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Abstract

Free energies as a function of a selected set of collective variables are commonly com-
puted in molecular simulation, and of significant value in understanding and engi-
neering molecular behaviors. These free energy ‘surfaces” are most commonly esti-
mated using variants of histogramming techniques, but such approaches obscure two
important facets of these functions. First, the empirical observations along the collec-
tive variable are defined by an ensemble of discrete observations and the coarsening
of these observations into a histogram bins incurs unnecessary loss of information.
Second, the free energy surface is itself almost always a continuous function, and
its representation by a histogram introduces inherent approximations due to the dis-
cretization. In this study, we relate the observed discrete observations to the inferred
underlying continuous probability distribution over the collective variables and de-

rive histogram-free techniques for estimating free energy surfaces. We reformulate
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free energy surface estimation as minimization of a Kullback-Leibler divergence be-
tween a continuous trial function and the discrete empirical distribution and show
this is equivalent to likelihood maximization of a trial function given a set of sampled
data. We then present a fully Bayesian treatment of this formalism, which enables
the incorporation of powerful Bayesian tools such as the inclusion of regularizing pri-
ors, uncertainty quantification, and model selection techniques. We demonstrate this
new formalism in the analysis of umbrella sampling simulations for the x torsion of a

valine sidechain in the L99A mutant of T4 lysozyme with benzene bound in the cavity.

1 Introduction

The free energy as a function of a selected set of collective variable is an important ob-
servable that is ubiquitous in molecular simulation studies. Applications of free energy
profiles include determining the kinetics of a reaction using the free energy along the reac-
tion path, ' understanding the behavior of collective interactions such as hydrophobicity
,4 elucidating transport mechanisms through molecular pores,”!! and the parameteri-
zation of low-dimensional (generalized) Langevin or Fokker-Planck equations as effec-

12716 This free energy function is frequently

tive reduced models of the system dynamics.
called the “free energy profile”, “free energy surface” or the “potential of mean force,”
there can be subtle differences between these quantities in certain situations, which we
briefly explain later in this article. We will use the terms “free energy surface” and “free
energy surfaces,” and the abbreviation “FES” for both the singular and the plural in this
article, to emphasize that the theory holds in more than a single dimension, though we
will use the term “free energy profile” interchangeably with “free energy surface” when
the collective variable has only a single dimension.

FES are typically estimated from unbiased or biased molecular simulation trajecto-

ries using a variant of histogramming techniques, most commonly a type of multiple his-

togram reweighting technique such as the weighted histogram analysis technique (WHAM).”
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However, the process of histogramming in order to obtain the FES obscures two impor-
tant issues. First, the true distribution of observations along the desired collective vari-
able or variables in the infinite limit is virtually never actually a histogram but rather a
continuous function, so the process of histogramming inherently introduces unnecessary
discretization errors. Second, what we actually observe when we perform a simulation
is neither a histogram, nor a continuous function, but a discrete set of delta functions, at
the observed values of the collective variables. Approximating the “true” FES attained
in the limit of infinite sampling of the discrete observations as a histogram inherently
entails a loss of information. Although these errors can be and usually are minimized
with careful choice of histogram bin width and sufficient sampling, we can resolve these
problems with improved approaches to estimate a continuous FES along collective vari-
ables directly from the discrete set of empirical observations collected in the simulations,
without introducing the approximation and information loss that histogramming incurs.
We are certainly not the first to observe the disadvantages of histogramming approaches.
A number of recent studies have proposed histogram-free methodologies to estimate FES.
Westerlund et al.’® have presented an approach that builds FES based on Gaussian mix-
ture models, outperforming histogramming, k-nearest neighbors (kNN) and kernel den-
sity estimators (KDE). Schofield" presented an adaptive parameterization scheme for a

variety of different possible continuous functions for FES. Lee and co-workers?#!

pre-
sented a variational approach (variational free energy profile, or vFEP) to minimize like-
lihoods of observations from trial continuous free energy surfaces. Stecher et al.?> have
discussed reconstructing free energy surfaces from umbrella sampling using Gaussian
process regression that comes inherently equipped with uncertainty estimates. Schnei-
der et al.® discuss fitting higher-dimensional FES using artificial neural networks. The

umbrella integration method of Kister and Thiel -2

constructs the FES by numerical in-
tegration of a weighted average of the derivative of the free energy with respect to the

order parameter. Meng and Roux presented a multivariate linear regression framework



to link the biased probability densities of individual umbrella windows to yield a global
free energy surface in the desired collective variables, though it uses histograms for some
of the intermediate steps.?” Basner and Jarzynski presented an approach to calculate a
smoothly varying correction term to a trial continuous potential of mean force.?

The present work shares particular similarities with the vFEP approach of Lee and co-

workers 2021

and the adaptive parameterization approach of Schofield,” but builds upon
and goes beyond these works in two main aspects. First, as we detail in our mathematical
development, we use the multistate Bennett acceptance ratio (MBAR) approach to furnish
the provably minimum variance estimators of the free energy differences required to align
independent biased sampling run, and then use these values to compute the maximum
likelihood estimate of the unbiased FES. Second, we show how this approach can easily be
placed in a fully Bayesian framework that enables transparent incorporation of Bayesian
priors, Bayesian uncertainty quantification, and Bayesian model selection.

The calculation of FES parameterized by a small number of collective variables is
largely motivated by the “curse of dimensionality”. Molecular systems are intrinsically
exceedingly high-dimensional (with numbers of degrees of freedom in the tens or hun-
dreds of thousands), which makes study of the system properties in the full configuration
space of limited use in understanding and controlling molecular behaviors. Instead, sys-
tem microstates are frequently projected into a handful of collective variables motivated
by the physics of the problem at hand, and FES are then constructed over this reduced
dimensional space to further analyze.

There are a number of ways to estimate FES in these collective variables. One could in
theory run a simulation and estimate simply calculate the probability of visiting a repre-
sentative set of the collective variables using histograms, a kernel density approximation,
or averaging the mean force. However, free energy barriers in collective variable space ex-
ceeding several k5T in height—where k is Boltzmann's constant and 7" is temperature—

are crossed with exponentially small probability in standard (unbiased) simulations, re-



sulting in non-ergodic kinetic trapping and the inability to sample transition states and
mechanisms.

A number of methods have been proposed to overcome this problem. They typically
involve introducing some form of bias of the underlying free energy landscape to enhance
sampling of low probability (high free energy) regions and accelerate transitions between
high probability (low free energy) metastable states. For example, one can sample rare
values of the collective coordinate by constraining a simulation along the collective vari-
able. One can then compute the average value of the force along the collective variable,
and properly (though this is nontrivial) integrating along the collective variable to obtain
the free energy.?=* The relationship between the mean force and the FES is why the FES
in one dimension is also referred to as the “potential of mean force”.

However, perhaps the most popular and straightforward way to perform biased sam-
pling and FES estimation is to run an ensemble of K independent simulations, each of
which biases the collective variable using a—usually, but not necessarily, harmonic—
biasing potential. Each biasing potential forces the simulation to spend the majority of its
time visiting locations with specific ranges of the collective variables consistent with the
biases. Assuming sampling orthogonal to the collective variables is sufficiently fast, good
sampling of the the thermally-relevant domain of the collective variable can be achieved
by tiling collective variable space sufficiently densely with biasing potentials such that
neighboring biased simulations sample overlapping configuration spaces. The unbiased
FES can then be determined using a range of mathematical approaches based in impor-
tance sampling. 72> Provided the collective variables employed are “good” in the sense
that they adequately separate out the relevant metastable states, this methodology, which
goes by the name umbrella sampling,® is a very straightforward and popular approach
that works in as many dimensions as one can adequately cover the space with biasing
potentials with sufficient configurational overlap. Assuming the potential only depends

on the difference in collective variable from the restraint point, then the unbiased FES can



be estimated by post hoc analysis of the collective variable at each frame of each biased
simulation trajectory without requiring records of the total energies, forces, or any other
information from the simulation.'”

In this paper, we establish a mathematical framework to relate a discrete observed
empirical distribution determined in a set of biased simulations to the unknown and typ-
ically continuous “true” free energy surface in the collective variables one would expect in
the limit of infinite sampling. We present a Bayesian treatment of this formalism to enable
the incorporation of regularizing priors, uncertainty quantification, and model selection
techniques. We demonstrate our approach in the analysis of umbrella sampling simula-
tions for the y torsion of a valine sidechain in lysozyme L99A with benzene bound in the
cavity. The focus of the paper is to present analysis methodology, and so we assume that
the data collected from biased simulations is sufficient to provide robust estimates of the
FES using reasonable methods. As such, it is our goal to calculate the best estimate of the
FES given a set of sampled data from biased simulations, where appropriate definitions
of “best” are explored within this paper.

