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ABSTRACT. Jacobi polynomials are frequently used in scientific and engineer-
ing applications, and often times, one needs to use the so called Jacobi-Jacobi
transforms which are transforms between two Jacobi expansions with different
indices. In this paper, we develop a fast structured algorithm for Jacobi-Jacobi
transforms. The algorithm is based on two main ingredients. (i) Derive ex-
plicit formulas for connection matrices of two Jacobi expansions with arbitrary
indices. In particular, if the indices have integer differences, the connection
matrices are relatively sparse or highly structured. The benefit of simultaneous
promotion or demotion of the indices is shown. (ii) If the indices have non-
integer differences, we explore analytically or numerically a low-rank property
hidden in the connection matrices. Combining these two ingredients, we de-
velop a fast structured Jacobi-Jacobi transform with nearly linear complexity
(after possibly a one-time nearly quadratic-complexity precomputation step)
between coefficients of two Jacobi expansions with arbitrary indices. An im-
portant byproduct of the fast Jacobi-Jacobi transform is the fast Jacobi trans-
form between the function values at a set of Chebyshev-Gauss-type points and
coefficients of the Jacobi expansion with arbitrary indices. Ample numerical
results are presented to illustrate the computational efficiency and accuracy of
our algorithm.

1. INTRODUCTION

Jacobi polynomials have been used in many areas of mathematics and applied
sciences, e.g., approximation theory [14, 15], the resolution of Gibbs’ phenomenon
[12], electrocardiogram data compression [41], and spectral methods for numerical
partial differential equations [7, 33, 17]. See also [42, 28] which include extended
lists of related work.

Many applications of Jacobi polynomials require transforms between the coef-
ficients of Jacobi expansions and the values at Jacobi-Gauss-type points, and/or
between coefficients of Jacobi expansions with different indices. Some examples
are as follows. In spectral/spectral-element methods with triangles or tetrahedrons
[17, 22], one uses the Koornwinder polynomials [20] (often known as Dubiner’s
polynomials in the spectral community [10]) which involve Jacobi polynomials with
varying indices. In solving prolate spheroidal equations with large zonal wave num-
bers [5] which arise, e.g., from Helmholtz equations with large wave numbers, one
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is led to use Jacobi polynomials with very large indices [1]. In dealing with sin-
gular solutions such as corner singularities or fractional PDEs, one often needs to
work with the approximation space spanned by {(1 & z)¥*} with a € (0, 1), which
requires transformation between Jacobi polynomials with index (0, &) or (a, 0) and
Legendre polynomials [34]. The Jacobi polynomials with index (10,10) outper-
form those with index (0,0) (Legendre polynomials) for the approximation to the
truncated standard Gaussian function (see Appendix C in [51]).

Hence, it is highly desirable to develop algorithms which can perform these
transforms as quickly and accurately as possible. Moreover, fast Jacobi-Jacobi
transforms will also benefit the development of fast spherical harmonic transforms
which are of critical importance in many applications [30, 45]. The purpose of this
work is thus to design fast Jacobi-Jacobi transforms.

Let Py be the set of polynomials with degrees less than or equal to NV, and
(a1,01), (az2,02) be two pairs of Jacobi indices with «;,8; > —1 (i = 1,2). For
f € Py, we can expand f(x) in Jacobi expansions with indices (a1, £1) and (aq, B2),
namely:

N N
(1Y) flo) =) frevfaeni(@) =Y fleaPD et (z),  xe[-1,1],
n=0 n=0

where {Jflai’ﬁl)}ﬁzo are Jacobi polynomials with indices (o, 8;), i = 1, 2.
By the orthogonal properties of Jacobi polynomials, one can easily determine
the connection matrices K(@1-P0>(@2:82) anq g(@2:82)=(@1.80) gueh that

(1.2) flaz:B2) _ K(alvﬁl)_)(a%BQ)f(ahﬁl)’ flanp) _ grlas.f2)—(oa,B1) plaz,82)

where f£(®%) = {f,(la“ﬁi)}ﬁ’:o, i = 1,2. However, the connection matrices are full
upper triangular matrices so that a direct Jacobi-Jacobi transform will cost O(N?).
The main question we want to address in this paper is how to quickly and accurately
perform the Jacobi-Jacobi transforms (1.2).

A pioneering work in this direction is done by Alpert and Rokhlin in [2] where
a fast transform between Legendre and Chebyshev coefficients is proposed based
on the fast multipole method (FMM). Another approach to compute the connec-
tion between classical orthogonal polynomials or associated functions is based on
the observation that the corresponding connection matrix K can be represented
as a properly scaled semiseparable eigenvector matrix. Employing a divide-and-
conquer algorithm [9] to compute this eigen-decomposition enables us to perform
the matrix-vector product Kf efficiently for any column vector f. This approach
has been used for the transform between associated Legendre functions [30], Gegen-
bauer polynomials [18, 19] and any families of Hermite, Laguerre, and Gegenbauer
polynomials with single parameters [3]. However, there is no efficient extension of
this approach to Jacobi transforms which have two parameters.

Another important category of methods for fast Chebyshev-Legendre transform
is to use asymptotic expansions [29, 26, 16]. A significant advantage of this method-
ology is that it does not require an expensive initialization phase. However, the
approach with asymptotic expansions is somewhat limited to the Legendre case,
and it is typically difficult to generalize to Jacobi polynomials with arbitrary in-
dices. Recently, the asymptotic approach was generalized to the Chebyshev-Jacobi
transform in [35], which also yields fast evaluations of Jacobi expansions at Gauss-
Chebyshev nodes.
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The main goal of this paper is to develop fast algorithms, with nearly linear
complexity after possibly a one-time nearly quadratic-complexity precomputation
step, for Jacobi-Jacobi transforms with arbitrary Jacobi indices. Explicit formulas
are derived for connection matrices of two Jacobi expansions with arbitrary indices.
We show that, if the indices have integer differences, the connection matrices have
banded forms in the promotion case (from lower indices to higher ones) or are
related to certain highly structured forms in the demotion case. These banded or
structured forms can be used to conveniently perform the Jacobi-Jacobi transforms
in O(N) operations. We also show that, when it needs to promote or demote
both indices a and f, it is more desirable to perform the promotion or demotion
simultaneously for both indices, instead of performing one by one. We show how
the simultaneous promotion/demotion is done and demonstrate the saving in the
cost.

If the indices have non-integer differences such as in the Chebyshev-Legendre
transform and more general cases, the connection matrices are dense. We explore
a more general structure that is data sparse. This is based on a so-called low-
rank property of the connection matrices, i.e., their appropriate off-diagonal blocks
have small (numerical) ranks. This property can be verified either analytically or
numerically. For connection matrices in Chebyshev-Legendre transforms, we can
rigorously show an off-diagonal rank pattern by deriving certain expansions of the
relevant generating functions.

A useful feature for matrices with the low-rank property is that they can be ap-
proximated by rank structured matrices such as hierarchically semiseparable (HSS)
forms [8, 48]. The HSS approximations enable us to perform the desired trans-
forms with O(rN) memory and O(rN) flops, where r is the maximum off-diagonal
numerical rank. In particular, for the Chebyshev-Legendre case, the off-diagonal
rank pattern essentially leads to a transform cost of O(N), which is lower than the
O(N log? N/loglog N) cost of the method in [16] based on an asymptotic formula.

The HSS form also has another benefit in the numerical stability. That is, the
numerical errors propagate along a binary tree instead of sequentially. Thus, the
backward error of the matrix-vector multiplication in the transforms is proportional
to log? N and a low-degree term of r [46]. In contrast, direct dense transforms
may suffer from large numerical errors since the backward stability depends on the
condition number which can be very large in some cases.

In Jacobi-spectral methods, one often needs to transform between the coefficients
of the Jacobi expansion to the values at a given set of collocation points. An im-
portant byproduct of the proposed fast Jacobi-Jacobi transform is a fast algorithm
to perform the Jacobi transform between the function values at a set of Chebyshev-
Gauss-type points and coefficients of the Jacobi expansion with arbitrary indices.
More precisely, let f € Py and {z; € [-1,1]}}, be a set of Chebyshev-Gauss-type

points. We need to determine {fna’ﬁ)}ﬁfzo from {f(z;)} or vice versa through

N
(1.3) Fla) =) feD T (a;), 0<j<N.

n=0

To obtain the coefficients of the Jacobi expansion { fr(ta’m}ﬁ’:o from the function

values {f(z;)}}_o, we proceed in two steps:
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e First, obtain the coefficients {f£}2_, of the Chebyshev expansion:

f@) =3 fiT@)
n=0

using the Fast Fourier Transform (FFT) in O(N log N) operations;
e Second, use the proposed Jacobi-Jacobi transform to determine { f,(la”g) W,

from {ff}_, through the identity

N

N
(1.4) f@) =Y faTul@) =Y fioP I P (@), ze-1,1].
n=0

n=0

Conversely, one can determine the function values {f(z;)}_, from the coefficients
of the Jacobi expansion { f,(La’B )}fy:() by reversing the above steps. Thus, the Jacobi
transforms with arbitrary indices can be performed also in nearly linear complexity.

