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Abstract

Free energies as a function of a selected set of collective variables are commonly com-

puted in molecular simulation, and of significant value in understanding and engi-

neering molecular behaviors. These free energy ’surfaces’ are most commonly esti-

mated using variants of histogramming techniques, but such approaches obscure two

important facets of these functions. First, the empirical observations along the collec-

tive variable are defined by an ensemble of discrete observations and the coarsening

of these observations into a histogram bins incurs unnecessary loss of information.

Second, the free energy surface is itself almost always a continuous function, and

its representation by a histogram introduces inherent approximations due to the dis-

cretization. In this study, we relate the observed discrete observations to the inferred

underlying continuous probability distribution over the collective variables and de-

rive histogram-free techniques for estimating free energy surfaces. We reformulate
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free energy surface estimation as minimization of a Kullback-Leibler divergence be-

tween a continuous trial function and the discrete empirical distribution and show

this is equivalent to likelihood maximization of a trial function given a set of sampled

data. We then present a fully Bayesian treatment of this formalism, which enables

the incorporation of powerful Bayesian tools such as the inclusion of regularizing pri-

ors, uncertainty quantification, and model selection techniques. We demonstrate this

new formalism in the analysis of umbrella sampling simulations for the χ torsion of a

valine sidechain in the L99A mutant of T4 lysozyme with benzene bound in the cavity.

1 Introduction

The free energy as a function of a selected set of collective variable is an important ob-

servable that is ubiquitous in molecular simulation studies. Applications of free energy

profiles include determining the kinetics of a reaction using the free energy along the reac-

tion path,1–3 understanding the behavior of collective interactions such as hydrophobicity

,4–6 elucidating transport mechanisms through molecular pores,7–11 and the parameteri-

zation of low-dimensional (generalized) Langevin or Fokker-Planck equations as effec-

tive reduced models of the system dynamics.12–16 This free energy function is frequently

called the “free energy profile”, “free energy surface” or the “potential of mean force,”

there can be subtle differences between these quantities in certain situations, which we

briefly explain later in this article. We will use the terms “free energy surface” and “free

energy surfaces,” and the abbreviation “FES” for both the singular and the plural in this

article, to emphasize that the theory holds in more than a single dimension, though we

will use the term “free energy profile” interchangeably with “free energy surface” when

the collective variable has only a single dimension.

FES are typically estimated from unbiased or biased molecular simulation trajecto-

ries using a variant of histogramming techniques, most commonly a type of multiple his-

togram reweighting technique such as the weighted histogram analysis technique (WHAM).17
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However, the process of histogramming in order to obtain the FES obscures two impor-

tant issues. First, the true distribution of observations along the desired collective vari-

able or variables in the infinite limit is virtually never actually a histogram but rather a

continuous function, so the process of histogramming inherently introduces unnecessary

discretization errors. Second, what we actually observe when we perform a simulation

is neither a histogram, nor a continuous function, but a discrete set of delta functions, at

the observed values of the collective variables. Approximating the “true” FES attained

in the limit of infinite sampling of the discrete observations as a histogram inherently

entails a loss of information. Although these errors can be and usually are minimized

with careful choice of histogram bin width and sufficient sampling, we can resolve these

problems with improved approaches to estimate a continuous FES along collective vari-

ables directly from the discrete set of empirical observations collected in the simulations,

without introducing the approximation and information loss that histogramming incurs.

We are certainly not the first to observe the disadvantages of histogramming approaches.

A number of recent studies have proposed histogram-free methodologies to estimate FES.

Westerlund et al.18 have presented an approach that builds FES based on Gaussian mix-

ture models, outperforming histogramming, k-nearest neighbors (kNN) and kernel den-

sity estimators (KDE). Schofield19 presented an adaptive parameterization scheme for a

variety of different possible continuous functions for FES. Lee and co-workers20,21 pre-

sented a variational approach (variational free energy profile, or vFEP) to minimize like-

lihoods of observations from trial continuous free energy surfaces. Stecher et al.22 have

discussed reconstructing free energy surfaces from umbrella sampling using Gaussian

process regression that comes inherently equipped with uncertainty estimates. Schnei-

der et al.23 discuss fitting higher-dimensional FES using artificial neural networks. The

umbrella integration method of Käster and Thiel24–26 constructs the FES by numerical in-

tegration of a weighted average of the derivative of the free energy with respect to the

order parameter. Meng and Roux presented a multivariate linear regression framework
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to link the biased probability densities of individual umbrella windows to yield a global

free energy surface in the desired collective variables, though it uses histograms for some

of the intermediate steps.27 Basner and Jarzynski presented an approach to calculate a

smoothly varying correction term to a trial continuous potential of mean force.28

The present work shares particular similarities with the vFEP approach of Lee and co-

workers20,21 and the adaptive parameterization approach of Schofield,19 but builds upon

and goes beyond these works in two main aspects. First, as we detail in our mathematical

development, we use the multistate Bennett acceptance ratio (MBAR) approach to furnish

the provably minimum variance estimators of the free energy differences required to align

independent biased sampling run, and then use these values to compute the maximum

likelihood estimate of the unbiased FES. Second, we show how this approach can easily be

placed in a fully Bayesian framework that enables transparent incorporation of Bayesian

priors, Bayesian uncertainty quantification, and Bayesian model selection.

The calculation of FES parameterized by a small number of collective variables is

largely motivated by the “curse of dimensionality”. Molecular systems are intrinsically

exceedingly high-dimensional (with numbers of degrees of freedom in the tens or hun-

dreds of thousands), which makes study of the system properties in the full configuration

space of limited use in understanding and controlling molecular behaviors. Instead, sys-

tem microstates are frequently projected into a handful of collective variables motivated

by the physics of the problem at hand, and FES are then constructed over this reduced

dimensional space to further analyze.

There are a number of ways to estimate FES in these collective variables. One could in

theory run a simulation and estimate simply calculate the probability of visiting a repre-

sentative set of the collective variables using histograms, a kernel density approximation,

or averaging the mean force. However, free energy barriers in collective variable space ex-

ceeding several kBT in height—where kB is Boltzmann’s constant and T is temperature—

are crossed with exponentially small probability in standard (unbiased) simulations, re-
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sulting in non-ergodic kinetic trapping and the inability to sample transition states and

mechanisms.

A number of methods have been proposed to overcome this problem. They typically

involve introducing some form of bias of the underlying free energy landscape to enhance

sampling of low probability (high free energy) regions and accelerate transitions between

high probability (low free energy) metastable states. For example, one can sample rare

values of the collective coordinate by constraining a simulation along the collective vari-

able. One can then compute the average value of the force along the collective variable,

and properly (though this is nontrivial) integrating along the collective variable to obtain

the free energy.29–32 The relationship between the mean force and the FES is why the FES

in one dimension is also referred to as the “potential of mean force”.

However, perhaps the most popular and straightforward way to perform biased sam-

pling and FES estimation is to run an ensemble of K independent simulations, each of

which biases the collective variable using a—usually, but not necessarily, harmonic—

biasing potential. Each biasing potential forces the simulation to spend the majority of its

time visiting locations with specific ranges of the collective variables consistent with the

biases. Assuming sampling orthogonal to the collective variables is sufficiently fast, good

sampling of the the thermally-relevant domain of the collective variable can be achieved

by tiling collective variable space sufficiently densely with biasing potentials such that

neighboring biased simulations sample overlapping configuration spaces. The unbiased

FES can then be determined using a range of mathematical approaches based in impor-

tance sampling.17,33–35 Provided the collective variables employed are “good” in the sense

that they adequately separate out the relevant metastable states, this methodology, which

goes by the name umbrella sampling,36 is a very straightforward and popular approach

that works in as many dimensions as one can adequately cover the space with biasing

potentials with sufficient configurational overlap. Assuming the potential only depends

on the difference in collective variable from the restraint point, then the unbiased FES can
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be estimated by post hoc analysis of the collective variable at each frame of each biased

simulation trajectory without requiring records of the total energies, forces, or any other

information from the simulation.17

In this paper, we establish a mathematical framework to relate a discrete observed

empirical distribution determined in a set of biased simulations to the unknown and typ-

ically continuous “true” free energy surface in the collective variables one would expect in

the limit of infinite sampling. We present a Bayesian treatment of this formalism to enable

the incorporation of regularizing priors, uncertainty quantification, and model selection

techniques. We demonstrate our approach in the analysis of umbrella sampling simula-

tions for the χ torsion of a valine sidechain in lysozyme L99A with benzene bound in the

cavity. The focus of the paper is to present analysis methodology, and so we assume that

the data collected from biased simulations is sufficient to provide robust estimates of the

FES using reasonable methods. As such, it is our goal to calculate the best estimate of the

FES given a set of sampled data from biased simulations, where appropriate definitions

of “best” are explored within this paper.

Although we do not do so here, we observe that it is possible to use current best es-

timates of the FES to adaptively direct additional rounds of sampling, thereby iteratively

improving and refine the FES. Such adaptive methods include metadynamics,37–39 adia-

batic free energy dynamics,40 temperature accelerated dynamics,41 temperature acceler-

ated molecular dynamics42 / driven adiabatic free energy dynamics,43 adaptive biasing

force approaches,32 variationally enhanced sampling,44 and conformational flooding.45

This class of method has both significant advantages, such as optimally directing compu-

tational effort towards under-sampled regions of collective variable space and efficiently

reducing uncertainties in the FES, and significant additional challenges, such as under-

sampling slow degrees of motion, and the problems of analyzing simulations that are

history-dependent and thus only asymptotically approach equilibrium sampling. For the

purposes of this paper we will therefore consider only equilibrium sampling as the way
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to generate biased sampling trajectories for the purposes of FES estimation. However, the

approach we present is extensible to any collective variable biasing enhanced sampling

technique that generates equilibrium samples, and is independent of the type of shape of

biasing potential, as long as the potential is not time-dependent. One could not use the

current approach with the time-dependent biases in a convergence phase of metadynam-

ics, as it would create uncontrolled biases in the result.

Importantly, we also note that our approach is also applicable to data generated with

temperature, restraint, or Hamiltonian exchange,46–50 or expanded ensemble.51,52 The only

requirement on the data is that samples are collected at equilibrium with respect to a time-

independent (i.e., stationary) probability distribution, and the biased samples cover the

range of interest of the collective variable.