Although we do not do so here, we observe that it is possible to use current best es-
timates of the FES to adaptively direct additional rounds of sampling, thereby iteratively

37-39 adia-

improving and refine the FES. Such adaptive methods include metadynamics,
batic free energy dynamics,* temperature accelerated dynamics,*! temperature acceler-
ated molecular dynamics* / driven adiabatic free energy dynamics,* adaptive biasing
force approaches,® variationally enhanced sampling,** and conformational flooding.*
This class of method has both significant advantages, such as optimally directing compu-
tational effort towards under-sampled regions of collective variable space and efficiently
reducing uncertainties in the FES, and significant additional challenges, such as under-
sampling slow degrees of motion, and the problems of analyzing simulations that are

history-dependent and thus only asymptotically approach equilibrium sampling. For the

purposes of this paper we will therefore consider only equilibrium sampling as the way



to generate biased sampling trajectories for the purposes of FES estimation. However, the
approach we present is extensible to any collective variable biasing enhanced sampling
technique that generates equilibrium samples, and is independent of the type of shape of
biasing potential, as long as the potential is not time-dependent. One could not use the
current approach with the time-dependent biases in a convergence phase of metadynam-
ics, as it would create uncontrolled biases in the result.

Importantly, we also note that our approach is also applicable to data generated with

4650 or expanded ensemble.!? The only

temperature, restraint, or Hamiltonian exchange,
requirement on the data is that samples are collected at equilibrium with respect to a time-
independent (i.e., stationary) probability distribution, and the biased samples cover the

range of interest of the collective variable.

2 Theory: FES estimation from biased sampling data

First, we must be precise about what is being calculated when we calculate a free en-
ergy surface. There are two different free energies as a function of collective variable that
one could calculate. Hartmann et al. referred to them as as free energies of the “con-
ditional” and “constrained” ensembles, or alternately the “geometric” and “thermody-
namic” free energies. The differences between these two definitions involve differential
volumes around the surface created by the collective variable constraint. “thermody-

namic FES” is defined as

F(§) = —m/ e @ 5(D(7) — £)dT 1)

n

Where we express energies and free energies in terms of reduced quantities, such that

u(Z) = (kgT) U (Z), and similarly for all free energies. The “geometric FES”, in contrast,



is defined as:

F()=—In / e~ d0 )
(@)

Where Y(€) is the surface of constant &, and df2 is the phase space volume of this surface,
and thus is the logarithm of probability density of the surface 3(€). This second quan-

53,54

tity has also been termed the Riemannian effective potential.>>~* Several papers have laid

2953 with an examination of the

out the very subtle differences in these two definitions,
coarea formula being perhaps the clearest way to clarify the relationship.?’ The deriva-
tives of both quantities can still be related to the mean force along the collective variable,
with proper corrections for changes of variables which are beyond the scope of this sum-
mary. 2%

Fortunately, these two free energy surfaces are easily related by transforming the re-
duced energy u((x)) — u(Z) £ In|Js(Z|, where Jg is the Jacobian of function ®(¥) that
maps 7 to &, evaluated at 7.2 The positive sign takes the thermodynamic energy surface
to the geometric one, and the negative in the reverse direction. A non-rigorous argument
for this correction, with some abuse of notation, is to note that [ f(Z)d(®(Z) — §)dz =
[ f(@)]Js] 7 0(P(2) — {))dé, where we switch from integrating the delta function over a
volume element of # to volume elements of £ because of the presence of ¢ in the § func-
tion.

The choice of which free energy surface to use is not always clear. The “geometric”
quantity may be more useful for determining transition barriers and it is invariant to the
choice if functional form in the constraint,? but the proper choice is beyond the scope
of this article. We simply note that once one decides which quantity to calculate, one
can replace u(Z) with a reduced potential with the desired Jacobian correction, and all
the steps we present in this paper follow in either case. For more details on the effects of
choosing coordinate systems and restraint functional forms, we recommend investigating
29-31,53

the following citations.

After clarifying what it is we wish to calculate, we focus on how to calculate the free
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energy surface. For clarity of exposition, in the present work we will assume the usual
case that the biased simulation data are collected at a single temperature and this temper-
ature is the one at which we wish to estimate the unbiased FES. However, the approach

we outline here can be generalized to work with simulations in which the biased sim-

35,52,55,56 57,58

ulations are carried out at various temperatures or Hamiltonians,”~® performed
with multiple simulations of each biasing function that are each carried out with different
temperatures or modified Hamiltonians, or even performed without biasing potentials,
and we lay out some preliminary equations for these approaches in the Appendix.

Consider K umbrella sampling simulations with different biasing potentials tiling a
collective variable space and enforcing good sampling of all thermally-relevant system
configurations with desired values of the collective variable. Typically, the collective vari-
able is 1-3 dimensional, but the formalism holds for arbitrary dimensionality provided
the space can be sufficiently densely sampled and sufficient overlaps achieved between
neighboring biased distributions.

The reduced potentials up j, of these states are written in terms of the original potential

u() as:

upk(Z) = u(@) + bp(P(Z) — o) (3)

where the subscript k£ indexes the biased simulation, the subscript B reminds us that
the potential is biased, and by, (€) is a user-defined biasing potential as a function of the
collective variables £ in which the umbrella sampling was performed. Most commonly,
a harmonic potential is used, though the theory presented here supports any functional
form of the bias function of the collective variables.

The value of the collective variables corresponding to a particular system configura-
tion 7 is defined by a low-dimensional mapping ®(Z) = £, and the restraint point of the
biasing potential in the collective variables is defined by & . The biasing potentials are

then chosen so that the set of all simulations with biasing potentials give roughly equal

sampling across the relevant range of £ and neighboring biased simulations share overlap



in configurational space.

We note two features of our description of umbrella sampling that are germane to our
subsequent mathematical developments. First, we do not use the term “windows” as is
frequently done when discussing umbrella sampling, as this word possesses significant
ambiguity. “Window” could refer to either a specific interval of values of the collective
variable &, or it could refer one of the k simulations run with biasing potential b;. These
two concepts are related in that simulations with a biasing potential generally sample
values in a relatively restricted volume around &y, but they are certainly not the same
thing. A biased simulation can, in principle, yield any value of £ (although values far
from any of the bias minima are highly unlikely) so the simulation results are not strictly
within any finite “window” of 5 if run for long enough.

Second, we do not make the problematic assumption that the free energy of biasing a
particular simulation is equal to the value of the FES at the restraint point &, of the kth
biasing potential. This approximation is often called the “stiff spring” approximation,®
as it assumes the collective variable sampling remains very close to the equilibrium posi-
tion 507k of the bias. But the value of the free energy of biasing is a weighted average over
all configurations visited by the biasing potential, and so this approximation deteriorates
with increasingly weak biasing potentials. Because one has to include biasing potentials
of finite width to sufficiently sample the entire volume of £ of interest, there is always a
tradeoff between the strength and number of biasing potentials used: fewer biasing po-
tentials require weaker biases, and weaker biases result in less accurate approximations
to the free energy at & under the “stiff spring” approximation. An analysis of this ap-
proximation (in the non-equilibrium pulling case) can be found in,® but the approach
presented in the present work completely avoids this particular problem.

We also note that the problem of approximating the FES using free energy of the bias-
ing potential is exacerbated by histogramming—as is done in WHAM-—which introduces

additional bias into the free energy calculation itself through binning of the energies as well
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as the free energies.®’ Any sort of averaging of the FES in each bin can be problematic be-
cause it tends to artificially lower barriers, which are frequently some of the most critical
teatures of the FES that we wish to accurately resolve.

Given data from biased simulations, we seek the statistically optimal estimate of the
FES over the collective variables F(£). This distribution contains exactly the same infor-
mation content and is essentially interchangeable with the unbiased probability distribu-

—

tion P(§). These two distributions are simply related through the logarithm:
P(&) oc e 0

where the constant of proportionality is the integral over the collective variable n-dimensional
volume. We will work with whichever of the pair is most natural for the discussion at
hand. The relationship above is one of proportionality because P(€) is unnormalized.
It can be turned into a proper probability density by dividing by the integral over £ of
e~PFE)  which will give units of length~?, where d is the dimension of ¢.

It is typically the case in molecular simulation that we work with relative, rather than

—

absolute, free energies, in which case F'(¢) is only defined up to an arbitrary additive
constant. In this case, our estimate of the unbiased probability distribution P(€) is only
defined up to an arbitrary multiplicative constant, but this can be set by enforcing nor-
malization.

When we perform a simulation, we obtain an observed, empirical probability distribu-

tion, given a set of samples {7, }._, distributed over the space of our collective variables

£, with probability density in the collective coordinates ¢:

N

pe(E{E}) =) W(#,)d(®(F,) — &) (5)

n=1

Where W (#,,) are weights associated with each sample.

—

Pg(§) is the most precise description of our sampled probability density that we can
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express after a simulation, because it only involves non-zero probability where we actu-
ally have measurements, and has zero probability at values of ¢ that are not observed. If
we only perform a single, unbiased simulation on a continuous space, then W(z,,) = 1/N
for every sample, where N is the number of samples, since—in continuous space with ar-
bitrarily high resolution of system configurations and collective variable mapping—each
observation occurs only once. However, as we describe in the next section, if we have K
biased simulations, we can incorporate data from all 3", N}, = N points gathered over

all of the K states to better estimate Pg(£).

