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ABSTRACT

We present a method for characterizing image-subtracted objects based on shapelet analysis to
identify transient events in ground-based time-domain surveys. We decompose the image-subtracted
objects onto a set of discrete Zernike polynomials and use their resulting coefficients to compare them
to other point-like objects. We derive a norm in this Zernike space that we use to score transients for
their point-like nature and show that it is a powerful comparator for distinguishing image artifacts,
or residuals, from true astrophysical transients. Our method allows for a fast and automated way of
scanning overcrowded, wide-field telescope images with minimal human interaction and we reduce the
large set of unresolved artifacts left unidentified in subtracted observational images. We evaluate the
performance of our method using archival intermediate Palomar Transient Factory and Dark Energy
Camera survey images. However, our technique allows flexible implementation for a variety of dif-
ferent instruments and data sets. This technique shows a reduction in image subtraction artifacts by
99.95 % for surveys extending up to hundreds of square degrees and has strong potential for automated
transient identification in electromagnetic follow-up programs triggered by the Laser Interferometer

Gravitational Wave Observatory-Virgo Scientific Collaboration.

Keywords: methods: data analysis — techniques: image processing

1. INTRODUCTION

A new generation of ground-based optical instruments
specializing in wide-field, high-cadence, deep imaging
transient surveys such as Palomar Transient Factory
(PTF; Law et al. 2009; Rau et al. 2009), Dark Energy
Camera (DECam; Flaugher et al. 2015), SkyMapper
(Keller et al. 2007), Catalina Real-Time Transient Sur-
vey (Drake et al. 2009), LaSilla Quest (Rabinowitz et al.
2012), Hyper SuprimeCam (Miyazaki et al. 2012), Mega-
Cam (Boulade et al. 2003), Asteroid Terrestrial-impact
Last Alert System (ATLAS; Tonry 2011), Panoramic
Survey Telescope and Rapid Response System (Pan-
STARRS; Kaiser et al. 2010), All-Sky Automated Sur-
vey for Supernovae (ASAS-SN; Shappee et al. 2014), the
Gravitational-Wave Optical Transient Observer (GOTO
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1), BlackGEM (Bloemen et al. 2015), Evryscope (Law
et al. 2014) and Zwicky Transient Facility (Bellm et al.
2019), or the upcoming Large Synoptic Survey Telescope
(LSST, Ivezié¢ et al. 2019), are opening a new window
for transient astronomy. The eéntendue of these surveys
are expected to generate an exponential increase in data
collection from what is currently generated, necessitat-
ing fully automated processing and vetting of transient
candidates.

We focus on developing a technique that retains
real astrophysical transients such as supernovae (SNe),
gamma-ray burst (GRB) orphan afterglows, active
galactic nuclei (AGN), blazars, dwarf novae, and
other potential transient events such as tidal dis-
ruptions (Strubbe & Quataert 2009) or shock break-
outs (Garnavich et al. 2016) while reducing or elimi-
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nating the number of image subtraction residuals (i.e.
non-astrophysical artifacts) which would otherwise litter
the image in vast quantities over any given observing
time frame. One compe-ling motivation for the de-
velopment of this technique is the non-trivial task of
associating an electromagnetic (EM) transient with a
gravitational-wave (GW) candidate with both angular
and time coincidence. True GW-associated transients
will be rare in our imaging field so the challenge at hand
is to efficiently remove unassociated steady-state image
subtraction residuals and further reduce the number of
events from image subtracted data using our method.
A majority of the steady-brightness objects that are
retained between exposures can be removed by image
differencing techniques. However, image subtraction ar-
tifacts are expected to comprise a large fraction of the
possible transient candidates to be vetted and can be
as high as hundreds to thousands per image. Thus, the
sheer number of detected objects makes manual process-
ing impractical, and automatic pre-filtering of candidate
transient objects becomes necessary. Besides a look-up
for known variable sources that may be in the telescope’s
field of view, any automated selection mechanism should
include a test for the point-like nature of an object.
There are several methods which address the issue of
artifact reduction and transient classification in an au-
tomated, machine-learned environment for many opti-
cal transient surveys, nearly all of which rely on the
use of a human-classified training set of data. Bloom
et al. (2012) and Brink et al. (2013) introduce a su-
pervised machine-learning real-bogus algorithm using a
random forest (RF) classifier to rank cataloged tran-
sients in PTF data, while Wright et al. (2015) expand
on the real-bogus algorithm for Pan-STARRS1 con-
firming the successful performance of RF over the ar-
tificial neural network (ANN) and support vector ma-
chine (SVM) algorithms. Bailey et al. (2007) explore
SVM, RF, and boosted decision trees (BDT) for the
supernova classification pipeline Nearby Supernova Fac-
tory (Aldering et al. 2002), showing that BDT provides
the best overall performance. Goldstein et al. (2015)
for the Dark Energy Survey Supernova Program (DES-
SN; Bernstein et al. 2012) apply RF classification to
their data set, while Morii et al. (2016) compare RF,
the deep neural network, and boosting based on maxi-
mizing the area under the receiver-operating character-
istic (ROC) curve (AUC) for HSC data and show the
increased utility in combining all three. Klencki et al.
(2016) implement a neural network unsupervised algo-
rithm self-organizing map for OGLE-IV (Wyrzykowski
et al. 2014). A large comparison of machine-learning
techniques (see du Buisson et al. 2015) shows that RF

outperforms all other supervised methods. While many
of these techniques may employ similar methods, such
as generalized feature engineering and the choice of clas-
sification algorithms, there is no set benchmark data in
order to directly compare any of these methods to one
another.