2 Theory: FES estimation from biased sampling data

First, we must be precise about what is being calculated when we calculate a free en-

ergy surface. There are two different free energies as a function of collective variable that

one could calculate. Hartmann et al. referred to them as as free energies of the “con-

ditional” and “constrained” ensembles, or alternately the “geometric” and “thermody-

namic” free energies. The differences between these two definitions involve differential

volumes around the surface created by the collective variable constraint. “thermody-

namic FES” is defined as

F (~ξ) = − ln

∫
Rn

e−u(~x)δ(Φ(~x)− ~ξ)d~x (1)

Where we express energies and free energies in terms of reduced quantities, such that

u(~x) = (kBT )−1U(~x), and similarly for all free energies. The “geometric FES”, in contrast,

7



is defined as:

F (~ξ) = − ln

∫
Σ(~ξ)

e−u(~x)dΩ (2)

Where Σ(~ξ) is the surface of constant ~ξ, and dΩ is the phase space volume of this surface,

and thus is the logarithm of probability density of the surface Σ(~ξ). This second quan-

tity has also been termed the Riemannian effective potential.53,54 Several papers have laid

out the very subtle differences in these two definitions, 29,53 with an examination of the

coarea formula being perhaps the clearest way to clarify the relationship.29 The deriva-

tives of both quantities can still be related to the mean force along the collective variable,

with proper corrections for changes of variables which are beyond the scope of this sum-

mary.29,30

Fortunately, these two free energy surfaces are easily related by transforming the re-

duced energy u(~(x)) → u(~x) ± ln |JΦ(~x|, where JΦ is the Jacobian of function Φ(~x) that

maps ~x to ~ξ, evaluated at ~x.29 The positive sign takes the thermodynamic energy surface

to the geometric one, and the negative in the reverse direction. A non-rigorous argument

for this correction, with some abuse of notation, is to note that
∫
f(~x)δ(Φ(~x) − ~ξ)d~x =∫

f(~x)|JΦ|−1δ(Φ(~x) − ~ξ))d~ξ, where we switch from integrating the delta function over a

volume element of ~x to volume elements of ~ξ because of the presence of Φ in the δ func-

tion.

The choice of which free energy surface to use is not always clear. The “geometric”

quantity may be more useful for determining transition barriers and it is invariant to the

choice if functional form in the constraint,29 but the proper choice is beyond the scope

of this article. We simply note that once one decides which quantity to calculate, one

can replace u(~x) with a reduced potential with the desired Jacobian correction, and all

the steps we present in this paper follow in either case. For more details on the effects of

choosing coordinate systems and restraint functional forms, we recommend investigating

the following citations.29–31,53

After clarifying what it is we wish to calculate, we focus on how to calculate the free
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energy surface. For clarity of exposition, in the present work we will assume the usual

case that the biased simulation data are collected at a single temperature and this temper-

ature is the one at which we wish to estimate the unbiased FES. However, the approach

we outline here can be generalized to work with simulations in which the biased sim-

ulations are carried out at various temperatures35,52,55,56 or Hamiltonians,57,58 performed

with multiple simulations of each biasing function that are each carried out with different

temperatures or modified Hamiltonians, or even performed without biasing potentials,

and we lay out some preliminary equations for these approaches in the Appendix.

Consider K umbrella sampling simulations with different biasing potentials tiling a

collective variable space and enforcing good sampling of all thermally-relevant system

configurations with desired values of the collective variable. Typically, the collective vari-

able is 1–3 dimensional, but the formalism holds for arbitrary dimensionality provided

the space can be sufficiently densely sampled and sufficient overlaps achieved between

neighboring biased distributions.

The reduced potentials uB,k of these states are written in terms of the original potential

u(~x) as:

uB,k(~x) = u(~x) + bk(Φ(~x)− ~ξ0,k) (3)

where the subscript k indexes the biased simulation, the subscript B reminds us that

the potential is biased, and bk(~ξ) is a user-defined biasing potential as a function of the

collective variables ~ξ in which the umbrella sampling was performed. Most commonly,

a harmonic potential is used, though the theory presented here supports any functional

form of the bias function of the collective variables.

The value of the collective variables corresponding to a particular system configura-

tion ~x is defined by a low-dimensional mapping Φ(~x) = ~ξ, and the restraint point of the

biasing potential in the collective variables is defined by ~ξ0,k. The biasing potentials are

then chosen so that the set of all simulations with biasing potentials give roughly equal

sampling across the relevant range of ~ξ and neighboring biased simulations share overlap
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in configurational space.

We note two features of our description of umbrella sampling that are germane to our

subsequent mathematical developments. First, we do not use the term “windows” as is

frequently done when discussing umbrella sampling, as this word possesses significant

ambiguity. “Window” could refer to either a specific interval of values of the collective

variable ~ξ, or it could refer one of the k simulations run with biasing potential bk. These

two concepts are related in that simulations with a biasing potential generally sample

values in a relatively restricted volume around ~ξ0,k, but they are certainly not the same

thing. A biased simulation can, in principle, yield any value of ~ξ (although values far

from any of the bias minima are highly unlikely) so the simulation results are not strictly

within any finite “window” of ~ξ if run for long enough.

Second, we do not make the problematic assumption that the free energy of biasing a

particular simulation is equal to the value of the FES at the restraint point ~ξ0,k of the kth

biasing potential. This approximation is often called the “stiff spring” approximation,59

as it assumes the collective variable sampling remains very close to the equilibrium posi-

tion ~ξ0,k of the bias. But the value of the free energy of biasing is a weighted average over

all configurations visited by the biasing potential, and so this approximation deteriorates

with increasingly weak biasing potentials. Because one has to include biasing potentials

of finite width to sufficiently sample the entire volume of ~ξ of interest, there is always a

tradeoff between the strength and number of biasing potentials used: fewer biasing po-

tentials require weaker biases, and weaker biases result in less accurate approximations

to the free energy at ~ξ0,k under the “stiff spring” approximation. An analysis of this ap-

proximation (in the non-equilibrium pulling case) can be found in,60 but the approach

presented in the present work completely avoids this particular problem.

We also note that the problem of approximating the FES using free energy of the bias-

ing potential is exacerbated by histogramming—as is done in WHAM—which introduces

additional bias into the free energy calculation itself through binning of the energies as well
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as the free energies.61 Any sort of averaging of the FES in each bin can be problematic be-

cause it tends to artificially lower barriers, which are frequently some of the most critical

features of the FES that we wish to accurately resolve.

Given data from biased simulations, we seek the statistically optimal estimate of the

FES over the collective variables F (~ξ). This distribution contains exactly the same infor-

mation content and is essentially interchangeable with the unbiased probability distribu-

tion P (~ξ). These two distributions are simply related through the logarithm:

P (~ξ) ∝ e−βF (~ξ) (4)

where the constant of proportionality is the integral over the collective variable n-dimensional

volume. We will work with whichever of the pair is most natural for the discussion at

hand. The relationship above is one of proportionality because P (~ξ) is unnormalized.

It can be turned into a proper probability density by dividing by the integral over ~ξ of

e−βF (~ξ), which will give units of length−d, where d is the dimension of ~ξ.

It is typically the case in molecular simulation that we work with relative, rather than

absolute, free energies, in which case F (~ξ) is only defined up to an arbitrary additive

constant. In this case, our estimate of the unbiased probability distribution P (~ξ) is only

defined up to an arbitrary multiplicative constant, but this can be set by enforcing nor-

malization.

When we perform a simulation, we obtain an observed, empirical probability distribu-

tion, given a set of samples {~xn}Nn=1 distributed over the space of our collective variables

~ξ, with probability density in the collective coordinates ~ξ:

pE(~ξ|{~xn}) =
N∑
n=1

W (~xn)δ(Φ(~xn)− ~ξ) (5)

Where W (~xn) are weights associated with each sample.

PE(~ξ) is the most precise description of our sampled probability density that we can
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express after a simulation, because it only involves non-zero probability where we actu-

ally have measurements, and has zero probability at values of ~ξ that are not observed. If

we only perform a single, unbiased simulation on a continuous space, then W (~xn) = 1/N

for every sample, where N is the number of samples, since—in continuous space with ar-

bitrarily high resolution of system configurations and collective variable mapping—each

observation occurs only once. However, as we describe in the next section, if we have K

biased simulations, we can incorporate data from all
∑K

k=1 Nk = N points gathered over

all of the K states to better estimate PE(~ξ).34

2.1 MBAR and the empirical FES

The multistate Bennett acceptance ratio (MBAR) is the statistically optimal approach to

estimate the reduced free energies fk =
∫
e−uk(~x)d~x, from {~x1, ~x2, . . . , ~xN} observations

at K thermodynamic state points.34 These K thermodynamic states are defined by the

reduced potentials {u1, u2, . . . , uK}, and we assume that the {~xn}Nn=1 are distributed ac-

cording to the Boltzmann distribution corresponding to the the reduced potential of the

state they are collected from. With these assumptions, the MBAR estimate for the reduced

free energy differences between these K states is:34

e−f̂i =
N∑
n=1

e−ui(~xn)∑K
k=1 Nk ef̂k−uk(~xn)

(6)

where Nk is the number of samples taken from state K. This system of equations must be

solved self-consistently for the estimated reduced free energies f̂i. Since the reduced free

energies are typically only defined up to an additive constant, we usually choose to pin

exactly one of the estimated free energies f̂i equal to any constant value we choose and

the rest follow as relative free energy differences. We note that MBAR may be considered

a binless estimator of free energy differences that can be derived from WHAM in the limit

of zero-width bins.34,62,63
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After we have solved for these f̂i, then we can calculate the weight Wi of sample ~xn in

any state i as:34,63

Wi(~xn) =
ef̂i−ui(~xn)∑K

k=1 Nk ef̂k−uk(~xn)
(7)

The weight Wi(~xn) of sample ~xn at thermodynamic state point i represents the contribu-

tion to the average of an observable A in state i under a reweighting from the mixture

distribution, consisting of all samples collected from all K state points, to the state i.33

The probability of each sample in the mixture distribution is p(~xn) =
∑K

i=1
Ni
N
pi(~xn) =∑K

i=1
Ni
N
ef̂i−ui(~xn)—in other words, simply the average of all of the individual pi proba-

bility distributions weighted by the number of samples Ni drawn from each of the K

states.33 It can be easily checked from eq. 7 that the Wi(~xn) are normalized such that:34

K∑
i=1

NiWi(~xn) = 1 (8)

and also from eq. 6 and eq. 7 that:34

N∑
n=1

Wi(~xn) = 1 (9)

The expectation value of the observable A estimated over all samples at all state points

may then be written as:

〈A〉i =
N∑
n=1

Wi(~xn)A(~xn) (10)

as discussed in eqs. 9 and 15 of the original MBAR paper.34 We denote the weight of

sample ~x as obtained via MBAR in the unbiased state as W (~xn), and in each of the k =

1 . . . K biased states as Wk(~xn).