2.1 MBAR and the empirical FES

The multistate Bennett acceptance ratio (MBAR) is the statistically optimal approach to
estimate the reduced free energies f;, = [ e~ (@ dzF, from {7, 7, ..., Ty} observations
at K thermodynamic state points.* These K thermodynamic states are defined by the
reduced potentials {uy, us, ..., ux}, and we assume that the {7}, are distributed ac-
cording to the Boltzmann distribution corresponding to the the reduced potential of the
state they are collected from. With these assumptions, the MBAR estimate for the reduced

free energy differences between these K states is:**

—fi — _ 6
c Z Zszl Ny, efr—uk(@n) 6)

n=1

where N}, is the number of samples taken from state K. This system of equations must be
solved self-consistently for the estimated reduced free energies f;. Since the reduced free
energies are typically only defined up to an additive constant, we usually choose to pin
exactly one of the estimated free energies f; equal to any constant value we choose and
the rest follow as relative free energy differences. We note that MBAR may be considered
a binless estimator of free energy differences that can be derived from WHAM in the limit

of zero-width bins. 346263
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After we have solved for these f;, then we can calculate the weight ; of sample 7, in

any state 7 as:>*%

efi —u;i (Zn)

Wi(Z,) = "

(7)

The weight W;(Z,,) of sample 7,, at thermodynamic state point i represents the contribu-
tion to the average of an observable A in state ¢ under a reweighting from the mixture
distribution, consisting of all samples collected from all K state points, to the state 7.%
The probability of each sample in the mixture distribution is p(7,) = S5 Nip,(7,) =
S Niefi-uil@)—in other words, simply the average of all of the individual p; proba-
bility distributions weighted by the number of samples N; drawn from each of the K

states.® It can be easily checked from eq. 7 that the W;(%,) are normalized such that:*

K
> NWi(E,) =1 (8)
i—1
and also from eq. 6 and eq. 7 that:*
N
D Wi(@) =1 ©)
n=1

The expectation value of the observable A estimated over all samples at all state points

may then be written as:

(A); = > Wi(Z,)A(E,) (10)

as discussed in eqs. 9 and 15 of the original MBAR paper.** We denote the weight of
sample 7 as obtained via MBAR in the unbiased state as W (Z,,), and in each of the k =
1... K biased states as Wy(Z,,).

By eq. 4, the exponential of minus the free energy surface F; in state ¢ is a probability

density. By combining eq. 4 and eq. 10 under the particular choice for the observable
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A(Z,) =9 (CID(fn) —¢ ) , we have within the MBAR framework that:

P(E) = (5 (@) — €)= S Wil@)s (2(7) - €) a1

where ¢ () maps from the full coordinate space to the lower dimensional collective vari-
able space of interest.

Eq. 11 makes clear that the MBAR estimate of the probability density as a function
of £ is a weighted sum of delta functions at the observed points. (Technically, it’s a dis-
tribution, not a function, since it is a sum of delta functions, which are themselves are
distributions, but this formal distinction doesn’t affect any of the development in this pa-
per.) It is instructive to compare this to the empirical distribution function when collecting

samples from a single state where W;(7,,) = 1/N:
L 1 & 5
PO =y 20 (2@ - €) (12)

from which it can be seen that the empirical distribution PE(g| {Z,}) generated using
MBAR in eq. 5 is a weighted empirical distribution function using data from all states.
The representation of the empirical probability distribution function Pg(£|{i,}) of
delta functions has both advantages and disadvantages. Estimating expectation values
of observables that are a function of £ becomes simply a weighted sum over all observa-

tions
N

A= [ A@P@T = Y W@ )A), (13)

n=1

However, it is very complicated to interpret or visualize this delta function representa-

—

tion. Neither can we work with this empirical representation in logarithmic form F(§) =
—In P(€) because the logarithm of a sum of delta functions isn’t defined, so only the
exponential form has a well-defined mathematical meaning. We have implicitly placed

the F(¢) in reduced form so that it is a pure number. We will maintain this convention
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throughout the remainder of this paper. To change into real energy units we simply mul-
tiply through by kg1 so that Fius = (kgT')F.

To reiterate, expectations of quantities of interest can be computed by eq. 13 without
recourse to F(€) directly, but representing F' (€) as a continuous function is valuable for in-
terpretation and understanding of the underlying molecular FES. If we have a continuous
probability density, we can then define F()=—InP(E) up to an arbitrary normalization
constant of dimension length? required to make the argument of the logarithm unitless.
We will use F(g) to refer to the unbiased FES and Fk(g) to the biased free energy FES
obtained from each of the k = 1... K biased states.

Developing statistically optimal representations of F(£) that can be visualized and
exploited to understand and engineer molecular behaviors is the key motivator of the
remainder of this work.

—

2.2 Representations of /() as a continuous function

— —

In most cases, to visualize either a P(§) or F'(£), or to use them in some other type of math-
ematical modeling, we need to choose how to represent them as continuous functions.
Additionally, in the infinite sampling limit for molecular systems, they generally should
be continuous functions due to the inherent continuity of the distribution supported by
non-pathological choices of £. We now proceed to describe a number of possible choices
for continuous representations of F (5) Most of the mathematical machinery that we de-
velop can, in principle, be deployed in arbitrarily high dimensionalities of £, although the
capacity to achieve sufficient sampling will always present an issue. We note at appropri-
ate junctures in the text any special considerations that may arise when generalizing to
high-dimensional parameterizations.

1. Represent the FES at specific locations &, as the free energy of imposing each of

the biasing restraints centered at &, Assuming we have well-localized biasing potentials,

then the free energy difference between the biased simulation and the unbiased simula-
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tion can be estimated as the free energy to restrain the simulation by each of the biasing
functions. As described above, this method entails significant drawbacks in overesti-
mating valleys and underestimating peaks, and in a lack of resolution between umbrella
centers. We do not pursue this further.

2. Create a histogram out of the empirical distribution. This was the default choice
made in the pymbar package’s computePMF function, which has occasionally been er-
roneously called the MBAR estimate of the free energy surface in the literature. As we
have shown, the use of MBAR is completely independent of the determination of the
FES, although it can be used in various algorithms to estimate the FES.

We can calculate the expectation of the binning function I;(&;, 0, 7) = 1if ®(&) > (£, —
§/2) and ®(%) < (& + 0/2) and I;(&, 6, F) = 0 otherwise, where the & are the centers of
the histogram bins and with some abuse of notation § denotes the multidimensional bin
widths, which—for clarity of exposition—we select to be equal in all dimensions. The
binning function is used to essentially assign a fractional count to each bin according to
the value of W(Z,) for &, within the bin. The free energy surface with .J total indicator

functions:

J N
F(&) ==Y Y W(&E)L(E, 0, &) (14)

i=1 n=1
where the second sum, as discussed above, is over all N samples collected from all bi-
ased simulations. Since we are calculating a log expectation of a function, MBAR gives
a straightforward estimate for the error in the uncertainties, as outlined in the original
MBAR paper.** If the bin widths chosen adaptively with the number of samples, the un-
certainty becomes more complicated, since a different data set would have a different set
of bin widths. If we wished, we could fit this histogram to a smooth function, using a least
square fitting method, choosing the function to balance variance and bias. However it is
better to avoid any histogramming steps altogether due to the inherent and potentially
uncontrolled bias that they introduce. This is especially true with multidimensional his-

tograms, where the curse of dimensionality causes the number of bins required, and thus
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the number of samples for equal resolution, to scale exponentially with dimensionality.
We emphasize that with sufficient data and attention to histogram bin size, these errors
can be minimized, and thus the majority of the free energy surfaces in the literature ob-
tained by histograms are sufficiently accurate for the purposes of their studies.

When WHAM is employed to perform the FES estimation,!” the histograms used to
compute the free energies are the same as the ones used to calculate the FES, which has
a tendency to smooth out the FES.®! With MBAR, one can choose exactly how wide to
make the histograms, since the histograms can be of any width that one chooses to best
represent the underlying data, and are not constrained by the choice of separation in 3
between biasing functions by, (€).3*

3. Employ a kernel density approximation. We can replace each delta function in the
empirical FES with a smooth function with weight centered at each sample and scaled
by the weight. The most common choice is an isotropic Gaussian kernel K (f;, 0, 5) =
(2m6%)~Y 26_%, where 0 now plays the role of the kernel bandwidth, but anisotropic
Gaussians, “top hat,” and triangle functions are also frequently used. We observe that
histogramming can be considered a form of kernel density estimation using indicator
functions, with the center of the mass the preassigned bin center rather than the location
of the sample. The bandwidth d can be calculated in a number of ways, although the opti-
mal choice is frequently not obvious.**” For example, the maximum likelihood approach
with the empirical distribution shrinks 0 to zero, so other approaches must be used. The

FES in the kernel density approximation then becomes:

N

F(§)=—n) W(#)K(®(Z,),0,¢) (15)

n=1

though to make this well-defined, one should check that the kernels result in probability
being defined for all values of ¢ of interest.

4. Identify a parameterized continuous probability distribution that best represents
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the empirical distribution. The fundamental difficulty with this approach is that there
is no unambiguous “best” continuous distribution that stands independent of any other
assumptions beyond those made so far. Specifically, the closest parameter-independent
continuous function to a set of § functions, for any reasonable definitions of close, are con-
tinuous functions that are essentially indistinguishable from the § functions themselves.
It is necessary, therefore, to instead impose some constraints upon the family of continu-
ous functions that represent our understanding of the empirical distribution as a discrete
finite-data sampling of what should be a smooth and continuous distribution in the limit
of infinite samples. This is an extremely flexible and generic point-of-view which allows
for a variety of ways to represent the function with minimal bias and which naturally
admits Bayesian formulations. The examination of this fourth perspective is our focus
for the remainder of the paper. We now proceed to present a number of possible “best”
choices for the representation for this continuous function along with proposed quantita-

tive definitions of “best”.

