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For an accurate modeling of natural rainbows, it is necessary to take into account the flattened shape of falling rain-
drops. Larger drops do also oscillate, and their axes exhibit tilt angles with respect to the vertical. In this paper, I will
discuss two rare rainbow phenomena that are influenced by these effects: bright spots belonging to various rain-
bow orders, but appearing at remarkable angular distances from their traditional locations, as well as triple-split
primary rainbows. While the former have not been observed in nature so far, the latter have been documented in a
few photographs. This paper presents simulations based on natural drop size distributions using both a geometric

optical model, as well as numerically calculated Mébius shifts applied to Debye series data.
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1. INTRODUCTION

Many of the well-known physical theories for the rainbow, or,
more precisely, the whole sequence of multiple rainbow orders,
hinge on the assumption that raindrops possess an exactly
spherical shape. This includes geometric optics (Descartes),
early wave optics (Young, Airy), and classical electrodynamics
(Lorenz—Mie scattering and its decomposition into the Debye
series, as well as complex angular momentum theory) [1].
However, falling raindrops are never truly spherical in shape,
due to the interplay of surface tension, gravity, aerodynamic
drag, internal circulation, and, if present, strong electrostatic
fields. While quantitative measurements and modeling of these
effects became possible only a few decades ago, the general
observation that drops become flattened as they fall found its
way into a few rainbow explanations surprisingly early, dating
back to Maurolico (1553) and Marcus Marci (1648), both
aiming at the reconciliation of their (wrong) theories with the
observed angular size of the rainbow [2]. Later, Venturi (1814)
discussed drops whose degree of oblateness increased with their
size as an explanation for the then still enigmatic supernumerary
arcs. While the competing wave-optical model became more
and more accepted in the ensuing decades, Venturi had effec-
tively provided the modern explanation for twinned rainbows
(3].
In 1907, Mabius showed that for nearly spherical drops,
the dominant effect is a mere shift of the rainbows, including
their supernumerary pattern, to a different scattering angle [4].
This shift concept proved to be a useful starting point for the
exploration of details in natural rainbow displays, such as the
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visibility of supernumeraries in broad drop size distributions
(DSDs) [5,6]. Consequently, the original Mébius formula, a
first-order expansion in the drop ellipticity valid for the pri-
mary rainbow’s top only, was generalized to account for all
scattering azimuths (clock angles) around the primary and
secondary rainbows’ circumferences [7], and also higher-order
rainbows [3]. Furthermore, also more advanced shape models
that provide a better fit to natural drops can successfully be dealt
with within the framework of such Mébius shifts [8], though
for simulations, extensive lookup tables have to be created by
numerical ray tracing beforehand [9,10]. However, even for the
most accurate model shapes and low overall deformations, the
Mébius shift still remains only an approximation. Deviations
from it, manifesting as variations in the supernumerary spacing,
have been calculated and measured [11,12].

A qualitatively different situation arises when the deviations
from a sphere become more pronounced, which in natural
rainfall happens for larger drops. Then, width and intensity of
the respective rainbows (especially the higher orders) can vary
strongly, and their position is changed so drastically that refer-
encing to the spherical drops’ rainbows in terms of a shift is not
meaningful anymore. Moreover, additional and disjoint caustic
features apart from the traditional fold caustic will appear. These
are of fundamental interest as examples for optical catastrophe
theory and have been studied in various single-drop laboratory
experiments [13—17]. Another example is the “90° rainbow”
identified in scattering calculations [18,19]. However, as of
now there are no clear reports of such unusual bright spots or
arcs at unexpected locations in natural rainbow displays. This is
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caused by the inherent width of typical DSDs, which encompass
considerable amounts of raindrops in a large range of sizes and,
asa consequence, a large range of different shapes.

In order to check if any such natural superpositions of caustic
features from distorted drops can become visible against the
background in the field, it is thus necessary to simulate rain-
bows of multiple orders using broad DSDs that also contain a
significant amount of larger drops (sphere-equivalent radius
> & 0.8 mm). Thereby, effects that are stable with respect to
natural drop shape variations can be identified. As it turns out,
such “stable superpositions” do indeed exist, and they take the
appearance of bright spots in the Sun’s vertical at considerable
angular distances from the traditional locations of the corre-
sponding rainbow orders. Furthermore, it is well known that
larger raindrops are prone to shape oscillations. The mechanical
theory of drop oscillations is worked out to a high degree; how-
ever, the question which oscillation modes dominate for which
drop size in natural rain is still under debate [20]. In fact, rain-
bow scattering has been used as an optical tool for determining
oscillation frequencies and modes [21,22]. The main difference
between such single-drop experiments and natural rainbows is,
however, that in the former the effect of individual elongation
states on the rainbow-scattered light can be monitored, either by
temporally resolving the drop as it falls [23], or by streak photog-
raphy [8,21,22]. For natural bows, only the spatial and temporal
average over many drops and usual exposure times matters for
the overall impression, though occasionally individual oscilla-
tion streaks from nearby drops can be photographed in sunlight
(see [24], Section 1). For the simulations, I will assume that the
oscillations have random phases, though it is also possible that
sudden changes in the electrostatic field (lightning) or sound
waves (thunder) can synchronize drop oscillations for some
time. There are, in fact, very few older observations of thunder
influencing rainbows [8], but I am not aware of any modern
records of such phenomena.