By eq. 4, the exponential of minus the free energy surface Fi in state i is a probability

density. By combining eq. 4 and eq. 10 under the particular choice for the observable
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A(~xn) = δ
(

Φ(~xn)− ~ξ
)

, we have within the MBAR framework that:

P (~ξ) = 〈δ
(

Φ(~xn)− ~ξ
)
〉i =

N∑
n=1

Wi(~xn)δ
(

Φ(~xn)− ~ξ
)

(11)

where Φ(~x) maps from the full coordinate space to the lower dimensional collective vari-

able space of interest.

Eq. 11 makes clear that the MBAR estimate of the probability density as a function

of ~ξ is a weighted sum of delta functions at the observed points. (Technically, it’s a dis-

tribution, not a function, since it is a sum of delta functions, which are themselves are

distributions, but this formal distinction doesn’t affect any of the development in this pa-

per.) It is instructive to compare this to the empirical distribution function when collecting

samples from a single state where Wi(~xn) = 1/N :

P (~ξ) =
1

N

N∑
n=1

δ
(

Φ(~xn)− ~ξ
)

(12)

from which it can be seen that the empirical distribution PE(~ξ|{~xn}) generated using

MBAR in eq. 5 is a weighted empirical distribution function using data from all states.

The representation of the empirical probability distribution function PE(~ξ|{~xn}) of

delta functions has both advantages and disadvantages. Estimating expectation values

of observables that are a function of ~ξ becomes simply a weighted sum over all observa-

tions

〈A〉i =

∫
A(~x)P (~x)d~x =

N∑
n=1

Wi(~xn)A(~xn). (13)

However, it is very complicated to interpret or visualize this delta function representa-

tion. Neither can we work with this empirical representation in logarithmic form F (~ξ) =

− lnP (~ξ) because the logarithm of a sum of delta functions isn’t defined, so only the

exponential form has a well-defined mathematical meaning. We have implicitly placed

the F (ξ) in reduced form so that it is a pure number. We will maintain this convention

14



throughout the remainder of this paper. To change into real energy units we simply mul-

tiply through by kBT so that Funits = (kBT )F .

To reiterate, expectations of quantities of interest can be computed by eq. 13 without

recourse to F (~ξ) directly, but representing F (~ξ) as a continuous function is valuable for in-

terpretation and understanding of the underlying molecular FES. If we have a continuous

probability density, we can then define F (~ξ) = − lnP (~ξ) up to an arbitrary normalization

constant of dimension lengthd required to make the argument of the logarithm unitless.

We will use F (~ξ) to refer to the unbiased FES and Fk(~ξ) to the biased free energy FES

obtained from each of the k = 1 . . . K biased states.

Developing statistically optimal representations of F (~ξ) that can be visualized and

exploited to understand and engineer molecular behaviors is the key motivator of the

remainder of this work.

2.2 Representations of F (~ξ) as a continuous function

In most cases, to visualize either a P (~ξ) or F (~ξ), or to use them in some other type of math-

ematical modeling, we need to choose how to represent them as continuous functions.

Additionally, in the infinite sampling limit for molecular systems, they generally should

be continuous functions due to the inherent continuity of the distribution supported by

non-pathological choices of ~ξ. We now proceed to describe a number of possible choices

for continuous representations of F (~ξ). Most of the mathematical machinery that we de-

velop can, in principle, be deployed in arbitrarily high dimensionalities of ~ξ, although the

capacity to achieve sufficient sampling will always present an issue. We note at appropri-

ate junctures in the text any special considerations that may arise when generalizing to

high-dimensional parameterizations.

1. Represent the FES at specific locations ~ξ0 as the free energy of imposing each of

the biasing restraints centered at ~ξ0. Assuming we have well-localized biasing potentials,

then the free energy difference between the biased simulation and the unbiased simula-
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tion can be estimated as the free energy to restrain the simulation by each of the biasing

functions. As described above, this method entails significant drawbacks in overesti-

mating valleys and underestimating peaks, and in a lack of resolution between umbrella

centers. We do not pursue this further.

2. Create a histogram out of the empirical distribution. This was the default choice

made in the pymbar package’s computePMF function, which has occasionally been er-

roneously called the MBAR estimate of the free energy surface in the literature. As we

have shown, the use of MBAR is completely independent of the determination of the

FES, although it can be used in various algorithms to estimate the FES.

We can calculate the expectation of the binning function Ii(~ξi, δ, ~x) = 1 if Φ(~x) > (~ξi −

δ/2) and Φ(~x) < (~ξi + δ/2) and Ii(~ξi, δ, ~x) = 0 otherwise, where the ~ξi are the centers of

the histogram bins and with some abuse of notation δ denotes the multidimensional bin

widths, which—for clarity of exposition—we select to be equal in all dimensions. The

binning function is used to essentially assign a fractional count to each bin according to

the value of W (~xn) for ~xn within the bin. The free energy surface with J total indicator

functions:

F (~ξ) = − ln
J∑
i=1

N∑
n=1

W (~xn)Ii(~ξi, δ, ~xn) (14)

where the second sum, as discussed above, is over all N samples collected from all bi-

ased simulations. Since we are calculating a log expectation of a function, MBAR gives

a straightforward estimate for the error in the uncertainties, as outlined in the original

MBAR paper.34 If the bin widths chosen adaptively with the number of samples, the un-

certainty becomes more complicated, since a different data set would have a different set

of bin widths. If we wished, we could fit this histogram to a smooth function, using a least

square fitting method, choosing the function to balance variance and bias. However it is

better to avoid any histogramming steps altogether due to the inherent and potentially

uncontrolled bias that they introduce. This is especially true with multidimensional his-

tograms, where the curse of dimensionality causes the number of bins required, and thus
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the number of samples for equal resolution, to scale exponentially with dimensionality.

We emphasize that with sufficient data and attention to histogram bin size, these errors

can be minimized, and thus the majority of the free energy surfaces in the literature ob-

tained by histograms are sufficiently accurate for the purposes of their studies.

When WHAM is employed to perform the FES estimation,17 the histograms used to

compute the free energies are the same as the ones used to calculate the FES, which has

a tendency to smooth out the FES.61 With MBAR, one can choose exactly how wide to

make the histograms, since the histograms can be of any width that one chooses to best

represent the underlying data, and are not constrained by the choice of separation in ~ξ

between biasing functions bk(~ξ).34

3. Employ a kernel density approximation. We can replace each delta function in the

empirical FES with a smooth function with weight centered at each sample and scaled

by the weight. The most common choice is an isotropic Gaussian kernel K(~ξi, δ, ~ξ) =

(2πδ2)−1/2e−
(~ξ−~ξi)

2

2δ2 , where δ now plays the role of the kernel bandwidth, but anisotropic

Gaussians, “top hat,” and triangle functions are also frequently used. We observe that

histogramming can be considered a form of kernel density estimation using indicator

functions, with the center of the mass the preassigned bin center rather than the location

of the sample. The bandwidth δ can be calculated in a number of ways, although the opti-

mal choice is frequently not obvious.64–67 For example, the maximum likelihood approach

with the empirical distribution shrinks δ to zero, so other approaches must be used. The

FES in the kernel density approximation then becomes:

F (~ξ) = − ln
N∑
n=1

W (~xn)K(Φ(~xn), δ, ~ξ) (15)

though to make this well-defined, one should check that the kernels result in probability

being defined for all values of ~ξ of interest.

4. Identify a parameterized continuous probability distribution that best represents

17



the empirical distribution. The fundamental difficulty with this approach is that there

is no unambiguous “best” continuous distribution that stands independent of any other

assumptions beyond those made so far. Specifically, the closest parameter-independent

continuous function to a set of δ functions, for any reasonable definitions of close, are con-

tinuous functions that are essentially indistinguishable from the δ functions themselves.

It is necessary, therefore, to instead impose some constraints upon the family of continu-

ous functions that represent our understanding of the empirical distribution as a discrete

finite-data sampling of what should be a smooth and continuous distribution in the limit

of infinite samples. This is an extremely flexible and generic point-of-view which allows

for a variety of ways to represent the function with minimal bias and which naturally

admits Bayesian formulations. The examination of this fourth perspective is our focus

for the remainder of the paper. We now proceed to present a number of possible “best”

choices for the representation for this continuous function along with proposed quantita-

tive definitions of “best”.

2.3 Kullback-Leibler divergence as a measure of distance

Before we start examining mathematical forms of the trial FES, we need to decide how

we will evaluate how “close” a (continuous) trial function PT (~ξ|~θ) of some arbitrary pa-

rameters ~θ is to the empirical distribution PE(~ξ|{~xn}). For the purposes of the present

mathematical development we will leave the form of PT (~ξ|~θ) abstract, but it can be useful

to consider that a number of possible parameterizations for the trial function are possi-

ble, including linear interpolants, cubic splines, or piecewise cubic Hermite interpolating

polynomial (PCHIP) interpolations. For non-pathological continuous representations of

PT (~ξ|~θ), the corresponding FES is simply F (~ξ|~θ) = − lnPT (~ξ|~θ).

One logical definition of “closeness” is the Kullback-Leibler (KL) divergence from the

empirical distribution in the state of interest (the one without any biasing distribution)

to our trial distribution PT (~ξ|~θ), over the volume Γ of collective variables. The Kullback-
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Leibler divergence from Q to P , denoted DKL(P ||Q), can be interpreted as a measure of

the information lost when Q is used to approximate P , and is defined as:

DKL(P ||Q) =

∫
Γ

P (x) ln
P (x)

Q(x)
dx (16)

In later usage, we will generally omit the explicit reference to the volume Γ over the collec-

tive variable space. We will develop several different formulations of the KL divergence

that each consist of a weighted sum of the function evaluated at each sampled point, and

the integral of the simulation over all the entire FES (or sum of several integrals). We

present them here and then later report the results of numerical tests to demonstrate their

performance.