2.3 Kullback-Leibler divergence as a measure of distance

Before we start examining mathematical forms of the trial FES, we need to decide how
we will evaluate how “close” a (continuous) trial function PT(g\ 5) of some arbitrary pa-
rameters 0 is to the empirical distribution Py (£|{Z,}). For the purposes of the present
mathematical development we will leave the form of Pr( 75) abstract, but it can be useful
to consider that a number of possible parameterizations for the trial function are possi-
ble, including linear interpolants, cubic splines, or piecewise cubic Hermite interpolating
polynomial (PCHIP) interpolations. For non-pathological continuous representations of
Pr(£]6), the corresponding FES is simply F(£]0) = — In Pr(£]A).

One logical definition of “closeness” is the Kullback-Leibler (KL) divergence from the
empirical distribution in the state of interest (the one without any biasing distribution)

— =

to our trial distribution Pr(£|6), over the volume I of collective variables. The Kullback-
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Leibler divergence from () to P, denoted Dk, (P||Q), can be interpreted as a measure of

the information lost when () is used to approximate P, and is defined as:

dx (16)

Da(Pl@) = [ Ple)n 2

In later usage, we will generally omit the explicit reference to the volume I" over the collec-
tive variable space. We will develop several different formulations of the KL divergence
that each consist of a weighted sum of the function evaluated at each sampled point, and
the integral of the simulation over all the entire FES (or sum of several integrals). We
present them here and then later report the results of numerical tests to demonstrate their
performance.

— =

C.1. Unbiased state Kullback-Leibler divergence. The KL divergence from Pr(£|6)

to Pg(E|{Z,}) is:

Dald) = | Po(@l(#,}) n ECEITY) 4

—Pp(€{&@.}) In Pr(€]0) | d€ (17)

The first term in the integral is somewhat problematic, in that it has a factor of In Py 4z,
which is not well-defined for delta functions. Even taking Gaussian approximations for
the delta functions and allowing them to shrink to zero-width fails to yield a well-defined
value since the entire integral [ PE(E) In PE(g) is unbounded in the positive direction as
the width of the ¢ function goes to zero. Fortunately, whatever the value may be, it is inde-
pendent of the parameters 0. Accordingly, we may neglect the first term in our minimiza-
tion with respect to § and focus only on minimization of the second term. For the pur-

poses of functional optimization we will—with some abuse of terminology—use Dx,(f)

to stand for the second, g-dependent term, with the dropping of the first parameter-
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independent term understood.

Using eq. 4, the normalized trial probability distribution can be equivalently expressed

— =

in terms of a trial free energy surface Fr(£|6):

PrEll) = ———=—> (18)

If we set W(Z) = Winpiasea(Z) to be the weighting function for our unbiased reduced

— =

potential energy u(7), and seek the trial free energy surface in the unbiased state F'r(£]0) =

— =

F(£]0), the function to be minimized reduces to:

—

D) = [ ~Pe(@l{a.)) n Prd)aE

- / Po(E|{7,}) F(E16)dE + / Pe(é)In / o P g

_ / Py (€l{7,}) F(E16)dE + In / e~ FEN g
N [

= S W@EIFEN + / e~ PE10) g (19)
n=1

Between the 2nd and 3rd steps we can integrate out the Pr(f{Z,}) term as Pg(E|{Z,})
is normalized, is independent of the dummy variable E’ , and é; = &(%,), and between
the 3rd and 4th steps we employ eq. 13 to estimate the expectation value over the data.
Minimization of eq. 19 presents a prescription to adjust § to find the free energy surface
F(&,|0) which is the logarithm of the closest distribution to the empirical delta function
distribution calculated from MBAR.

Before proceeding to do so, it is instructive to make several observations about eq. 19.

e The biasing functions do not appear explicitly anywhere in eq. 19. The biases appear
only implicitly through the weights associated with samples from biased states. One
may therefore also carry out any other type of accelerated sampling, in addition to,

or instead of biasing functions of the collective variable, as long as these simulations
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have a time-independent potential (they cannot involve adaptive biasing), and are
included in the K states for which MBAR reweighting is carried out and the weights
W (Z,,) are determined; the sum is over all points, collected in whatever simulation

is used.

— —

e The contribution F(f) = —In [ ¢ F€194¢ is independent of the samples, and thus
penalizes free energy surfaces that are simply low everywhere.

—

e Low free energy regions of the FES contribute more to the integral F(§) = —1In [ e €10 g¢
than high free energy regions. Accordingly, we should expect better estimates at the
low values of F' (high probability states), but may sacrifice accuracy at large values

of F' (low probability states).

C.2. Summed biased state Kullback-Leibler divergence. We can measure closeness
to the KL divergence in a slightly different way, and try to find a single function that min-
imizes the sum of KL divergences from the K empirical distribution functions observed
at each biased sample state to the trial function with the biased potential added. The mo-
tivation for this ansatz is that it will force the trial function close to the free energy surface
force in all regions the biased simulations have high density and therefore good sampling.
When summing over the K different biased simulations, we elect to weight the KL diver-
gence proportional to the number of samples N;, from that state. The motivation for this
choice is that states with few samples should contribute less information than states with
many. We will see that this assumption leads to particularly simple results.

Under these choices we define the sample-weighted sum of Kullback-Leibler diver-
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gences and function to be minimized as:

+3 Nyl / ~FE0)-b(@) g (20)

where F},(€) is the free energy surface of the kth biased state, F (&) and F(&,) are the val-
ues of ' and F, at (Z,) = 5”, bk(gn) is the value of the biasing potential associated with
biased simulation k at ®(Z,) = &,, and F,(£]0) = F(£]0) + by(€). We note that in moving
from the second to third line we dropped the term "1, (ZnN:1 Wk(fn)bk(gn)> because it
is independent of the #, and thus does not affect the minimization, and in moving from
the third to fourth line we appeal to the normalization condition for W (Z,) in eq. 8. The
latter operation eliminates the weights from each individual state, leaving as the first term
in our final expression an unweighted sum over the trial functions at the empirical data
points. The second term is a weighted sum over an integral over the trial functions and
biasing potentials and contains significant contributions only where the biasing potential
is low. Large biasing potentials result in small contributions and essentially free varia-

tions of the trial function. However, as long as the trial function has significant weight
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in one of the biasing functions, then it will be constrained over that region of space. In
our numerical tests discussed below, it appears that eq. 20 gives additional accuracy in
the densely sampled regions by sacrificing accuracy in the sparsely sampled regions, but
provides superior global fits compared to those achieved by minimization of eq. 19.

It is possible in many cases to include simulations performed with other accelerated
sampling methods in addition to biasing in the collective variable, but unlike in the case
of the results are more complicated. We provide a preliminary analysis in the Appendix,
but do not further analyze these combinations in his paper.

C.3. Summed sampled biased state Kullback-Leibler divergence. The final alterna-
tive we consider is to sum the KL divergences from the K empirical distribution functions
with the biased potential added as we do in the preceding section, but only using the N
actual samples from each biased state. In this case, each weight will be simply 1/N,, as
each of the N;, samples will be equally weighted. We will continue to weight each state by
the number of samples [V, collected from the state, as states with more samples contribute
proportionally more information to the KL divergence. Following a similar development

to that which led to eq. 20 and again dropping terms that are not dependent on 0 yields
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the expression to be minimized as:

ZNkDKL(g) = ZNk (ZNika(lf)

A / o~ FE10-0(@) g

Somewhat surprisingly, this result is exactly the same as eq. 20.

(21)

This emerges due to

the normalization condition for Wy, (7)) defined by eq. 8. Accordingly, whether we sum

the contribution to the KL divergence of each sample over all states using the MBAR

weights, or simply sum the contribution of each sample to its biased state, we will be

minimizing the same function, provided we weight by the number of samples N, from

each distribution.

We could, in principle, also choose to sum over the K KL divergences without weight-

ing each biased distribution by NV,. Doing so and following the steps leading to eq. 21

24



yields the expression:

K
+ Z In [ e F€I )_bk(fl)dg (22)

which is both less mathematically elegant and less intuitively satisfying than eq. 21 since
simulations conducted at a state point with small /V, contribute equally to those with
large N;. Likewise, if we follow the logic of eq. 20 but employing equal weightings, we

end up with a similarly unsatisfying result:

K . N [/ K o
k=1 n=1 \k=1
K - = -
—|—Zln/eF(5/ )=o) g (23)
k=1

which is not only more complicated than eq. 20, but also differs (as numerical tests con-
firm) from eq. 22 unless all N, are equal, in which case Zszl Wi(Z,) = K/N = 1/Ny, and
equality is restored. Due to these mathematically and intuitively unsatisfying features,

we will not pursue eq. 22 and eq. 23 further.

2.4 Likelihood as a measure of distance

As an alternative to the Kullback-Leibler divergence, we can measure distances using
likelihoods. Specifically, we can take our trial probability distribution PT(g| 5) and com-
pute the likelihood of one of our N observations by evaluating the Pp associated with that
observation. The observations taken together comprise our data D. Assuming the sam-
ples are independent and identically distributed (i.i.d.) observations, then we can calcu-
late the total likelihood as the product of the individual likelihoods. The trial probability

distribution as a function of § that maximizes this likelihood will be the one closest to the
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empirical distribution. In a similar manner to the KL divergence, we may construct this
distribution in a number of ways. We shall show that the two choices we propose contain
the same information as the KL divergence expressions, but offer greater interpretability
and amenability to a Bayesian treatment.

