FUpred algorithm into
FUpred® (FUpred®), which forced the algorithm to search for the do-
main splitting point between the two adjacent small domains (or be-
tween the adjacent small domain and large domain) in the first
iteration round, where the splitting point was located where the
local minimum FUscore was obtained around the SCOPe2.07 do-
main boundary definition (=20 residues). The comparison of
FUpred and FUpred® (FUpred®) is shown in Supplementary Table
S1. We found that there was no significant difference between
FUpred and FUpred® (FUpred®), indicating that the performance of
the FUpred algorithm is robust and does not depend on the order in
which domains are split.

Since FUpred is built on the calculation of two-domain
FUscores, it is important to examine the applicability of the FUpred
method, especially the iterative recursion strategy, to modeling pro-
teins of various domain structure patterns. While it is straightfor-
ward to use FUscore,. to calculate domain boundaries of continuous
multi-domain proteins, the situation is more complex for discontinu-
ous multi-domain proteins. Supplementary Table S2 lists all of the
discontinuous multi-domain patterns in the SCOPe2.07 database.
There are in total 26 distinct patterns for discontinuous multi-
domain proteins, where FUpred was able to reproduce the domain
patterns for 24 of them. Here, we give an illustration of how FUpred
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can deal with the complex domain pattern ‘D1-1, D2, D1-2, D3,
D1-3’, where ‘D1-1, D1-2, D1-3’ is a single discontinuous domain
with three parts. As shown in Supplementary Figure S4A, ‘D1-1,
D2, D1-2, D3, D1-3’ is a discontinuous three-domain protein.
FUpred first split the protein into ‘D1-3, D1-1, D2, D1-2” and ‘D3’
using FUscoreyq. In detail, ‘D1-3” in the C-terminal was first shifted
to the N-terminal to get ‘D1-3, D1-1, D2, D1-2, D3’, and then ‘D1-
3, D1-1, D2, D1-2, D3’ was split into ‘D1-3, D1-1, D2, D1-2’ and
‘D3’. Then, by repeatedly using FUscore,q4, ‘D1-3, D1-1, D2, D1-2
was further divided into ‘D2’ and ‘D1-2, D1-3, D1-1°.

However, there were two patterns, ‘D1-1, D2-1, D1-2, D2-2’
and ‘D1, D2-1, D3-1, D2-2, D3-2’, that the FUpred procedure could
not solve. We took the domain pattern ‘D1-1, D2-1, D1-2, D2-2’
here as an example to illustrate why this pattern could not be solved
by FUpred. As shown in Supplementary Figure S4B, ‘D1-1, D2-1,
D1-2, D2-2’ is a discontinuous two-domain protein, where the two
domains in the protein are both discontinuous, so this pattern can-
not be directly dealt with by FUscore,., which is applicable to con-
tinuous multi-domain proteins. When considering FUscore,g,
whether we shifted ‘D2-2’ to the N-terminal to make the protein do-
main pattern ‘D2-2, D1-1, D2-1, D1-2’ or shifted ‘D1-2, D2-2’ to
the N-terminal to get ‘D1-2, D2-2, D1-1, D2-1’, the new pattern
would still remain the same. Thus, FUscore,q cannot deal with the
pattern ‘D1-1, D2-1, D1-2, D2-2’. Similarly, the pattern ‘D1, D2-1,
D3-1, D2-2, D3-2’ cannot be dealt with by the current strategy of
FUpred either. Nevertheless, since these patterns only make up a
tiny portion (0.0235%) of the SCOPe2.07 database (Supplementary
Table S2), the issue does not impact the overall performance of the
FUpred pipeline.

2.6 Assessment metrics

The performance of the proposed algorithm was evaluated in terms
of its protein classification and domain boundary prediction ability.
The following criteria were used to assess the ability of FUpred to
classify whether proteins are composed of single or multiple
domains:

. ™ . ™
Pre(multi) = TM LM’ Rec(multi) = @
Pre(single) = TS ES’ Rec(single) = TS+ EM
ACC — TM + TS )
~ TM+TS+FM +FS
TM x TS — FM x FS
MCC = )
V/(TM + FM)(TM + FS)(FM + TS)(TS + FS)

where TM/TS represent the number of cases that were correctly pre-
dicted to be multi-domain/single-domain proteins, and FM/ES signify
the number of cases that were incorrectly predicted to be multi-
domain/single-domain proteins. Pre(multi)/Pre(single) represent the
precision of multi-domain/single-domain classification and Rec(multi)/
Rec(single) symbolize the recall of multi-domain/single-domain classi-
fication. The ACC and MCC are the accuracy of protein classification
and the Matthew’s correlation coefficient, respectively.