The remaining sections are organized as follows. In Section 2, we derive explicit
recurrence formulas of the connection matrices for Jacobi-Jacobi transforms with
arbitrary indices, and for Jacobi-Jacobi transforms of indices with integer differ-
ences. In Section 3, we explore the low-rank property of the connection matrices.
We describe the algorithms for the proposed fast structured Jacobi-Jacobi trans-
forms in Section 4, and present several numerical experiments in Section 5. Finally,
we present some conclusions and possible directions for future research in the last
section.

We list below some notations used throughout the paper:

P,,: the space of polynomials of degree at most n.

deg(+): the degree of a polynomial.

di,5: the Kronecker delta.

I'(-): Gamma function defined as I'(t) = [;* 2!~ le""da.

(,)w: the inner product with respect to the weight w, e.g., (f,9)w =

1
S f(@)g(@)w(z)dz.
o JiFP )(:1:): Jacobi polynomial of degree n with indices j = (a, §).

o L,(x)= JO0 (z): Legendre polynomial of degree n, or equivalently, Jacobi
polynomial of degree n with indices 1 = (0, 0).

o Th(x)=cp Jr(fl/z’fl/m(x): Chebyshev polynomial (of the first kind) of de-
gree n, which is proportional to Jacobi polynomial of degree n with indices
t =(—1/2,—1/2) (see (2.13) for details).

o Klonf=(az82) o ghi=de with j, = (o, B1) and j, = (as, B2): the con-
nection matrix from {J\**} to {7272y,

o £(@P): the expansion coefficients of a polynomial f(x) in terms of Jacobi
polynomials {J,(La’ﬁ ) }; in particular, f ! means the coefficients of the Legendre
expansion and f* means the coefficients of the Chebyshev expansion.

2. CONNECTION COEFFICIENTS

First, let us recall some basic properties of Jacobi polynomials {JT(LOL’B)(:E)} asso-
ciated with real indices o, § > —1.
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(1) The three-term recurrence relations for Jacobi polynomials {J,(La’ﬁ )(a:)}
read:

a o 1 1
B @) =1 TP @) = gla+ B4 D+ sla—p),
@1) G0 @) = (0D = go?) I (@) TP @), =

where the constants are
Cn+a+p+1)2n+a+3+2)
2ln+(n+a+pL+1)
(@B) _ (B2 -a?)2n+a+B+1)
2n+1)(n+a+B+1)2n+a+6)
iy _ (2t )0t B0+ atf+2)
n n+)n+a++1)2n+a+p)

(2.2) PP =

)

(2.3)

(2.4)

(2) Jacobi polynomials {J,(la’ﬁ)(l')

weights w(®8):
(2.5) (O TP i = Py,

}n=o are orthogonal with respect to their

where
(2.6) w@h) = (1 —z)*(1 +z)?,
200 N (v + k+ 1)T(B+ k+ 1)
(a+B+2k+DET(a+8+k+1)

(2.7) PP =

Definition 2.1. (Connection coefficients) Let J; = {J(a1 Bl)(w) o and Jo =

’ x with deg(Jn =deg(Jp ~’ = n be two sequences of Jacobi
{13772 (@)} with deg(J5™ ™)) = deg(J7 ™)) =n b q f Jacobi
polynomials with respect to inner products (-, -) ,(ay.61) and (-, -}, (az.52) respectively.

The weight functions are defined following (2.6).) Then each J (a1,1) ¢ J1 can be
J

represented as a linear combination of the polynomials {Ji(az”%)}z:o C Jo, ie.,
(alaﬁl Z 172 J(Oéz ﬁz) j=0,1,...,N,

where j; = (a1,01) and j, = (az2,82). Here, the polynomials in J; ( and J2) are
called source (and target) polynomials, and the following matrix is called the matriz
of connection coefficients or connection matriz of degree N from [J; to Ja:

K~ (KhﬂQ)N e RINHDX(N+1)
i i,5=0

The following lemma then immediately follows.

Lemma 2.2. The connection matriz K732 defined in Definition 2.1 is given by

wle2,82)

<Jl(a1»ﬁ1)’ J](Otm[?’z)) <Ji(0t2-ﬂ2)’ J](Oq,ﬁﬂ)

I we2:f2)
vJ (Ji(az’ﬁZ), Ji(a2752)> ,Yi(ozzﬁz)

wl@2,82)

REMARK 1. By the orthogonality, we observe that for ¢ > j, x Jlﬁh = 0, which
means that K972 is an upper triangular matrix.
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With the matrix KJ1 732 in hand, we can handle the so-called connection prob-
lem, i.e., given any polynomial expressed in the basis of one set of orthogonal poly-
nomials, to compute the coefficients with respect to a different set of orthogonal
polynomials. This can be rigorously stated as follows.

Lemma 2.3. Let f(x) € Py, and J1,Jo be the Jacobi polynomial sets given in
Definition 2.1. Consider two expansions of f(z) as follows

N N
(2.8) flo) =" flralenP) @) =Y flagleer) (z).
n=0 n=0

Then the matriz Kjlﬁjf gwen in Lemma 2.2 leads to the transform between two
column vectors £* = (f3)N_ and £12 = (f32)N_, i.e., £12 = K172 01,

Determining these connection coefficients has been studied extensively as a the-
oretical problem [21, 39, 40, 31, 24, 27, 25, 4]. We focus on below two special cases
that are useful in our algorithms, namely, recurrence formulas of Jacobi-Jacobi
transforms with arbitrary indices, and explicit formulas of Jacobi-Jacobi transforms
with indices that have integer differences.

Generally speaking, computing the entries of the connection matrix K defined in
Lemma 2.3 explicitly and then applying it to a vector both require O(N?) storage
and O(N?) operations. In order to obtain fast transforms, we proceed with the
following strategies:

e For the transforms between any two Jacobi expansions with indices close
to each other, we find that the connection matrix K enjoy the low-rank
property and thus can be approximated by a rank structured matrix. The
rank structured approximation can be quickly applied to a vector in linear
complexity.

e For the problem between Jacobi polynomials with integer differences, we
find that either the matrix itself can be written as the product of banded
matrices, or the off-diagonal blocks of the matrix are low rank, which implies
that the Jacobi-Jacobi transforms can be done in linear complexity.

2.1. Jacobi-Jacobi transforms with arbitrary indices. In this subsection, we
consider the transform between the coefficients of two Jacobi expansions with differ-
ent indices, which is a generalization of the forward and backward Chebyshev-Jacobi
transforms (FCJT and BCJT) in (1.4).

Consider two Jacobi expansions for any f(z) € Py shown in (2.8). The connec-
tion matrices K31 792 and K271 satisfy the following relations:

(2.9) i — szﬂjlsz’ fl2 — gi—dapin

Due to the recurrence relation (2.1) and the orthogonal property (2.5), the entries
of these connection coefficients can be obtained by recurrence relations.

Theorem 2.4. (Recurrence formulas for Jacobi-Jacobi transform) The nonzero
entries of K927 and K'*772 in (2.9) can be generated recursively as follows:

jo—J —, —, —, —, —, —, —, —, . .
I{!Z J1:5.112 J1 J2 J1+€Jz J1 J2 J1+€J2 J1 J2 J1+E2 JlK/J2 J1 j>Z7

7,7+1 ’Ljf Ki—1 ,J i+1,7
J1—d2 J1—J2 J1—>J2 172 J1—>Jz 172 J1—>J2 J1—2 J1 i ; :
Kz]Jrl =& z] 1+5J Ki— 1,5 +EJ +E K/H»lj’ -]>Z7
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where the coefficients {SJ'” j"?‘}k:1,2,3,4 with (m,m) = (1,2) or (2,1) are given by
i —ds 0 1=0
Jm =i _ _m Jm =3 _ , ;
€1 - 7'] ’ €2 { m(z)p;n’ i> 1’

ey U = w (Dpf — 4, el T = 2 ()T,
with the parameters {p;, q;,7;} given in (2.2)-(2.4), and

2k(k + am + 5m)

my' (k) = 2k + am + Bm — 1) (2k + am + Bmy
N B — oy

) = BT am ¥ B) @k + G T B 7 2)
- 2(k + am + 1)(k + B + 1)

(k) =

(2k + cm + B + 2)(2k + i + B +3)”
form=12and k=0,1,2,....
Moreover, the starting points of the above recurrence formulas are

Jo—1 =1 Jo—J1 (61 - (11)(0[2 + 62 + 2) _ 62 o)