Our method makes use of singular value decompo-
sition (SVD) for learning latent variables. We pro-
vide an initial training set of unsubtracted images
with labels given by the CLASS_STAR parameter from
SExtractor (Bertin & Arnouts 1996). However, we do
not human-classify any source in the images. Instead,
we have code automatically define the shape of a point
source from individual images and score any point-like
objects that appear in the final difference image using
a metric in a Zernike space. This idea is applicable
to many individual telescopes, without the need for
labor-intensive manual training of any algorithms and
is distinct from traditional machine-learning methods.
This can be particularly useful at the onset when new
instruments have not collected enough training data
to enable finding such transients during their observa-
tions, or for facilities which do not have the resources
to manually train their algorithms.

We discuss the general method of image subtraction
in §2. We discuss our Zernike method in §3 including a
general description of point-spread function (PSF) mod-
eling (§3.1), the set of Zernike polynomials (ZPs; §3.2),
our decomposition method (§3.3) and parameters (§3.4),
the importance of subpixel shifting (§3.5), and the met-
ric we use for our analysis (§3.6). In §4 we detail our
method of injecting artificial transients and show our re-
sults in terms of efficiency and false alarm rate (FAR).
We provide discussion and compute local system run
times in §6 and §5.1. We conclude in §6.

2. IMAGE SUBTRACTION

Difference imaging is a highly effective method for de-
tecting and obtaining time-series photometry of tran-
sient events in crowded regimes. It is more efficient than
PSF aperture photometry at extracting information of
a transient or variable star’s light curve over time.

The basic method of difference imaging subtracts two
exposures from the same field to suppress steady-state
brightness objects. Alard & Lupton (1998, hereafter
AL98) developed a technique for optimal image sub-
traction released as part of their ISIS package (Alard
& Lupton 1998; Alard 2000). The AL98 method sub-
tracts the two images by finding a convolution kernel
that remaps the to-be-subtracted image into the coordi-
nate frame of the primary frame and matches the seeing.
The kernel K for subtracting the reference image R from



the observational image [ is obtained by minimizing the
quadratic error in the expression of the function

R<x7y)*K(x7y)_I(xay)_B(ivy)a (1)

where the slowly varying B accounts for any background
variations present between the two images.

In the context of wide-field images, image subtrac-
tion is the preferred method for identifying residual
energy between two exposures and will ideally remove
all steady-state sources. However, in reality subtrac-
tion artifacts are introduced due to saturation effects
or from variable PSFs, with the latter being particu-
larly important in images with coverage on the order
of square degrees. Image artifacts manifest due to the
inherent challenge of finding an optimal kernel solution
especially when significant seeing variations are present.
A global optimal kernel solution for the image may not
fully account for the deviations of the PSF around ex-
tended (galaxy) sources and convolution will lead to
over-subtraction especially if the observation image is
found to have better seeing than the reference. To miti-
gate the effects resulting from seeing differences, we can
perform image subtraction in both directions.

There are several subtraction algorithms available
that will identify a cross-convolution kernel and trans-
form two images into a common frame, where objects
that appear in both with the same intensity will can-
cel out upon differencing (Bramich 2008; Kessler et al.
2015; Zackay et al. 2016). The algorithms each have
their own strengths and shortcomings, however, for this
analysis we use the subtraction tools included in the
HOTPANTS (Becker 2015) program, which is based on the
AL98 algorithm but offers more flexibility in the sub-
traction process, particularly in its ability to choose the
direction of subtraction.

As the subtracted image is in the same frame as the
observational image I, the PSF will be identical where
the presence of background fluctuations between the two
images is removed during image subtraction. For this
reason we build a PSF library based on sources within
I and require that the reference image R is used solely
for subtraction.

3. ZERNIKE DECOMPOSITION

Analytically approximating the wavefronts in the
aperture frame using expansions of ZPs is a popu-
lar method for optics analysis via monitoring incom-
ing wavefronts (Lofdahl & Scharmer 1994) and in the
field of adaptive optics (Rigaut et al. 1991) where dy-
namically adjusting mirrors automatically corrects for
incoming aberrated wavefronts. They are also incorpo-
rated outside of the field of astronomy, specifically in
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image pattern recognition (Khotanzad & Hong 1990).
We make use of ZPs as our basis set to decompose the
image objects.

3.1. PSF Modeling and Shapelet Analysis

The PSF of an astronomical image is the intensity dis-
tribution produced by a true point source at the sensor
and is affected by static optical aberrations of the tele-
scope/instrument as well as time-varying atmospheric
effects, e.g. seeing. Near the center of the optical axis,
a simple 2D Gaussian may be sufficient for fitting in
some case. However, as objects deviate from the center,
or more complex turbulence profiles occur, models with
higher-dimensional solutions must typically be used for
fitting. One way to address the abberated PSFs is to
use an interpolated PSF from actual data. A fit to the
PSF with amplitude and position as fitting parameters
resembles the ultimate test of the point-like characteris-
tic of an object found in the image. However, the PSF is
not known a priori and must be empirically determined.