Moreover, the normalized domain overlap (NDO) score (Tai
et al., 2005) and the domain boundary distance (DBD) score (Tress
et al., 2007), which were used to assess domain splitting in the
CASP experiments, were utilized to assess the domain boundary pre-
diction. The NDO score calculates the overlap between the pre-
dicted domain regions and true domain regions, while the DBD
score is defined as the distance of the predicted domain boundaries
from the true domain boundaries, where all linker regions of the
domains are considered as the true boundaries.

2.7 Parameter training

There were three parameters that had to be trained in FUpred,
which were optimized based on the protein training set. First, the
top oL contact pairs ranked by predicted confidence scores were
used to form the final contact map for an input sequence, where L
refers to the length of a query protein. Based on the training dataset,
we varied the parameter o from 0.5 to 5 and obtained the optimal

parameter o = 2.6 based on the balance of the MCC, ACC, NDO
and DBD scores (see Supplementary Fig. S§). The other two parame-
ters were Cutoff,. and Cutoff,4, which we varied from 0.3 to 1.5,
and finally assigned Cutoff,. = 0.85 and Cutoff,q = 0.66 (see
Supplementary Fig. S6).

3 Results

In this section, we tested the performance of FUpred on the bench-
mark dataset, where its performance was compared to the
threading-based method ThreaDomEx (Wang et al., 2017), and
three machine learning-based methods, including ConDo (Hong
et al., 2018), DOMpro (Cheng et al., 2006) and DoBo (Eickholt
etal.,2011). Note that ConDo also utilizes contact map information
as an input feature for neural network training, while DoBo and
DOMpro predict domain boundaries utilizing sequence and se-
quence profile information as the input features.

3.1 Classification of single- and multi-domain proteins
First, we analyzed the domain classification ability of the aforemen-
tioned methods, where Table 2 shows the overall comparison of the
domain classification performance of FUpred and the four control
methods. In our test set of 849 multi-domain proteins and 1700
single-domain proteins, FUpred correctly assigned 91% of the pro-
teins as multi- or single-domain proteins, which was 3% higher than
the second-best method, ThreaDomEx. Among all five predictors,
FUpred produced the highest MCC (0.799), followed by the
threading-based method ThreaDomEx (0.759), and machine
learning-based methods, ConDo (0.671), DOMpro (0.408) and
DoBo (0.371).

Considering the individual metrics, DoBo achieved the highest
recall (0.973) for multi-domain proteins, and the highest precision
(0.965) for single-domain proteins, but had the lowest MCC; these
data imply that DoBo tends to classify most proteins as multi-
domain. In fact, 3% (=23/849) of the multi-domain proteins in the
test set were predicted to be single domains by DoBo, resulting in
the extremely high multi-domain recall and high single-domain pre-
cision. Nevertheless, 63% (=1070/1700) of the single-domain pro-
teins in the test set were predicted to be composed of multiple
domains by DoBo, which means that DoBo is biased toward over-
predicting the number of multi-domain proteins. On the other hand,
44% (=373/849) of the multi-domain proteins were predicted to be
single-domain by DOMpro, which was much higher than ConDo
(25%), FUpred (13%), ThreaDomEx (7%) or DoBo (3%), indicat-
ing that DOMpro is biased toward under-predicting the number of
multi-domain proteins.

Due to the inclusion of contact map information, ConDo did a
better job balancing single- and multi-domain protein recognition,
achieving the highest MCC score among the machine learning-based
approaches. However, due to the lower recall for multi-domain as-
signment, the overall MCC and accuracy of ConDo was lower than
that of ThreaDomEx and FUpred.

