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A water drop hanging from a house siding board after a rain shower is near-normally illuminated by sunlight
either shortly after sunrise or before sunset. A focusing caustic consisting of a bright V-shape or U-shape with a
small bright elliptical shape immediately above it is frequently seen on the next lower siding board. In addition,
there are two broad regions of illumination immediately above the caustic, fanning out to the upper left and upper
right. This complicated pattern, composed of a bright V-shape or U-shape, and the bottom half of the small bright
elliptical-shape immediately above it, is caused by the hyperbolic umbilic diffraction caustic near the condition of
maximum focus. This can be observed because, by a stroke of good fortune, the distance between the lower edge of
a siding board and the flat portion of the next siding board beneath it is nearly equal to the paraxial focal distance
of the caustic. Blocking off the light incident on the top, bottom, left side, and right side of the drop was used to
determine the portion of the drop responsible for different parts of the caustic. The results were found to match the

predictions for the hyperbolic umbilic caustic.
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1. INTRODUCTION

After a gentle rain either shortly after sunrise or shortly before
sunset, the sun emerges from behind the clouds and illumi-
nates a water drop hanging from the protruding lower edge of a
wooden board, aluminum siding, or vinyl siding that covers the
exterior vertical surfaces of a house (see Fig. 1). An optical caus-
tic of the light transmitted through the drop appears on the flat
portion of the next lower board of house siding. If the water drop
is relatively large, the caustic consists of a bright approximately
V-shape with opening angle W or a bright U-shape (which could
equally correctly be called a V-shape with a very wide opening
angle), and a small bright approximately elliptical-shape within
the V or U. In addition, two broad swaths of illumination fan
out to the upper left and upper right above the caustic. These
relatively large hanging drops of different sizes produce a wide
variety of opening angles, 80° < W < 150° (see Figs. 2 and 3).
On the other hand, if the water drop is relatively small, only
the approximate V-shape appears, and the opening angle is in
the range 60° < W < 70° (see Fig. 4). This caustic can also be
produced with the sun low in the sky by placing a drop of water
on the protruding lower edge of a board of house siding using an
eye dropper. The water volume of the hanging drop can easily
be varied in this way, and one can examine how the details of the
caustic depend on the drop size.

The bright approximate V-shape or U-shape and the bright
lower perimeter of the approximate elliptical-shape within the
V or U together are an example of a hyperbolic umbilic optical
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caustic near the condition of its maximal focus [1-5]. This caus-
tic is visible, by a stroke of good fortune, because the distance
between the outward-projecting bottom edge of a board of
house siding and the flat portion of the next lower board (about
10 mm for standard American residential vinyl siding) is nearly
equal to the paraxial focal length of the drop. The fine interfer-
ence structure associated with the caustic [1-5] is not visible for
incoherent white light illumination since the size of the caustic
on the siding is a few mm, while the details of the interference
structure for coherent monochromatic illumination are a few
orders of magnitude smaller [6]. The hyperbolic umbilic caustic
along with its fine structure have been previously studied in the
laboratory using laser illumination and liquid drops with some-
what different shapes. Specifically, Nye studied the transmission
caustic of a drop of water clinging to the circular depression cut
into a few layers of clear tape placed on a vertical pane of glass
and illuminated horizontally by a laser [3,4]. Similarly, Tanner
studied the transmission caustic of a drop of oil that was slowly
draining down a vertical pane of glass and illuminated horizon-
tally by a laser [7,8]. Marston and his collaborators [6,9-12]
(see also [13]) studied the caustic produced by light exiting an
acoustically levitated oblate spheroidal water drop after one
internal reflection. The geometry here differs from that of Nye
and of Tanner in that, in their experiments, the side of the water
drop was attached to the glass plate, whereas for the observa-
tions reported here, the top of the drop is attached to the house
siding.
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Fig.1. Water drop (containing brown pigment for clarity) hanging
from a board of vinyl house siding. The scale beneath the drop is given
in millimeters.
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Fig. 3.  Near-zone transmission caustic of a very large hanging
water drop. The opening angle of the caustic near its lowest point is
v =141°+1°.
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Fig. 2. Near-zone transmission caustic of a large hanging water
drop. The opening angle of the caustic near its lowest point is
W =78°%1°.