There are many base sets which may be appropri-
ate for accurately deconvolving and fitting a deviated
wavefront in the aperture frame, such as shapelets:
Zernike (Conforti 1983), Hermite-Gauss (Refregier
2003), and Gauss-Laguerre polynomials (Massey & Re-
fregier 2005); cheblets (Jimnez-Teja & Bentez 2012); or
wavelets (Starck et al. 2003). Piotrowski et al. (2013)
consider a modified shapelet basis using a set of ZPs
for modeling wide-field PSFs as a function of distance
from the aperture. We revise traditional techniques of
PSF decomposition and modeling by looking instead
at individual objects in the image plane, based on the
premise that point-like sources will retain the charac-
teristic properties of the global image PSF. While we
make use of ZPs for our particular study, the current
structure of our pipeline allows for interchangeable basis
functions to fit individual needs or preferences.

The shapelet analysis is largely model-independent in
that it is less prone to errors than for a single distri-
bution, i.e. a Gaussian. For example, in choosing a
Gaussian model to fit the PSF there may be significant
errors for higher-order deviations. If instead an entire
basis set is chosen, e.g. Zernike or Hermite-Gauss poly-
nomials, such deviations can be effectively handled by
using the higher-order moments.

3.2. Zernike Polynomials

The ZPs in their analytical form are a complete or-
thonormal basis for real-valued, smooth functions on the
unit disk (0 < p < 1,0 < ¢ < 27). They are grouped
into even and odd polynomials, depending on their sym-



Figure 1. Example of the first 14 Zernike Orders.

metry in ¢, and are defined as

respectively, where

(n—m)/2

o (—1)’“ (n — k)lpn—2¥

The primary index n € {0, 1,2, ...} determines the order
of the polynomial in p, and m € {n,n —2,n —4,...} is
the axial index. Fig. 1 shows a few exemplary low-order
ZPs. A smooth function f(p,®) can be written as the
infinite series

m,n

where a,, and b, ,, are the respective symmetric
and antisymmetric coefficients of the Zernike expansion.
Due to the ZP’s orthonormality, they can be calculated
from

1 27
ano= [ [ $0.6)2p.0)do dp

o (6)
=/!f 0, ®) do dp.

Because of their importance in describing wavefront
aberrations, some particular index pairs have been given
names, i.e. astigmatism (ag 2 and bs 2) or coma (a3 and
b1,3). In this paper we use the Noll-ordering numbering
scheme (Noll 1976) for ZPs that only uses a single index
(Z7r — Zj).

Choosing ZPs as a basis for the residual representa-
tion is met with several complications. Firstly, there is
the discretization error that inevitably results from the
numerical evaluation of the ZPs on a pixel grid of finite
resolution. Secondly, the PSF is theoretically infinite in
expanse in the image plane, while the ZPs are defined
only within an aperture. An appropriate unit disk size
on the pixel grid must therefore be chosen such that
only a trace amount of PSF power remains outside the
disk, while still being computationally feasible. Lastly,
and most importantly, for the exact representation of an
arbitrary function, even in the analytical case, infinitely
many Zernike coefficients are required. Computation-
ally this is impossible and a cut-off criterion for the ZP
order must be developed. Both aperture restriction and
order limitation need to be weighed against the numer-
ical error that they introduce. It should be noted that
the larger the disk, the higher the Zernike orders must
be in order to spatially resolve PSF features to the same
accuracy.

3.3. Decomposition Method

The purpose of analytical Zernike decomposition is to
find coefficients c; corresponding to ap,, and by, , in
Eq. (5) and reconstruct the object fob;[k,{] in the basis
of the ZPs as

fonjlk, 1) = ch (7)

where k and [ are the row and column indices of the pixel
grid, respectively. For this an aperture is placed around
the object to be decomposed. To accurately capture the
contribution of edge pixels, which may only partially
overlap with the unit disk, the aperture condition p <1
is evaluated on a much finer grid than that of the image,
i.e. the grid is up-sampled by a factor of 10. The edge
pixels are then averaged and down-sampled to match the
original image pixel grid, yielding a mask p[k,{] whose
values give the fractional coverage of pixel [k,!] by the
up-sampled unit disk. Normalization of the apertured
object yields the distribution function fou;[k,!]. Simi-
larly, the ZPs are first calculated on the higher precision
grid, and then averaged and down-sampled to yield the
basis Z;[k, (] for the source decomposition.

Due to the finite number of ZPs used in the decom-
position process, an exact reconstruction of fop;[k,!] is
typically not possible. We therefore introduce the re-
quirement that the Zernike representation of the recon-
structed object must not exceed a threshold value of the



Survey Footprints

Figure 2. Collection of iPTF R-band DR1 and DR2 (blue) and DECam-DESY1 (red) survey images projected onto a Mollweide
axis in ecliptic coordinates. The inset image shows detailed coverage and decl. overlap.

merit function
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which is the rms deviation between the reconstructed
object fobj [k,1] and the original fop;[k,!] on the mask
plk,l]. To obtain the particular set of ¢; that meets this
requirement we must first calculate the Zernike moments

My =3 (Fovslhs 1] x 25k, 1)) ©)

k.l

analogously to (6). With the inverse C;; ! of the covari-
ance matrix

Ciy = > (Zilk0Z;[k,1)), (10)

k.l

which is calculated using SVD and Gram—Schmidt or-
thogonalization, we obtain the ¢; as the inner product
of M; with C;;" from

In this discussion we use the discrete Zernike coefficients
¢; to characterize point sources in Zernike space.

3.4. Decomposition Parameters

Before a sophisticated efficiency study can be launched,
some fundamental parameters for the decomposition
process need to be chosen. As mentioned previously,
there is a trade-off between the physical aperture radius

ppix and the Zernike cutoff order jmax for the ability
to resolve wavefront features. Since Eq. (8) provides a
measure for the quality of the Zernike fit, it served as
our main criterion to determine pairs of (ppix, Jmax) that
lead to computationally feasible, yet accurate represen-
tations.