C.1. Unbiased state Kullback-Leibler divergence. The KL divergence from PT (~ξ|~θ)

to PE(~ξ|{~xn}) is:

DKL(~θ) =

∫
PE(~ξ|{~xn}) ln

PE(~ξ|{~xn})
PT (~ξ|~θ)

d~ξ

=

∫ [
PE(~ξ|{~xn}) lnPE(~ξ|{~xn})

−PE(~ξ|{~xn}) lnPT (~ξ|~θ)
]
d~ξ (17)

The first term in the integral is somewhat problematic, in that it has a factor of lnPE(~ξ|{~xn}),

which is not well-defined for delta functions. Even taking Gaussian approximations for

the delta functions and allowing them to shrink to zero-width fails to yield a well-defined

value since the entire integral
∫
PE(~ξ) lnPE(~ξ) is unbounded in the positive direction as

the width of the δ function goes to zero. Fortunately, whatever the value may be, it is inde-

pendent of the parameters ~θ. Accordingly, we may neglect the first term in our minimiza-

tion with respect to ~θ and focus only on minimization of the second term. For the pur-

poses of functional optimization we will—with some abuse of terminology—use DKL(~θ)

to stand for the second, ~θ-dependent term, with the dropping of the first parameter-
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independent term understood.

Using eq. 4, the normalized trial probability distribution can be equivalently expressed

in terms of a trial free energy surface FT (~ξ|~θ):

PT (~ξ|~θ) =
e−FT (~ξ|~θ)∫

Γ
e−FT (~ξ′|~θ)d~ξ′

(18)

If we set W (~x) = Wunbiased(~x) to be the weighting function for our unbiased reduced

potential energy u(~x), and seek the trial free energy surface in the unbiased state FT (~ξ|~θ) =

F (~ξ|~θ), the function to be minimized reduces to:

DKL(~θ) =

∫
−PE(~ξ|{~xn}) lnPT (~ξ|~θ)d~ξ

=

∫
PE(~ξ|{~xn})F (~ξ|~θ)d~ξ +

∫
PE(~ξ) ln

∫
e−F (~ξ′|~θ)d~ξ′d~ξ

=

∫
PE(~ξ|{~xn})F (~ξ|~θ)d~ξ + ln

∫
e−F (~ξ′|~θ)d~ξ′

=
N∑
n=1

W (~xn)F (~ξn|~θ) + ln

∫
e−F (~ξ′|~θ)d~ξ′ (19)

Between the 2nd and 3rd steps we can integrate out the PE(~ξ|{~xn}) term as PE(~ξ|{~xn})

is normalized, is independent of the dummy variable ~ξ′, and ~ξn = Φ(~xn), and between

the 3rd and 4th steps we employ eq. 13 to estimate the expectation value over the data.

Minimization of eq. 19 presents a prescription to adjust ~θ to find the free energy surface

F (~ξn|~θ) which is the logarithm of the closest distribution to the empirical delta function

distribution calculated from MBAR.

Before proceeding to do so, it is instructive to make several observations about eq. 19.

• The biasing functions do not appear explicitly anywhere in eq. 19. The biases appear

only implicitly through the weights associated with samples from biased states. One

may therefore also carry out any other type of accelerated sampling, in addition to,

or instead of biasing functions of the collective variable, as long as these simulations
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have a time-independent potential (they cannot involve adaptive biasing), and are

included in theK states for which MBAR reweighting is carried out and the weights

W (~xn) are determined; the sum is over all points, collected in whatever simulation

is used.

• The contribution F (~θ) = − ln
∫
e−F (~ξ′|~θ)d~ξ′ is independent of the samples, and thus

penalizes free energy surfaces that are simply low everywhere.

• Low free energy regions of the FES contribute more to the integral F (~θ) = − ln
∫
e−F (~ξ′|~θ)d~ξ′

than high free energy regions. Accordingly, we should expect better estimates at the

low values of F (high probability states), but may sacrifice accuracy at large values

of F (low probability states).

C.2. Summed biased state Kullback-Leibler divergence. We can measure closeness

to the KL divergence in a slightly different way, and try to find a single function that min-

imizes the sum of KL divergences from the K empirical distribution functions observed

at each biased sample state to the trial function with the biased potential added. The mo-

tivation for this ansatz is that it will force the trial function close to the free energy surface

force in all regions the biased simulations have high density and therefore good sampling.

When summing over the K different biased simulations, we elect to weight the KL diver-

gence proportional to the number of samples Nk from that state. The motivation for this

choice is that states with few samples should contribute less information than states with

many. We will see that this assumption leads to particularly simple results.

Under these choices we define the sample-weighted sum of Kullback-Leibler diver-
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gences and function to be minimized as:

K∑
k=1

NkDKL(~θ) =
K∑
k=1

Nk

(
N∑
n=1

Wk(~xn)Fk(~ξn|~θ)

+ ln

∫
e−Fk(~ξ′|~θ)d~ξ′

)
=

K∑
k=1

Nk

(
N∑
n=1

Wk(~xn)
(
F (~ξn|~θ) + bk(~ξn)

)
+ ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)

)
d~ξ′

=
N∑
n=1

(
K∑
k=1

NkWk(~xn)

)
F (~ξn|~θ)

+
K∑
k=1

Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

=
N∑
n=1

F (~ξn|~θ)

+
K∑
k=1

Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ (20)

where Fk(~ξ) is the free energy surface of the kth biased state, F (~ξn) and Fk(~ξn) are the val-

ues of F and Fk at Φ(~xn) = ~ξn, bk(~ξn) is the value of the biasing potential associated with

biased simulation k at Φ(~xn) = ~ξn, and Fk(~ξ|~θ) = F (~ξ|~θ) + bk(~ξ). We note that in moving

from the second to third line we dropped the term
∑K

k=1

(∑N
n=1 Wk(~xn)bk(~ξn)

)
because it

is independent of the ~θ, and thus does not affect the minimization, and in moving from

the third to fourth line we appeal to the normalization condition for Wk(~xn) in eq. 8. The

latter operation eliminates the weights from each individual state, leaving as the first term

in our final expression an unweighted sum over the trial functions at the empirical data

points. The second term is a weighted sum over an integral over the trial functions and

biasing potentials and contains significant contributions only where the biasing potential

is low. Large biasing potentials result in small contributions and essentially free varia-

tions of the trial function. However, as long as the trial function has significant weight
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in one of the biasing functions, then it will be constrained over that region of space. In

our numerical tests discussed below, it appears that eq. 20 gives additional accuracy in

the densely sampled regions by sacrificing accuracy in the sparsely sampled regions, but

provides superior global fits compared to those achieved by minimization of eq. 19.

It is possible in many cases to include simulations performed with other accelerated

sampling methods in addition to biasing in the collective variable, but unlike in the case

of the results are more complicated. We provide a preliminary analysis in the Appendix,

but do not further analyze these combinations in his paper.

C.3. Summed sampled biased state Kullback-Leibler divergence. The final alterna-

tive we consider is to sum the KL divergences from theK empirical distribution functions

with the biased potential added as we do in the preceding section, but only using the Nk

actual samples from each biased state. In this case, each weight will be simply 1/Nk, as

each of theNk samples will be equally weighted. We will continue to weight each state by

the number of samplesNk collected from the state, as states with more samples contribute

proportionally more information to the KL divergence. Following a similar development

to that which led to eq. 20 and again dropping terms that are not dependent on ~θ yields
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the expression to be minimized as:

K∑
k=1

NkDKL(~θ) =
K∑
k=1

Nk

(
Nk∑
n=1

1

Nk

Fk(~ξn|~θ)

+ ln

∫
e−Fk(~ξ′|~θ)d~ξ′

)
=

K∑
k=1

Nk

(
Nk∑
n=1

1

Nk

(
F (~ξn|~θ) + bk(~ξn)

)
+ ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)

)
d~ξ′

=
K∑
k=1

Nk∑
n=1

F (~ξn|~θ)

+
K∑
k=1

Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

=
N∑
n=1

F (~ξn|~θ)

+
K∑
k=1

Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ (21)

Somewhat surprisingly, this result is exactly the same as eq. 20. This emerges due to

the normalization condition for Wk(~xn) defined by eq. 8. Accordingly, whether we sum

the contribution to the KL divergence of each sample over all states using the MBAR

weights, or simply sum the contribution of each sample to its biased state, we will be

minimizing the same function, provided we weight by the number of samples Nk from

each distribution.

We could, in principle, also choose to sum over theK KL divergences without weight-

ing each biased distribution by Nk. Doing so and following the steps leading to eq. 21
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yields the expression:

K∑
k=1

DKL(~θ) =
K∑
k=1

1

Nk

Nk∑
n=1

F (~ξn|~θ)

+
K∑
k=1

ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ (22)

which is both less mathematically elegant and less intuitively satisfying than eq. 21 since

simulations conducted at a state point with small Nk contribute equally to those with

large Nk. Likewise, if we follow the logic of eq. 20 but employing equal weightings, we

end up with a similarly unsatisfying result:

K∑
k=1

DKL(~θ) =
N∑
n=1

(
K∑
k=1

Wk(~xn)

)
F (~ξn|~θ)

+
K∑
k=1

ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ (23)

which is not only more complicated than eq. 20, but also differs (as numerical tests con-

firm) from eq. 22 unless all Nk are equal, in which case
∑K

k=1 Wk(~xn) = K/N = 1/Nk, and

equality is restored. Due to these mathematically and intuitively unsatisfying features,

we will not pursue eq. 22 and eq. 23 further.

2.4 Likelihood as a measure of distance

As an alternative to the Kullback-Leibler divergence, we can measure distances using

likelihoods. Specifically, we can take our trial probability distribution PT (~ξ|~θ) and com-

pute the likelihood of one of our N observations by evaluating the PT associated with that

observation. The observations taken together comprise our data D. Assuming the sam-

ples are independent and identically distributed (i.i.d.) observations, then we can calcu-

late the total likelihood as the product of the individual likelihoods. The trial probability

distribution as a function of θ that maximizes this likelihood will be the one closest to the
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empirical distribution. In a similar manner to the KL divergence, we may construct this

distribution in a number of ways. We shall show that the two choices we propose contain

the same information as the KL divergence expressions, but offer greater interpretability

and amenability to a Bayesian treatment.

D.1. Product over unbiased state likelihoods. Perhaps the simplest choice is to con-

sider the joint likelihood of each weighted sample in the unbiased state. In this case, since

we can consider each sample to be observed according to its weightW (~xn)N (the expected

number of counts at ~xn given the empirical distribution), then the overall likelihood as a

function of ~θ is:

`(~θ|{~xn}) =
N∏
n=1

PT (~ξn|~θ)W (~xn)N (24)

and the log likelihood is:

ln `(~θ|{~xn}) =
N∑
n=1

NW (~xn) lnPT (~ξn|~θ)

=
N∑
n=1

NW (~xn)

(
−F (~ξn|~θ)− ln

∫
e−F (~ξ′|~θ)d~ξ′

)

= −N
N∑
n=1

W (~xn)F (~ξn|~θ)−N ln

∫
e−F (~ξ′|~θ)d~ξ′

In going from the second to the third line, we employ normalization condition in eq. 9.