D.1. Product over unbiased state likelihoods. Perhaps the simplest choice is to con-
sider the joint likelihood of each weighted sample in the unbiased state. In this case, since
we can consider each sample to be observed according to its weight W (,,) N (the expected
number of counts at 7, given the empirical distribution), then the overall likelihood as a

function of § is:
Uoz}) = T Pr(&alo)V =™ (24)

and the log likelihood is:

me@1{z,}) = > NW(&,)InPr(&,|0)

n=1

N — — — = —
- Y NWE,) (—F(gnm) i [er@ >ds'>

n=1

N
= —NY W(@)F(ElF) ~ Nln/e—ﬂs’ \d!
n=1

In going from the second to the third line, we employ normalization condition in eq. 9.
As expected,®® we quickly verify that eq. 25 is identical to eq. 19 up to a factor of (—N),
so maximizing this log likelihood is the same as minimizing the unbiased state KL diver-
gence.

D.2. Product over biased state likelihoods. We could also calculate the overall like-

lihood as the product of the likelihoods of the individual samples in each of the biased

26



simulations:

K Ny

Oz, = T]]IPrlk.0) (25)

k=1n=1

where we have denoted the probability distribution resulting from the trial FES plus the
kth bias as Pr(€,|k, ). The corresponding log likelihood is:

K N

(@7 = Y WPk 0

k=1 n=1

where in going from the second to third line we drop the b,(&,) term as independent of
§ and therefore irrelevant to the maximization. Eq. 26 is identical to eq. 20 up to a minus
sign, so maximizing the product of biased state likelihoods is equivalent to minimizing
the summed biased KL divergence.

D.3. Weighted product over biased state likelihoods. We could try to construct a
likelihood that was consistent with the KL divergence in eq. 22 by constructing a sum of
KL divergences over each state weighted by the reciprocal of the number of samples in

each state:
K N

(0H7)) = [T T Pr(&lk. )™, 27)

k=1n=1
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for which the corresponding log likelihood is:

K N

me@(E) = >3 I Pr(lh.0)

k=1 n=1

K
_Zln / e FEW 0@ gl (28)

Eq. 28 is identical to eq. 22 up to a minus sign, and so maximizing the former is equiv-
alent to minimizing the latter. However, as discussed above, there appears to be no real
theoretical or practical justification reason to weight samples in the manner expressed in

eq. 27 and for this reason we do not advocate the use of this formulation.

2.5 Least squares as a measure of distance

Finally, we could choose to adopt a functional form, and then perform a least squares fit
to the empirical distribution or to the empirical FES in order to define a distance between
the distributions. Although seemingly quite a natural and straightforward approach, it
does not give rise to easily interpretable or implementable expressions. Accordingly, we
defer an analysis of the least squares approach to the Appendix and do not pursue this

further.
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2.6 How does vFEP fit into this framework?

We now examine the correspondence of our development with the variational free energy
profile (VFEP) approach developed by Lee and co-workers.?%2!

We first note the potential ambiguity within vFEP regarding the definition of the term
“window”, which as described before, could refer to either a biasing potential, the data
collected from a simulation run with that biasing potential, or a region of collective vari-
able space within which a biased simulation has high probability density are related, but
not equivalent, concepts. In the present comparison with vFEP, we will assume “win-
dow” as used in the vFEP definition refers to a biasing potential plus the data collected
during simulations with that biasing potential. Under this definition of “window”, sam-
ples in the window are not included or excluded based on the associated values of £, only
on the basis of biased simulation from which they were collected.

Using the original vFEP notation, Z¢ = [ e~¥(%2)dx is the partition function of biased
simulation a and F; (0, z) = F;(0,z) + W,(x) is the biased trial partition function deter-
mined by parameters § and collective variable x, where W, (z) is the biasing potential,
and vectors in  and 6 are implicit. Since W, () is not a function of # and does not affect

the minimization, the log likelihood to be maximized with respect to the parameters ¢ of

the trial function F is:

N
1n€<6) = Z —InZ%— NL ZF@a(e,xa)]
@ =1

I N
1
= E _FE Fi(e,xa)—ln/ e_Fi*“(e’m)dI]
a L 7% =1 a

(29)

To proceed, we must make two assumptions: (i) the substitution of £ as a label for biasing
potential rather than a as the label of “windows”, (ii) the recognition that fFa should be

either the same or approximately the same as [, since samples from biased potential
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will be mostly constrained to subset of I', but can in principle appear anywhere in I'. In
this case, we can translate vFEP into the terminology of the present paper. The window a
becomes the biased simulation &, N, becomes N;,, x becomes 5, vectors are noted explicitly,
and we obtain:

K 1 N
@iy = 3 [—FZFgg
=1

k=1

—ln/eF@'g —bi (&) df} (30)

This expression is identical to eq. 28 and, up to a minus sign, eq. 22. Accordingly, when
viewed through the lens of the development presented in this paper—and with the previ-
ously mentioned assumptions about the definitions of windows and range of integrals—
vFEP would correspond to a particular choice of biased state weighting within a Kullback-
Leibler divergence (eq. 22) or likelihood formulation (eq. 28). As discussed above, this
weighting of all simulations equally is problematic, since it puts equal weight on simula-
tions regardless of how many samples they have. If the direct sum over biasing potentials
is changed to one weighted by NV, then it becomes eq. 26, which both easier to work with

and better justified, with umbrellas with larger numbers of samples having more weight.

3 A Bayesian framework for FES estimation

Equipped with the prescriptions to calculate likelihood of observations under the differ-
ent assumptions detailed in Section 2.4, we can switch to a Bayesian framework to find
distributions possessing desirable features of an analytical form, continuity, and smooth-
ness that is most consistent with our understanding of F (€). We note that our use of a
likelihood formulation, which was shown to be fully consistent with the KL divergence
framework, is crucial in opening the door to a Bayesian formulation.

- =

At the first step in this framework, we take a candidate trial distribution Pr(£|f) an
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optimize its parameters f to form the maximum a posteriori probability (MAP) estimate
of Pr(£]6). This estimate maximizes the Bayes posterior probability of the trial distribu-
tion, rather than simply the likelihood, given the collected (biased) samples and MBAR
estimates of the relative free energy differences Af;; = f; — f; between biased states.

As we introduce our Bayesian formulation, we note that the free energies emerging
from the MBAR equations have no free parameters; they are the only estimated normal-
izing constants satisfying the self-consistent equations in eq. 6. It is possible to employ a
Bayesian approach to free energy estimation by sampling of either the density of states®
or weights of each sample in the unbiased state,” allowing one to incorporate additional
priors about the simulations in addition to priors on the shape of the free energy sur-
face. However, since the free energy is defined completely by the Boltzmann distribution,
and since the MBAR equations provide the lowest variance importance sampling estima-
tor and are asymptotically unbiased, then in the absence of other information about the
system, it is the simplest and least biased approach to employ MBAR estimates for { f;}.

A difference from previous efforts is that we cast our approach within a Bayesian
framework that enables transparent incorporation of Bayesian priors, Bayesian uncer-
tainty quantification, and Bayesian model selection about the functional form of the po-
tential of mean force. Although we do not do so here, this formalism also sets the stage for
adaptive sampling, in which regions of the probability distribution containing the most
uncertainty are identified for additional biased sampling to optimally direct computa-
tional resources. This is similar in spirit to, but would go beyond, the adaptive approach
of Schofield, which presents an elegant means to alter the analytical representation of the
unbiased probability distribution to minimize uncertainty, to actually guiding the col-
lection of additional data to optimally reduce uncertainty in the estimated distribution.
We note that we follow a fairly standard Bayesian approach that can be found in many
textbooks and other resources; one excellent presentation of Bayesian techniques in data

analysis in general is offered by Ref. 71. We also note that one of the authors has previ-
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ously presented a fully Bayesian treatment of WHAM in Ref. 35 that goes into more detail
about the Bayesian aspects of parameter optimization as it applies to potentials of mean
force.

Given the set of biased samples {#,} and their collective variable mappings {£,} =
{®(Z,)} and the associated weights in the (unbiased) thermodynamic state calculated by
by MBAR W(Z,) (eq. 7), we apply Bayes’ theorem” to construct an expression for the

posterior probability of the parameters § given the data {7, }, obtaining;

P{Z}O)P (@) 631)

POIE) = = prers

where P(0|{Z,}) is the posterior probability of the parameters 0 given the sampled data,
P{,}0) = €(0|{Z,}) is the previously-defined likelihood specifying the probability of the
collected samples given the particular choice of parameters, P(f) is the prior probability of
the parameters before any data have been collected, and P({Z,}) = [ P( ({z,}|0)P(6)dd is
the probability of observing the samples that we did (the evidence), serves to normalize
the posterior, and contains no dependence on the parameters 6. Importantly, the prior
enables us to transparently encode any prior beliefs or knowledge about the system into
our analysis that can serve to regularize and stabilize our estimation.