We vary ppix from 3.0 to 7.0 pixels. Motivated by the
structure of the Noll ordering, we chose a set of jyax, in
which we parameterize our analysis. We note that jyax,
in general, should not exceed the number of valid pixels
in plk,].

We use a selection of archival intermediate Palomar
Transient Factory (iPTF; Law et al. 2009; Rau et al.
2009) Data Release 1,2, and 3 (DR1, DR2, DR3) and
Dark Energy Camera (DECam Flaugher et al. 2015)
Dark Energy Survey Year 1 (DESY1) images of vary-
ing quality in terms of background and seeing. These
images are publicly available and were imaged between
2009 September—2015 January and 2013 February—2014
December, respectively. The collection of images for
iPTF and DECam is shown in Fig.2. Auxiliary cata-
log files, which are generated by SExtractor, contain
basic astrometric and photometric estimates, and sup-
ply locations and aperture magnitudes, as well as data
quality flags for objects in the image. We restrict our
sources for the PSF model to isolated, unsaturated ob-
jects with minimum flux values > 50% above the sky
background.

Using the source’s coordinates we define a region with
dimensions three times the corresponding unit disk cen-
tered on the object and calculate its median pixel value,
which serves as an estimate for the nominal local back-
ground. We then apply the aperture p[k,l] to the re-
gion and normalize the obtained intensity distribution,



0.018

— jimax=11
== jmax=15
— jmax =22
-- jmax=28]]
— j_max=37H
-- j_max =45
— jmax =49

j_max = 56

j_max = 66 |q
— jmax =179
== j_max =91}

0.016 -

0.014 ¢
F

o o
(=] o
= =
o N

1o

o
o
=]
@

RMS Wavefront Error

o
=)
=]
=l

- =

0.004 -

0.002 -

ra L L L L
35 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Unit Disk Radius [pix]

Figure 3. Median RMS error for Zernike reconstruction
of an ensemble of reference stars. We varied the unit disk
radius p from 3.0 to 7.0 pixels for different jmax and calcu-
lated the median residual error between the original and the
Zernike-reconstructed intensity distributions over an ensem-
ble of roughly 4000 objects. For an expected error of 0.5% we
decided to use paisk = 4.5 for iPTF (paisk = 6.5 for DECam)
and jmax = 49 for our simulations.

followed by the previously described Zernike decomposi-
tion. We calculate the residual error of the reconstructed
sources following Eq. (8) for all objects that have passed
a preselection filter. As a figure of merit for a pair
(Ppix; Jmax) We use the median error across the ensemble
of decomposed objects. Fig.3 shows the result of our
analysis. We find that to keep the reconstructed error
below 0.5% with a moderately high jynax of 49, we set
ppix to 4.5 for iPTF and ppix to 6.5 for DECam.

3.5. Subpixzel Shifting

SExtractor estimates the coordinates of the object
with fractional pixel accuracy while the PSF is recon-
structed with integer pixel accuracy, leading to off-axis
PSF representations and a large error. One possible
way to address this is to locally resample the telescope
image before the Zernike decomposition and shift it by
the fractional pixel value. However this modifies the ob-
servational data. Another option, which is the method
we use, is to evaluate the ZPs with respect to an offset
origin given by the object’s coordinates estimate. The
latter is more precise, but at the same time more com-
putationally demanding, as it requires the recalculation
and inversion of the covariance matrix for each shift.

3.6. Zernike Statistics

Our declared goal is to develop a criterion for the
point-like nature of an object using the Zernike ap-
proach. However we do not know the expected values

400}

350}

300}

250}

Counts

200}

150}

100}

50t

=)

0.

0.04 006
Coefficient Value

8 0.10

Figure 4. Example Gaussian distribution for a set of coef-
ficients c; for a single Zernike order. The solid red line is a
Gaussian fit to the data and the solid blue line is the ensem-
ble median. The red and blue dashed lines show the median
o; and the FWHM of the Gaussian fit, respectively. Each
Zernike order can be represented in this manner and the me-
dian coefficient for each order is taken from the median of
the distribution.

of the Zernike coefficients of a point source initially, but
must derive them using ensemble statistics. Our strat-
egy is to compile a selection of reference stars from the
SExtractor catalog and decompose each one individu-
ally. For each Zernike index 7 we can determine a statis-
tical mean ¢; and a characteristic spread ¢, which we
use to define the distance from the ideal point source in
Zernike space

Dy = jmi( (Cj — Ej)2 (12)
j=1 o;

for an object with Zernike coefficients c¢;. We use Dy as
the main discriminator for the point-like shape of decom-
posed objects. This is also defined to be the main feature
we use to distinguish between real and bogus sources in
the subtracted image. We find that the discriminative
behavior of Dy is relatively stable (weighing the ap-
propriate observing conditions) and is tunable for each
instrument. To decide which items from the catalog to
use for obtaining ¢; and o; we use the CLASS_STAR field
which is a SExtractor estimate for the point-likeness of
an object ranging from 0 (extended source) to 1 (point-
like). We set 0.90 as a lower bound for CLASS_STAR. Un-
der the premise that SExtractor is correct in its guess
for the majority of cases, we obtain realistic ¢; and o}

through the averaging process.
We further apply filtering parameters and decompose
the resulting selection of objects. Fig. 4 illustrates a his-
togram of a c; distribution that is obtained as explained.