Table 2. Single- and multi-domain classification results on 2549
test proteins

Methods Multi Single All

Pre Rec Pre Rec ACC MCC

FUpred 0.860 0.873 0936 0929 0.910 0.799
ThreaDomEx  0.767  0.933  0.962 0.858 0.883  0.759
ConDo 0.803 0.751  0.880 0908 0.856 0.671
DOMpro 0.629 0.561 0.792 0.835 0.743  0.408
DoBo 0436 0973 0965 0.371 0571 0.371

Note: ‘Pre’, ‘Rec’, ‘ACC’ and ‘MCC’ are the precision, recall, accuracy and
Matthew’s correlation coefficient, respectively, as defined by Equation (5).
Bold values indicate the best performer in each category.
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Table 3. Summary of domain boundary prediction for the 849
multi-domain proteins

Methods NDO DBD
FUpred 0.791 0.498
ThreaDomEx 0.760 (2.31E—04) 0.471 (3.17E-02)
ConDo 0.742 (1.75E—08) 0.376 (9.43E—14)
DOMpro 0.584 (3.49E-87) 0.087 (3.20E—115)
DoBo 0.568 (9.15E—88) 0.205 (8.08E—67)

Note: The values in parentheses are P-values between the FUpred results
and the other control methods results calculated using one-sided Student’s z-
tests. Bold values indicate the best performer in each category.

3.2 Prediction of domain boundary locations

To examine the ability of various methods to predict the location of
domain boundaries, we present in Table 3 a summary of the NDO
and DBD scores for FUpred in comparison to the other four meth-
ods (Cheng et al., 2006; Eickholt ez al., 2011; Hong et al., 2018;
Wang et al., 2017).

Both the NDO and DBD scores for FUpred were significantly
higher than those for the other four methods with P-values <0.05 as
determined by paired one-sided Student’s ¢-tests. For the 849 multi-
domain proteins in the test set, ConDo had comparable performance
to ThreaDomEx in terms of the NDO scores, indicating that for
both methods at least 74.2% of the residues in the predicted
domains overlapped with the correct domains. The DBD score of
ConDo was at least 10% worse than that by FUpred or
ThreaDomEx, indicating that the predicted domain boundaries
assigned by ConDo were much worse than those assigned by
FUpred or ThreaDomEx. DoBo had the second worst performance
in domain boundary detection, where 45% (=382/849) of the do-
main boundaries in the test set were incorrectly predicted, while
DOMpro had the worst performance, since it predicted 44% of the
multi-domain proteins as single-domain proteins.

In our test dataset construction, the homologous entries with se-
quence identities >30% to the training proteins were filtered out.
However, sequences with >30% sequence identity to the proteins in
the ResPRE training set, whose contact predictions are used by
FUpred, were not excluded from our test datasets. This is partly be-
cause ResPRE and FUpred are different methods and trained on in-
dependent protein sets. Furthermore, the ResPRE training set is
large, including about 5600 high-resolution protein structures to fa-
cilitate effective deep-learning training, and the filtering of homolo-
gous proteins from this training set would result in an insufficient
number of proteins in the benchmark dataset. Nevertheless, to
examine the impact of the ResPRE training set on the comparison
between FUpred and the other control predictors, we constructed a
new test dataset by removing proteins with a 30% sequence identity
to not only the ResPRE training set but also the training sets of two
relatively accurate methods, ThreaDomEx and ConDo, resulting in
there being only 136 multi-domain proteins and 3535 single-domain
proteins left in our benchmark dataset. Supplementary Tables S3
and S4 show the results for domain classification and domain
boundary prediction on this reduced test dataset, respectively. The
accuracy of FUpred models in this reduced dataset is slightly lower
than that of the entire benchmark set (compared to Tables 2 and 3),
which is probably due to the fact that this sub-dataset is more diffi-
cult for domain prediction as the average accuracy is reduced for all
the control methods (including those whose training proteins were
not included in the homologous filtering). Nevertheless, FUpred still
significantly outperformed all the control methods on this reduced
dataset as shown in Supplementary Tables S3 and S4.