As expected,68 we quickly verify that eq. 25 is identical to eq. 19 up to a factor of (−N),

so maximizing this log likelihood is the same as minimizing the unbiased state KL diver-

gence.

D.2. Product over biased state likelihoods. We could also calculate the overall like-

lihood as the product of the likelihoods of the individual samples in each of the biased
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simulations:

`(~θ|{~xn}) =
K∏
k=1

Nk∏
n=1

PT (~ξn|k, ~θ) (25)

where we have denoted the probability distribution resulting from the trial FES plus the

kth bias as PT (~ξn|k, ~θ). The corresponding log likelihood is:

ln `(~θ|{~xn}) =
K∑
k=1

Nk∑
n=1

lnPT (~ξn|k, ~θ)

=
K∑
k=1

Nk∑
n=1

(
−F (~ξn|~θ)− bk(~ξn)

− ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

)
=

K∑
k=1

(
Nk∑
n=1

−F (~ξn|~θ)

−Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

)
= −

N∑
n=1

F (~ξn|~θ)

−
K∑
k=1

Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ (26)

where in going from the second to third line we drop the bk(~ξn) term as independent of

~θ and therefore irrelevant to the maximization. Eq. 26 is identical to eq. 20 up to a minus

sign, so maximizing the product of biased state likelihoods is equivalent to minimizing

the summed biased KL divergence.

D.3. Weighted product over biased state likelihoods. We could try to construct a

likelihood that was consistent with the KL divergence in eq. 22 by constructing a sum of

KL divergences over each state weighted by the reciprocal of the number of samples in

each state:

`(~θ|{~xn}) =
K∏
k=1

Nk∏
n=1

PT (~ξn|k, ~θ)
1
Nk , (27)
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for which the corresponding log likelihood is:

ln `(~θ|{~xn}) =
K∑
k=1

Nk∑
n=1

1

Nk

lnPT (~ξn|k, ~θ)

=
K∑
k=1

1

Nk

Nk∑
n=1

(
−F (~ξn|~θ)− bk(~ξn)

− ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

)
=

K∑
k=1

1

Nk

Nk∑
n=1

−F (~ξn|~θ)

−
K∑
k=1

ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

= −
K∑
k=1

1

Nk

Nk∑
n=1

F (~ξn|~θ)

−
K∑
k=1

ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ (28)

Eq. 28 is identical to eq. 22 up to a minus sign, and so maximizing the former is equiv-

alent to minimizing the latter. However, as discussed above, there appears to be no real

theoretical or practical justification reason to weight samples in the manner expressed in

eq. 27 and for this reason we do not advocate the use of this formulation.

2.5 Least squares as a measure of distance

Finally, we could choose to adopt a functional form, and then perform a least squares fit

to the empirical distribution or to the empirical FES in order to define a distance between

the distributions. Although seemingly quite a natural and straightforward approach, it

does not give rise to easily interpretable or implementable expressions. Accordingly, we

defer an analysis of the least squares approach to the Appendix and do not pursue this

further.

28



2.6 How does vFEP fit into this framework?

We now examine the correspondence of our development with the variational free energy

profile (vFEP) approach developed by Lee and co-workers.20,21

We first note the potential ambiguity within vFEP regarding the definition of the term

“window”, which as described before, could refer to either a biasing potential, the data

collected from a simulation run with that biasing potential, or a region of collective vari-

able space within which a biased simulation has high probability density are related, but

not equivalent, concepts. In the present comparison with vFEP, we will assume “win-

dow” as used in the vFEP definition refers to a biasing potential plus the data collected

during simulations with that biasing potential. Under this definition of “window”, sam-

ples in the window are not included or excluded based on the associated values of ~ξ, only

on the basis of biased simulation from which they were collected.

Using the original vFEP notation, Za =
∫
e−Fi,a(θ,x)dx is the partition function of biased

simulation a and Fi,a(θ, x) = Fi(θ, x) + Wa(x) is the biased trial partition function deter-

mined by parameters θ and collective variable x, where Wa(x) is the biasing potential,

and vectors in x and θ are implicit. Since Wa(x) is not a function of θ and does not affect

the minimization, the log likelihood to be maximized with respect to the parameters θ of

the trial function F is:

ln `(θ) =
∑
a

[
− lnZa − 1

Na

N∑
i=1

Fi,a(θ, xa)

]

=
∑
a

[
− 1

Na

N∑
i=1

Fi(θ, xa)− ln

∫
Γa

e−Fi,a(θ,x)dx

]
(29)

To proceed, we must make two assumptions: (i) the substitution of k as a label for biasing

potential rather than a as the label of “windows”, (ii) the recognition that
∫

Γa
should be

either the same or approximately the same as
∫

Γ
, since samples from biased potential

29



will be mostly constrained to subset of Γ, but can in principle appear anywhere in Γ. In

this case, we can translate vFEP into the terminology of the present paper. The window a

becomes the biased simulation k,Na becomesNk, x becomes ~ξ, vectors are noted explicitly,

and we obtain:

ln `(~θ|{~x}) =
K∑
k=1

[
− 1

Nk

Nk∑
i=1

F (~ξi|~θ)

− ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

]
(30)

This expression is identical to eq. 28 and, up to a minus sign, eq. 22. Accordingly, when

viewed through the lens of the development presented in this paper—and with the previ-

ously mentioned assumptions about the definitions of windows and range of integrals—

vFEP would correspond to a particular choice of biased state weighting within a Kullback-

Leibler divergence (eq. 22) or likelihood formulation (eq. 28). As discussed above, this

weighting of all simulations equally is problematic, since it puts equal weight on simula-

tions regardless of how many samples they have. If the direct sum over biasing potentials

is changed to one weighted by Nk, then it becomes eq. 26, which both easier to work with

and better justified, with umbrellas with larger numbers of samples having more weight.

3 A Bayesian framework for FES estimation

Equipped with the prescriptions to calculate likelihood of observations under the differ-

ent assumptions detailed in Section 2.4, we can switch to a Bayesian framework to find

distributions possessing desirable features of an analytical form, continuity, and smooth-

ness that is most consistent with our understanding of F (~ξ). We note that our use of a

likelihood formulation, which was shown to be fully consistent with the KL divergence

framework, is crucial in opening the door to a Bayesian formulation.

At the first step in this framework, we take a candidate trial distribution PT (~ξ|~θ) and
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optimize its parameters ~θ to form the maximum a posteriori probability (MAP) estimate

of PT (~ξ|~θ). This estimate maximizes the Bayes posterior probability of the trial distribu-

tion, rather than simply the likelihood, given the collected (biased) samples and MBAR

estimates of the relative free energy differences ∆fij = fj − fi between biased states.

As we introduce our Bayesian formulation, we note that the free energies emerging

from the MBAR equations have no free parameters; they are the only estimated normal-

izing constants satisfying the self-consistent equations in eq. 6. It is possible to employ a

Bayesian approach to free energy estimation by sampling of either the density of states69

or weights of each sample in the unbiased state,70 allowing one to incorporate additional

priors about the simulations in addition to priors on the shape of the free energy sur-

face. However, since the free energy is defined completely by the Boltzmann distribution,

and since the MBAR equations provide the lowest variance importance sampling estima-

tor and are asymptotically unbiased, then in the absence of other information about the

system, it is the simplest and least biased approach to employ MBAR estimates for {fi}.

A difference from previous efforts is that we cast our approach within a Bayesian

framework that enables transparent incorporation of Bayesian priors, Bayesian uncer-

tainty quantification, and Bayesian model selection about the functional form of the po-

tential of mean force. Although we do not do so here, this formalism also sets the stage for

adaptive sampling, in which regions of the probability distribution containing the most

uncertainty are identified for additional biased sampling to optimally direct computa-

tional resources. This is similar in spirit to, but would go beyond, the adaptive approach

of Schofield, which presents an elegant means to alter the analytical representation of the

unbiased probability distribution to minimize uncertainty,19 to actually guiding the col-

lection of additional data to optimally reduce uncertainty in the estimated distribution.

We note that we follow a fairly standard Bayesian approach that can be found in many

textbooks and other resources; one excellent presentation of Bayesian techniques in data

analysis in general is offered by Ref. 71. We also note that one of the authors has previ-
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ously presented a fully Bayesian treatment of WHAM in Ref. 35 that goes into more detail

about the Bayesian aspects of parameter optimization as it applies to potentials of mean

force.

Given the set of biased samples {~xn} and their collective variable mappings {~ξn} =

{Φ(~xn)} and the associated weights in the (unbiased) thermodynamic state calculated by

by MBAR W (~xn) (eq. 7), we apply Bayes’ theorem71 to construct an expression for the

posterior probability of the parameters ~θ given the data {~xn}, obtaining:

P(~θ|{~xn}) =
P({~xn}|~θ)P(~θ)

P ({~xn})
(31)

where P(~θ|{~xn}) is the posterior probability of the parameters ~θ given the sampled data,

P({~xn}|~θ) = `(~θ|{~xn}) is the previously-defined likelihood specifying the probability of the

collected samples given the particular choice of parameters, P(~θ) is the prior probability of

the parameters before any data have been collected, and P({~xn}) =
∫
P({~xn}|~θ)P(~θ)d~θ is

the probability of observing the samples that we did (the evidence), serves to normalize

the posterior, and contains no dependence on the parameters ~θ. Importantly, the prior

enables us to transparently encode any prior beliefs or knowledge about the system into

our analysis that can serve to regularize and stabilize our estimation.

The MAP estimate of the parameters follows from maximization of the log posterior:

~θMAP({~xn)} =
argmax

~θ lnP(~θ|{~xn})

=
argmax

~θ
(

lnP({~xn}|~θ) + lnP(~θ)
)

=
argmax

~θ
(

ln `(~θ|{~xn}) + lnP(~θ)
)

(32)

Exploiting our previous observation that maximizing a log likelihood is the same as min-

imizing the corresponding KL divergence from an empirical distribution,68 we can equiv-

alently view maximization of the Bayes posterior (eq. 32) from a frequentist perspective
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as minimization of the Kullback-Leibler divergence or maximization of the log likelihood

subject to regularization by the logarithm of the Bayes prior.