The MAP estimate of the parameters follows from maximization of the log posterior:

argmax
)} = 0 WP
argimax . .
= 0 (WP{ZME) + 1 P(@)
argmax

- 4 (w( {#.}) + nP(0 )) (32)

Exploiting our previous observation that maximizing a log likelihood is the same as min-

68

imizing the corresponding KL divergence from an empirical distribution,*® we can equiv-

alently view maximization of the Bayes posterior (eq. 32) from a frequentist perspective
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as minimization of the Kullback-Leibler divergence or maximization of the log likelihood
subject to regularization by the logarithm of the Bayes prior.

To use eq. 32 we need to adopt a form for the likelihood £(#|{,}) and prior P(f). The
development in Section 2.4 suggests we adopt eq. 24 or 25 as candidates for the likelihood,
where we explicitly assumed samples to be i.i.d. distributed. If the samples cannot be
treated as i.i.d., then the counts NV or IV, should be corrected by an inefficiency factor
reflecting the presence of correlations in the sampling procedure.””® The simplest and
most common choice for the prior is a uniform prior P(#) = 1. With no dependence on

the model parameters 0, it drops out of the maximization in eq. 32 and the MAP estimate

OMAP becomes coincident with the maximum likelihood (ML) estimate 9™

argmax
=

M ({&)} = 6 Webl{z.}). (33)

In principle, arbitrary priors are admissible—even improper priors that do not have a
finite integral—provided the posterior is proper (i.e., integrates to unity).”* In a Bayesian
sense, we use the prior to encode prior knowledge or belief about the character of the
probability distribution (such as smoothness of the splines). In the frequentist sense, the
prior serves to regularize the probability estimate, providing bias-variance trade-off and
compensating for sparse data. In a practical sense, the appropriate prior to adopt depends
on the form of the model selected Pr(£]6), the size and quality of the simulation data, and
the degree of prior belief or understanding of the system. Adopting the likelihood eq. 24

the maximization in eq. 32 can be expressed as:

argmax N
PAPT ) = 0 [-NY W(Z)F(E )—Nm/e-F(f’ Jdg’ + In P(6)

argmin N L .
= 0 |NY W(#@)F(& )+N1n/e—F< 9 ag" — InP(H)
B n=1
argmin [ N -
= 0 |NY W(&)F(&l)—mP@)| st /e_F(" Jd¢ =1,  (34)
n=1 r




where in going from line 2 to 3 we have appealed to the identity P(£]0) = e 7l (eq. 4)
and asserted that this distribution must be normalized.

Adopting the product of likelihoods eq. 25 the maximization in eq. 32 becomes:

argmax K , I .
oMAP((7,}) = [ ZF )= Ny 1n/eF<€l )= ¢ + I P( )]

k=1
argmin [ N K . .
= 0 | FER+ Y Nl [ O 1 p(d)
| n=1 k=1
argmin N L -
= 0 |D>_F(&l)—mP@H)| st /e-F@’ =0’ =1 Yk, (35)
| n=1 r

There are thus two approaches to find the MAP or ML estimate: an unconstrained
minimization enforcing the normalization implicitly (second-to-last lines in eq. 34 and 35),
and a constrained minimization enforcing the normalization explicitly (last lines in eq. 34
and 35). The constrained minimization versions of the above expressions can be solved
using the method of Lagrange multipliers or through any other constrained optimization
method such as the interior point method or sequential quadratic programming (SQP).
The relative efficiency of the two approaches will depend on the details of software meth-

ods available as well as the particular forms of the biases and F/(&,|6).

4 Model selection

The Akaike information criterion (AIC) or Bayesian information criterion (BIC) provide
a principled means to discriminate between different possible choices for the Bayes prior

and the trial probability distribution, The AIC is defined as:”

AIC =2k — 2In ((6{Z,}), (36)
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where £ is the number of estimated parameters in the model. The BIC is defined as:"®
BIC = kInN —2In¢(0){Z,}), (37)

where N is the number of data points. If we compute § = §MAT for a number of model
choices i, we can use these parameter estimates to compute the set of AIC or BIC values
{a;} for the candidate models. The model with the lowest q; is the single model that is
best supported by the data.

A more sophisticated approach to model selection defines the smallest of the {a;} as
amin, then assigns the relative likelihood of model i as r; = e 2i/2 = ¢~(@=amn)/2_ The

model weights follow from the normalized r; and provide the likelihood of model i:*

r; 67Ai/2

N DTk N Do e Ak

(38)

Wws

Adopting a threshold ¢ = 0.05 (for example), the {r;} can be used to discard models from
consideration and/or determine that there is insufficient evidence to choose one model
over the other. The {w;} may also be used as weighting factors with which to construct
a multi-model composed from the weighted sum of the predictions of each candidate

model.

5 Bayesian uncertainty quantification

The § = MAP estimate represents the single best point estimate of the parameters of the
trial distribution Py(£|6) given the data {#,} and the prior P(#). Uncertainties around
these point estimates may be approximated by analytical error expectations or through
bootstrap estimation.”” A fully Bayesian uncertainty estimate is defined by the distribu-

tion of f dictated by the Bayes posterior.* Empirical samples of d from the Bayes posterior

may be generated using the Metropolis-Hastings algorithm. This Markov Chain Monte-
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Carlo (MCMC) approach generates a sequence of parameter realizations that converges to
the stationary distribution of the Bayes posterior.”® Under this approach we propose trial

moves in § that are accepted or rejected according to the Metropolis-Hastings acceptance

criterion:”87?
o) = min 'P<j|{fn}>-q<}|j>71
| P {7,}) - q(67]Gm)
_ oin | PUZ3E) - PE) q<}ﬂ|j>71]
| P{#,}101) - P(G") - q(67(Gn)
_ i | LEHED -PE) - 4016 1] 39)
UG |{Z,}) - P(OF) - q(67)00)

where «(0”|6") is the probability of accepting a trial move from parameter set 0 to param-
eter set 6%, and ¢(6”|6") is the probability of proposing this trial move. We have invoked
Bayes’” Theorem (eq. 31) in going from the first line to the second, and observe that (im-
portantly) the evidence has canceled top and bottom. In going from the second line to the
third, we employed the identity P({Z,} 6) = ¢(6]{Z,}). In the event that symmetric trial
move proposal probabilities are adopted such that ¢(6”|6*) = ¢(6*|0"), the Metropolis-

Hastings acceptance criterion reduces to the Metropolis criterion:”8%

a(f”|0*) = mln[ (9: HI”})'P(Q:V)J] (40)
((Or|{,}) - P(6")

We initialize the Markov chain from 6MAP corresponding to the maximum of the Bayes
posterior P(6]{&,}) and propose trial moves that maintain normalization [, P( P(E]0)dE =
By monitoring £(#|{,}) = In <73({fn} ]9)P(9)> — In ((0]{Z,})+In P (f)—which is propor-
tional to the Bayes posterior up to an additive constant with no § dependence (eq. 31)—we
can determine that the Markov chain has converged when £(5 {Z,}) plateaus to fluctuate

around a stable mean. At this point we may harvest realizations of § distributed according

to the Bayes posterior. Using these parameter realizations, we can construct realizations
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of Pr(£]0) to quantify the uncertainties in this estimated distribution.

6 Example: Umbrella sampling of protein sidechain tor-
sion within binding cavity

As an illustrative example, we consider the application of our mathematical framework
to compute a 1D FES from an umbrella sampling simulation. Code implementing these
methods can be found publicly available in the pymbar4 branch of pymbar (located at
http://github.com/choderalab/pymbar),in the script
examples/umbrella-sampling/umbrella-sampling-advanced—-fes.py. Thedata
is from an umbrella sampling simulation for the x torsion of a valine sidechain in lysozyme

L99A with benzene bound in the cavity® (fig. 1).

Figure 1: x torsion angle in Lys111 of L99a T4 lysozyme around which the free energy
surface is calculated using umbrella sampling.
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We analyze data from 26 biased simulations employing umbrella potentials at a range
of dihedral values with harmonic biasing constants of between 100 and 400 kJ/mol/nm?.
A 100 ps simulation was carried out under each umbrella potential with angles and ener-
gies saved every 0.2 ps for a total of 500 samples at each state. The data was analyzed for
correlations, and approximately every other data point is taken (exact frequency varying
with state) for a total of 7446 data points, ranging from 42 to 410 points per umbrella.

We examine the histogram approach (with 30 bins, a number chosen to be visually
clear—the number of bins can be chosen completely independently of the number of um-
brella simulations run), and the kernel density approximation with a Gaussian kernel,
with bandwidth parameter half of the bin size, in this case, 1 x 360/30 = 6 degrees. We
also look at parameterized splines as our representation; in this case, using B-splines with
varying numbers of knots placed uniformly, using cubic splines in this example; the the-
ory is independent of these particular choices of spline.

— =

We note that one could use splines to fit to either the FES F'(£|0) or the probability dis-

- —

tribution P(¢|6). However, we find that it becomes difficult to satisfy the non-negativity
condition of P(£]) when using standard spline implementations, and that large changes
in FES propagate exponentially to the probability distribution making it challenging to
tit stably and robustly. For numerical stability, we therefore recommend using splines to
approximate F’ (€]6) rather than P(¢]6).