Drop oscillations can also be responsible for the very rare
primary rainbows, which split up into three branches, a situa-
tion that is clearly distinct from a pattern of supernumerary arcs
and at first glance seems to be a more extreme case of rainbow
twinning. A few of these have been photographed in past years,
and their analysis reveals that one of the branches extends into
Alexander’s dark band [25-28]. This is the opposite direction
of the usual Mébius shift, and can only be accounted for by
improbably high deviations of the drop axes from the vertical,
or elongated drop shapes. Drops may become elongated due to
electrostatic fields that might be present under thunderstorm
clouds [29], or, as will be discussed here, elongated states exist
temporarily during the course of axisymmetric oscillations.

Finally, it has to be taken into account that the raindrops’ axes
will not be oriented strictly vertically, but exhibit a statistical
distribution of finite width similar to the axes of ice crystals in
halo phenomena [30]. Experimental data for the (likely also
size-dependent) distribution of axis tilt angles is only scarcely
available [31,32]. Nonetheless, the effect of these tilts on the
bright spots and triple-split rainbows will also be discussed.
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2. THEORETICAL BACKGROUND
A. Simulation Methods

Over the past few years, several studies have addressed the
problem of true color simulations of rainbows [33-36]. In this
paper, I will use two simulation methods: 1) geometric optic
ray tracing, taking into account polarization but neglecting
interference (GO), and 2) applying Mébius shifts to intensity
data for various rainbow orders calculated using the Debye
series, i.e., the electrodynamic solution of the scattering prob-
lem for spheres. The use of shifts for all clock angles around
the full circumference of the rainbow, and the extension
of the concept to orders higher than the primary, was pio-
neered by Kénnen [7]. Therefore, I will refer to this method as
Debye-Mobius—Kénnen (DMK).

These methods represent complementary approximation
domains. GO is robust with respect to drop shapes, but is not
able to reproduce supernumerary bows. The main obstacle
for the inclusion of interference effects are phase shifts that
occur when rays pass focal lines. This effect has been studied
for spherical drops in great detail [37,38], but there seems to
be no simple method to determine the location of focal lines
in distorted drops. DMK, on the other hand, will give proper
supernumeraries, but is limited to small shape deviations from
the spherical reference. Both methods are discussed in more
detail in a previous publication, which mainly addressed polari-
zation effects and higher order rainbow twinning [10,39]. As
in the earlier simulation study, I will neglect effects from the
scattering geometry and multiscattering [34,40], allowing one
to interpret the properly summed scattering outputs of single
model drops as the rainbows seen by an observer or camera.
The spectrum of the high Sun is used for all calculations, as well
as the spectral response of a Pentax K-5 camera for color space
mapping. The Sun’s angular diameter is set to 0.54°. I will also
concentrate exclusively on the resulting intensity sum as seen by
apolarization insensitive detector here.

For the purpose of this paper, I extended the GO calculations
up to seven internal reflections in the modeled drop, as, apart
from observations up to the first five rainbow orders, there is
also a report on the possible detection of the seventh order in
nature [41]. Moreover, scattering features belonging to the sixth
order might become intensified to a degree that allows their
detection against the primary’s background [13], though this
is not to be expected for spherical drops [42]. Rather bright
sixth-order caustics from single drops, deformed by their own
weight when resting on ultrahydrophobic supports, have indeed
been observed [17]. DMK simulations are carried out for the
primary and secondary rainbows in a limited drop size range
only, as they are used exclusively for the discussion of the specific
phenomenon of triple-split bows. In order to match the statistic
distributions of oscillation phases and tilt angles, at each simula-
tion pixel individual pseudo-random values for these parameters
were generated according to the respective probability density.
To smoothen the final results, several (typically 16) of these
Monte Carlo simulation runs were subsequently averaged.
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B. Equilibrium Drop Shapes

A variety of models has been proposed to describe the equilib-
rium (i.e., nonoscillating) shape of falling raindrops. The first
logical step away from spheres are oblate spheroids, as origi-
nally treated by Mébius (though not in the context of actual
raindrops), and numerous subsequent studies. They bear the
advantage of allowing one to derive analytic approximations for
the Mébius shift [3,4], and even exact electrodynamic solutions
of the scattering problem [43,44]. I will refer to this model as
“1S” (one spheroid). In order to account for the observed asym-
metry between the upper and the lower parts of the drop, this
model can be modified by assigning different degrees of oblate-
ness to these parts (“2HS” = two half-spheroids) [9,10,45,46].
A further refinement is possible by dividing the lower part again
into two spheroids, one with a shifted center (“3PS” = three
partial spheroids) [17]. Alternatively, the center distance 7o of
the drop’s outline in an arbitrary vertical cut through the center
can be expanded into a cosine series of the polar angle ¥ [47]

ro (B) =ag - (l—l—fcn-cos (7’1'(7'[—19))> . (1)

n=0

In this equation, the parameter 4, corresponds to the radius
of a sphere with the same volume (“equivalent radius”), and I
chose to change the ¥ = 0 direction to the positive z axis here, in
contrast to the original definition in Ref. [47]. The deformation
is described by the set of coefficients ¢,,.