The ensemble median and standard deviation, as well as
a Gaussian fit to the presented data, have been included
in the figure. The median and standard deviation are
empirical values for ¢; and o;. While the coefficient dis-
tribution are approximately Gaussian, using the median
and standard deviation has proven to be more robust.
As the seeing conditions vary between exposures these
quantities are bound to change as well and a recalcula-
tion of ¢; and o is required for each image.

The further the coefficient values are from their statis-
tical mean, the less likely it is that a decomposed object
is a point source. Collapsing all Zernike orders into the
single metric from Eq. (12) we develop a threshold value
for Dy as the main criterion of our pipeline. The ex-
act value will need to be chosen weighting the pipeline’s
false positive rate (FPR) against its detection efficiency
and is a tunable parameter for each telescope.

4. METHOD TESTING AND RESULTS
4.1. Transient Injection Method

The images we use are taken from public databases,
previously processed and assumed to be free of uniden-
tified transients. For iPTF and DECam, we have ap-
proximately 810 and 5650 individual CCD frames, re-
spectively. We can then inject artificial transients in the
images in order to test the efficiency and limitations of
our recovery method. We limit the injection set to 50
per image per magnitude bin to avoid source confusion,
with a total of approximately 40,500 and 282,500 injec-
tions per magnitude bin for iPTF and DECam images,
respectively. We perform initial object detection, mea-
sure centroid positions, and determine aperture magni-
tudes on the template images using SExtractor.

Similar to ensemble building for Zernike statistics, we
filter the observational image catalog for only isolated,
high S/N and unsaturated sources with CLASS_STAR
close to 1. Identical to the Zernike method, we isolate
the sources on a sufficiently large pixel grid, subpixel
shift the centroid to the center of the grid, and approxi-
mate the PSF by averaging and triple sigma-filtering to
remove outliers.

If subpixel shifting moves the centroid by more than
0.5 pix, interpolation errors propagate and an inaccurate
model will be produced. We therefore introduce a tiling
procedure which discretizes the centroid pixel into a 3x3
subgrid. Populations of sources are then grouped by the
location of the centroid with respect to the minor grid
coordinates. A separate PSF is then found by averaging
over the ZP’s for each section of the 3x3 subgrid sep-
arately. For a randomized set of injection coordinates
the appropriate PSF is chosen from the fractional pixel
value of the centroid.

7

We coadd all sources together and average them,
returning the error between each individual weighted
source and the average PSF. To minimize the error, we
apply triple sigma-clipping to throw out outliers and are
finally left with a model transient to inject.

We note that the same stars are selected to build the
Zernike statistics as well as the model transients. With
respect to the real sources in the image, it is possible in
certain instances that the transients themselves may not
be fully representative as a set. To ensure that our re-
ported metrics are not biased, we perform visual checks
of the median ensemble PSF's prior to injection as well
as in each image after injection. Fig. 5 shows examples
of what these injections look like in the sample DECam
and iPTF images.

The field coordinates of the imaged region define a
boundary for R.A. a and decl. § and within the bound-
ary we generate a random pair («y, ¢;) for each injec-
tion i. We randomize the flux values f; corresponding
to a range of apparent magnitudes for sources which
rise marginally above the background to sources that
are short of reaching the CCD’s nonlinear regime before
becoming saturated. The normalized PSF is multiplied
by f; and then subjected to a pixel-wise Poissonian dis-
tribution to simulate photonic shot noise.

To simulate the effects of variable observing conditions
and optical quality degradation we generate additional
background noise across the entire image and implement
an optional blurring method, by which the entire image
is convolved with a Gaussian kernel of variable width,
see §4.3. Fig. 5 shows injection examples obtained for a
set of both iPTF and DECam images.

As we have full control over the list of objects injected,
we check for efficiency and FAR by cross-matching the
coordinates of the transient candidate list and the ob-
served image catalog, as well as the transient candidate
list and the placed injections. We perform the cross-
matching between catalogs using a descending KDTree
algorithm.

4.2. Detection Efficiency

For this paper, we disregard specific astrophysical
model properties (brightness, light curve, etc.) and in-
ject sources with random magnitudes within and just
beyond the sensitivity of the detector. We apply the
KDTree algorithm to recover our injections from the
subtracted image transient list and record the candi-
date’s Dy value. We can see the overall distributions
of injections and artifacts/residuals in Fig.6. We can
distinguish two classes of image-subtracted objects rep-
resented as a bimodal distribution in Zernike space. We
find an overall recovery efficiency of 98.64% for DECam
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Figure 5. Examples of the PSF we inject into the image for DECam (top left) and iPTF (bottom left). The PSF is scaled to
represent a source with mapp, = 18 (left) and 17 (right), respectively. The median FWHM for this image is given as ~ 1.08",
and 2.96”, respectively. With a pixel scale of ~0.26 arcsec pix~! for DECam and ~1.01 arcsec pix ' for iPTF, we find a relative
size of the injected PSFs to be ~3.38" and ~9.09”, respectively. Representative samples of the injections in the DECam and
iPTF data are also shown to the right of each respective model PSF.

and 97.36% for iPTF. In Fig. 7 we show that we recover
>99% of our injections for sources with an apparent
magnitude mapp, < 22mag for DECam. Identification
of faint sources in the subtracted image, i.e. Mapp > 23
mag, proves more difficult. The SNR of the the faint
sources is too low and as the relative impact of back-
ground noise increases, their spread in Zernike distance
space increases. Fig.7 shows the recovery efficiency for
injected objects with respect to (a) apparent magnitude
and (b) SNR. By parameterizing over apparent mag-
nitudes as a function of Dz and by requiring > 90%
efficiency over a range of apparent magnitudes, we can
estimate an initial Dy threshold. Further, Figs.6 and
8 shows the separable nature of sources in Zernike dis-
tance space by their apparent magnitudes. A threshold
D can then be further tuned based on knowledge of the
signal strength and apparent magnitude of the transient

for follow-up observations. While it is possible to sub-
divide the Zernike distance space in order to increase
the sensitivity of a search for particular sources based
on SNR and magnitudes, such considerations cannot be
made without quantifying background rate of false posi-
tives (FPs) of our method, both under ideal and variable
observing conditions.