The body of this study is organized as follows. A model for the
shape of the hanging drop is proposed in Section 2. A Fourier
optics calculation of the transmitted electric field is then carried
out in Section 3 for the model drop shape of Section 2. The
overall phase of the transmitted light is Taylor series expanded
about its umbilic point [2,4], and is then Fresnel diffracted
from the drop’s exit plane to the viewing screen. This results in
the standard form of the total phase function of the hyperbolic
umbilic optical caustic [3-5]. Observations of the near-zone
transmission caustic are described in Section 4 and are analyzed
in terms of the adjustable parameters describing the shape of the
hanging water drop. Conclusions are given in Section 5. Lastly,
Appendix A gives a qualitative description of various parts of
the observed caustic in terms of interactions of various families
of incoming and transmitted rays with the surface of the water

drop.

Fig. 4. Nearzone transmission caustic of a small hanging
water drop. The opening angle of the caustic near its lowest point

isW =59+ 1°.

2. SHAPE OF A HANGING WATER DROP

The shape of a hanging water drop is determined by the
interplay of gravity and surface tension forces, subject to the
constraints imposed by the boundary conditions of the drop’s
attachment to the surface from which it hangs. Numerical solu-
tions of the nonlinear differential equation for the shape of the
drop have been obtained for a variety of axially symmetric drops
in [14], and references therein. However, the drop’s attachment
to the lower edge of the siding board is both highly eccentric
and irregular, rather than circular, as was assumed in [14]. Thus,
the boundary conditions of the connection of the hanging
drop to the protruding lower edge of a house siding board will
depend on whether the board is clean or dusty, and whether it is
initially dry or damp. Although this variability can be expected
to affect the reproducibility of the details of the observed caustic,
the structural stability of the hyperbolic umbilic caustic [1,2]
ensures that it will occur for a wide variety of hanging drops.
As a result, a simple model of the shape of the drop is proposed
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Fig.5. Geometry of a hanging water drop. The shape profile of the
drop is A f(x/H) in the x-y plane and A g(x/H) in the x-z plane.

The incident light propagates in the positive z direction.
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Fig.6. Ray path through a hanging drop of refractive index 7 from
the z = — A entrance plane to the z = A exit plane. The viewing screen

(v.s.) isa distance Z beyond the exit plane.

rather than attempting to numerically solve the governing non-
linear differential equation subject to complicated boundary
conditions that are not easily reproducible.

The geometry of the hanging water drop is illustrated in
Fig. 5. The positive x direction is vertical, the protruding hori-
zontal lower edge of the siding board is in the £y directions, and
sunlight is incident in the positive z direction. The length of the
hanging drop along the lower edge of the house siding is 2 B at
its attachment, its length there in the direction of the incident
sunlight is 24, and its height is A. These dimensions are the
function of the water volume of the drop. The dimensions of a
typical hanging drop of the middle size group, to be discussed in
more detail in Section 4, are 24 ~ 3.5 mm, 2B ~ 5 mm, and
H ~ 3 mm. The entrance plane of the water drop is the z = — 4
plane, and its exit plane is the z = A plane. The viewing screen
on which the transmission caustic is observed is a distance 2
from the exit plane, as is shown in Fig. 6.

The cross section of the water drop in the y —z plane at the
height x with 0 < x < H is modeled here by the ellipse,
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2at +yt b =1, (1)
where

a(x/H)= Ag(x/H), (2a)

b/ H) = Bf G/ H). (2b)

The scaled shape profile of the hanging drop in the x-z
plane is g (x/ H), and the profile in the x-y plane is f(x/H),
where f(x/H) = g(x/H) = 0 at the bottom of the drop where
x=0,and f(x/H) = g(x/H) = 1 atthe top of the drop where
x = H (see Fig. 5). A one-parameter model of the drop shape
uses only a single scaled shape profile, i.e., g (x/ H) = f(x/H),
and an axisymmetric hanging drop also has A = B. As one looks
at a hanging drop, one is tempted to describe its shape with the
vertical coordinate x being a function of the horizontal coordi-
nate y or z, or p in polar coordinates for an axisymmetric drop.
But, in Egs. (2a) and (2b), one takes the vertical coordinate
x as the independent variable, and the horizontal coordinate
y or z as the dependent variable. The functions g(x/H) and
f(x/ H) can be expected to have an inflection point where the
second derivative of the scaled shape profile with respect to x / H
vanishes, i.e., g” = 0 or f” = 0. This point marks the transition
between the gravity-dominated lower portion of the drop and
the boundary-condition-dominated upper portion (see Fig. 10
of [14]). Although g’, /7, ¢"”, and [ are all expected to be
positive for 0 <x/H <1, ¢"” and f” will be negative when
x/ H is below the respective inflection points, and positive above
them.