By construction, the surface curvature is continuous at
any point for this model, which is not the case for the stitched
2HS and 3PS shapes. Moreover, values for the relevant ¢, up
t0 7ZZma = 10 for the widely applied physical drop model of
Beard and Chuang [48] (balancing the effects of surface ten-
sion as well as hydrostatic and atmospheric pressures in the
Young-Laplace equation) are readily available for selected
drop sizes. Therefore, this model will be adopted for all GO
simulations in this paper (abbreviated “BC”). From the data set
published in [49], I interpolated ¢, values for 80 drop sizes in the
range of 29 = 0.025 mm to 29 = 2 mm (see [24], Section 2 for
mathematical details).

The disadvantage of this model is the higher numerical effort,
as all intersection points of light rays with the surface have to
be calculated by iteration rather than by closed formulas as in
the case of spheroid-based models. Though it is possible to
use the BC model also for the calculation of a Mgbius shift
lookup database for DMK simulations, limited computational
resources made it necessary to resort to older 2HS data for the
purpose of this paper. This is acceptable, as in the case of triple-
split bows only drop sizes below 29 <1 mm with moderate
shape distortions are relevant. Sample calculations for a drop size
of 29 = 0.5 mm show a sufficient consistency between the two
models (see [24], Section 3). Formulas for the 2HS parameters
designed to fit best to the BC model can be found in Refs. [9,50];
also, the inclusion of (2,0) oscillations is comparatively easy.

C. Raindrop Oscillations

In the absence of external forces, the equilibrium shape of a
drop of incompressible fluid is a sphere of a certain radius, thus
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minimizing its surface area and occupying the energetic mini-
mum of the oscillator potential created by the surface tension.
A disturbance of this shape will result in oscillations around
this equilibrium, damped by internal friction due to the fluid’s
viscosity. In the regime of small amplitudes (i.e., a linearized
model), the normal modes (or eigenmodes) of such a drop are
real-valued spherical harmonics (i.e., proper linear combina-
tions of the complex spherical harmonics conventionally used in
quantum mechanics, etc.). Also, for slightly oblate drops, such
as natural raindrops, spherical harmonics are a suitable basis
function system to describe their small-amplitude oscillations,
and it can be assumed that they still match the normal modes
reasonably well. The direction-dependent local drop radius »
(distance from the center) is given by [22,51,52]

00 /
r (9. )=ro@)+ Y > A

=2 m=—1

- sin (w[,m “t+ w[,m) : )/l,m (l?a (p)‘ (2)

This formula describes a superposition of real-valued nor-
malized spherical harmonics Y}, (see [24], Section 2) with
amplitudes A; ,,, (angular) frequencies wy, ,,, and phase offsets
Y1, > which is added to the equilibrium radius 7. Oscillation
modes start at / =2 with the so-called quadrupolar modes, as
the / = 0 term would contradict volume conservation and / = 1
corresponds, in the small amplitude approximation, only to
a translation of the whole drop. The frequency spectrum of a
spherical drop, first derived by Rayleigh (1879), is given by

wz=\/6'l'([_l)'(l+2). @)

p-a

Note that for a fixed /, all modes for various » exhibit the
same frequency [53]. This degeneracy is lifted for nonspheri-
cal equilibrium shapes [20,54], leading to slightly different
frequencies wy, and a beating effect in temporally resolved
axis-ratio measurements of individual drops in multimode oscil-
lation states [55]. The surface tension for water at 20°C amounts
to about o =0.073 Jm™? (at a density of p =998 kgm_3),
though there can be deviations for drops containing impu-
rities [56]. The 1/e damping time is, under several realistic
assumptions [51,55],

2
p-ag

T d—1D-Q+1) @

T

At 20°C, the dynamic viscosity of water amounts to
about 17 =0.001 Nsm 2. This results in typical values of
T'=2n/w=3ms and T =50 ms for a drop of 2o = 0.5 mm
oscillating in a (2,m), i.e., quadrupolar, mode. For larger ampli-
tudes (A;,, >~ 0.1ay), nonlinear effects have to be taken into
account [51].

As seen, the damping increases with /, leading to the expec-
tation that the low modes will be most important. Typically,
with increasing drop size, an onset of noticeable oscillations is
observed at about 29 = 0.5 mm, with rising amplitudes as the
drops get larger. Possible effects that constantly reinstigate the
oscillations are resonant back actions from the eddy shedding
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in the drop’s rear, wind shear, and turbulence, and collisions
between drops [57]. Because of this multitude of influences
and experimental challenges in mode analysis, it is yet not fully
clear which exact modes will be typically encountered at which
drop size in natural rain. From measurements, the occasional
presence of (2,0), (2,1), (2,2), and (3,1) modes has been inferred
[20].

D. (2,0) Mode

Because of the ambiguity concerning the relevant modes, I
decided to start with the simplest case, the fundamental axisym-
metric (2,0) mode. For this, the local drop radius is given

by

r (19, l’) =79 (19) “+ag - A;,O - sin ((1)2’0 -t Wzﬁo)

. I:% . (3 cos’® — l)i| . (5)

A3, was redefined with respect to Eq. (2), being now a dimen-
sionless relative amplitude (and absorbing the normalization
factor between the Legendre polynomial P, and the spherical
harmonic Y, (see [24], Section 2). Luckily, trigonometric
relations allow the conversion of Eq. (5) into the cosine series of
Eq. (1) by changing only two of the coefficients:

1

* * * 3 *
fozm+4A2.o'q o=c+-45,-9. (6)

4

Here, ¢ =sin(wy0-t+ ¥2,0) represents the time-
dependent oscillation state. Figures 1(a)-1(c) show, for
illustration, the extremal negative (g = —1), zero (¢ = 0), and
extremal positive (¢ = +1) elongation state foran o = 1.5 mm
BC model drop at a (somewhat exaggerated) amplitude of
A3 = 0.15. In order to reproduce the desired case of a temporal
and desynchronized ensemble mean, for each ray candidate
(total number, typically 1...6-10° an individual oscil-
lation state is chosen according to g =sin(27 - x), with a
pseudo-random number x between 0 and 1 from a uniform
distribution.