4.3. Fulse Positives

In our study here, FPs are defined as the non-
astrophysical residuals in the subtracted image that pass
all checks designed to discard them. To prevent true
astrophysical transients incidentally present in these
images from polluting the FP rate study, images are
subtracted against themselves. Subtracting an image
from itself mimics a perfect image subtraction rou-
tine and any potential astrophysical emission is entirely
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Figure 6. Histogram of log-scaled recovered source counts
versus log-scaled Zernike distance, with residuals coded in
green and injections which span magnitude range of 16 <
Mapp < 23 coded blue for DECam. Note that the injected
transients, which represent actual transients occupy a dis-
tinct Zernike space distinguishable from subtraction residu-
als.

removed. Image registration, i.e. correcting for linear
offsets and nonlinear warping across the frame, typically
dominates the number of image subtraction residuals.
Thus, in effect, we also remove the residuals which may
appear from the registration process as there is no ro-
tation or physical offsets between exposures to correct.
Additionally, any sources which remain would be true
FPs of the image subtraction process itself. As the in-
herent design of the subtraction process is not adept at
handling single-image subtraction (tending to lead to
segmentation faults during execution), we apply artifi-
cial background variations to the science image. Fig.9
shows the distribution of FPs for iPTF and DECam in
Zernike space. We can see from both distributions that
the residuals occupy typical ranges of Dz = 10 under
ideal conditions.

Over a typical observing run, stochastic atmospheric
turbulence will also deform the shape of the PSF and as
the seeing worsens, the PSF spreads. To test the seeing-
limited capabilities of our pipeline, we subtract a single
image against itself holding the reference image constant
and blurring the secondary, or observational, image with
a Gaussian kernel, in effect mimicking stochastic pro-
cesses from Kolmogorov turbulence in the atmosphere.
In the continuous limit, blurring is approximated by con-
volution integrals. Since we apply our method in the
discrete regime and because the PSFs are spatially in-
variant, the convolution is a linear process. Therefore
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Figure 7. (a) Simulated detection efficiency versus apparent
magnitude for DECam. By requiring a minimum detection
efficiency of 90%, we find an initial threshold of Dz = 11
for sources with mapp > 22 for DECam and Dz = 11 for
sources with mapp > 18 for iPTF. The final threshold is
tuned against both the efficiency and rate of false positives,
however, the initial threshold serves as a first-pass estimate.
(b) Efficiency versus SNR for DECam images for sources
with apparent magnitudes brighter than m = 22.

we replace the integral with a sum,

—+oo —+oo

Ib(av(s) = Z Z Io(a+a’5+b)KX(_av _b)v (13)

a=—00 b=—o00

where I,,(«, ¢) is the observational image and K x (—a, —b)
is the discrete convolution kernel.

The Gaussian convolution kernel is defined in the stan-
dard way, where

1 ol
Ke(wy) = ——e 7o . (14)
G

We vary o¢ in step sizes of 0.05 pix between 0.05 and
0.5 pix, where values larger than 0.5 pix express nonlin-



10

Recovered Sources: Artificial Injections & Residuals

400 : .
injections: 15 < App Mag <= 16
injections: 16 < App Mag <= 17

350 | injections: 17 < App Mag <= 18 [

300

250

200

Counts

150

100

50

injections: 18 < App Mag <= 19
injections: 19 < App Mag <= 20
injections: 20 < App Mag == 21 [
injections: 21 < App Mag <= 22
injections: 22 < App Mag <= 23
residuals

BONORONEE

10°

Zernike Distance

Figure 8. Histogram of recovered sources both injected and residual objects in terms of their Dz. We show the coverage
of apparent magnitudes in Zernike space, where brighter sources will typically occupy lower regimes. As sources decrease in
magnitude, and thus decrease in SNR, the separable nature of astrophysical transients and image artifacts becomes less concrete.
This figure shows the potential of further tuning the threshold parameter once the apparent magnitude of a particular source is

known.
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Figure 9. False positive count of the pipeline versus the log-
scaled Zernike distance for iPTF (blue) and DECam (red).
No sources are placed in the images and the image is sub-
tracted against itself with pixel-wise background variations
randomized about 1o of the normal background distribution.

ear representations of optical blurring. Fig.10 shows
the effects of simulated suboptimal observing conditions
on our ability to distinguish artifacts from true tran-
sients as a function of Dz. We see in Fig. 10 that we re-
cover about an order of magnitude fewer sources at low
Zernike distances, i.e. Dz ~ 1, and that the distribu-
tion of residuals is pushed towards lower Dz, becoming
less distinguished from our set of injections. The PSF

of an image may be approximated by a Gaussian. How-
ever, in general, it is not a true Gaussian. Thus, when
the image is convolved with a Gaussian kernel the PSF
takes on Gaussian properties and tends to smooth each
object, shifting neighboring counts toward the centroid
position of the PSF and increasing the SNR in the pro-
cess. In effect, it provides better sampling under worse
seeing with respect to matching the PSF to the set of
ZPs. There is also the effect that the noise in the Zernike
distance will be smoothed out and that this effect in-
creases with decreasing brightness of sources. Addition-
ally, Fig. 11 shows that as we approach the lower mag-
nitudes our efficiency increases, as we effectively render
faint sources more point-like. However, this comes at a
cost as we simultaneously increase the total number of
objects which pass through, particularly FPs, as image
subtraction residuals are also rendered more point-like.
For brighter magnitudes we do not see a significant re-
sponse to our efficiency under the effects of blurring as
already high SNR sources are made even more point-
like.