3. PHASE OF THE ELECTRIC FIELD
TRANSMITTED THROUGH THE HANGING DROP

We now show that a wide variety of scaled shape profiles for the
hanging water drop will produce a near-zone hyperbolic umbilic
transmission caustic. If the hanging water drop was a pure phase
object with

4A(m — 1)1 < 1, (3)

where 7 is the refractive index of the drop and A is the average
wavelength of the incident sunlight, an incident ray propa-
gating with the coordinates (x, y) in the positive z direction
would travel undeflected through the drop, advancing in phase
by ¢(x, y) from the drop’s entrance plane to its exit plane.
This assumption underlies Rayleigh-Gans scattering (see
pp- 158-165 of [15], and pp. 414—421 of [16] where it is called
Rayleigh—-Debye scattering). But, for the hanging drops of inter-
est here, 4A(m — 1) /A ~ 10* for m = 4/3 and A = 0.55 pum.
Nonetheless, it is assumed that the electric field transmitted
through a hanging drop can be quantitatively analyzed using
the methods of Fourier optics (see Section 5.A of [17]), where
(i) each ray associated with the incident plane wave advances
in phase by ¢(x, y) as it propagates undeflected through the
water drop from its entrance plane to its exit plane, and (ii) the
resulting wavefront then propagates via Fresnel diffraction from
the exit plane to the viewing screen.
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The validity of the Fourier optics approach applied to the
hanging drop can be justified as follows. For a plane wave inci-
dent on a large oblate spheroid with the aspect ratio B/ A > 1
as in Fig. 5 and approximating a thin lens, the distance from
the center of the elliptical cross section of the oblate spheroid
to the center of the paraxial focal waist was determined by the
author in the course of this study using Fourier optics. The
result almost identically agrees with that determined by exact
ray tracing. As B/ A decreases, Fourier optics overestimate the
paraxial focal distance obtained by ray tracing by only ~6%
when B/A=2, by ~11% when B/A=1.5, by ~25% for
a sphere with B/ A =1. In contrast, the comparison quickly
becomes quite poor for a prolate spheroid with B/ A4 < 1. Since
a typical hanging water drop has an aspect ratio of B/A ~ 1.4,
the features of the hyperbolic umbilic caustic can be expected
to be reasonably closely reproduced using the Fourier optics
approach.

From Fig. 6, the advance in phase of an incident ray with the
coordinates (x, y) from the entrance plane to the exit plane is

O(x,y) =2kA+2kA(m—1) g(x/H)

x [1—(H/B) (y/H)/ f*(x/ D12 (4)
We assume the scaled shape profiles g (x / H) and f(x/H) are

such that there exists a vertical location x for which

(—g0) fo/g0=(H/B)?, (5)
where
go=g(xo/H), (6a)
fo= fxo/H), (6b)
g0 =1d*¢/d(x) H)|,=xo. (6¢)

Such a point will in general exist since g’ < 0 for x below
its inflection point. The point (xg, yo = 0) is called an umbilic
point because the wavefront leaving the exit plane in the vicinity
of this point is a converging spherical wave [2,4] with small
perturbations added, which will partially focus downstream and
then diverge. Specifically, the Taylor series expanding Eq. (4)
about the umbilic point in powers of the scaled coordinates
X and Y, where

X=(x—x))/H (7a)
and
Y=y/H (7b)
give
@(x, y) R 2kA+2kA(m —1) {go+ g, X — (1/2) (—g()
X (X2 4+ Y2+ (1/6) g/ X> + (1/2)(—gDI2(f3/ fo)

— (g0/g0)1XY* + O(fourth - order terms in X and Y)},
8)
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assuming the coefficients of both X3 and XY? are nonzero.
Equation (8) contains only even powers of Y since the shape
of the hanging water drop in Fig. 5 is symmetric in y. The
converging spherical wave in Eq. (8) is the term proportional
to X? + Y2, and the perturbations are the terms proportional
to X? and XY?. The omitted fourth-order terms in X and ¥
are assumed to be small as long as X and Y remain relatively
small. A hyperbolic umbilic caustic results when both the X?
and X Y? perturbations are of the same sign, whereas an elliptic
umbilic caustic results when the perturbations are of opposite
sign [1-4,18].