Typical results of oscillation measurements are axis ratios, i.e.
the quotients of vertical and horizontal dimensions of the drops.
In the case of a purely single-mode (2,0) oscillation, the axis ratio
£ in an elongated state in comparison to the equilibrium shape
axis ratio € [58] for nearly spherical drops is related to the elon-
gation A3 , - g the following way:

_ 3
¢-Ex A ™

For a more precise conversion, a lookup table was calculated
numerically (see [24], Section 2 for a graphical representation).
As a somewhat justified starting point for the size dependence of
amplitudes, I used a data fit from a vertical wind tunnel experi-
ment, carried out by Szakdll e 2/. in Mainz [20],

2
% ) +0.0213-(2-1”° )

mim mm

Emax — Emin = 0.0036 - (2 <

The size-dependent amplitudes, under the assumption that
only the (2,0) mode is active, can be calculated using the lookup
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table and fitted to a third-degree polynomial,

A% o =0.001133 - <1f§m)3 +0.004776 - (1:m)2
+0.01407 - (1:m) . 9)

The (2,0) mode is also easily integrated in the 2HS model
used for the calculation of M&bius shifts. The formulas in [9]
provide a description in terms of the mean equilibrium axis
ratio & and an asymmetry parameter A& representing the dif-
ference in vertical extent of the upper and lower part. Due to
the symmetry of the (2,0) mode, it is justified to adjust only &
according to the present elongation by using the lookup table,
while keeping A& fixed. Again, the general consistency with the
BC model was checked for selected cases (see [24], Section 3).

A key feature of the (2,0) mode is its inherent selection effect.
As the momentary velocity of a mechanical oscillator reaches
zero at its turning points, chances are higher of encountering
states close to the turning points when randomly checking on
it. The probability density of encountering an oscillation state
—1<g=<1lis

a’P:; (10)

7w 1-q%

This is illustrated in a numerical experiment shown in
Figs. 1(d) and 1(e): For a single, precisely fixed amplitude (d), a
histogram over the elongations (e) shows the behavior predicted
by Eq. (10) (the singularities at the turning points are not critical
for any finite bin width). This means that a single drop size can
effectively contribute with two relevant shapes to the rainbow,
instead of only one, as previously assumed [9,10].

The situation becomes more complex when taking into
account that in a large ensemble not all drops will exhibit the
same (=monodisperse) oscillation amplitude. As most measure-
ments focus on single drops, there are no reliable data describing
the natural spread of polydisperse amplitudes. As a first guess, I
chose a Gaussian distribution with a relative standard deviation
of o, = 0.3 around the previously used monodisperse value
[Fig. 1(f)]. This results in a much more smeared-out elongation

histogram [Fig. 1(g), being essentially the convolution of 1(e)
and 1(f)].

E. Drop Axis Tilts

BC equilibrium shapes, as well as BC drops in (2,0) oscillations,
still possess a symmetry axis, which in the undisturbed case is
expected to coincide with the vertical. However, as known from
ice crystal halos [30], finite tilt distributions may occur. For rain-
drops, there are a few theoretical analyses [59] and experimental
studies [31,32] on this effect. In the reported experiment, arti-
ficially generated drops of 29 = 1...4 mm were imaged after an
80 m fall under calm conditions. The results were consistent
with a Gaussian distribution on the direction sphere [Fig. 1(h)],
with standard deviations of 0 =7° ... 8°. The corresponding
probability density for drop tiltangles & p is

dpP

. v}
E:N-sm(ﬁD)-exp (—p>, (11)
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Fig.1. (a) Extremal negative, (b) zero, and (c) extremal positive elongation of the (2,0) mode for an 2y = 1.5 mm BC model drop at relative ampli-
tude of 43 ; = 0.15; (d) monodisperse amplitude distribution from a numerical experiment involving 10% random (2,0) oscillation states; (e) corre-
sponding elongation distribution, following Eq. (10); (f) Gaussian amplitude distribution with a relative standard deviation of 0.3; (g) corresponding
elongation distribution; (h) Gaussian distribution of drop axis directions around the vertical (standard deviation 7°, 250 samples).

with a normalization factor N. Note the additional sin(¥p)
factor that corrects for the mapping between intervals in ¥ and
the actual solid angle region on the sphere. For the simulations, I
chose a constant value of o = 7° for all drop sizes and uniformly
distributed drop axis azimuths ¢ , between 0° and 360°. For the
resulting coordinate transformation matrix, see [24], Section 2.

Throughout this paper, I will assume that these moderate tilt
angles do not affect the equilibrium drop shapes as described by
the BC model. However, for larger amounts of canting caused
by shear winds, the noncollinearity of aerodynamic drag and
gravity will certainly lead to shape changes. It might also be
argued that the oscillation behavior of tilted drops can differ
from that of nontilted ones. However, according to finite-
element simulations for falling drops, this seems not to be the
case [60,61].