4.4. Receiver-operating Characteristic Curve

A truly automated system has minimal human inter-
vention, thus we must leverage a threshold D, against
both the number of FPs which pass our checks and the
efficiency of recovery. ROC curves (Fawcett 2006) are
performance predictors for binary classification where
the boundaries between classes are determined by a typ-
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Figure 10. Comparison of minimal to maximal blurring
effects on the Zernike distance of recovered sources. The
degree to which the image is blurred affects the rate of false
positives.
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Figure 11. Efficiency versus apparent magnitude under
variable seeing conditions for DECam images with a Dz =
4 threshold and Gaussian kernels ranging from assumed ide-
alized seeing to maximal blurring.

ical threshold value, e.g. Djz. For a threshold value
of Dz = 4 (6) for DECam (iPTF) and a maximum
FPR=1% in Fig. 12 we find a true positive rate (TPR),
or efficiency, of 91.5% (92.8%). TPR and FPR are de-
fined as ratios of the numbers of true positives (TP),
FPs, true negatives (TN) and false negatives (FN), or

TP

PR = 15 7N 1
FP

FPR = FP+ TN’ (16)

respectively.
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Figure 12. ROC Curve for iPTF (blue) and DECam (red).
With a maximum false positive rate of 1%, we find an true
positive rate of 92.8% and 91.5% respectively. For a random
classifier AUC=0.5 and is represented as the black dashed
diagonal line.

The ROC curve presents a way to analyze our choice
for an appropriate Dz threshold. In terms of binary
classification, the area under the ROC curve (AUC) de-
fines the performance of our model with respect to our
discriminator. For a suboptimal model, i.e. the Dy
threshold set too low or too high, we might find our dis-
tributions indistinguishable and AUC=0.5. The higher
the AUC value, the better performance our model has
at distinguishing between true and false positives.

5. DISCUSSION

We compare the relative performance of our auto-
mated method to the supervised methods used by the
iPTF and DES-SN surveys. Both surveys use an RF al-
gorithm to discriminate between real and bogus sources
and recover 92.3% and 88% of TPs, respectively. We
find relatively comparable results using our method, or
a recovery of 92.8% and 91.5% of TPs, respectively. We
compare our results to additional alternative machine-
learning algorithms in Table 1. We note that we cannot
make direct comparisons between our work and those
of other data sets and algorithms. Any comparisons we
report are purely relative as we have not attempted to
standardize the data sets in any way.

The simulations we perform take into account a va-
riety of observing scenarios over a realistic sample of
full-sky measurements. We account for the differences
in inherent image noise and changes in observing con-
ditions, primarily seeing, by adding random pixel-wise
shot noise and blurring the image with a Gaussian ker-
nel, respectively. The addition of shot noise is not a
significant contribution to the overall results, and thus
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is not expanded upon in great detail. Under full-image
blurring, we see that the fraction of recovery increases
for faint sources, i.e. mapp ~ 22, by a factor of 8, while
the efficiency of recovery for brighter sources remains
consistent. However, the efficiency increases for faint
sources simultaneously increases the rate of FPs. As we
Gaussianize the injections artificially via blurring the
entire image, we also do so to the other sources we wish
to remove, i.e. leaving behind more characteristically
point-like objects. Our method is able to recover ar-
tificially injected transients under extreme conditions,
although the rate of FPs will correspondingly increase.

We introduce the AUC metric to quantify the discrim-
inatory power of our model for binary classification. We
vary our discriminator Dz and calculate the AUC for
DECam and iPTF, given in Table 2, and show that un-
der all simulated conditions AUC > 0.99.

5.1. Run Time

The software is built in Python and will be released
as an open-source product. Run times were computed
using a Intel i7-3770k 8-core chip clocking at 3.50GHz.
Parallelizations have been implemented using the stan-
dard Python multiprocessing module. The following
run times are given for single CCD images and are calcu-
lated for the image subtraction stage, final SExtractor
task, Zernike distance calculation, and I/O operations.
The average (median) user run times for iPTF and DE-
Cam are 394 and 80s (186 and 68s), respectively. Pro-
cessor time on the other hand was more efficient with
an average (median) of 32 and 38s (29 and 35s) for
iPTF and DECam, respectively. The user and CPU run
times are processor-dependent and the major contribu-
tion to timing differences are related to I/O operations.
However, this provides a useful benchmark for the run
times given the relative size of the CCD. Multiple cores
and parallelization are necessary for the latency require-
ments of most fast-transient search cadences.

6. CONCLUSIONS

We have presented a method of image analysis using
a set of ZPs to identify and classify sources which are
point-like and characteristically similar to expected as-
trophysical transients. We show that the Zernike dis-
tance is a tunable metric for each telescope and can
be optimized to maximize the detection probability and
minimize the FAR.