K , K = ,
6,0 0.1 2(a1 + 1 +2) 2
J2 =i jo—iy _ Q2+ P2 +2
K =0, K ==
Lo L1 oy + B+ 2
Ji1—d2 1 g1 (011 + 61 + 2)(ﬂ2 - 042) 61 — 1
Koo ~ =4, Rop ~ = - ,
2(ag + B2 +2) 2
KJ1_>J2 — 07 H.h_).]z _ ali
o b g+ By +2

Proof. To simplify notation in this proof, denote

Jm = JlamBm) (), W™ = (14 z)% (1 — z)Pm, A = QP

pr = plm ﬁm’ qr = qam,ﬁm T;n — ram,Bm7
where n = 0,1,2,... and m = 1,2. The entries of the matrices K2
(/{J;Q._’jl)N and K372 = (/igl»_)jz)N are

J i,§=0 J i,j=0
1 72 2 71
(2.10) i It gy BT
" 1312 " 12112

respectively. We focus on {ﬁjzﬁh}” o first. Denote & Nhﬁh = (J}, J})ur, then for
jziz1,

’%Ji?;rjll = <J1’ Jy+1>
(L (R — )P — 12T )
= <x‘]ilap?‘]j2>w1_<<]zaqj<]2> _<J Ty J >

isly
2
2
= p_]1[<‘]2+1a‘]]> 1+q1<J11aJ]2> 1+7" <J1 J;)wl] _QJ<J11aJ]2> LTy <‘]17J] 1>
1

_ 2~ J2_)J1 J2_>J1 2 l J2 J1 2 ~Jo—i1
- pl |:p] z+1 +(p]qz 7p7,qj) +p K~ 1j:| 7Tjﬁi,j71’
i
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It follows that

21 20 pl? el o
(211) Jo—i1 _pj’yiJrl j2‘>j1+qui plq] J2“>J1+p.7rlfyl*1 Jo—=d1 .2, J2—01

2= iy K; K iR
g+ pzl,yil +1,5 p% 2J pzl’Yil 1,3 Jig—1
1
Recall that x = %m For i = 0, the formula becomes
(2.12)
2,1 2
szf)jl — 2pjfyl K,jzﬁjl _ pj(al - 61) + q2 K/.iz“’.h _ TQ_K/.izﬁjl j>1.
0,5+1 (041 + +2)’Yé 1j+1 ap + B +2 J 0,5 J70,5-1> =

Besides, for {ﬁg};}j? 2’;‘:07 we just need to interchange the indices 1 and 2 in (2.11)—

(2.12). O

REMARK 2. Thanks to the symmetry property of Jacobi polynomials
T (=) = (~1)" 1P ),

the Jacobi polynomial Jfla’a)(x) (up to a constant, referred to as the Gegenbauer

or ultra-spherical polynomial) is an odd function for odd n and an even function
for even n. Therefore, for the Chebyshev-Jacobi transforms shown in (1.4), we have

ﬁ';j_)(a’a) = f@l(-o-"a)_)t =0 for odd i + j.

Note that the Chebyshev polynomials and Jacobi polynomials with indices t =
(—1/2,-1/2) are proportional to each other, i.e.

F1/2)T(n+1) (19 _
e A g(-1/2,-1/2) VYn=0,1,...
T(n+1/2) " (@), Vn=0.1,
Hence, we can derive, as a special case of Theorem 2.4, the recurrence relation for
the connection matrices between Chebyshev and Jacobi expansions.

Now let us consider the Legendre polynomials L, (z) = J00 (x) as a special case
of Jacobi polynomials with indices 1 = (0, 0).

(2.13) Th(z) =

Corollary 2.5. (Recurrence formulas for Chebyshev-Legendre transforms) The
nonzero entries of the connection coefficients of the backward and forward Chebyshev-
Legendre transforms, ie. K™% = (mijt) and K*7! = (Iif:l) can be obtained

recursively by

pot 2t (Rt + Rt ) — —L gt
3,7+1 2]"’2 1+1,7 i—1,7 ]+ 1 i,j—1
Rt wgt—” , 2i gt ptol
3,7+1 2 +1 i+1,7 2 +1 i—1,7 3,7—17
where
L L B S S NS S
2, 2 2V 2,7 (’L+1/2) 2,

with cg =2 and ¢; =1 for i > 1.

In particular, for Chebyshev-Legendre transforms, explicit formulas are given in
[2].

Lemma 2.6. (Explicit formulas for Chebyshev-Legendre transforms) The explicit
formula for the entries of backward and forward Chebyshev-Legendre transforms,
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ie. K17t = (/{i_jt) and K*71 = (/ﬁjl), respectively, are given by the following:

%[A(%)]z7 o if0=1i<j<mnandj is even,
H%jt— %A(%)A(g—l), if0<i<j<nandi+j is even,
0, otherwise,
1, ifi=j=0,
o) Ry L wo<izg<n
J (j;g(g)l(f_)i)z\ (22 )A (L), if0<i<j<mandi+j is even,
0, otherwise,
where the function A(-) is defined as
I'(z+1/2)
2.14 Az)= —"F—=.
214) G =TeT

REMARK 3. The explicit formula for the entries of connection coeflicients be-
tween Gegenbauer polynomials, which are Jacobi polynomials with indices o = j3,
can be found in [19]. Since it is costly to numerically evaluate the function A(:)
defined above, the recurrence formulas given in Corollary 2.5 and Theorem 2.4 are
usually employed to generate the corresponding connection coefficients (see for in-
stance, [32]). On the other hand, the explicit formulas given in Lemma 2.6 are
useful in analyzing the low-rank property hidden in the matrices K'7% and K*~!
in Section 3.2.

2.2. Jacobi-Jacobi transforms for indices with integer differences. In this
subsection, we consider the connection coefficients between the following Jacobi
expansions with indices of integer differences:

N N
flz) = Z fT(Loz,B)JY(La,B)(I) _ Z f7(Lo¢+1,/3)J7(La+1,ﬁ)(x)

n=0 n=0
N N

_ Z fT(LQ’H+1)Jy(La’ﬁ+1)($) _ Z fy(La+17ﬁ+1)JT(La+1-ﬂ+1)(x).
n=0 n=0

For simplicity, let us denote four cases of Jacobi indices with integer differences as
follows:

uOOZ(avﬁ)y u10:(a+176)3 Up1 = (avﬁ+1)7 uii :(a+]—vﬁ+1)

Then the column vectors of the expansion coefficients above are

fu00 _ (fr(za’B))r]:]:m fuo — (fT(La+1,5))g:0’
£ = (A7), £ = (fe )

First, let us consider the promotion case, i.e., from coefficients of lower indices
to those of higher ones.

Lemma 2.7. (Promotion relation [38]) The Jacobi polynomials with n > 0 satisfy
(1 . $)J7(La+1ﬁ) (l‘) — 6%%5,”)(]78%3)(3;) _ g(()aﬂ’n)Jwg(ilﬂ) (1‘),
(1 +x)Jr(la,ﬁ+1)(x) — géaﬁyn)Jr(loz,B)(x) _._g(()%ﬁy@JSif) (.23),
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where

glosBim) _ 2(n+1) (@pn) _ 2(nt+a+tl) (@pn) _ 2(n+B+1)
0 n+a+p+2 °F m+a+p+2 2 n+a+p+2

Note that all of the coefficients 5((]0"[3’"), fia”ﬁ’n), féa’ﬁ’n) are z-independent,
allowing us to compute these connection coefficients explicitly.

Theorem 2.8. The promotion coefficients K"00 7110 gnd KW007101 jp fUor —
Koo ftoo gpg £ — U0 TH0LEN00 - pegnectively, are bidiagonal matrices as

follows:

u(a,B,O) Via,B,O)

8,1
pleap) g lenbit)
K too—u0 — ,
Vﬁa,ﬁ,Nfl)
pleB:N)
(N41)x (N+1)
u(a,ﬁ,o) Véaﬁﬂ)
8,1
,Lé(a’ﬂ’l) l/éa )
K Woo o1 ,
Véa.ﬂ,N—l)
pleB:N)
(N41)x (N+1)
where
(pi) _ @t BHitl apiy_  BHitl sy atitl
a a+p+2i+1" 1 a+p+2i+3 7?2 a+pB+2i+3