F. Drop Size Distributions

Many measured DSDs (number of drops per volume and size
interval) can be fitted well with a gamma distribution using the
parameters i and A (7 is a normalization constant that can-
cels out when the simulation results are rendered as true-color
images) [62],

n(ap) = ng - 2ag)" - exp (—A - 2ay). (12)

Such measurements usually rely on ground-based dis-
drometers. In contrast, the rainbow is not a spatially localized
phenomenon, combining contributions from different regions
of a sunlit shower along each viewing direction. In the single
scattering limit, these contributions simply add up until the line

of sight reaches the end of the shower, the end of the illuminated
region, or the ground [9]. In dense showers, the situation is
more complex [34,40]. I will use the term “effective DSD”
(eDSD) here, in order to stress the difference from a spatially
local property.

For the large drop GO simulations in this paper, I chose the
parameter combination 4 = land A =3 mm ™! (see Fig. 2, full
line). An important fact to note is that the impact of a certain
drop size on the rainbow is not given by the eDSD directly, but
by the eDSD weighted with the scattering cross section of a
single drop of this size (CS-eDSD, Fig. 2, dashed line). From
such graphs, the dominant drop sizes are immediately recog-
nizable. In geometric optics, the differential cross section of a
sphere in the rainbow direction is proportional to a%; in Airy
theory, it is proportional to ag/ ? [1], which is only a minor dif-
ference. For consistency reasons, I chose the ¢ scaling here for
all CS-eDSD graphs. In DMK simulations, I used @ =0 and
A =4mm™!, with the optional addition of narrow Gaussian
peaks as previously applied in simulations of twinned rainbows
[9,10].

Finally, the introduction of size-dependent oscillation ampli-
tudes makes it necessary to further evolve the idea of the eDSD
towards a 2D density depending now both on effective radius
and (2,0) amplitude. This “effective drop size and oscillation
amplitude density” (eDSOD) allows for instructive plots in the
case of amplitude distributions with varying absolute standard
deviation [see Fig. 4(i)] or even bimodal amplitude distributions
[Figs. 6(a) and 6(b)]. For the discussion of multiple modes or
size-dependent tilt distributions, more dimensions can still be
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Fig. 2. Gamma-type DSD according to Eq. (12) for =1 and

A=3mm™}, including a significant portion of larger drops. Cross
section weighting was achieved by the multiplication with 43, as valid
in the geometric optics regime. This eDSD was used for the GO
simulations (Figs. 3 and 4).

added to the drop density concept. This illustrates the unex-
pected complexity of a rainbow “cooking recipe,” even under
the neglect of rain shower and shadow geometry, as well as the
optical density of the illuminated assembly of drops.

3. RESULTS AND DISCUSSION

A. Bright Spots from Superposed Caustics in Broad
eDSDs

The possible existence of new features in natural rainbows due
to the more complex caustic structure of nonspherical drops
was hinted at already more than two decades ago [15], also with
regard to higher-order rainbows [16,18]. It was also noted that
the instability of these features against shape variations is a criti-
cal issue for their detectability, due to the broadness of natural
eDSDs[19]. The first aim of my investigations was therefore the
identification of stable features. To do so, I carried out GO simu-
lations using the 4 = 1, A = 3 mm ™' eDSD, but at first for zero
oscillation amplitudes and zero tilts. I closely scrutinized the
simulation results for the Sun elevation range /s =0°...90°
(at 2° increments), leaving negative source elevations aside for
the moment, as they are not important for natural bows [65].
However, subhorizon rainbow features were not rejected, as they
might be seen from mountains, towers, airplanes, etc., or with
the help of quadcopters.

I could indeed identify several concentrations of light created
by nontraditional distorted-drop caustics of the second, fourth,
fifth, sixth, and seventh rainbow order each, which have at least
some chance to stand out against the background, or could
possibly be extracted by similar image-processing methods
as used for higher-order rainbows [66,67]. They all have the
appearance of bright spots located in or near the Sun’s vertical
(0° or 180° in azimuth) and are dislocated with respect to their
associated sphere drop rainbows. The left column of Fig. 3
shows simulations for the sum of all rainbow orders (up to the
seventh), including external reflection and direct transmission
through the drop (sometimes referred to as “zeroth order”). This
corresponds to the impression seen by an observer or camera
under optimal conditions, i.e., without external cloud or sky
background. The middle column shows only specific rainbow
orders, in order to highlight the feature in question. Of course,
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such an effective filtering is not possible in nature. The bright
spot of the fourth order (at 45 = 60°) was not included in Fig. 3
because it appears only about 20° below the Sun and will there-
fore have the least chance to be detected against the intrinsic
background (see [24], Section 4).

In the strict sense, these bright spots do not qualify as caustics
themselves, as they are the result of an incoherent superposition
of contributions from many drops, properly weighted by the
CS-eDSD. True caustics can, however, be evaluated for each
individual drop size involved. It turns out that for each spot
at its optimal Sun elevation, there is a certain critical drop size
for which the distorted and displaced rainbow caustic starts to
involute by going through a cusp-like state. An example for this
process is given in Ref. [24], Section 5. This “dominant drop
size” produces the most concentrated and intense contribution
to the spot (details of the intensity weighting are, however,
influenced by the shape of the CS-eDSD). The corresponding
ray paths are displayed in the right column of Fig. 3. As seen,
total internal reflections—impossible for spheres—also play an
important role in enhancing the intensities of the spots [17,45].
The individual drops’ caustics are indeed colored, but most of
the color is lost in the superposition. Also, for the cases of the
second and sixth order, there exist associated “twin spots” of
similar appearance caused by the reversed ray paths. These occur
atsolar elevations of /s = 6° (second order, spot deep below the
antisolar point) and /5= 36° (sixth order—visible below the
antisolar point in Fig. 3(a), and also for the slightly lower sun
elevation of s = 32° in Fig. 3(j) and 3(k)) (see [24], Section 4).