To use eq. 32 we need to adopt a form for the likelihood `(~θ|{~xn}) and prior P(~θ). The

development in Section 2.4 suggests we adopt eq. 24 or 25 as candidates for the likelihood,

where we explicitly assumed samples to be i.i.d. distributed. If the samples cannot be

treated as i.i.d., then the counts N or Nk should be corrected by an inefficiency factor

reflecting the presence of correlations in the sampling procedure.72,73 The simplest and

most common choice for the prior is a uniform prior P(~θ) = 1. With no dependence on

the model parameters ~θ, it drops out of the maximization in eq. 32 and the MAP estimate

~θMAP becomes coincident with the maximum likelihood (ML) estimate ~θML:

~θML({~xn)} =
argmax

~θ ln `(~θ|{~xn}). (33)

In principle, arbitrary priors are admissible—even improper priors that do not have a

finite integral—provided the posterior is proper (i.e., integrates to unity).74 In a Bayesian

sense, we use the prior to encode prior knowledge or belief about the character of the

probability distribution (such as smoothness of the splines). In the frequentist sense, the

prior serves to regularize the probability estimate, providing bias-variance trade-off and

compensating for sparse data. In a practical sense, the appropriate prior to adopt depends

on the form of the model selected PT (~ξ|~θ), the size and quality of the simulation data, and

the degree of prior belief or understanding of the system. Adopting the likelihood eq. 24

the maximization in eq. 32 can be expressed as:

~θMAP ({~xn}) =
argmax

~θ

[
−N

N∑
n=1

W (~xn)F (~ξn|~θ)−N ln

∫
e−F (~ξ′|~θ)d~ξ′ + lnP(~θ)

]

=
argmin

~θ

[
N

N∑
n=1

W (~xn)F (~ξn|~θ) +N ln

∫
e−F (~ξ′|~θ)d~ξ′ − lnP(~θ)

]

=
argmin

~θ

[
N

N∑
n=1

W (~xn)F (~ξn|~θ)− lnP(~θ)

]
s.t.

∫
Γ

e−F (~ξn|~θ)d~ξ = 1, (34)
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where in going from line 2 to 3 we have appealed to the identity P (~ξ|~θ) = e−F (~ξ|~θ) (eq. 4)

and asserted that this distribution must be normalized.

Adopting the product of likelihoods eq. 25 the maximization in eq. 32 becomes:

~θMAP ({~xn}) =
argmax

~θ

[
−

N∑
n=1

F (~ξn|~θ)−
K∑
k=1

Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ + lnP(~θ)

]

=
argmin

~θ

[
N∑
n=1

F (~ξn|~θ) +
K∑
k=1

Nk ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ − lnP(~θ)

]

=
argmin

~θ

[
N∑
n=1

F (~ξn|~θ)− lnP(~θ)

]
s.t.

∫
Γ

e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′ = 1 ∀k. (35)

There are thus two approaches to find the MAP or ML estimate: an unconstrained

minimization enforcing the normalization implicitly (second-to-last lines in eq. 34 and 35),

and a constrained minimization enforcing the normalization explicitly (last lines in eq. 34

and 35). The constrained minimization versions of the above expressions can be solved

using the method of Lagrange multipliers or through any other constrained optimization

method such as the interior point method or sequential quadratic programming (SQP).

The relative efficiency of the two approaches will depend on the details of software meth-

ods available as well as the particular forms of the biases and F (~ξn|~θ).

4 Model selection

The Akaike information criterion (AIC) or Bayesian information criterion (BIC) provide

a principled means to discriminate between different possible choices for the Bayes prior

and the trial probability distribution, The AIC is defined as:75

AIC = 2k − 2 ln `(~θ|{~xn}), (36)
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where k is the number of estimated parameters in the model. The BIC is defined as:76

BIC = k lnN − 2 ln `(~θ|{~xn}), (37)

where N is the number of data points. If we compute ~θ = ~θMAP for a number of model

choices i, we can use these parameter estimates to compute the set of AIC or BIC values

{ai} for the candidate models. The model with the lowest ai is the single model that is

best supported by the data.

A more sophisticated approach to model selection defines the smallest of the {ai} as

amin, then assigns the relative likelihood of model i as ri = e−∆i/2 = e−(ai−amin)/2. The

model weights follow from the normalized ri and provide the likelihood of model i:19

ωi =
ri∑
k rk

=
e−∆i/2∑
k e
−∆k/2

. (38)

Adopting a threshold q = 0.05 (for example), the {ri} can be used to discard models from

consideration and/or determine that there is insufficient evidence to choose one model

over the other. The {ωi} may also be used as weighting factors with which to construct

a multi-model composed from the weighted sum of the predictions of each candidate

model.

5 Bayesian uncertainty quantification

The ~θ = ~θMAP estimate represents the single best point estimate of the parameters of the

trial distribution PT (~ξ|~θ) given the data {~xn} and the prior P(~θ). Uncertainties around

these point estimates may be approximated by analytical error expectations or through

bootstrap estimation.77 A fully Bayesian uncertainty estimate is defined by the distribu-

tion of ~θ dictated by the Bayes posterior.35 Empirical samples of ~θ from the Bayes posterior

may be generated using the Metropolis-Hastings algorithm. This Markov Chain Monte-
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Carlo (MCMC) approach generates a sequence of parameter realizations that converges to

the stationary distribution of the Bayes posterior.78 Under this approach we propose trial

moves in ~θ that are accepted or rejected according to the Metropolis-Hastings acceptance

criterion:78,79

α(~θν |~θµ) = min

[
P(~θν |{~xn}) · q(~θµ|~θν)
P(~θµ|{~xn}) · q(~θν |~θµ)

, 1

]

= min

[
P({~xn}|~θν) · P(~θν) · q(~θµ|~θν)
P({~xn}|~θµ) · P(~θµ) · q(~θν |~θµ)

, 1

]

= min

[
`(~θν |{~xn}) · P(~θν) · q(~θµ|~θν)
`(~θµ|{~xn}) · P(~θµ) · q(~θν |~θµ)

, 1

]
(39)

where α(~θν |~θµ) is the probability of accepting a trial move from parameter set ~θµ to param-

eter set ~θν , and q(~θν |~θµ) is the probability of proposing this trial move. We have invoked

Bayes’ Theorem (eq. 31) in going from the first line to the second, and observe that (im-

portantly) the evidence has canceled top and bottom. In going from the second line to the

third, we employed the identity P({~xn}|~θ) = `(~θ|{~xn}). In the event that symmetric trial

move proposal probabilities are adopted such that q(~θν |~θµ) = q(~θµ|~θν), the Metropolis-

Hastings acceptance criterion reduces to the Metropolis criterion:78,80

α(~θν |~θµ) = min

[
`(~θν |{~xn}) · P(~θν)

`(~θµ|{~xn}) · P(~θµ)
, 1

]
(40)

We initialize the Markov chain from ~θMAP corresponding to the maximum of the Bayes

posterior P(~θ|{~ξn}) and propose trial moves that maintain normalization
∫

Γ
P(~ξ|~θ)d~ξ = 1.

By monitoring L(~θ|{~xn}) = ln
(
P({~xn}|~θ)P(~θ)

)
= ln `(~θ|{~xn})+lnP(~θ)—which is propor-

tional to the Bayes posterior up to an additive constant with no ~θ dependence (eq. 31)—we

can determine that the Markov chain has converged when L(~θ|{~xn}) plateaus to fluctuate

around a stable mean. At this point we may harvest realizations of ~θ distributed according

to the Bayes posterior. Using these parameter realizations, we can construct realizations
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of PT (~ξ|~θ) to quantify the uncertainties in this estimated distribution.

6 Example: Umbrella sampling of protein sidechain tor-

sion within binding cavity

As an illustrative example, we consider the application of our mathematical framework

to compute a 1D FES from an umbrella sampling simulation. Code implementing these

methods can be found publicly available in the pymbar4 branch of pymbar (located at

http://github.com/choderalab/pymbar), in the script

examples/umbrella-sampling/umbrella-sampling-advanced-fes.py. The data

is from an umbrella sampling simulation for the χ torsion of a valine sidechain in lysozyme

L99A with benzene bound in the cavity81 (fig. 1).

Figure 1: χ torsion angle in Lys111 of L99a T4 lysozyme around which the free energy
surface is calculated using umbrella sampling.
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We analyze data from 26 biased simulations employing umbrella potentials at a range

of dihedral values with harmonic biasing constants of between 100 and 400 kJ/mol/nm2.

A 100 ps simulation was carried out under each umbrella potential with angles and ener-

gies saved every 0.2 ps for a total of 500 samples at each state. The data was analyzed for

correlations, and approximately every other data point is taken (exact frequency varying

with state) for a total of 7446 data points, ranging from 42 to 410 points per umbrella.

We examine the histogram approach (with 30 bins, a number chosen to be visually

clear—the number of bins can be chosen completely independently of the number of um-

brella simulations run), and the kernel density approximation with a Gaussian kernel,

with bandwidth parameter half of the bin size, in this case, 1
2
× 360/30 = 6 degrees. We

also look at parameterized splines as our representation; in this case, using B-splines with

varying numbers of knots placed uniformly, using cubic splines in this example; the the-

ory is independent of these particular choices of spline.

We note that one could use splines to fit to either the FES F (~ξ|~θ) or the probability dis-

tribution P (~ξ|~θ). However, we find that it becomes difficult to satisfy the non-negativity

condition of P (~ξ|~θ) when using standard spline implementations, and that large changes

in FES propagate exponentially to the probability distribution making it challenging to

fit stably and robustly. For numerical stability, we therefore recommend using splines to

approximate F (~ξ|~θ) rather than P (~ξ|~θ).

We examine the parameterized spline representations emerging from the optimiza-

tions defined by the expressions in eq. 34—corresponding to the unbiased state likelihood

in eq. 24, log likelihood in eq. 25, and KL divergence in eq. 19—and eq. 35—corresponding

to the product of biased states likelihood in eq. 25, log likelihood in eq. 26, and KL diver-

gence in eq. 20. We will refer to the first as the “unbiased state likelihood”, and the second

as the “biased states likelihood,” as it combines samples from all biased states.

Efficient optimization of these expressions requires calculating the gradient and po-

tentially the Hessians. The use of B-splines, which construct the spline in terms of local
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basis function, makes this calculation relatively efficient, as detailed in the Appendix. For

simplicity, we elect to use a uniform distribution of spline knot locations over the domain,

but these could be adaptively situated by optimizing their locations to maximize the MAP

as proposed by Schofield.19

For the Bayes prior, where we compute the full posterior, rather than just the like-

lihood, we adopt a unnormalized Gaussian prior on the difference between successive

spline knot values:

P(~θ) =
C−1∏
c=1

e−α(θc−θc+1)2 (41)

where α is a hyperparameter that controls the degree of smoothing regularization im-

posed upon the trial distribution. Selecting α = 0 corresponds to a uniform prior that

drops out of the maximization and ~θMAP = ~θML. Selecting α > 0 favors smoother splines

with less variation from knot to knot. We examine the effect of priors governed by choice

of α, where α = k/n, where n is the number of spline knots, for some constant k. Uncer-

tainties are estimated by MCMC sampling of the Bayes posterior using the Metropolis-

Hastings algorithm and acceptance criteria (eq. 39).