Proof. Similar to the procedure in the proof of Theorem 2.4, we have

T R (L T

Upo—uio __

1, - 1, - 1,
! ||Ji06Jr 5||i(n+1,ﬂ) 'Y?Jr g

- (leBiD) o) _ géaﬁ,z>li(iiﬂ>7 J;“’B)mm,m

- pthe
B By (o, B) ¢(e,B,1)

o ’Yi(a )gga 1)5_ o Jit1 50 5. o (a,B,i)(S_ . V(Oéﬁyi)é_ .
(a+1,8) “J 7(a+1,,3) i+l,j = M i,j 1 i+1,j-

i i

Also, it is easy to see that

,yz(‘lyﬁ)géaﬁ’i)

upgo—uo1 __ % .
Mg T A %ui + = (@

7 7

(a,B,1)
1

a,B) (e, B,
et &

Gip1y o= p P08 5+ S P05,

Finally, the parameters p(®#9) v and Véa’ﬁ ) can be easily computed thanks

to the definitions of {!*¥} in (2.7) and {fj(a’ﬁ’n)} in Lemma 2.7. O

The result above implies that the flops to promote an index by one is about 3N.
Next, we consider promoting both indices (o, ) simultaneously.
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J7(1Q+1’ﬁ+1)}n

Lemma 2.9. (Simultaneous promotion) The relation between { —o and

{JT(LOCﬁ)}n:O is

(1= 2)(1+ ) JHBHD () = AFAm 0B () 4 AgHm 0D () 4 AP gLl (),

where
Newsm) __ Antatl)ntS+1)
! 2n+a+pB+2)2n+a+p+3)
A@Bin) d(n+1)(a—B)
2 2n+a+B+2)2n+a+Lp+4)
(e,m) An+1)(n+2)
AR = -

Cn+a+B+3)2n+a+B+4)
Proof. Applying Lemma 2.7 twice leads to

(L4 @)(1 = @)D = (14 ) (g7 gD gl hm glogan)

_ é—%%ﬂ"l‘lyn)gg@»ﬁy”)(]‘r(za’ﬁ) 4 (€§a1ﬁ+17n)§éa»ﬂyn) _ gé@»[’)""lvn)géaﬁ’”"rl)) Jr(L(ilﬂ)

a,f+1,n) ~(a,8,n+1 «,
g e,

It implies that
)\ga,ﬁm) _ fga,ﬂﬂm)géa,ﬁm)?

)\éa,ﬁm) _ E%a,ﬁﬂ,n)g(()a,ﬁ,n) _ géa,ﬁﬂ,n)féa,ﬁ,nﬂ)

b

«,B,n «, 1,n a,B,n+1
e

By algebraic computations, we can get the expressions for the parameters )\ga’ﬁ ’"),

ASPM and AL, -

Theorem 2.10. The promotion coefficient matriz K"°7™! in the transform

U = KUoTWLRo go g banded upper-triangular matriz with upper bandwidth
2 of the form

Xgaﬂ,t)) 5\5‘1’5’0) 5\:(;1,670)
NCCNSCERY
JUoo—u1n .. .. 5\(%,3»]\]—2)
. . 3

j\gaﬂ,Nfl)

X(a,ﬁ,N)
1 (N41)x(N+1)

where the entries are
s _ (@t Btit1)(atftit2)
' (@+B+2i+D)(atB+2i+2)

3 (0:B2) _ (a=B)a+B+i+2)
’ (@+B+2i+2)(atBt2itd)
A _ _ (a+i+2)(B+i+2)

(a+B+2i+4)(a+B+2i+5)
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Proof. Let us denote K" 7" = (k;'%7™). Then it is easy to see that

<J(a+1,ﬂ+1) J(a,ﬂ)>

1,841
wgo—ui1 w(et+1,64+1)

0] a+1,8+1
[BA |12

wlat1,8+1)
(1—2)(1+ :z:)Ji(UH'1 BH), J;Q’B))wm,ﬁ)
(a+1,6+1)
Vi

wla:B8)

B R Sl e /e U il
B (a+1,6+1)

,B) y (v, B ( ’/3) (aﬂz) (e, ) y (v, B,%)
= 1( )/\g )5, Ly T Az Sinq i+ Lg. ,
o (atlp4l) T (aF1,+1) TitLI (o +LB+1) i+2,j

%

S\E(X’B’i)(;i,j + Xga’ﬁ’i)(si+17j + Xg"“ﬁ’i)(mg,j,

where the parameters Xga’ﬁ’i), S\g"’ﬁ’i), and S\éa’ﬁ’i) can be calculated easily. (I

(e.B)

, where m is a positive integer. If we promote the indices o and 3
separately, then the total cost is about 6mNV flops. However, if we promote them
simultaneously, then the total cost is about 5mN.

REMARK 4. In many cases, we may need the promotion transform from f
to flatm,f+m)

Now, let us consider the demotion case, i.e., from coefficients of higher indices
to those of lower ones. There are two strategies. One is to treat the demotion coef-
ficient matrices as inverses of appropriate promotion coefficient matrices. Another
is to explicitly write the structured forms of the corresponding matrices.

Lemma 2.11. (Demotion relation [38]) The Jacobi polynomials satisfy

(a+1 B) Z I{(a+1 B)—(a, 5)J(a,ﬂ)( ),

« a,f+1 o' a,
TN () = 37 plas T @8) fd) (g

§=0
where

Jatigs _ T+s+1)  2jitatf+DI(G+atf+1)

i Thta+p+2) I'(j+B+1) ’
@BV @B (L qyntd Pntat+l) @itatB+DIG+at+b+1)
finj 'n+a+5+2) MN'j+a+1)

Corollary 2.12. The matrices K"'°7%%° and K" 7" are upper triangular ma-
trices with their upper triangular parts given by those of p;n? and p,n?, respec-
tively, where

_<(2i+a+ﬂ+1)F(i+a+6+1)>N _< Li+B+1) )N
PL= I+ B8+1) o = Fi+a+8+2)),_,

B S(2itatB+D)T(i+a+B+1\ Y B L Tli+a+1) \V
P2 = <(_1) Tli+a+l) )io’ 2= <(_1) F(i—i—a—l—/j—l—?))lo
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To compute the entries in the vectors p;, p,, 1, 15 accurately and efficiently, we
should not evaluate the Gamma function I'(-) repeatedly. Instead, we could make
use of the recurrence relations. For example, for the vector p; = (Pj)i]\ioa we have

I'(a+5+2) 2i+a+B+3)(i+a+p+1)

=T = : i i=0,... N—1.
= TTB T Pit1 QitatBr)itpr1 70!

We can compute py,n, 7, in a similar manner.

REMARK 5. Since K710 and K" 710 correspond to the upper triangular
parts of two rank-1 matrices, they are the so-called semiseparable matrices and are
highly structured. Simple HSS representations can be analytically written down
for these matrices. The demotion case can also be considered in another way. That
is, we can treat K™07100 and KU1 710 a5 inverses of the bidiagonal promotion
coefficient matrices K" 7" and K701 respectively. Thus, the matrix-vector
multiplication involves bidiagonal solution. In either case, the computational cost
for demoting from £+« A*+™s to £98 ig then no more than 3(mq + mg)N flops,
for integers m, and mg.

3. LOW-RANK PROPERTY OF THE CONNECTION MATRICES

In this section, we show that the Jacobi-Jacobi connection matrices given in Sec-
tion 2.1 enjoy a low-rank property, which allows us to construct HSS representations
or approximations for the matrices. The HSS forms are data sparse in the sense
that the dense off-diagonal blocks are in compressed low-rank format. This helps to
significantly reduce the algorithmic complexity and storage, and yields structured
Jacobi-Jacobi transforms that are both efficient and stable. The matrices in Sec-
tion 2.2 are banded or have small off-diagonal ranks. The related transforms can
be conveniently done. The matrices can also be considered as special HSS forms.

Thus, we focus on the connection matrices in Section 2.1 for Jacobi-Jacobi trans-
forms with arbitrary indices. We show that the maximum off-diagonal numerical
ranks 7 of those matrices grow polylogarithmically by numerical verification in Sec-
tion 3.1 and by theoretical analysis in Section 3.2.

3.1. Low-rank property of Jacobi-Jacobi connection matrices: numerical
verification. In order to gain some intuition, let us present the results of a few
numerical experiments on the off-diagonal numerical ranks of the connection ma-
trices K. Each matrix is hierarchically partitioned into lax levels of HSS blocks
[49], which are block rows or columns excluding the diagonal blocks. (See Figure
2 below for an illustration.) At levels I = 0,1,...,lmax (from the root to the leaf
levels), the HSS block rows have row sizes N; and maximum numerical rank r;. For
convenience, suppose the partition is uniform and N; ~ N/2!. We will see that
when [ decreases and N; roughly doubles, ; only increases slightly. r; is said to be
a rank pattern with respect to [ in [48].
We consider (a, 8) in two square regions:
e Q) = [-1,0]? with center t = (—1/2,—1/2), which corresponds to the
Chebyshev-Jacobi case;
o Oy =[a*—1/2,a*+1/2]x[3*—1/2, B*+1/2] with j* := (a*, *) = (3V/3, 7).
In Figure 1, we show the rank patterns r; (versus N;) for the HSS block rows
at level [ of the HSS partition, where the relative tolerance for computing the
numerical ranks is 7 = 1078, and N;___ = 20. Some randomly chosen points j in
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the regions are used for the tests. For comparison purposes, we also plot reference
lines for O(log N;) and O(loglog ;). We can observe that the following.