At hg=128° the “subsun”-like spot of the fifth order
[Fig. 3(h)] isaccompanied by a “subparhelic circle” from directly
transmitted rays [Fig. 3(g)]. This is the only new feature from
the zeroth-order ray paths I could identify; otherwise, they just
produce the familiar featureless bright forward-scattering disc. It
has also to be noted that, with the exception of the second-order
spot at /s = 36° and the seventh-order spot at 4 = 32°, all of
the discussed features lie either below the horizon or are hidden
in the zeroth-order disc, which makes their detection difficult.
Indeed, I am not aware of any matching reports of such spots
from natural displays [68,69].

Furthermore, the rudimentary traces of the lateral cusp
caustics predicted for the first [15] and third order [16] for 1S
drops and near-horizontal incidence appear in the Sun elevation
simulation series (see [24], Section 6), modified according to
the shape difference between the BC drops and the original
up/down symmetric drop model, and washed out by the eDSD,
so that only subtle parhelia-like enhancements remain. There
is also a tendency for the rainbows to become diffuse in certain
clock angle intervals for certain Sun elevations, due to the super-
position of caustics whose positions strongly depend on the
drop shape and which are fanned out accordingly. For instance,
this affects the first and fifth orders for 45 >~ 30° in the celes-
tial region about 90° under the Sun (deep below the horizon).
Precisely these two orders were discussed as contributors to a
“90° rainbow” arc by Nousiainen et 2/ [18,19]. However, the
vulnerability of any defined arc against changes in the drop
shape was already noted in their papers. The present simulations
did indeed confirm this statement.
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Fig. 3. GO simulations of dislocated bright spots froma t = 1, A = 3 mm™" eDSD without oscillations and at zero tilts. Equal-area (Lambert)
projections encompassing one hemisphere are shown, with either the Sun or antisolar point in the center (white squares). The white line indicates the
horizon. The right column depicts the responsible dominant ray paths for » = 1.335 (green light). “I” denotes a total internal reflection. Bright spot
from the second order, antisolar hemisphere, 45 = 36°: (a) all orders, (b) only second order, (c) ray path for 29 = 1.6 mm. Bright spot from the fifth
order, sunward hemisphere, /s = 28°: (d) all orders, (¢) only third—seventh order, (f) ray path for 2y = 1.6 mm. Bright spot from the sixth order, anti-
solar hemisphere, /5 = 54°: (g) all orders, (h) only third—seventh order, (i) ray path for 2y = 0.8 mm. Bright spot from the seventh order (marked by
the arrow), antisolar hemisphere, /s = 32°: (j) all orders, (k) only third—seventh order, (I) ray path for 2o = 1.6 mm [63].

B. Bright Spots Versus (2,0) Oscillations and Tilts

I chose the near-horizon bright spot of the secondary as an
example to study further to which extent it will be disturbed by
oscillations and/or tilts. The results are summarized in Fig. 4.
The first row shows the situation for zero tilts. As seen, the spot
is elongated to a vertical pillar extending above the horizon, but
does not lose its definition in the azimuthal direction, neither
for monodisperse nor polydisperse amplitudes (both following
the assumed “standard case” of Eq. (9); see the corresponding
CS-eDSODs in the last row). This changes when Gaussian tilts
(at 0 =7°) are switched on (second row of Fig. 4): For each
oscillation case, the bright spot is wiped out by the tilts. The

other spots from Fig. 3 show a similar behavior. Hence, the tilts
are the key element deciding upon the visibility of such spots, at
least as long as no other oscillation modes are involved.

C. Triple-Split Primary Rainbows

In contrast to the bright spots, primary bows splitting up into
three branches have already been documented in nature beyond
any doubt [see Fig. 5(a)] [25-28]. Nonetheless, they are rare,
and so far, the few available reports stem from subtropic or tropic
regions only. Compared to the bright spots, their explanation
relies on much lower drop deformations. Therefore, they can
be consistently attributed to smaller drops (29 < 1 mm), and a
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Influence of (2,0) oscillations and Gaussian tilts on the second-order bright spot, 55 = 36°. (a) Zero oscillations, zero tilts; (b) zero oscil-

lations, tilts 0 = 7°; () corresponding CS-eDSOD; (d) monodisperse amplitudes according to Eq. (9), zero tilts; (¢) monodisperse amplitudes, tilts
o =7° (f) corresponding CS-eDSOD; (g) polydisperse amplitudes with o, = 0.3, zero tilts; (h) polydisperse amplitudes with o, = 0.3, tilts o =
7°; (i) corresponding CS-eDSOD. Color scaling for the CS-eDSODs runs from white to black, i.e., the darker a point, the higher the corresponding

density of drops.

treatment within the approximative framework of Mébius shifts
isappropriate.