The transmitted electric field at the point (x,, 7,) on the
viewing screen a distance Z past the water drop’s exit plane is
the Fresnel diffraction integral of the phase exp[i¢(x, y)] over
the exit plane coordinates (x, y),

E(xy, Yosr 2) =/ dxf dy Eoexpli @ (x, y, %u, Yors 2)],

where E| is the field strength of the incident plane wave and
D(x, 5, Xue, Yuss £)
=@(x, )+ k(x —x,0°/2Z + k(y = yu)* /22
= —aX — bY + c(X* + Y?) + EX° + nXY?
+ O(fourth - order termsin X and V), (10)

assuming both & and 7 are nonzero. In Eq. (10), one has

a=(kH/Z) (x,—x0) —2kA(m—1) g, (11a)
b=(kH/Z) yu, (11b)

c=(kH*/2Z) — kA (m—1) (H/B)*(g0/ ),  (11c)
E=(kA/3) m—1) gy, (11d)

n=~kA(m—1) (—g)2(fy/ fo) — (go/g0)].  (11€)

It should be noted that in the one-parameter model of the

drop shape with f(x/H) =g(x/H), Egs. (11¢), (11d), (11e)
simplify to

c=(kH*/2Z) — kA (m—1) (H/B)*(1/ o), ~ (12a)
§=(kA/3) (m—1) £, (12b)

n=kAm-1(—£) fs/ fo- (12c)

As was shown in [3-5,19], Eq. (10) is recognized as the total
phase function of the hyperbolic umbilic optical caustic. Were
it not for the perturbation & X? 4+ nXY?, the center of the
axisymmetric paraxial focal waist of the converging spherical
wave would belocatedatz = 0,6 =0, i.e,,

X, = x0+ (B*/ H) (f320/20) (13a)
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Yvs = 0, (1 3b)
atthe viewing screen location ¢ = 0, i.e.,

Zparasial = ([ /80) {B*/124(m — D]} (13¢c)

The perturbations £X° + n X Y? determine the shape of the
wavefront aberrations in the focal plane, which is called the focal
section of the optical caustic.

Although the interference fine structure associated with
the hyperbolic umbilic caustic is obtained by performing the
integrations of Eq. (9), the basic structure of the caustic can
be obtained using the following catastrophe optics procedure
[1,2]. The stationary phase positions of geometrical rays on the
viewing screen are given by the vanishing of the gradient of @,

(3D /3X) =0, (14a)

(b /3Y) =0, (14b)

and two or more geometrical rays coincide on the viewing screen
when the Hessian second derivative of ® vanishes,

(0% ®/aX?)(3*® /Y — (3>°D/aXY)* = 0. (15)

Equation (15) gives the zero-Gaussian-curvature path in the
drop’s exit plane that will be mapped into the caustic on the
viewing screen. Substitution of this path into Eqgs. (14a) and
(14b) then gives the shape of the caustic.

The approximate solution of Egs. (14a), (14b), and (15)
for the total phase function of Eq. (10) has been discussed in
[1-5], and parameter space for the situation studied here is
illustrated in Fig. 7. The coordinates on the exit plane of the
hanging drop are taken to be (X, Y) relative to the coordinates
of the umbilic point. The quantities 2 and & are taken to be
new viewing screen coordinates, since from Eqs. (11a), (11b)
the coordinate # is proportional to x,, and & is proportional to
9. From Eq. (11¢), the quantity ¢ is positive when the viewing
screen coordinate Z is less than Zpaxial, and ¢ is negative when
Z is greater than Z,aal- The caustic has two disjoint branches
when Z # Zaxial. The first is a fold caustic that is approxi-
mately parabolic in shape, and the second is approximately a
transverse cusp caustic [4,5]. The parabolic fold caustic can
qualitatively be thought of as arising from the X, X2, and X?
terms of Eq. (10) via the Airy integral {see Eq. (10.4.32) in [20]}.
The transverse cusp caustic can be qualitatively thought of as
arising from the X, ¥, X2, ¥?,and X Y terms of @ [5]. No light
rays are present at any point on the viewing screen below the
parabolic fold, two light rays interfere at each point between the
fold and the transverse cusp, and four rays interfere at each point
inside the transverse cusp.