(1) In all of the three cases, the numerical ranks r; for HSS blocks at level
! increase very slowly, in fact, much slower than O(log N;). Instead, it
roughly follows the pattern of O(loglog N;) in our computation, although
not yet analytically justified.

(2) The numerical rank patterns r; related to two sets of indices («,3) and
(a*, B8*) appear to depend only on the their relative locations, by the com-
parison of the results from €, in Figure 1(c-d) and Q9 in Figure 1(e-f).

3.2. Low-rank property of Chebyshev-Legendre connection matrices: the-
oretical analysis. We then focus on the Chebyshev-Legendre case and show the
low-rank property analytically. The following result is well known and its variations
are frequently used in the FMM (see, e.g., [13]). Here, we make it slightly more
precise for our case.

Lemma 3.1. For a given tolerance € > 0, suppose the entries of an m X n matric
A satisfy the following:

(3.1) Ay =Y fu()gr() + iy, 1<i<m, 1<j<n,
k=1

where r < min(m,n) , |b; ;| <€, and {fi}r_, and {gr},_, are continuous functions
defined on [1,m] and [1,n], respectively. That is, A;; is defined by a function with a
separable approzimation. Then the numerical rank of A with respect to the tolerance
ey/mn is bounded by r.

Proof. The proof is relatively obvious. Eq.(3.1) means that A can be written as
A=FGT + B,
where
F = (fi(i))mxr, G= (gj(i))nxrv B = (bi’j)mxn-
Clearly,
IBll2 < vV'mn|[B|lmax < ev/mn,

where || B||max is the largest entry of the matrix |B|. Thus, the numerical rank of
A with respect to the tolerance ey/mn is at most r. ]

Let us then consider some useful properties of the function A(z) defined in (2.14).

e A(z) decreases with respect to z and is bounded, i.e., for any z > 1,

(3.2) AG+1) <AE) <AQ) =T (g) - g
e [t can be shown that for integer z,
(3.3) zlirglo A(z) =0.
e A(z) has an asymptotic expansion in the following form for any z > 1
[44, 11]:
n—1
(3.4) A(z) = Z amz" YD L E(2),

m=0
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- = -0O(log \}) == =0(log N})
.......... O(loglog Ny) wwnenes O(log log Np))
400 —#— Chebyshev-Legendre e B 400 —#— Chebyshev-Legendre e B

104
O(log Ny))
O(loglog N;)
104
104

(e) K37 (f) K33

Figure 1: Numerical ranks r; of the HSS block rows (of row sizes Ny) at level | of
the hierarchical partition of the (a-b) Chebysheuv-Legendre, (c-d) Chebyshev-Jacobi,
and (e-f) Jacobi-Jacobi connection matrices, where randomly selected indices j =

(o, 8) € Q1 and j = (a, B) € Qg are used for the solid lines in (c-d) and (e-f),
respectively.

15
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where

(3.5) am = (*1)7”%37%/2) (%) , Eu(2) =0z~ (H1/2)),

with B () being the generalized Bernoulli polynomials [28].

The following lemma shows the asymptotic behavior of a., for sufficiently large
m.

Lemma 3.2. The coefficients {a,,} in (3.4) satisfy
lam| = O(m™ 1 (27e)™™), as m — .
Proof. We observe from (3.2) that, for m > 1,

Fm+1/2)  Am) _ 72 1
(36) Tm+UT(1/2)  T(/2) = V& 2

In addition, the first order approximation to the B,(,}L/Q)(l/2) is [23]

2(m!)
ml/2(2m)mT(1/2)

B/ (1/2) =

[cos (g(?) - m)) + O(m_l)} .

By Stirling’s formula, we have

ORI

One can easily draw the conclusion from (3.6) and (3.7). O

REMARK 6. The function A(z) can be computed efficiently by the following way:

e For z < 15, one can compute A(z) directly using the I' function.

e For z > 15, one can compute A(z) via the approximate expansion A(z) ~

5 —m—1/2

Y o OmZ , where the coefficients {a,,}>,_, for z in different inter-
vals are given in double precision in the Appendix of [2].

Lemma 3.3 ([6]). The function z=% with § > 0, z € [1, R] can be approzimated by
a sum of exponentials with r terms, i.e.,

r
Z—9 = Z S; eXp(—tZZ) + En[LR](’Z)a
i=1

where {s;}i_; and {t;}|_, are non-negative real numbers independent of z, and the
error bound is given by

r

2
. . < 346 _ .
(3.8) |Er1,r)(2)] <2777 exp < 10g(8R)>

Moreover, for the same coefficients {si}_, and {tx},_,, the error bound for z €
[1,00) is

(3.9) |Er 1,00y (2)| = max{|E,.7[17R](z)|, R_g} .

Next, we consider the approximation of A(z) by exponential sums.
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Lemma 3.4. The function A(z) defined in (2.14) can be approximated by an r-term
sum of exponentials with respect to a tolerance e€:

(3.10) Az) =D we™ + & pn(2), & (2)] <€
k=1

where {wi}r_; and {vi}_, are non-negative real numbers independent of z, and
for2<z<N,

1 1
(3.11) r=0 <log2 —loglog — logN> .
€ €

Moreover, the r-term approzimation in (3.10) can be extended from z € [2,N] to
z € [2,00) with the error bound

(3.12) |E,.12,00) (2)| < max{e, A(N)}.
Proof. By setting § = m + 1/2 in Lemma 3.3, we have for z € [2, N],

Tm
(3.13) L= (m+1/2) _ Zsmﬁie—tm,iz + Erm,[z,N](Z)y

i=1
where we use the subscript m in 7., $m.i, £y, [2,5) to indicate the dependence on
m, and the error bound is

2
3.14 E <|E < gmtT/2 _ T )
( ) | r7n,[2,N](Z)| = | 7”m7[17N](Z)| = exp log(SN)
By (3.4),
n—1 Tm
A(Z) = Z Am (Z Smﬂ;e*tm,iz + ET'm,[Q,N](Z)) + En(z),
m=0 =1
n—1 rm n—1
=3 amsmie "+ > amEr, po(2) + Ea(2).
m=0 i=1 m=0
Thus, A(z) can be rewritten in the form of (3.10) with
n—1
Ern2,n(2) = Z am By 12.8)(2) + En(2),
m=0
n—1
(3.15) r = Z T
m=0

We choose n and r so that |£.j2 n)(2)] < € in (3.10) holds for any z > 2.
According to (3.5), we can choose n so that

|En(2)] < |En(2)] = 02~ F1/2),
That is,
1
(3.16) S <1og_>.
€

According to (3.14), we can choose r,,, so that

2
|2m /2 __ T ) _ ).
| eXp( gy ) ~ ¢ (n)
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That is,

1
T = O (logN(log |am| + 1og% + m)) =0 <logN(log |am| + log - +logn + m)>

1
=0 <logN(log lam| + logz + n)) .

For sufficiently large m, the estimate in Lemma 3.2 yields
1

(3.17) Tm =0 ((log— + nlogn) logN> .
€

For m that is not very large, a smaller estimate r,, = O((log(1/€) + n)log N) is
obtained since n is the dominate term as compared with log |ay,|.
Combining (3.15), (3.16), and (3.17), we have
ks 1 1 1
r= Z (0] <(log— + nlogn) 10gN> =0 (log2 ~loglog — logN) .
— € € €
Thus, by choosing r in (3.15) to be (3.11), we can ensure that (3.10) holds.
Moreover, by (3.4), (3.9), and the non-negativity of >_!_, wre™"**, we can con-
clude (3.12). O

We are now ready to present the following theorem regarding the Chebyshev-
Legendre connection matrices.

Theorem 3.5. The off-diagonal blocks of the backward and forward Chebyshev-
Legendre transform matrices K'7% = (Hi?t) and Kt = (nf?l) are of low nu-
merical ranks. More precisely, for a given tolerance €, the numerical ranks of the

HSS blocks at level | with row sizes N; are
1 1
r =0 <log4 = log?(log —) log? Nl> ,
€ €
with respect to the tolerance %Ne.

Proof. Since K7 is the inverse of K*7!, we only need to show the off-diagonal
numerical rank bounds for one of them, and the same bounds also apply to the other
case. We focus on A := K'7*. Note that A is upper triangular. We partition A as
in Figure 2 following different levels of hierarchical partition. The HSS block rows
at level [ are denoted by Ag), m =1,2,...,2" — 1. For convenience, assume each
ASL) has row size N;, which is sufficiently large. We will show how the numerical
rank of ASL) depends on N;.