The time limiting factor, both for optimizations and MCMC sampling of the posterior,

is the numerical quadrature of the integral
∫
PT (~ξ|~θ)d~ξ. For the log likelihoods from the

unweighted state (eq. 25), the integral enforcing the normalization of PT is only carried

out over the unbiased trial function, whereas for approaches considering all states (eq. 26),

the integral is carried out over allK trial functions with biases and is thus roughlyK times

slower.

The AIC and BIC allow us to select the number of spline knots best supported by the

data. We plot in fig. 2 the AIC (eq. 36) and BIC (eq. 37) for the unbiased state likelihood

and biased states likelihood choices. In the unbiased state case, the AIC exhibits a local

minimum at 16 knots and a global minimum at 26, whereas the BIC—which penalizes
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Figure 2: AIC (solid) and BIC (dotted) for splines maximizing FES likelihoods for the un-
biased state estimator (red, eq. 25) and biased states estimator (blue, eq. 26) as a function
of the number of spline knots, referenced from the minimum of each method. Although
the curves are noisy, and occasionally nonmonotonic, they provide a useful guide towards
choosing optimal numbers of parameters for models, as can be seen by comparison to
Fig. 3.

excessive parameters more strongly than the AIC—possesses a local minimum at 24 knots

and a global minimum at 16. In the biased states case, the AIC and BIC both exhibit clear

global minima at 14 knots.

We can see how the behavior of FES changes as a function of the number of knots and

how the AIC and BIC help select optimal knot numbers in fig. 3. In this figure, we plot

maximum likelihood FES under the unbiased state likelihood (eq. 34, in fig. 3a) and biased

states likelihood (eq. 35, in fig. 3b) as a function of the number of spline knots, along with

the histogram estimate equipped with uncertainties generated from error propagation

from the weights via MBAR.34 As expected, higher numbers of knots provide improved

fitting, but overfitting becomes clear for larger numbers of knots, especially in the case of

fits using the unbiased state likelihood. However, model complexities corresponding to

AIC/BIC minima fit the data relatively well in both cases. We note that the unbiased state

FES fits in fig. 3a, even for the 10-knot spline, are tightly grouped at the various FES min-

ima, but they vary significantly at the maxima, as there are less constraints on the maxima

than the minima using this approach. In contrast, all fits with sufficient functional flex-
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ibility (more than 10 spline knots) using the biased states approach agree relatively well

across the entire range of the FES (fig. 3b), even with as few as 14 spline knots, the value

corresponding to the minimum of both AIC and BIC for the biased states likelihood.

Adding bootstrapped uncertainty estimates to the FES help better show the relation-

ship between the methods and their strengths and weaknesses. We present in Fig. 4 a

comparison of the histogram (with 30 bins), kernel density approximation (with Gaussian

kernels with σ of 6◦), unbiased state likelihood and biased states likelihood splines em-

ploying the AIC/BIC optimal number of knots, and vFEP (using with the same number

of splines as the biased states likelihood case). Uncertainties all estimates are estimated

from an ensemble of 40 bootstrap samples from each of the umbrellas. All methods give

relatively similar results, which is to be expected with a well-sampled system and care-

ful selection of parameters. In particular, the FES calculated using vFEP (subject to the

assumptions discussed earlier in the text) is close to the biased states likelihood approxi-

mation. This result is expected because the two approaches coincide in the limit of equal

numbers of uncorrelated samples per state.

In fig. 5 we demonstrate the utility of fully Bayesian uncertainty quantification. Uncer-

tainties in the MAP splines are computed from 50,000 (for biased states posteriors, which

is slower) and 200,000 (for unbiased state posteriors) steps of MCMC sampling from the

Bayes posterior. Uncertainties represent the 95% confidence intervals at each spline knot.

In both cases, we show results for 10, 20, and 30 splines for two different Gaussian priors

(eq. 41): (i) α = 0.1/n in fig. 5a and fig. 5c, where n is the number of spline knots, and (ii)

α = 1/n in fig. 5b and fig. 5d. We recall that larger values of α impose a stronger influence

of the smoothing prior and are expected to result in smoother posterior distributions. The

choice of α = 0.1/n produces very minor differences between the ML and MAP curves

(fig. 5a and 5c), whereas α = 1/n results in a visibly apparent difference between the two

curves (fig. 5b and 5d). We see that under the biased states formulation (figs. 5c and 5d),

uncertainties are relatively low and constant across the full range of the FES, whereas in
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the unbiased state formulation (figs. 5a and 5b), the uncertainties are largest at the high

free energy regions where the likelihood function is least constrained (cf. eq. 34). Under

the unbiased state formulation, the stronger smoothing prior with α = 1/n (fig. 5b) is

valuable in reducing the size of the confidence intervals at the peaks of the FES (note the

larger y-axis range in fig. 5a required to accommodate the large uncertainty envelopes).

We note that due to the significant freedom in the 30-knot splines, MCMC sampling of

the probability nearly diverges in fig. 5a with α = 0.1/n. In contrast, the biased states

formulation provides more constraints across the entire FES (cf. eq. 35), and the MCMC

error bounds are smaller over the entire range of the FES for both choices of α (fig. 5c and

5d).

7 Conclusions

In this paper, we have resented a Bayesian formalism to compute free energy surfaces

from the empirical distributions generated by biased sampling. Within this formalism, we

avoid any arbitrary choice of histogram in either the definition of the FES or the calcula-

tion of the weights, and provide clear and explicit criteria to decide which continuous free

energy surfaces are most consistent with the biased sampling data. The choice and op-

timization of the representation of the continuous FES is completely decoupled from the

choice of biasing functions and calculation of the relative free energies between the biased

simulations. Biasing functions of the collective variables can be chosen, with freedom of

the biasing functional form, to give appropriate sampling along the collective variables

of interest, and the samples and their associated Boltzmann weights are used to construct

the FES. The The Bayesian formalism allows us to choose the FES that is sufficiently close

to the empirical distribution of the samples we have collected, and explicitly include any

prior information that we include by our choice of representation of our FES functional

form. Our development also clearly demonstrates the equivalence of the likelihood-based
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Bayesian formulation and Kullback-Leibler-based frequentist formulation.

We find that the maximum likelihood calculated only from the unbiased state (eqs. 25

and 19) has a tendency to underestimate the free energy barriers in the collective vari-

able. The product of likelihoods from all the unweighted samples collected from each

biased state, weighted by the number of samples collected from each biased state (eqs. 26

and 20), has much better overall performance over the entire FES range. Surprisingly, this

likelihood is exactly equal to the likelihood generated from the product over all states of

the reweighted contribution of all samples to each biased state state, again weighted by

the number of samples collected from each state (cf. eqs. 20 and 21).

We can then take these likelihoods and directly incorporate them into a Bayesian in-

ference framework. Priors on the parameters of the FES can then be chosen using what-

ever criteria is most appropriate; in this study we considered a Gaussian prior enforc-

ing smoothness, but the selection can be made based on any user-defined criteria, such

as tethering free energies to particular values or enforcing similarity to previously esti-

mated distributions. We can then use MCMC sampling of the posterior of the FES curves

to perform uncertainty quantification for arbitrary choices of prior.

We demonstrate our approach in an application to calculation of the FES for the leucine

rotation in the L99A mutant of T4 lysozyme. The unbiased state likelihood has some clear

failures in that it insufficiently constrains the FES at the highest points. This failure shows

up in multiple ways. When computing bootstrap uncertainties, the unbiased states ap-

proach has very high uncertainty in the barriers. With MCMC sampling, the issues be-

come even clearer, with significant fluctuation in the parameters at the barriers unless a

relatively severe prior is imposed. The biased states likelihood, however, behaves much

more stably, with a well-constrained FES over the entire range, even under weak priors.

Code implementing this approach is distributed in pymbar, where the previous free

energy surface functionality, using histograms to represent the FES, is replaced with a

more comprehensive module implementing the formalism presented in this paper.
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The Bayesian approach we present here approach is directly extensible to multidimen-

sional free energy surfaces. However, the numerical details of performing the fitting may

be challenging in some cases. Both the optimization processes and the MCMC require

successive quadrature of the integrals
∫
PT (~ξ|~θ)d~ξ, which in all but the simplest cases can-

not be carried out analytically. The authors of vFEP have already noted this challenge20 in

even two dimensions with splines. This approach may also be extensible to other meth-

ods that construct biasing functions and FES adaptively, though the equations presented

above will require modification if the sampling is not strictly stationary.
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Figure 3: Splines maximizing the (a) unbiased state likelihood (eq. 25 or eq. 34 with uni-
form prior) and (b) biased states likelihood (eq. 26 or eq. 35 with uniform prior) as a
function of the number of spline knots, with a histogram (black) as a reference. Knot
numbers identified as optimal by both AIC and BIC appear to be good fits compared to
other numbers of splines that under- or overfit the curve .
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Figure 4: Comparison of methods including with bootstrap uncertainty estimates. The
number of splines employed in each method was selected according to the AIC / BIC
analysis in fig. 2. The same number of spline knots is used for vFEP as for the biased
states estimator. The histogram employs 30 bins and Gaussian kernels with σ = 6◦. Un-
certainties are estimated by bootstrap resampling with n = 40. We observe that error bars
are significantly greater at the barriers for the FES maximizing the likelihood in eq. 25
than maximizing the likelihood in eq. 26, which has very low uncertainty throughout
the entire range of values. Histogram uncertainties are moderately large over the entire
range.
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Figure 5: Comparison of MAP estimates as a function of the number of spline knots
with uncertainty estimates and a Gaussian prior (eq. 41) with (a, c) α = 0.1/n and (b, d)
α = 1/n, where n is the number of spline knots. We illustrate the MAP distributions for
(a,b) the unbiased state likelihood (eq. 34) and (b,d) biased states likelihood (eq. 35). The
shading represents the 95% confidence intervals in the MAP estimate evaluated at each
spline knot by MCMC sampling of the posterior, and the dashed line represents the ML
solution. The MAP and ML solutions are coincident for α = 0. The choice α = 0.1/n
results in only minor differences between the ML and MAP solutions, whereas α = 1/n
results in a visible difference between the two curves. In the biased states formulation
(figs. 5c and 5d), the uncertainties are approximately constant across the range of the
FES, whereas under the unbiased state formulation (figs. 5a and 5b), the uncertainty is
largest at the high free energy regions where the likelihood function is least constrained.
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Appendix

7.1 Least squares functional fitting

One possibility briefly mentioned in the main text is to minimize a least squares fit of our

trial function to the empirical distribution by writing the function to be minimized as

S(~θ) =

∫ (
PE(~ξ|{~xn})− e−F (~ξ|~θ)

)2

d~ξ

=

∫
PE(~ξ|{~xn})2 − 2PE(~ξ|{~xn})e−F (~ξ|~θ)

+e−2F (~ξ|~θ)d~ξ

= −2
N∑
i=1

W (~xn)e−F (~ξn|~θ)

+

∫
e−2F (~ξ|~θ)d~ξ

where we neglect the terms independent of ~θ and employ eq. 13 to estimate the thermal

average. However, this integral is problematic as it is strongly biased towards low free

energy regions. Large values of F contribute very little to the sum or the log and are

therefore largely unconstrained.