When Z = Zjaxial> the two disjoint branches of the caustic
coalesce into the hyperbolic umbilic focal section (HUFS), a
V-shape structure of opening angle Wyyps, where

tan(Wiurs/2) = [/ (3€)12. (16)

In previous laboratory experiments, when a water drop clings
to a depression in a vertical plate of glass with a circular cross
section [3], it was found that Wyygs & 60° (see pp. 314-315 of
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[2] and pp. 496499 of [21]). Similarly, when an oil drop slowly
drains down a vertical glass plate [7,8], again Wyyps =& 60°.
When the HUFS is observed in one-internal-reflection scat-
tering of an acoustically levitated oblate spheroidal drop,
Whurs A~ 2 arctan[m/(12'/2)], where m is the refractive index
of the drop [5,19,22]. Lastly, the parabolic fold for Z < Z;axial
evolves into the transverse cusp for Z > Zuaxial, while the
transverse cusp for Z < Zy,xial evolves into the parabolic fold
for Z > Zuraxial (see Fig. 3e of [1], Fig. 2.5¢ of [2], and Fig. 4.4
of [4]). When X and ¥ become sufficiently large in the drop’s
exit plane, terminating the Taylor series expansion of ® at third
order is inadequate. As a result, the shape of the caustic on the
viewing screen for large # and & will be distorted from the local-
ized structure of the hyperbolic umbilic caustic. The distortion
is called the global topology of the caustic [1], and is evident in
the curvature of the two arms of the V-shape caustic in Fig. 4.

Of particular interest for the observations described here is
the relationship between the two branches of the hyperbolic
umbilic caustic on the viewing screen and the two disjoint
branches of the hyperbola in the exit plane of the hanging
drop that are mapped into them. As is illustrated in Fig. 7, the
details of the mapping depend on whether 3£ > n or 3£ <,
and whether ¢ > 0 or ¢ < 0. For the case of 3§ > nand ¢ > 0
(i.e., Z < Zparaxial), the X > 0 branch of the hyperbola in the
exit plane labeled by the points 1, 2, 3 in Fig. 7 is mapped into
the parabolic fold caustic, also labeled by the same points.

3E<n c>0 c=0 c<0
X a a a
Y N
y b b b
NV W
4 6
=1 c:O ch c;O

3% >1 c>0 c=0 c<0

X a a a

3 1 6 4 3 1
1Y Y

y b b b
3 1 6 4

~| |\ W/

4 6

Fig. 7.  Locations on the cross section through the hyperbolic

umbilic caustic on the #4 viewing screen (right three columns), cor-
responding to locations on the hyperbola-shaped zero-curvature path
in the x — y exit plane (left column) that is mapped into the caustic,
for various values of 36 — 1 and ¢ of Egs. (11c)—(11¢). The top row
corresponds to 3§ < 1, the middle row to 3 = 1, and the bottom row
to 38 > 1. The opening angle of the ¢ = 0 focal section is ¥ > 90° for
3& <n, ¥ =90°for 3¢ =n,and ¥ < 90° for 3¢ > 1.
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Similarly, the X < 0 branch of the hyperbola labeled by the
points 4, 5, 6 in Fig. 7 is mapped into the transverse cusp caus-
tic, also labeled by the same points. But, for 3§ > n and ¢ <0
(i.e., Z> Zparaxial)s the X > 0 branch of the hyperbola in the
exit plane is mapped into the transverse cusp caustic, and the
X < 0 branch is mapped into the parabolic fold caustic. When
¢ =0 (i.e., Z= Zyaaxial)> the two branches of the hyperbola
in the exit plane coalesce into two straight lines that cross each
other, and one has Wyps < 90°.

For the case of 3¢ < 1, the relation between the two branches
of the hyperbola in the exit plane of the hanging drop and the
two branches of the caustic observed on the viewing screen is
reversed from what it was for 3¢ > 1. Namely, the relationship
for ¢ > 0 is identical to what it was in the former case for ¢ < 0,
and the relationship for ¢ < 0 is identical to what it was in the
former case for ¢ > 0. For Z = Z;raxial> the opening angle of
the HUES is Wyyps > 90°. Lastly, for 3§ =5, the observed
caustic is the HUFS independent of Z, with the opening angle
Whups = 90°.