We examine the parameterized spline representations emerging from the optimiza-
tions defined by the expressions in eq. 34—corresponding to the unbiased state likelihood
in eq. 24, log likelihood in eq. 25, and KL divergence in eq. 19—and eq. 35—corresponding
to the product of biased states likelihood in eq. 25, log likelihood in eq. 26, and KL diver-
gence in eq. 20. We will refer to the first as the “unbiased state likelihood”, and the second
as the “biased states likelihood,” as it combines samples from all biased states.

Efficient optimization of these expressions requires calculating the gradient and po-

tentially the Hessians. The use of B-splines, which construct the spline in terms of local
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basis function, makes this calculation relatively efficient, as detailed in the Appendix. For
simplicity, we elect to use a uniform distribution of spline knot locations over the domain,
but these could be adaptively situated by optimizing their locations to maximize the MAP
as proposed by Schofield. "

For the Bayes prior, where we compute the full posterior, rather than just the like-
lihood, we adopt a unnormalized Gaussian prior on the difference between successive

spline knot values:

Cc-1
73(9_’) — H o~ 00c—0c11)? (41)

c=1

where « is a hyperparameter that controls the degree of smoothing regularization im-
posed upon the trial distribution. Selecting o = 0 corresponds to a uniform prior that
drops out of the maximization and FMAP = oML, Selecting o > 0 favors smoother splines
with less variation from knot to knot. We examine the effect of priors governed by choice
of o, where a = k/n, where n is the number of spline knots, for some constant k. Uncer-
tainties are estimated by MCMC sampling of the Bayes posterior using the Metropolis-
Hastings algorithm and acceptance criteria (eq. 39).

The time limiting factor, both for optimizations and MCMC sampling of the posterior,
is the numerical quadrature of the integral [ Pr(£]6)d€. For the log likelihoods from the
unweighted state (eq. 25), the integral enforcing the normalization of Py is only carried
out over the unbiased trial function, whereas for approaches considering all states (eq. 26),
the integral is carried out over all K trial functions with biases and is thus roughly K times
slower.

The AIC and BIC allow us to select the number of spline knots best supported by the
data. We plot in fig. 2 the AIC (eq. 36) and BIC (eq. 37) for the unbiased state likelihood
and biased states likelihood choices. In the unbiased state case, the AIC exhibits a local

minimum at 16 knots and a global minimum at 26, whereas the BIC—which penalizes
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Information critera as a function of number of splines

information criteria
N
o
o

—— AIC unbiased state
—— AIC biased states
== BIC unbiased state
— = BIC biased states

10 15 20 25 30 35
N number of splines

Figure 2: AIC (solid) and BIC (dotted) for splines maximizing FES likelihoods for the un-
biased state estimator (red, eq. 25) and biased states estimator (blue, eq. 26) as a function
of the number of spline knots, referenced from the minimum of each method. Although
the curves are noisy, and occasionally nonmonotonic, they provide a useful guide towards
choosing optimal numbers of parameters for models, as can be seen by comparison to
Fig. 3.

excessive parameters more strongly than the AIC—possesses a local minimum at 24 knots
and a global minimum at 16. In the biased states case, the AIC and BIC both exhibit clear
global minima at 14 knots.

We can see how the behavior of FES changes as a function of the number of knots and
how the AIC and BIC help select optimal knot numbers in fig. 3. In this figure, we plot
maximum likelihood FES under the unbiased state likelihood (eq. 34, in fig. 3a) and biased
states likelihood (eq. 35, in fig. 3b) as a function of the number of spline knots, along with
the histogram estimate equipped with uncertainties generated from error propagation
from the weights via MBAR.** As expected, higher numbers of knots provide improved
titting, but overfitting becomes clear for larger numbers of knots, especially in the case of
tits using the unbiased state likelihood. However, model complexities corresponding to
AIC/BIC minima fit the data relatively well in both cases. We note that the unbiased state
FES fits in fig. 3a, even for the 10-knot spline, are tightly grouped at the various FES min-

ima, but they vary significantly at the maxima, as there are less constraints on the maxima

than the minima using this approach. In contrast, all fits with sufficient functional flex-
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ibility (more than 10 spline knots) using the biased states approach agree relatively well
across the entire range of the FES (fig. 3b), even with as few as 14 spline knots, the value
corresponding to the minimum of both AIC and BIC for the biased states likelihood.

Adding bootstrapped uncertainty estimates to the FES help better show the relation-
ship between the methods and their strengths and weaknesses. We present in Fig. 4 a
comparison of the histogram (with 30 bins), kernel density approximation (with Gaussian
kernels with o of 6°), unbiased state likelihood and biased states likelihood splines em-
ploying the AIC/BIC optimal number of knots, and VFEP (using with the same number
of splines as the biased states likelihood case). Uncertainties all estimates are estimated
from an ensemble of 40 bootstrap samples from each of the umbrellas. All methods give
relatively similar results, which is to be expected with a well-sampled system and care-
ful selection of parameters. In particular, the FES calculated using vFEP (subject to the
assumptions discussed earlier in the text) is close to the biased states likelihood approxi-
mation. This result is expected because the two approaches coincide in the limit of equal
numbers of uncorrelated samples per state.

In fig. 5 we demonstrate the utility of fully Bayesian uncertainty quantification. Uncer-
tainties in the MAP splines are computed from 50,000 (for biased states posteriors, which
is slower) and 200,000 (for unbiased state posteriors) steps of MCMC sampling from the
Bayes posterior. Uncertainties represent the 95% confidence intervals at each spline knot.
In both cases, we show results for 10, 20, and 30 splines for two different Gaussian priors
(eqg- 41): (i) « = 0.1/n in fig. 5a and fig. 5c, where n is the number of spline knots, and (ii)
a = 1/ninfig. 5b and fig. 5d. We recall that larger values of o impose a stronger influence
of the smoothing prior and are expected to result in smoother posterior distributions. The
choice of a = 0.1/n produces very minor differences between the ML and MAP curves
(fig. 5a and 5c), whereas o = 1/n results in a visibly apparent difference between the two
curves (fig. 5b and 5d). We see that under the biased states formulation (figs. 5c and 5d),

uncertainties are relatively low and constant across the full range of the FES, whereas in
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the unbiased state formulation (figs. 5a and 5b), the uncertainties are largest at the high
free energy regions where the likelihood function is least constrained (cf. eq. 34). Under
the unbiased state formulation, the stronger smoothing prior with o = 1/n (fig. 5b) is
valuable in reducing the size of the confidence intervals at the peaks of the FES (note the
larger y-axis range in fig. 5a required to accommodate the large uncertainty envelopes).
We note that due to the significant freedom in the 30-knot splines, MCMC sampling of
the probability nearly diverges in fig. 5a with « = 0.1/n. In contrast, the biased states
formulation provides more constraints across the entire FES (cf. eq. 35), and the MCMC
error bounds are smaller over the entire range of the FES for both choices of « (fig. 5c and

5d).

7 Conclusions

In this paper, we have resented a Bayesian formalism to compute free energy surfaces
from the empirical distributions generated by biased sampling. Within this formalism, we
avoid any arbitrary choice of histogram in either the definition of the FES or the calcula-
tion of the weights, and provide clear and explicit criteria to decide which continuous free
energy surfaces are most consistent with the biased sampling data. The choice and op-
timization of the representation of the continuous FES is completely decoupled from the
choice of biasing functions and calculation of the relative free energies between the biased
simulations. Biasing functions of the collective variables can be chosen, with freedom of
the biasing functional form, to give appropriate sampling along the collective variables
of interest, and the samples and their associated Boltzmann weights are used to construct
the FES. The The Bayesian formalism allows us to choose the FES that is sufficiently close
to the empirical distribution of the samples we have collected, and explicitly include any
prior information that we include by our choice of representation of our FES functional

form. Our development also clearly demonstrates the equivalence of the likelihood-based
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Bayesian formulation and Kullback-Leibler-based frequentist formulation.

We find that the maximum likelihood calculated only from the unbiased state (eqs. 25
and 19) has a tendency to underestimate the free energy barriers in the collective vari-
able. The product of likelihoods from all the unweighted samples collected from each
biased state, weighted by the number of samples collected from each biased state (eqs. 26
and 20), has much better overall performance over the entire FES range. Surprisingly, this
likelihood is exactly equal to the likelihood generated from the product over all states of
the reweighted contribution of all samples to each biased state state, again weighted by
the number of samples collected from each state (cf. egs. 20 and 21).

We can then take these likelihoods and directly incorporate them into a Bayesian in-
ference framework. Priors on the parameters of the FES can then be chosen using what-
ever criteria is most appropriate; in this study we considered a Gaussian prior enforc-
ing smoothness, but the selection can be made based on any user-defined criteria, such
as tethering free energies to particular values or enforcing similarity to previously esti-
mated distributions. We can then use MCMC sampling of the posterior of the FES curves
to perform uncertainty quantification for arbitrary choices of prior.

We demonstrate our approach in an application to calculation of the FES for the leucine
rotation in the L99A mutant of T4 lysozyme. The unbiased state likelihood has some clear
tailures in that it insufficiently constrains the FES at the highest points. This failure shows
up in multiple ways. When computing bootstrap uncertainties, the unbiased states ap-
proach has very high uncertainty in the barriers. With MCMC sampling, the issues be-
come even clearer, with significant fluctuation in the parameters at the barriers unless a
relatively severe prior is imposed. The biased states likelihood, however, behaves much
more stably, with a well-constrained FES over the entire range, even under weak priors.