One could consider ameliorating this issue by minimizing over the relative error in-

stead of the absolute. Since we can’t divide by delta functions, we would have to divide

by the trial function:

S(~θ) =

∫ (
PE(~ξ|{~xn})− e−F (~ξ|~θ)

e−F (~ξ|~θ)

)2

d~ξ

=

∫ (
PE(~ξ|{~xn})2e2F (~ξ|~θ)

−2PE(~ξ|{~xn})eF (~ξ|~θ) + 1
)
d~ξ

This integral is, however, even more problematic since squares of integrals of delta func-

tions are not well-defined and the integral over the square of a delta function is infinite. In
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the direct least squares approach, we didn’t really care, because this undefined function

was independent of ~θ and could be dropped, but in this case we must maintain this term.

This seems an insurmountable deficiency and so we choose to abandon this approach.

Finally, we could consider minimizing over the squared log probabilities (i.e the FES),

instead of the weights. This is not the Kullback-Leibler divergence, but does penalize

divergence in the positive as well as the negative direction:

S(~θ) =

∫
PE(~ξ|{~xn})

(
ln

(
PE(~ξ|{~xn})
PT (~ξ|~θ)

))2

d~ξ

=

∫
PE(~ξ|{~xn})

(
lnPE(~ξ|{~xn})− lnPT (~ξ|~θ)

)2

d~ξ

=

∫
PE(~ξ|{~xn})

(
lnPE(~ξ|{~xn})2

−2 lnPE(~ξ|{~xn}) lnPT (~ξ|~θ) + lnPT (~ξ|~θ)2
)
d~ξ

It appears that square minimizing the log weights isn’t really possible, because the log-

arithm of the empirical distribution of delta functions that occurs in the cross-term is

not well defined. However, other least square alternatives to determining similarities

of distributions involving the cumulative distribution have been previously presented by

Schofield.19

7.2 Using biasing functions in conjunction with other accelerated sam-

pling methods

We remove the requirement that the biasing functions are functions of the collective vari-

able, and simply assume that they are carried out with different reduced potentials.

With these choices, the sample-weighted sum of Kullback-Leibler divergences is

K∑
k=1

NkDKL(~θ) =
K∑
k=1

Nk

(
N∑
n=1

Wk(~xn)Fk(~ξn|~θ) + ln

∫
e−Fk(~ξ′|~θ)d~ξ′

)
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We first need to clarify what
∫
e−Fk(~ξ′|~θ)d~ξ′ means if the biasing function is not a func-

tion of ~ξ. If this is the case, then there appears to be no clear relationship between Fk(~ξ|~θ)

and F (~ξ|~θ), so information about Fk(~ξ|~θ) will not help us. So we claim that at present, we

must sum over only biased simulations that have energy function of the form of eq. 3, a

sum of the u(~x) of interest and a bias function that only depends on ~ξ.

However, each of the biased simulations can have many (say, Mk) simulations accel-

erated with other methods associated with it as are of interest, and we can use this infor-

mation to build our empirical estimate of the K biasing potentials which we do sum over.

There are two primary situations we can consider.

First, reweighting is performed only between simulations that share the same bias-

ing function, and they are reweighted to only that simulation with only the bias and no

other potential-based acceleration. These K reweighted terms are summed with some K-

dependent weights. In this case, there are thus K different sets of weights W k′

k (xn), one

for each of theK MBAR evaluations for reweighting, where the subscripts denote that the

weight is determined for the k simulations with biases alone, and the superscripts denote

which set of weights are involved. In this case, Nk corresponds to the total number of

samples from all Mk simulations associated with that biasing weight.

However, we don’t know what the simplest factor is with which to weight the K

biasing simulations. Because the number of effective number of samples at any of the K

biased states will be less than Nk, we replace the weighting Nk with a constant Ck to be
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determined later. We then find:

K∑
k=1

CkDKL(~θ) =
K∑
k=1

Ck

(
Nk∑
n=1

W k′

k (~xn)Fk(~ξn|~θ)

+ ln

∫
e−Fk(~ξ′|~θ)d~ξ′

)
=

K∑
k=1

(
Ck

Nk∑
n=1

W k′

k (~xn)F (~ξn|~θ)
)

+
K∑
k=1

Ck ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′

Unlike for the derivation of eq. 20, we cannot interchange the order of summation, and so

there are no obvious choices for Ck. One could choose an “effective number of samples”

for Ck, such as
∑Nk

n=1 Wk(~xn), though it is not clear if this is optimal. However, this is still

a usable equation to minimize divergence or as a log-likelihood.

In the second case, we assume that all M =
∑K

k=1 Mk simulations are used to calculate

the MBAR weights, meaning we must be able to calculate the potential energy of each

simulation in all M simulations. In this case, there is a single set of weights Wk(~xn).

However, the normalization is a bit different than is used in eq. 20. Although there is a

single Wk(~xn) corresponding to the weights in the k biased potentials, the normalization∑k
k=1 NkWk(~xn) = 1 no longer holds, since we would need to sum over all M states, not

just the K different bias potentials. We again use a weighted linear scaling Ck because the

“best” weighting is not clear:

K∑
k=1

CkDKL(~θ) =
K∑
k=1

Ck

(
N∑
n=1

Wk(~xn)Fk(~ξn|~θ)

+ ln

∫
e−Fk(~ξ′|~θ)d~ξ′

)
=

N∑
n=1

(
K∑
k=1

CkWk(~xn)

)
F (~ξn|~θ)

+
K∑
k=1

Ck ln

∫
e−F (~ξ′|~θ)−bk(~ξ′)d~ξ′
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This version is again somewhat more complex, but usable as log-likelihood or a di-

vergence to minimize. One can again choose an “effective” number of samples in the

biased state for Ck, such as Ck =
∑N

n=1 Wk(~xn), though again it is not entirely clear if this

is optimal.

7.3 Solving the minimization problem

We briefly describe efficient optimization routines to solve the minimization problems

defined in eqs. 34 and 35 in the case of splines. In below, we suppress explicit dependence

of F on θ for compactness. We start by examining the minimization of eq. 35:

S(θ) =
N∑
n=1

F (~ξn) +
K∑
k=1

Nk ln

∫
e−F (~ξ′)−bk(~ξ′)d~ξ′ − lnP(~θ)

Various minimization approaches are required to compute the gradient and Hessian of

this function with respect to the parameter vector ~θ. For convenience, we define the equi-

librium average performed with biasing function k of some observableA that is a function

of ~θ as:

〈A(~θ)〉k =

∫
A(~ξ′|~θ)e−F (ξ′,θ)−bk(~ξ′)dξ′∫

e−F (~ξ′,θ)−bk(~ξ′)d~ξ′

The i components of the gradient are then:

∇S(θ)i =
N∑
n=1

∂F (~ξ)

∂θi
+

K∑
k=1

Nk

〈
∂F (~ξ′)

∂θi

〉
k

− 1

P(θ)

∂P(θ)

∂θi

We note that if we have linear basis functions, the first term is independent of ~θ and can be

precomputed, as ∂F
∂θi

is simply the corresponding basis function. Additionally, the integral

term will have only limited support for each basis function, so the integrals are relatively

easy to carry out, and the calculations scales easily in the number of basis functions.
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The ij entries in the Hessian are::

∇2S(θ)ij =
N∑
n=1

∂2F (~ξn)

∂θi∂θj

−
K∑
k=1

Nk

[〈
∂2F (~ξ)

∂θi∂θj

〉
k

−
〈
∂F (~ξ)

∂θi

∂F (~ξ)

∂θj

〉
k

+

〈
∂F (~ξ)

∂θi

〉
k

〈
∂F (~ξ)

∂θj

〉
k

]

−
[

1

P(θ)

∂P(θ)

∂θi∂θj
− 1

P(θ)2

∂P(θ)

∂θi

∂P(θ)

∂θj

]
(42)

If we assume that we have a trial function that is linear in the parameters, then the initial

terms involving mixed second derivatives vanish, leaving only:

∇2S(θ)ij =
K∑
k=1

Nk

[〈
∂F (~ξ)

∂θi

∂F (~ξ)

∂θj

〉
k

−
〈
∂F (~ξ)

∂θi

〉
k

〈
∂F (~ξ)

∂θj

〉
k

]

−
[

1

P(θ)

∂P(θ)

∂θi∂θj
− 1

P(θ)2

∂P(θ)

∂θi

∂P(θ)

∂θj

]
(43)

If the function is linear in the parameters (again, such as splines), this will only be

nonzero in areas where basis functions have mutual support, essentially just banded

along the diagonal, so are be relatively inexpensive to compute.

In the case of eq. 34, this becomes:

∇S(θ)i = N
N∑
n=1

Wn(~xn)
∂F (~ξ)

∂θi
−N

〈
∂F (~ξ′)

∂θi

〉
− 1

P(θ)

∂P(θ)

∂θi

(44)
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∇2S(θ)ij = N

(〈
∂F (~ξ)

∂θi

∂F (~ξ)

∂θj

〉

−
〈
∂F (~ξ)

∂θi

〉〈
∂F (~ξ)

∂θj

〉)

−
[

1

P(θ)

∂P(θ)

∂θi∂θj
− 1

P(θ)2

∂P(θ)

∂θi

∂P(θ)

∂θj

]
(45)

Where expectations are now over the unbiased state rather than any of the K biased sim-

ulations.
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