According to Lemma 2.6, each entry of A{) has the form

l
(AD)ij = Bty v, 5o
i=1,2,....N;, j=mN +1,mN; +2,...,N,

and (A;ll))ij can be generated by a scalar multiple of the following function:

318) (o) = (50— n = DN A (G024 n - DN )

where (z,y) € [1,N]] X [mN; + 1, N] C R?. Here, (Aq(—,l,))ij = Loym(i,j) if i =1,
and (AY);; = 2¢ym(i,7) if i > 1. The difference in the scalar for generating the

first row does not impact the study of the rank structure. Also, we exclude the first
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(a) 1-level partition (b) 2-level partition

Figure 2: Two levels of partition of A := K%, where the block rows without the
diagonal subblocks are HSS blocks, as marked in blue color.

column of Aﬁ,l]), which does not impact the rank bound estimate. That is, we just
consider ¢y m(x,y) in (3.18) defined on the domain

Q:=[1,N] x [mN,+2,N] C R
We split  into two subdomains €1 and Qs:
Q= [1,N)] x [mN; + 2, (m + 1)Ny], Qg :=[1, N}] x ((m + 1)N;, NJ.

First consider (z,y) € Q1. It is obvious that, for all m > 1,

2< —(y—z— (m—1)Ny), %(y%—x—k(m—l)Nl)S(m—Fl)Nz < N.

N | =

Let us consider the approximation by sums of exponentials for the case with
m = 1 and then move to the ones with m > 2.

Setting z = 2(y — z) and z = 1(y + 2) in Lemma 3.4 leads to the following
approximations:

1 _

(3.19) A <§(y - 17)) =F (@,9) + & pang
1

(3.20) A (5(2/ + x)) =F (2,9) + £+ pangs

respectively, where

_ C1umN, Lotz —dg-
(3.21) Fi(@y) =Y wye 2% Nezth Pem 2 Y,
k=1
'
e 1t 1.+
(3.22) ]-T(:c,y):z:w;:e 2k Nig=2Ve Te =20 Y
k=1

and the superscripts — and + are added to the constants in (3.10) to distinguish
the two cases.
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Moreover, for a given tolerance €, Lemma 3.4 means that we can choose rlJr and

r; such that
max{r, 7"} = O ( log Zloglogzlog(QNl)
, 1 1
=0 | log® = loglog —log NV; |,
€ €

max {|S7'z+7[272Nl] l, |57';7[272NL]‘} <e

It follows that
1 1
Grm(2,y) = A (i(y - JTNI)) A (5(21/ + le))

(}7(93» y) + 5r;7[27Nl]> (]'T(ﬂﬁ, y) + 5r,+,[2,21vl})

e 5@, &
(3.23) = Z W et e Y + & oy,
k=1
(2)

where the coefficients wk,l,@fj},@k,l are obtained from the coefficients in (3.21)—
(3.22), and

1 1
T = rl_rl+ =0 <log4 - 10g2(log E) log2 Nl> ,

N - 1
ool < max(1ESL 7 mox { A (G- 2)

A(%mx))}

Similarly, if (z,y) € Q1 U € is considered, the functions A((y — z)) and
A(3(y + x)) can also be approximated by the exponential sums F;" (z,y) in (3.21)
and F; (z,y) in (3.22), respectively. (Notice that w; , v, ,w;, v from Lemma 3.4
do not depend on z,y.) In the meantime, 1(y — z) and 3(y + z) are both greater

) 3
than N; on Q9. Thus, the bound (3.12) in Lemma 3.4 indicates

A <%(y - x)) — F (=, y)‘ < max {¢e, A(N1)},

<eA(l) = ge <.

(3.24) |5rl—,[2,oo)\ =

(3:25) 16+ oyl = ’A <%(y + x)) ~FHa, y)’ < max {e, A(N))} .

By (3.3), we have A(N;) < e for sufficiently large N;. Thus, the errors above are
bounded by e.

In addition, for the cases with m > 2, we can still use the approximation by the
exponential sums F;" (z,y), F; (z,y) shown in (3.21) and (3.22), respectively,

(3.26) A <%(y —z—(m— 1)Nl)> =F (z,y) + &1 2,000

1
(3.27) A <§(y +x+ (m-— 1)Nl)) = fl+(x, y) + Erf,[z,ooy
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where (z,y) € Q, and gr[,[2,oo) and ETL+7[2700) are estimated in (3.24) and (3.25).
Therefore, the function ¢y, (z,y) that generates AS,lL) has a separable approx-

imation as in (3.23) with the error bounded by e. According to Lemma 3.1, the
numerical rank of the HSS block Aﬁ) is then r; with respect to the tolerance

ey/Ni(N — N;) < 3 Ne. O

The result above rigorously establishes the low-rank property for the transform
matrices of the Chebyshev-Legendre case. The rank bound may be highly over-
estimating since the numerical ranks shown in Figure 1(a-b) behave roughly like
O(loglog N;). For more general Chebyshev-Jacobi and Jacobi-Jacobi cases, it is
difficult to rigorously prove their low-rank property due to the lack of explicit gen-
erating functions for the connection matrices. However, we showed numerically in
Figure 1(c-f) that they also enjoy the low-rank property.

With the level-dependent rank pattern as in Theorem 3.5, the cost to multiply
the corresponding HSS matrix approximation with a vector can be shown to be
O(N) [48], instead of the conservative estimate based on a uniform rank bound.
The storage is also O(N). In fact, with the rank pattern in Theorem 3.5, the HSS
matrix-vector multiplication cost is

limax O(log N)

Y 2oet) = Y 2'0(log*(N/2") = O(N).
=1

=1

The detailed HSS matrix-vector multiplication algorithm can be found in [8, 46].

4. FAST STRUCTURED JACOBI-JACOBI TRANSFORMS

In this section, we present our fast structured Jacobi-Jacobi transforms (FSJJT)
and fast structured Jacobi transforms (FSJT). The studies of the low-rank in the
previous section mean that HSS representations or approximations can be computed
for the connection matrices.

For the case where the differences in the indices are integers, the connection
matrices are banded or highly structured with analytical HSS forms. When the
differences in the indices are not integers, a one-time HSS construction is needed.
There are two popular ways to construct such an HSS form: direct block compres-
sion [49] and randomized sampling [50]. If the maximum off-diagonal numerical
rank is r, the constructions cost O(rN?) flops. For cases like in Theorem 3.5,
r = O(log2 N). Here, since our main purpose is to compute Jacobi-Jacobi trans-
forms, to ensure stability, we spend a one-time cost in the precomputation stage to
construct the HSS approximation based on the method in [49]. The method uses
rank-revealing factorizations to compress the off-diagonal blocks, which is known
to usually yield nearly optimal low-rank approximations. The resulting HSS form
can be used to compute matrix-vector multiplications with superior efficiency and
stability. The cost to multiply the HSS form and a vector is O(rN) or lower.

4.1. Fast structured Jacobi-Jacobi transforms (FSJJT). We consider the
following forward FSJJT: (@252 — gh—=dp(@08) yhere i = (a1, 5), jo =
(v, B2). Let mgy = ag —ay, mg = P2 — B be the difference parameters. Depending
on m, and mg, our algorithm works as follows.
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o Both m, and mg are positive integers. We can quickly perform the integer
promotion with linear cost based on Theorem 2.8. The algorithm has two
steps:

(1) Initialization. Compute the vectors as in Theorem 2.8 that define
the bidiagonal matrices

KtiB) (e tit8)  pelas i) (a fititl)

(2) Multiplication. Promote the index from oy to ay while fixing §; via
bidiagonal multiplication:

me—1

flaz.p1) — H K (eatifr)=(aa+it1,81) plen,f1)
1=0

Promote the index from (7 to B2 while fixing as via bidiagonal multi-

plication:
mﬁfl
flaz,B2) H K (e2:81+8) = (a2, f1+i+1) p(a2,81)
=0

The total cost is about 3(mq+mg)N flops. This can be further reduced
when simultaneous promotion as in Theorem 2.10 is used.
o Both m, and mg are integers, with one or both negative.

(1) Initialization. Following Remark 5, get the HSS representations
based on Corollary 2.12 (for multiplications), or the bidiagonal ma-
trices based on Theorem 2.8 (for solutions).

(2) Multiplication. Then perform the transform via fast HSS matrix-
vector multiplications or bidiagonal solutions.

The total cost is O((ma +mg)N) flops.
o mq, mg € (—1,1).

(1) Initialization. Compute an HSS approximation to K31732 via direct
or randomized HSS construction in a precomputation.

(2) Multiplication. Then perform fast HSS matrix-vector multiplica-
tions for the corresponding transform.

After the one-time HSS construction, the multiplication cost is at most
O(rN), where r is the maximum numerical rank of the HSS blocks.
e Other cases. For a general difference parameter, we can split it into the
sum of an integer and a number in (—1,1). This can then be handled by
combining the procedures above.