We reduce the overall number of residuals that must
be manually vetted, which may appear as a direct conse-
quence to image subtraction, based on shapelet analysis.
We show that our method recovers > 99% of real tran-
sients on archival single-pass observations from iPTF

and DECam surveys and that our results are compa-
rable to transient classification techniques that use su-
pervised and unsupervised machine learning. Thus, we
show that it is possible to identify potentially interesting
transient objects while significantly reducing or entirely
eliminating the total number of human hours needed to
train the data. We must note that while SVD can be
used as a method for dimensionality reduction in the
context of unsupervised machine learning, we make use
of SVD for polynomial decomposition.

We show that our method is robust under a variety
of variable observing conditions, however, the increase
in the number of FPs must be leveraged against nightly
seeing.

Our results are also presented using only shape cuts
in Zernike space and do not apply additional vetting.
Sources which pass our criteria are sent on for human
vetting, where we have bundled an automated interac-
tive and customizable webpage for the user to analyze
the source further and/or optionally send off automated
alerts.

Future work may employ a univariate Gaussian mix-
ture model to determine the probability of a particular
source belonging to one of the classes. Additionally, fu-
ture work includes increasing the dimensionality of our
space to incorporate the Zernike distance as a function
of secondary or tertiary observables, such as SNR, and
using a multivariate Gaussian mixture model to cluster
the parameter space.

Any transients found in an image, followed-up, and
deemed interesting may be used for targeted GW
searches. Under certain observing scenarios we can
constrain and approximate the time of the transient
EM event to search back into the GW data stream. As
the distance to which a telescope can observe a signal
is larger than the nominal GW detector distance hori-
zon, looking for GW signals triggered by EM events
may also lead to promoting subthreshold GW events; in
effect increasing GW detectors’ distance horizon.
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APPENDIX

Table 1. Relative performance comparison of this work to typical machine-learning algorithms

Survey Author ML Model TPR (%) FPR (%) MDR (%)
Supervised Algorithms
PTF Bloom et al. (2012); Brink et al. (2013) RF 92.3 1 7.7
Pan-STARRS1 Wright et al. (2015) RF 90 1 10
DES-SN Goldstein et al. (2015) RF 88 (96) 1 (2.5) 12 (4)
SDSS du Buisson et al. (2015) RF, kNN, SkyNet, nB, kSVM 91 8.65 8.81
Nearby SNFactory Bailey et al. (2007) BDT, RF, SVM 95 1 5
HSC Morii et al. (2016) AUC Boost, RF, DNN 90 1 10
Unsupervised Algorithms
OGLE-IV Klencki et al. (2016) SOM 86 1 14
Shapelet Analysis
DECam This work SVD 91.5 1 8.5
iPTF This work SVD 92.8 1 7.2

NoTE—Relative comparison to typical machine-learning algorithms in terms of the true positive rate (TPR), the false positive
rate (FPR), and the missed detection rate (MDR), or false negative rate. In the instances where there are multiple machine-
learning models given, the models in bold are found to be the best performing. In the case for the HSC survey, a combination
of all three models shows the best overall performance for their data set.



Table 2. Detection Efficiency

Instrument ope Overall Efficiency (%) Efficiency (%) for Apparent Magnitude AUC
16 17 18 19 20 21
DECam 0.00 97.36 98.92 98.81 99.01 98.67 97.31 91.42 0.9953
0.05 98.31 99.12 99.33 99.18 99.05 98.28 94.93 0.9977
0.10 98.35 99.19 9941 99.14 99.13 98.29 9491 0.9974
0.15 98.37 99.28 99.20 99.38 98.94 98.40 95.02 0.9981
0.20 98.36 99.25 99.36 99.17 99.04 98.50 94.85 0.9977
0.25 98.32 99.06 99.10 99.12 99.17 98.41 95.05 0.9985
0.30 98.39 99.39 99.28 99.34 99.04 98.31 95.00 0.9976
0.35 98.40 99.20 99.36 99.28 99.20 99.40 94.99 0.9973
0.40 98.43 99.20 99.48 99.24 99.19 98.58 94.89 0.9979
0.45 98.52 99.39 99.43 99.44 99.10 98.69 95.11 0.9979
0.50 98.73 99.68 99.50 99.54 99.35 98.71 95.62 0.9977
14 15 16 17 18
iPTF 0.00 98.64 99.08 99.03 98.99 97.47 73.08 0.9938
0.05 98.42 98.79 98.80 99.15 96.96 69.63 0.9957
0.10 98.77 99.00 99.67 98.94 97.48 T71.88 0.9956
0.15 98.80 98.88 99.25 99.06 98.04 72.03 0.9954
0.20 98.49 98.93 98.99 99.21 96.82 T73.88 0.9957
0.25 98.94 99.22 99.43 99.84 99.27 73.19 0.9953
0.30 98.79 99.36 99.64 99.07 97.09 71.46 0.9955
0.35 98.38 99.15 99.03 98.57 96.77 69.69 0.9950
0.40 98.09 98.59 98.87 99.07 95.84 68.52 0.9932
0.45 98.01 98.93 99.25 98.38 95.50 67.84 0.9916
0.50 98.48 99.57 99.40 99.05 95.89 69.35 0.9912

NoTE—Detection efficiency for sources parameterized by apparent magnitudes and by the amount of
generated blurring. We blur the images to simulate variable observing conditions, where the larger the
Oblur, the worse the estimated seeing. We recover > 99% of sources brighter than m > 21 for DECam and
= 96% down to m > 18 for iPTF with an overall efficiency of 2 98% for both instruments. We report
the AUC for each model which indicates the appropriateness of our model given the data.