3.3 Prediction results for discontinuous domain

proteins

Due to the difficulty of modeling them, here, we separately discuss
the prediction of discontinuous domains, which consist of more
than one non-consecutive segment. Out of the 133 discontinuous

0.788
0.8 = NDO score
0,672 DBD score
0.62
0.6
0.521 o
0421 0417
0.4
0.312
0.2 0471
0.052
0 FUpred  ThreaDomEx  GonDo DOMpro DoBo

Fig. 4. Summary of the domain boundary prediction results by different methods for
the 133 discontinuous multi-domain proteins. Data are taken from Supplementary
Table S5

multi-domain proteins in the test dataset, FUpred correctly classified
94 of them, resulting in a recall rate of 70.7%. ThreaDomEx (Wang
et al., 2017) is another method designed for discontinuous domain
prediction but it only detected 39.1% (=52/133) of the targets con-
taining discontinuous domains. Meanwhile, we found that
ThreaDomEx had a tendency to over-predict the number of discon-
tinuous multi-domains, since it predicted that the average number of
discontinuous multi-domains was 3.36 in the test set, which was
higher than the actual number (2.81), while the FUpred predictions
were closer to the real value (2.95). On the other hand, none of the
three-machine learning-based methods, ConDo, DOMpro and
DoBo, could detect any proteins containing discontinuous domains.

Figure 4 lists a summary of the domain boundary prediction
results for the 133 discontinuous domain proteins. The results show
that FUpred achieved average NDO and DBD scores of 0.788 and
0.521, respectively, which were 17.3% and 23.8% higher than the
second-best method, ThreaDomEx, with P-values <0.05 as calcu-
lated using one-side Student’s #-tests (Supplementary Table S5).

We note that the domain boundary prediction performance of
FUpred was very close for continuous and discontinuous domain
proteins as listed in Supplementary Table S5. More specifically, the
NDO/DBD scores were 0.791/0.494 and 0.788/0.521 for continu-
ous and discontinuous domain proteins, respectively, the difference
of which corresponds to P-values of 0.88/0.44 as calculated by two-
sided Student’s #-tests. These results suggest that FUpred’s perform-
ance does not obviously depend on the domain type for multi-
domain proteins, thus highlighting the effectiveness of FUpred’s it-
erative recursion procedure for recognizing complex domain
structures.

3.4 Analysis of time complexity

We also compared the time complexity for FUpred and the other
four methods on the 136 multi-domain proteins with lengths rang-
ing from 70 to 1200 amino acids, which were non-redundant to the
training datasets for ResPRE, ThreaDomEx and ConDo. All five
methods were run as standalone packages with only one CPU and
the pure running times for the jobs were counted. The results are
shown in Figure 5. ThreaDomEx was the most time-consuming
method, followed by ConDo. Among the top three most accurate
methods (FUpred, ThreaDomEx and ConDo), FUpred required the
least amount of time. Although the DOMpro and DoBo methods
ran faster than the other three methods, as previously discussed,
these two methods were not as accurate as the others. Overall,
FUpred had good performance in terms of both accuracy and run-
ning time. Note that ThreaDomEx and FUpred also provide online
servers. Thus, the user waiting time includes both the pending time
and actual running time for the jobs.

3.5 A case study for predicting complex multi-domain

segments and boundaries

Although most of the multi-domain proteins in the SCOPe database
were two-domain or three-domain proteins, there were some rela-
tively complex multi-domain proteins, which are particularly chal-
lenging for nearly all domain prediction algorithms. In Figure 6, we
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present an example from the AcrB bacterial multi-drug efflux trans-
porter (PDB ID: 2dhhA) in our test set to illustrate how FUpred rec-
ognizes complex domain structures.

2dhhA has 1022 residues and contains eight domains (‘D1-1,
D2, D3-1, D4, D3-2, D1-2, D5-1, D6, D7-1, D8, D7-2, D5-2’)
where four are continuous domains (‘D2’, ‘D4’, ‘D6’ and ‘D8’) and
the other four are discontinuous domains (‘D1-1, D1-2’, ‘D3-1,
D3-2’, ‘D5-1, D5-2’ and ‘D7-1, D7-2’), as indicated by the SCOPe
database. Figure 6A shows the predicted domain boundaries by five
different methods, in comparison with the assignment based on the
experimental structure. FUpred achieved NDO and DBD scores of
0.88 and 0.77, respectively, which were significantly higher than all
of the control methods, each of which had both NDO and DBD
scores below 0.55.