4.2. Fast structured Jacobi transforms (FSJT). We now consider the fast
structured Jacobi transform (FSJT) between function values f© at Chebyshev-
Gauss-type points and expansion coefficients f (@8) of Jacobi polynomials with any
indices «a, (:

(4.1) £0 PCL gt FEOUT p(af)

where f* is the vector of Chebyshev expansion coefficients as mentioned at the end
of Section 1, DCT means discrete cosine transform which can be done in O(log N)
operations, and FSCJT denotes the fast structured Chebyshev-Jacobi transform
which is a special case of FSJJT. The algorithm also has two steps:
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(1) Initialization. Given the function values £, perform the forward Cheby-
shev transform to obtain the expansion coefficients f*, and compute an HSS
representation/approximation for Chebyshev-Jacobi transform.

(2) Multiplication. Perform the forward FSCJT £(®#) = Kt(@Aft ysing
fast HSS matrix-vector multiplications.

Some additional remarks are in order.

e The initialization stage of the above algorithms has O((mq +mg)N) com-
plexity if m, and mg are integers. Otherwise, a one-time precomputation
(HSS construction) of cost O(rN?) is used.

o According to Remark 4, for the integer parameters m, and mg satisfying,
say, mq < mg, we should first promote the indices «, § simultaneously, and
then promote the index 3, i.e., f(®#) — flatmaftma) _ platma,ftma)

e Our method works for more general Jacobi transforms than the method by
Hale and Townsend in [16] based on an asymptotic formula. In this special
case, the method in [16] costs O(N log? N/loglog N), and our method costs
O(N) after the one-time HSS construction.

e In the direct Jacobi transform (1.1), the matrix J@%) = (Jéa’ﬁ)(xj) 71:/;:10
generally does not have the low-rank property. However, by emploifing
the Chebyshev transform as the intermediate step as in (4.1), we can take
advantage of the low-rank property of the connection matrices K t=(5)
and K(@# 7% and obtain FSJT together with FFT.

e HSS multiplication has superior stability, as shown in [46, 47]. In fact, the
backward error only depends on log? N and a low-degree term of r. In
comparison, in standard dense matrix-vector multiplication, the backward
error depends on the condition number of the matrix.

5. NUMERICAL EXPERIMENTS

We now present some numerical experiments to illustrate the efficiency and ac-
curacy of our fast structured transforms. When HSS constructions are needed for
a matrix A in the tests, a relative tolerance 7 = 107!2 is used, and the finest level
HSS block row size is about 40.

First, let us start with the Chebyshev-Legendre transform. We test these meth-
ods:

e FSCLT: our proposed fast structured Chebyshev-Legendre transform;

e CLTAF: the O(N log® N/loglog N) complexity method in [16] (which can
apply in this special case);

e Direct: the direct Chebyshev-Legendre transform.

In FSCLT, a connection matrix K is approximated by an HSS form in a precom-
putation stage.

We perform the forward and backward Chebyshev-Legendre transforms with
the three methods. The flop counts are given in Figure 3, together with reference
lines for O(N?), O(N log? N/loglog N), and O(N). The results roughly follow the
estimates. When N increases, both FSCLT and CLTAF are much faster than Direct.
Besides, FSCLT also has a significant advantage over CLTAF for large NV, and both
methods achieve comparable accuracies. See Table 1.



24 JIE SHEN, YINGWEI WANG, AND JIANLIN XIA

—e-Direct 10 10 [ |—e=Direct

10 10
CLTAF CLTAF
g [ [-#+=FSCLT g [ [-#+=FSCLT
1077 ... O(N?) 1077 ... O(N?)
g | [—— O log*(N)/log(log(N))) 8 N log*(N)/ log(log(N)))
108112 o) 10
2] 4 2]
8§ .7 8§ .7
o 10 o 10
108 108
10° 10°
104 104
10" 102 10° 10* 10° 10" 102 10° 104 10°
N N
(a) Kt%l (b) Kl%t

Figure 3: Flops of Chebyshev-Legendre transforms.

Table 1: Accuracies of FSCLT and CLTAF for Chebyshev-Legendre transforms of
random vectors.

Kt—>l Kl—)t

N FSCLT CLTAF FSCLT CLTAF
160 6.1466e-14 1.5815e-14 4.3208e-14 2.1671e-14
320 2.7861e-13 3.1610e-14 3.0375e-13 1.5178e-13
640 2.2266e-13 2.7652e-14 3.0139e-13 8.5224e-13
1280 1.7845e-13 5.3438e-14 5.7378e-13 7.1993e-13
2560 2.2830e-13 9.9047e-14 1.5104e-12 1.3362e-11
5120 4.1844e-13 1.1875e-13 1.2649e-12 1.3817e-11

Our proposed FSCLT also applies to more general Jacobi-Jacobi transforms than
CLTAF. For example, we show the numerical results for the Chebyshev-Jacobi trans-
form with («, 8) = (—g, 7) in Figure 4(a-b) and the Jacobi-Jacobi transform be-
tween (ay,f1) = (2,1) and (az, f2) = (3v/3,7) in Figure 4(c-d). We can observe
that the costs of our proposed fast structured transforms are nearly linear in N.

Next, we demonstrate the benefit of numerical stability of the fast transform
method. For relatively large o and/or 3, a straightforward Jacobi transform based
on the explicit evaluation of the connection matrices as in Lemma 2.2 may have
numerical stability issues due to the large values of JieP )(:tl) as n increases. On
the other hand, our structured transform has nice stability as mentioned before.
To illustrate this, we perform a forward transform followed by a backward one as
in K (@2:02)=(a1,f1) pelea,fi) = (a2,82) (@181 and measure the error

HK(azﬂz)—%al-ﬁ1)K(0t1,51)—>(042752)f(041,51) _ f(al,ﬁl)”

€]

where the norm is the Jacobi weighted norm

N
(5.1) [Pl =\ DoA™,

n=0
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Figure 4: Flops of (a-b) Chebyshev-Jacobi transforms and (c-d) Jacobi-Jacobi trans-
forms.

with ’y,(ca’ﬁ) defined in (2.7).

Since we are usually interested in Jacobi transforms of functions with certain
smoothness, i.e., with decaying Jacobi coefficients, we take random vectors f ()
and scale their entries so that they decay like: n=1, n=1-5, n=65 or exp(—36n/N).
We perform three different transforms (i) Chebyshev-Legendre transform ((«, 8) =
(0,0)); (ii) Chebyshev-Jacobi transform with small indices ((o, 8) = (fg, )
(iii) Chebyshev-Jacobi transform with large indices ((a, 8) = (10v/3,107)). As
discussed in Section 4.1, the case (iii) can be split into two steps: the first one
is the Chebyshev-Jacobi transform with indices (@, 3) = (10v/3 — 17,107 — 31) =~
(0.32,0.42), and the second one is the Jacobi-Jacobi transform with integer differ-
ences (m, = 17, mg = 31) between (o, 3) and (@, 3).

The results are shown in Figure 5. Nice accuracies are observed. For some cases,
the errors only slightly increase with the matrix size. This indicates the stability
of our fast structured transform, even with respect to relatively large o and/or 3.

6. CONCLUDING REMARKS

In this paper, we developed efficient and robust algorithms for Jacobi-Jacobi
transforms with arbitrary indices. To achieve this, we derived explicit formulas
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Figure 5: Stability test for (a-b) Chebyshev-Legendre transforms, (c-d) Chebyshev-

Jacobi transforms with (o, ) = (— ), and (e-f) Chebyshev-Jacobi transforms
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for the connection matrices between two Jacobi polynomials with different indices,
and then showed that these matrices have the low-rank property. After a possibly
one-time HSS construction cost, the Jacobi-Jacobi transforms can be accomplished
in nearly linear complexity, which is verified ether analytically or numerically.

An important byproduct of the proposed fast Jacobi-Jacobi transform is a fast al-
gorithm to perform the transform between the function values at a set of Chebyshev-
Gauss-type points and coefficients of the Jacobi expansion with arbitrary indices.
Numerical results indicate that our algorithm achieves the desired complexity, and
is numerically stable for Jacobi transforms with relatively large indices.

It is apparent that the main techniques and strategies developed in this paper
can be applied to many other situations. Indeed, we are currently working on the
following situations:

e The strategy of fast structured Jacobi-Jacobi transforms can be used to
develop fast transforms between the family of generalized Laguerre polyno-
mials.

e A more difficult problem is to construct a fast spherical harmonic transform.
Many attempts have been made in this regard [30, 45, 37, 36], but they
are still not fully satisfactory. The main difficulty, as compared with the
Jacobi case, is that the spherical harmonic expansion involves associated
Legendre polynomials with a full range of indices, rather than a fixed index.
It is hopeful that, by exploring the relations between associated Legendre
polynomials and Chebyshev polynomials, one can construct a robust and
fast structured spherical harmonic transform.