Code implementing this approach is distributed in pymbar, where the previous free
energy surface functionality, using histograms to represent the FES, is replaced with a

more comprehensive module implementing the formalism presented in this paper.
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The Bayesian approach we present here approach is directly extensible to multidimen-
sional free energy surfaces. However, the numerical details of performing the fitting may
be challenging in some cases. Both the optimization processes and the MCMC require
successive quadrature of the integrals [ PT(E| 5) d€, which in all but the simplest cases can-
not be carried out analytically. The authors of vFEP have already noted this challenge®’ in
even two dimensions with splines. This approach may also be extensible to other meth-
ods that construct biasing functions and FES adaptively, though the equations presented

above will require modification if the sampling is not strictly stationary.
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Figure 3: Splines maximizing the (a) unbiased state likelihood (eq. 25 or eq. 34 with uni-
form prior) and (b) biased states likelihood (eq. 26 or eq. 35 with uniform prior) as a
function of the number of spline knots, with a histogram (black) as a reference. Knot
numbers identified as optimal by both AIC and BIC appear to be good fits compared to
other numbers of splines that under- or overfit the curve .
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Figure 4: Comparison of methods including with bootstrap uncertainty estimates. The
number of splines employed in each method was selected according to the AIC / BIC
analysis in fig. 2. The same number of spline knots is used for vFEP as for the biased
states estimator. The histogram employs 30 bins and Gaussian kernels with ¢ = 6°. Un-
certainties are estimated by bootstrap resampling with n = 40. We observe that error bars
are significantly greater at the barriers for the FES maximizing the likelihood in eq. 25
than maximizing the likelihood in eq. 26, which has very low uncertainty throughout
the entire range of values. Histogram uncertainties are moderately large over the entire
range.
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Figure 5: Comparison of MAP estimates as a function of the number of spline knots
with uncertainty estimates and a Gaussian prior (eq. 41) with (a, ¢) a = 0.1/n and (b, d)
a = 1/n, where n is the number of spline knots. We illustrate the MAP distributions for
(a,b) the unbiased state likelihood (eq. 34) and (b,d) biased states likelihood (eq. 35). The
shading represents the 95% confidence intervals in the MAP estimate evaluated at each
spline knot by MCMC sampling of the posterior, and the dashed line represents the ML
solution. The MAP and ML solutions are coincident for &« = 0. The choice @ = 0.1/n
results in only minor differences between the ML and MAP solutions, whereas o = 1/n
results in a visible difference between the two curves. In the biased states formulation
(tigs. 5c and 5d), the uncertainties are approximately constant across the range of the
FES, whereas under the unbiased state formulation (figs. 5a and 5b), the uncertainty is
largest at the high free energy regions where the likelihood function is least constrained.
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Appendix

7.1 Least squares functional fitting

One possibility briefly mentioned in the main text is to minimize a least squares fit of our

trial function to the empirical distribution by writing the function to be minimized as

5@ = [ (Pet@iz) - ") ag

N g

- / Po(El{7,})? - 2Pp(E|{Z,})e "D

where we neglect the terms independent of § and employ eq. 13 to estimate the thermal
average. However, this integral is problematic as it is strongly biased towards low free
energy regions. Large values of F' contribute very little to the sum or the log and are
therefore largely unconstrained.

One could consider ameliorating this issue by minimizing over the relative error in-
stead of the absolute. Since we can’t divide by delta functions, we would have to divide

by the trial function:

This integral is, however, even more problematic since squares of integrals of delta func-

tions are not well-defined and the integral over the square of a delta function is infinite. In
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the direct least squares approach, we didn’t really care, because this undefined function
was independent of § and could be dropped, but in this case we must maintain this term.
This seems an insurmountable deficiency and so we choose to abandon this approach.
Finally, we could consider minimizing over the squared log probabilities (i.e the FES),
instead of the weights. This is not the Kullback-Leibler divergence, but does penalize

divergence in the positive as well as the negative direction:

s0) = [ Pedtmy) (m (%)) iE

= [ Pe@(ah) (1 PeC@l{a)) ~ m Po(d6))
= [ Pe@tah) (i Petél 2.

— = — =

20 Pe(E){Z,)) In Pr(€]0) + In PT(§|9)2> dé

It appears that square minimizing the log weights isn’t really possible, because the log-
arithm of the empirical distribution of delta functions that occurs in the cross-term is
not well defined. However, other least square alternatives to determining similarities
of distributions involving the cumulative distribution have been previously presented by

Schofield. !’

7.2 Using biasing functions in conjunction with other accelerated sam-

pling methods

We remove the requirement that the biasing functions are functions of the collective vari-
able, and simply assume that they are carried out with different reduced potentials.

With these choices, the sample-weighted sum of Kullback-Leibler divergences is

-

K N
> NiDw(f) = Ny (Z Wi (Zn) Fi(£,]0) + In / e-FMf’@)dQ)
k=1 n=1

gt
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We first need to clarify what [ e *+€10)d¢" means if the biasing function is not a func-

—

tion of £. If this is the case, then there appears to be no clear relationship between Fj(£]0)
and F(£]6), so information about F,(£]6) will not help us. So we claim that at present, we
must sum over only biased simulations that have energy function of the form of eq. 3, a
sum of the (&) of interest and a bias function that only depends on €.

However, each of the biased simulations can have many (say, M;) simulations accel-
erated with other methods associated with it as are of interest, and we can use this infor-
mation to build our empirical estimate of the K biasing potentials which we do sum over.
There are two primary situations we can consider.

First, reweighting is performed only between simulations that share the same bias-
ing function, and they are reweighted to only that simulation with only the bias and no
other potential-based acceleration. These K reweighted terms are summed with some K-
dependent weights. In this case, there are thus K different sets of weights W} (x,,), one
for each of the K MBAR evaluations for reweighting, where the subscripts denote that the
weight is determined for the £ simulations with biases alone, and the superscripts denote
which set of weights are involved. In this case, N}, corresponds to the total number of
samples from all M), simulations associated with that biasing weight.

However, we don’t know what the simplest factor is with which to weight the K

biasing simulations. Because the number of effective number of samples at any of the K

biased states will be less than Vy, we replace the weighting N, with a constant Cj; to be
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determined later. We then find:

ZCkDKL(g) = ch (ZWk/(fn)Fk(gzr)

k=1 n=1
K g
_|_ch m/e—F(E’I )=br(€) g7
k=1

Unlike for the derivation of eq. 20, we cannot interchange the order of summation, and so
there are no obvious choices for Cj. One could choose an “effective number of samples”
for C}, such as Ziv *, Wi(Z,), though it is not clear if this is optimal. However, this is still
a usable equation to minimize divergence or as a log-likelihood.

In the second case, we assume that all M = Zszl M, simulations are used to calculate
the MBAR weights, meaning we must be able to calculate the potential energy of each
simulation in all M simulations. In this case, there is a single set of weights W, (Z,,).
However, the normalization is a bit different than is used in eq. 20. Although there is a
single W, (7,,) corresponding to the weights in the k biased potentials, the normalization
ZZ=1 N Wi (Z,) = 1 no longer holds, since we would need to sum over all M states, not
just the K different bias potentials. We again use a weighted linear scaling C;, because the

“best” weighting is not clear:

S abad) = G (Z W) Fi(6.10)

k=1 k=1



This version is again somewhat more complex, but usable as log-likelihood or a di-
vergence to minimize. One can again choose an “effective” number of samples in the
biased state for C}, such as C}, = 22[21 Wi(Z,), though again it is not entirely clear if this

is optimal.

7.3 Solving the minimization problem

We briefly describe efficient optimization routines to solve the minimization problems
defined in egs. 34 and 35 in the case of splines. In below, we suppress explicit dependence

of F on 0 for compactness. We start by examining the minimization of eq. 35:

N
S(0) =3 F( §n+2Nkm/ PO 4 1 P(d)
n=1

Various minimization approaches are required to compute the gradient and Hessian of
this function with respect to the parameter vector d. For convenience, we define the equi-
librium average performed with biasing function £ of some observable A that is a function

of  as:
, A(E|0)eFE D) gg
(A@), = LA

[eFE0- bkf)df’

The i components of the gradient are then:

We note that if we have linear basis functions, the first term is independent of # and can be
precomputed, as 1s simply the corresponding basis function. Additionally, the integral
term will have only limited support for each basis function, so the integrals are relatively

easy to carry out, and the calculations scales easily in the number of basis functions.
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The ij entries in the Hessian are::

N g

< 0*F (&)
2 . = n
SO0 “— 00;00;

(42)

If we assume that we have a trial function that is linear in the parameters, then the initial

terms involving mixed second derivatives vanish, leaving only:

(43)

If the function is linear in the parameters (again, such as splines), this will only be
nonzero in areas where basis functions have mutual support, essentially just banded
along the diagonal, so are be relatively inexpensive to compute.

In the case of eq. 34, this becomes:

5L OF(E OF (€ 1 aP(b
VS(Q)ZZNZ_;W"(‘W ae(f )_N< aé§>>_7>(9> 89(1>

(44)
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(45)

Where expectations are now over the unbiased state rather than any of the K biased sim-

ulations.
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