For most cases, the higher quality of the FUpred models could be
mainly attributed to the effective iterative recursion procedure and
the relatively high accuracy of the contact map predictions generated
by ResPRE (as shown in Fig. 6B). While there is no doubt that high
accuracy contact map prediction can help FUpred correctly predict
the domain boundaries, for this case, the inter- and intra-domain
contact prediction was not highly accurate. The precision of intra-
domain contact prediction for 2dhhA by ResPRE was 0.36, which
was much lower than the average precision for all of the discontinu-
ous domain proteins (0.54). Additionally, 90% of the inter-domain
contacts were not predicted by ResPRE. Despite the low accuracy of
inter- and intra-domain contact prediction, FUpred very accurately
split the whole sequence into eight domains recursively based on the
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Fig. 5. The time complexity comparison between FUpred and the other four meth-
ods. All five methods, FUpred, ThreaDomEx, DOMpro, DoBo and ConDo, were
run as standalone packages using only one CPU and the pure running times for the
jobs were counted. Linear regression was used to fit the correlation relationship be-
tween running time and protein length for different methods

FUscore,q and FUscore,. (as shown in Fig. 6C) guided by the con-
tact map information. In the first step, FUpred detected the continu-
ous domain boundary between ‘D1-2’ (the second part of the
discontinuous domain 2) and ‘D5’ (the continuous domain 5), so
‘D1-1, D2, D3-1, D4, D3-2, D1-2’ and ‘D5-1, D6, D7-1, D8, D7-2,
D5-2’ were approximately split into two domains (Fig. 6C). Then,
‘D1-1, D2, D3-1, D4, D3-2, D1-2” and ‘D5-1, D6, D7-1, D8, D7-2,
D5-2’ had similar domain patterns, which FUpred separately pre-
dicted with the same iterative procedure. Taking ‘D1-1, D2, D3-1,
D4, D3-2, D1-2’ as an example, this part was further split into ‘D1-
2, D1-1’ and ‘D2, D3-1, D4, D3-2’ by discontinuous domain detec-
tion, since continuous domain detection could not split it. After
that, ‘D2, D3-1, D4, D3-2’ was split by continuous domain detec-
tion into ‘D2’ and ‘D3-1, D4, D3-2’, where ‘D3-1, D4, D3-2’ fol-
lowed a very typical discontinuous two-domain protein pattern.
Finally, ‘D3-1, D4, D3-2’ was correctly split into ‘D3-2, D3-1’ and
‘D4,

We have also provided four more representative cases with com-
plex domain patterns in Supplementary Fig. S7. The four multi-
domain proteins are 1we3F (‘D1-1, D2-1, D3, D2-2, D1-2°), 1dq3A
(‘D1-1, D2, D3, D4, D1-2°), 3ac0A (D1, D2-1, D3, D2-2, D4’) and
1miuA (‘D1, D2, D3-1, D4, D3-2, DS’). FUpred was able to almost
perfectly predict the domain boundaries for each of these four pro-
teins with NDO scores (DBD score) of 0.954, 0.888, 1.000 and
0.951 (0.844, 0.750, 1.000 and 0.800) for 1we3F, 1dq3A, 3ac0A
and 1miuA, respectively.

3.6 Complementarity between threading and contact

map-based domain prediction

The benchmark results demonstrated that both contact map-based
methods (FUpred) and threading-based methods (ThreaDomEx)
have considerable advantages over machine learning approaches.
Here, we further examine the complementarity between the
threading-based methods and contact map-based methods.

As a threading-based method, ThreaDomEx can accurately de-
tect domain boundaries when the correct templates are identified. In
Supplementary Table S6, we split the protein samples into two
groups based on NDO score using a cutoff of 0.4. We show that the
average TM-score of the best threading templates (0.642) for the
high-performance cases (NDO > 0.4) was much higher than that
(TM-score = 0.584) for the low-performance cases (NDO < 0.4).
Although homology templates can be found for most proteins by
threading methods, there are still many targets where homology
templates cannot be easily identified by current threading
approaches. Thus, an alternative method is needed. Similarly, con-
tact map-guided methods, such as FUpred, can accurately predict
domain boundaries when the contact maps are accurately predicted.
To assess the quality of the predicted contact maps, we calculated
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Fig. 6. Case study of domain boundary prediction for the AcrB bacterial multi-drug efflux transporter (PDB ID: 2dhhA). (A) NDO and DBD scores for domain boundary pre-
diction by different methods. (B) Native (gray) and ResPRE-predicted (red) contact maps for the target protein, where colored solid squares indicate the domain boundaries of
the native structure, and the square frames mark the inter-domain contacts that are key to the domain boundary prediction in FUpred. (C) Iterative recursion procedure of do-
main boundary detection in FUpred. Different domains are marked by distinct colors as indicated at the bottom of the panel
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Fig. 7. Performance relationship between threading-based and contact map-based
methods. The point size corresponds to the value of the NDO score, where a larger
point indicates a higher score