REFERENCES

1. H. Alici and J. Shen, Highly accurate pseudospectral approximations of the prolate spheroidal
wave equation for any bandwidth parameter and zonal wavenumber, J. Sci. Comput. 71 (2017),
804-821.

2. B. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions, STAM
Journal on Scientific and Statistical Computing 12 (1991), no. 1, 158-179.

3. T. Bella and J. Reis, The spectral connection matriz for classical orthogonal polynomials of
a single parameter, Linear Algebra and its Applications 458 (2014), 161-182.

4. T. Bella and J. Reis, The spectral connection matriz for any change of basis within the
classical real orthogonal polynomials, Mathematics 3 (2015), no. 2, 382-397.

5. J. P. Boyd, Algorithm 840: computation of grid points, quadrature weights and derivatives
for spectral element methods using prolate spheroidal wave functions—prolate elements, ACM
Transactions on Mathematical Software (TOMS) 31 (2005), no. 1, 149-165.

6. D. Braess and W. Hackbusch, On the efficient computation of high-dimensional integrals and
the approrimation by exponential sums, Multiscale, nonlinear and adaptive approximation,
Springer, 2009, pp. 39-74.

7. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods: Fundamentals
in single domains, Springer-Verlag, Berlin-Heidelberg, 2006.

8. S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast decomposition solver for hierar-
chically semiseparable representations, SIAM J. Matrix. Anal. Appl. 28 (2006), 603-622.

9. S. Chandrasekaran and M. Gu, A divide-and-conquer algorithm for the eigendecomposition
of symmetric block-diagonal plus semiseparable matrices, Numerische Mathematik 96 (2004),
no. 4, 723-731.

10. M. Dubiner, Spectral methods on triangles and other domains, Journal of Scientific Computing
6 (1991), no. 4, 345-390.

11. C. L. Frenzen, Error bounds for asymptotic expansions of the ratio of two gamma functions,
SIAM journal on mathematical analysis 18 (1987), no. 3, 890-896.

12. D. Gottlieb and C. Shu, On the Gibbs phenomenon and its resolution, SIAM Review 39
(1997), no. 4, 644-668.



28

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

JIE SHEN, YINGWEI WANG, AND JIANLIN XIA

L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Compu-
tational Physics 185 (1997), no. 2, 280-292.

B.-Y. Guo, Jacobi approximations in certain Hilbert spaces and their applications to singular
differential equations, Journal of Mathematical Analysis and Applications 243 (2000), no. 2,
373-408.

B.-Y. Guo and L.-L. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev
spaces, Journal of Approximation Theory 128 (2004), no. 1, 1-41.

N. Hale and A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using an
asymptotic formula, SIAM Journal on Scientific Computing 36 (2014), no. 1, A148-A167.
G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for CFD, second ed.,
Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.
J. Keiner, Gegenbauer polynomials and semiseparable matrices, Electronic Transactions on
Numerical Analysis 30 (2007), 26-53.

, Computing with expansions in Gegenbauer polynomials, SIAM Journal on Scientific
Computing 31 (2009), no. 3, 2151-2171.

T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and
applications of special functions (1975), 435-495.

S. Lewanowicz, Quick construction of recurrence relations for the Jacobi coefficients, Journal
of Computational and Applied Mathematics 43 (1992), no. 3, 355-372.

H. Li and J. Shen, Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial
approzimations on the triangle, Mathematics of Computation 79 (2010), no. 271, 1621-1646.
J. L. Lépez and N. M. Temme, Large degree asymptotics of generalized Bernoulli and Fuler
polynomials, Journal of Mathematical Analysis and Applications 363 (2010), no. 1, 197-208.
P. Maroni and Z. da Rocha, Connection coefficients between orthogonal polynomials and the
canonical sequence: an approach based on symbolic computation, Numerical Algorithms 47
(2008), no. 3, 291-314.

, Connection coefficients for orthogonal polynomials: symbolic computations, verifi-
cations and demonstrations in the Mathematica language, Numerical Algorithms 63 (2013),
no. 3, 507-520.

A. Mori, R. Suda, and M. Sugihara, An improvement on Orszag’s fast algorithm for Legendre
polynomial transform, Transactions of the Information Processing Society of Japan 40 (1999),
no. 9, 3612-3615.

A. Narayan and J. S Hesthaven, Computation of connection coefficients and measure modifi-
cations for orthogonal polynomials, BIT Numerical Mathematics 52 (2012), no. 2, 457-483.
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of
Mathematical Functions, Cambridge University Press, New York, NY, 2010.

S. A. Orszag, Fast eigenfunction transforms, Science and Computers, Adv. Math. Supplemen-
tary Studies (G. C. Rota, ed.), vol. 10, Academic Press, New York, USA, 1986, pp. 23-30.
V. Rokhlin and M. Tygert, Fast algorithms for spherical harmonic expansions, STAM Journal
on Scientific Computing 27 (2006), no. 6, 1903-1928.

A. Ronveaux, A. Zarzo, and E. Godoy, Recurrence relations for connection coefficients between
two families of orthogonal polynomials, Journal of Computational and Applied Mathematics
62 (1995), no. 1, 67-73.

J. Shen, Effcient Chebyshev-Legendre Galerkin methods for elliptic problems, Proceedings of
ICOSAHOM’95 34 (1996), 233-239.

J. Shen, T. Tang, and L.-L. Wang, Spectral methods: Algorithms, analysis and applications,
Springer Series in Computational Mathematics, no. 41, Springer-Verlag, Berlin-Heidelberg,
2011.

J. Shen and Y. Wang, Miintz-Galerkin methods and applications to mized Dirichlet-Neumann
boundary value problems, SIAM Journal on Scientific Computing 38 (2016), no. 4, A2357—
A2381.

Richard Mikaél Slevinsky, On the use of hahn’s asymptotic formula and stabilized recurrence
for a fast, simple and stable chebyshev—jacobi transform, IMA Journal of Numerical Analysis
(2017), drw070.

R. Suda and M. Takami, A fast spherical harmonics transform algorithm, Mathematics of
Computation 71 (2002), no. 238, 703-715.

P. N. Swarztrauber and W. F. Spotz, Generalized discrete spherical harmonic transforms,
Journal of Computational Physics 159 (2000), no. 2, 213 — 230.




38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

FAST STRUCTURED JACOBI-JACOBI TRANSFORMS 29

Gébor Szegd, Orthogonal polynomials, 4th ed., AMS Colloquium Publications 23, vol. 23,
American Mathematical Society, Providence, RI, 1975.

R. Szwarc, Connection coefficients of orthogonal polynomials, Canad. Math. Bull. 35 (1992),
no. 4, 548-556.

, Connection coefficients of orthogonal polynomials with applications to classical or-
thogonal polynomials, Contemp. Math. 183 (1995), 341-346.

D. Tchiotsop, D. Wolf, V. Louis-Dorr, and R. Husson, ECG data compression using Jacobi
polynomials, Proceedings of the 29th Annual International Conference of the IEEE EMBS
(Lyon France), 2007, pp. 1863-1867.

N. M. Temme, Special functions: An introduction to the classical functions of mathematical
physics, John Wiley & Sons, Inc., New York, 1996.

Alex Townsend, Marcus Webb, and Sheehan Olver, Fast polynomial transforms based on
toeplitz and hankel matrices, Math. Comp. (2017), to appear.

F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma functions,
Pacific J. Math 1 (1951), no. 1, 133-142.

M. Tygert, Fast algorithms for spherical harmonic expansions II, Journal of Computational
Physics 227 (2008), no. 8, 4260-4279.

Y. Xi and J. Xia, On the stability of some hierarchical rank structured matriz algorithms,
SIAM J. Matrix Anal. Appl. 37 (2016), 1279-1303.

Y. Xi, J. Xija, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for
toeplitz least squares via randomized sampling, STAM J. Matrix. Anal. Appl. 35 (2014), 44—
72.

J. Xia, On the complezity of some hierarchical structured matriz algorithms, STAM J. Matrix
Anal. Appl. 33 (2012), 388-410.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisepa-
rable matrices, Numer. Linear Algebra Appl. 17 (2010), 953-976.

J. Xia, Y. Xi, and M. Gu, A superfast structured solver for toeplitz linear systems via ran-
domized sampling, SIAM J. Matrix. Anal. Appl. 33 (2012), 837-858.

D. Xiu and G. E. Karniadakis, Supersensitivity due to uncertain boundary conditions, Inter-
national Journal for Numerical Methods in Engineering 61 (2004), no. 12, 2114-2138.

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907
E-mail address: shen7@purdue.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WI 53706
E-mail address: wywshtjOgmail.com

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907
E-mail address: xiaj@purdue.edu