Precise angular measurements of such photos are of great
interest and in principle feasible [9,63], but require a careful
calibration of the optical system and accurate position data from
local reference points. For two specific cases, I mapped the pho-
tos into the scattering coordinate system (scattering angle, clock
angle) as precisely as possible, relying on the information pro-
vided by the photographers [26,28] (one of these cases is shown
in Fig. 5(a); for the other and for the reprojections in scattering
coordinates, see [24], Section 7). Also, the secondary rainbow
can be used as a position reference, as its visible part is, for usual
Sun elevations, much less influenced by the comparatively low
shape deformations in this drop size regime [10] (see also [24],
Section 3). The secondary’s arc above the horizon has not been
observed to split up so far, either in nature or in the simulations
[70].

From the analysis, it is almost certain that the upper branch
of the split primary is shifted into Alexander’s dark band
(i.e., towards the secondary beyond the position of the sphere
drop primary), at least in the two investigated cases. In contrast
to this, the more frequent twinned rainbows can be consistently
attributed to an additional peak at around 29~ 0.5 mm in

the eDSD, which selects a narrow range from the continu-
ously downward-shifted caustics from larger drops in order
to create the lower branch. For oblate drops, the primary’s
Mébius shift is always directed towards the antisolar point for
the arc above the horizon and Sun elevations that permit the
visibility of such an arc (bs=0°...42°) [10] (see also [24],
Section 3). This means that either improbably high tilts, nar-
rowly centered around a preferred axis direction way off the
vertical (see [24], Section 8), or elongated drops are needed to
shift a primary rainbow upwards. It seems unlikely that even
strong shear winds will topple over all the drops to the side in
a coordinated manner. However, the consequences of such a
situation cannot be predicted with absolute certainty from the
current models based on BC drop shapes, as drops exposed to
strong shear winds will exhibit different equilibrium shapes
(see Section 2.E). Elongated shapes, on the other hand, require
either additional forces such as electrostatic fields [29] or oscilla-
tions. I decided to test the latter possibility for the (2,0) mode in
DMK simulations.

For this, I used an eDSD containing smaller drops (u =0,
A =4mm™!), a drop size cutoff at 2o =1 mm, and a previ-
ously calculated Mébius shift database for 2HS model shapes.
It is not surprising that under these conditions, the amplitude
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Fig. 5. (a) Triple-split rainbow photographed 5 August 2012,
18:24 JST at Yobuko, Kyushu island, Japan, by Kunihiro Tashima
(hs =9.7°). For orientation, the arrow indicates the intersection
point of the 138° small circle (measured from the Sun, correspond-
ing to the familiar “rainbow size” value of 42° from the antisolar
point) with the right edge of the image. (b) Inhomogeneous split
rainbow photographed 18 November 2009, 15:17 AST at Bridgetown,
Barbados, by Mark Worme (b5 = 28.3°); (c) unsharp masked and
contrast enhanced version of (b), with labels indicating the upper
branch (A), recently found lower branch (B), celestial region of con-
ventional rainbow appearance (1) and region of split appearance of the
primary (2).

distribution according to Eq. (9), which I chose to represent
the standard case, just results in standard rainbows without any
sign of splitting. It turned out to be necessary to assign higher
amplitudes to smaller drops (29 &~ 0.3 mm) in order to split the
primary and move the upper branch into the dark band, e.g., by
the following amplitude distribution:

a )0556. (1 3)

1 mm

A50=0025 - (
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When doing so, the two shifted branches appear in the sim-
ulation, but there is yet no central arc. This situation might
indeed be typical for some twinned rainbow displays with
widely separated primaries of almost identical appearance [71].
My first attempt at including the central branch was the imple-
mentation of a cutoff size for the oscillations, inspired by the
field measurements [21], but at a lower threshold. This would
allow enough of the smaller, nonoscillating drops to create the
central branch. However, I achieved no satisfying results this
way. As an alternative, I assumed a mixture between oscillating
and nonoscillating drops, i.e., a bimodal distribution. Due to
the nonlocal nature of the eDSOD, this can be realized in nature
by spatial inhomogeneities, e.g., by looking through a veil of
oscillating drops into a shower of nonoscillating ones.

The hypothesis of such inhomogeneous oscillation dis-
tributions is further supported by the reanalysis of an older
photograph that aroused much speculation some years ago
[Fig. 5(b)] [72,73]. After unsharp masking and contrast
enhancement [Fig. 5(c)], not only the strong upward branch A
is visible, but also a weak and more diffuse downward branch B.
The latter seems to have been overlooked in earlier discussions of
this photograph. In the context of drop oscillations, it is possible
to interpret the changes in the primary’s manifestation as caused
by an onset of oscillations from region 1 to region 2, i.e., effec-
tively a similar situation as proposed for Fig. 5(a), but in this case
seen from the side.

Figure 6 shows the results of several attempts to simulate
Fig. 5(a). In Fig. 6(a), only oscillating drops with monodisperse
amplitudes and perfectly nonoscillating drops, both at zero tilts,
were used. The result matches the photograph acceptably well,
though there are deviations near the coalescence point of the
branches. These might be due to a residual lateral component of
the spatial oscillation inhomogeneities or the presence of other
modes than (2,0). For Fig. 6(b), the oscillation properties of
both components were blurred to some degree, i.e., a Gaussian
distribution was assigned to the oscillation branch, and the pre-
viously nonoscillating drops were given amplitudes following an
exponential distribution. Additionally, tilts were switched on.
This results in a reduced definition of the individual rainbow
branches, but they are still recognizable and could easily be
enhanced by standard image processing.