four types of metrics: precision of intra/inter-domain (PRE;, ./
PRE; ;) contact prediction and percentage of false positive pre-
dicted intra/inter-domain contacts (PFPj,./PFP; ;) based on the
top 2.6L predicted contacts. As shown in Supplementary Table S7,
the PFP;,, is more relevant to the performance of FUpred, i.e. the
high-performance cases (with NDO > 0.4) had significantly lower
PFP;,., values (=0.096) than the values (=0.139) for the low-
performance cases (NDO < 0.4). This is easy to understand since
the FUscore will be high when too many false positive contacts ap-
pear in inter-domain regions.

Figure 7 shows the relationship between a threading-based
method (ThreaDomEx) and a contact map-based method (FUpred).
For each multi-domain protein in the test set, we only show one
point representing the method (ThreaDomEx or FUpred) with the
higher NDO score in the figure. In the top left region, which repre-
sents targets that have both good templates and accurate contact
maps, there are many circular points (173) and cross points (404)
and the sizes of the points are generally large, indicating that both
threading-based and contact map-based methods performed excel-
lently on targets in this region. However, the sizes of the points in
the bottom-right region are much smaller, indicating that neither
threading-based nor contact map-based methods generated accurate
predictions since the targets in this region did not have good tem-
plates or accurate contact maps.

The complementarity of the two methods can be found in the
two remaining regions. In the bottom-left region, e.g. the targets had
accurate contact maps but failed to detect good templates.
Accordingly, there are 90 cross points with reasonable predictions
from FUpred and only 335 circular points from ThreaDomEx predic-
tions. On the other hand, in the upper-right region, there are more
accurately predicted cases from ThreaDomEx than from FUpred (41
circles versus 21 crosses). In the previous test, the average NDO and
DBD scores for FUpred were 0.791 and 0.498, respectively (see
Table 3). However, if we combine the FUpred and ThreaDomEx
results together by taking the higher performing model for each tar-
get, the NDO and DBD scores increased to 0.869 and 0.660, re-
spectively, which again demonstrates the complementarity of the
two approaches, despite the fact that FUpred significantly outper-
formed ThreaDomEx on its own.

4 Conclusion

We have developed a new pipeline, FUpred, which utilizes contact
map prediction, in conjunction with secondary structure

information, to detect domain boundary locations for protein
sequences. Given a 2D contact map, the optimal domain splitting
can be obtained in principle by maximizing the number of intra-
domain contacts, while minimizing the number of inter-domain con-
tacts. Quantitatively, this was implemented by optimizing the
FUscore, which balances the number of inter- and intra-domain con-
tacts, while an iterative recursion strategy was developed for further
domain splitting and refinement in order to detect higher-order,
more complex domain structures, including multiple continuous and
discontinuous domains.

FUpred was tested in large-scale benchmark experiments and
showed significant advantages over a state-of-the-art threading-
based method (ThreaDomEx) and leading machine learning-based
methods (ConDo, DoBo and DOMpro). In particular, the FUpred
algorithm demonstrated excellent performance for modeling discon-
tinuous domains, with an accuracy comparable to that for continu-
ous domains. In fact, FUpred is the first computational domain
prediction method to achieve this for the challenging problem of dis-
continuous domain modeling. Furthermore, FUpred had the fastest
running time among the most accurate methods, including
ThreaDomEx and ConDo.

Nevertheless, the performance of FUpred was still unsatisfactory
for several targets. These occurred in particular when the effective
number of homologous sequences detected by DeepMSA was low
and the contact map prediction was poor. Given the complementar-
ity between contact map prediction and threading template identifi-
cation, one way to alleviate this issue is through the combination of
the threading alignments and contact map information for compos-
ite domain prediction. Work along this line is in progress.
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