For comparison, I also included simulations based on
nonoscillating drops and additional peaks in the eDSD, as
previously used for twinned rainbows [9,10,64], shown in
Fig. 6(c) (zero tilts) and 6(d) (tilts switched on). When com-
paring Figs. 5(a) and 6(c), it is obvious that this model does not
reproduce the correct branch positions, as clearly visible from
the arrow positions (indicating the intersection points of the
traditional rainbow angle and the right edge of the simulation
image). Moreover, the lowest branch seems to be completely
wiped out by the tilts [Fig. 6(d)]. This is likely due to the fact
that it occurs at the greatest distance from the sphere drop rain-
bow’scircle, i.e., these drops are more distorted than those of any
other category, including the extremal elongations in Fig. 6(b).
The higher the deviation from a spherical shape, the more
effective the blurring effect of tilts will be. In consequence, the
oscillation model clearly provides a better fit to the observation

than the multipeaked eDSD.
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DMK simulations corresponding to Fig. 5(a) for various parameter combinations, based on a £ =0, A =4 mm™" eDSD. (a) Mixture

of 83 % drops with monodisperse (2,0) amplitudes following Eq. (13) and 17% nonoscillating drops, zero tilts; inset, corresponding CS-eDSOD;
(b) mixture of 83% drops with Gaussian polydisperse (2,0) amplitudes following Eq. (13), 0, = 0.15, and 17% drops with exponentially distributed
amplitudes, scaling parameter (expected value) 0.002, Gaussian tilts 0 = 7°; inset, corresponding CS-eDSOD; (c) nonoscillating drops, two narrow
peaks centered at @y = 0.55 mm and #¢ = 0.68 mm added to the eDSD [64], zero tilts; inset, corresponding CS-eDSOD; (d) same as (c), but with
Gaussian tilts 0 = 7°; inset, corresponding eDSD (solid line) and CS-eDSD (dashed line, shows identical information as inset in (c). As in Fig. 5(a),
the arrow indicates the position along the right image edge at which the scattering angle amounts to 138°.

4. CONCLUSIONS

Natural rainbows are much more complicated than might be
expected, and their accurate modeling is a challenging and
ongoing task. The present simulation study reports on the
inclusion of the BC drop shape model, (2,0) oscillations, axis
tilts, and rainbow orders up to the seventh in geometric-optical
calculations, as well as including such oscillations and tilts in
Mébius shifts to be applied to Debye series data for the primary
and secondary rainbow. The main results are:

1) If a rain shower contains a noteworthy portion of larger
drops (29 >~ 0.8 mm), new features in the form of bright
spots in the Sun’s vertical may appear. These can be attrib-
uted to specific rainbow orders, though they are dislocated
from the respective (near)spherical drop rainbow. The rea-
sons for their comparatively high intensities are the onset of
caustic involution at certain critical drop sizes, which under
this condition will be present in the eDSD; and (multiple)
total internal reflections. Unfortunately, most of the spots
are either located below the horizon or are embedded in
the bright forward-scattering disc. Though they are stable
against drop shape variations in broad eDSDs and (2,0)
oscillations, moderate tilts tend to blur them and may
render them unrecognizable.

2) (2,0) oscillations can provide an explanation for rare
triple-split primary rainbows. This is facilitated through a
selection effect for near-extremal states due to the vanishing
oscillation velocity at these points. Thus, a single drop size
contributes with two effective shapes to the rainbow, and

for smaller drops one of the extremal states can obtain an
elongated shape. This explains why one of the primary
branches can be shifted towards the secondary, i.e., in the
opposite direction of the Mébius shift for oblate drops.
Consequently, attempts at reconstructing eDSDs from
rainbow photographs should take oscillations into account.
Furthermore, a set of nonoscillating or weakly oscillating
drops is necessary to create the center branch. A possible
scenario for this is spatially separated sets of drops along the
line of sight. The result is stable against moderate spreads of
oscillation amplitudes and moderate tilts.

Other researchers have undertaken extensive efforts to inves-
tigate the dominant oscillation modes, amplitudes, and tilt
angles in natural rainfall, mostly with the aim of increasing the
accuracy of rainfall rate measurements by radar backscattering
methods [20,32]. However, the results reveal a rather complex
and variable picture. For rainbow simulations, this means that
there are many degrees of freedom in the modeling, and espe-
cially for rare phenomena, the input parameters—the effective
drop size and oscillation distribution, as well as the distribution
of tilts—have to be guessed. So far, I did not attempt to solve the
inverse problem by iterative modeling.

For future simulations, it seems worthwhile to test the other
relevant oscillation modes ((2,1), (2,2), and (3,1)), as well as
to check the influence of updated equilibrium shape models
[74,75]. A deeper study of the caustic evolution for realistic
drop shapes and various light incidence directions is an inter-
esting topic from the theoretical point of view. The Mébius
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shift database can also be extended to more accurate models
beyond the present 2HS and incorporate dispersion and inten-
sity variations. This would allow one to exhaust the full potential
of the shift approach. Finally, I want to suggest that observers
pay attention to any dynamic events that might synchronize
drop oscillations or affect the tilts during a rainbow display—
lightning, thunder, or aircraft shockwaves. It seems strange
that there are only few old observations [8], while the probably
related phenomenon of “moving ripples” in halos and cloud
iridescence is comparatively well documented [76].
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