4. OBSERVATIONS OF THE NEAR-ZONE
TRANSMISSION CAUSTIC

The transmission caustic of 13 different hanging drops observed
on a number of different days was digitally photographed with
the solar elevation between 19° and 22° above the horizontal.
The opening angle W near the bottom of the caustic was mea-
sured to within £1° in the following way. First, 22 cm x 28 cm
printouts of the photographs were made. Then, a pair of straight
lines was drawn on the printouts that that visually fit the vicinity
of the low point of the V-shape, taking care not to include the
region where the sides of the V-shape began to curve. Finally, the
angle between the two lines was measured using a 6.3 cm radius
protractor.

The transmission caustics and the hanging water drops that
give rise to them were subdivided into three groups. The first
group of water drops consists of the smallest hanging drops
for which a transmission caustic was visible. These caustics
consisted of only the approximate V-shape with the measured
opening angle being ¥ =59°, 61°, 62°, and 70°, and did
not contain the approximate elliptical-shape inside the V (see
Fig. 4). They also did not contain the two noncaustic broad
swaths of illumination to the upper left and right of the caustic
as described in Section 1. The second group of caustics was
produced by larger hanging drops where an eye dropper was
used to add more water to the hanging drops of the first group.
The observed caustics of this group contain the approximate
V-shape, the approximate ellipse-shape within the V, and the
two broad swaths of illumination to the right and left above
the caustic. The bottom of the V and the bottom of the ellipse-
shape within it visually appeared to coincide (see Fig. 2). The
measured opening angle of the V was W =787, 86°, 88°, 91°,
98°, and 101°. The third group of caustics was produced by
very large hanging drops that were almost ready to drip off the
siding board (see Fig. 8). The observed caustics contained an
approximate U-shape, rather than a V-shape, and the bottom of
the approximate ellipse-shape was noticeably above the bottom
of the U (see Fig. 3). The measured opening angle of the U was
W =135° 141°, and 149°. We claim that for the second and
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Fig.8. Small hanging water drop and a very large hanging drop, and
their near-zone transmission caustics. The values of A and of B at the
attachment of the drops to the house siding are nearly equal for both
drop sizes.

third group of caustics, the bright approximate U-shape or
V-shape is the parabolic fold branch of the hyperbolic umbilic
caustic, and the bright lower half of the perimeter of the approxi-
mate ellipse-shape within the U or V is the transverse cusp

branch.

A. Transmission Caustic of the Small Drops of the
First Group

We first consider the smallest hanging drops that produce only
the V-shape caustic with 59° < W < 70°. As a starting approxi-
mation for f(x/H) in the one-parameter model, the solution
of Eq. (6) of [14] for the shape of an axially symmetric drop
very near to its low point is a hyperbolic cosine, which when
converted to the normalization of Section 2 gives

f(x/H) = arccosh[(x/H) + 1]/arccosh (2). (17)

For this approximation to the drop shape, the opening angle
Wyyrs is found to weakly depend on B/H. For example,
when B/H =0.833 one obtains xo=0.205, fo=0.478,
and Wyygs = 59.71°, while for B/H = 0.625 one obtains
X0 = 0.1 143, ﬁ) == 0360, and \I’HUFS =59.90°.

Alternatively, one could consider the normalized version of
the first term in the Taylor series expansion of Eq. (17),

flx/H) = (x/H)"?, (18)

which corresponds to a drop whose shape is a paraboloid. For
this example,

xo=(1/4) (B/H)'/?, (19)
fo=(1/2)(B/H), (20)
£ =n=4kA(m — 1)/(B/H)’, (21)

Whurs = 60°, (22)
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independentof B/ H.If the shape of the hanging water drop was
instead a half-ellipsoid,

fle/H)=[2(x/H) — (x/H)*1'?, (23)

the first term of its Taylor series expansion would match that of
Egs. (17) and (18), and the coefficient of the second term would
differ only slightly from that of Eq. (17). For this example,

xo=1—1[1—(B/H)*", (24)
fo=B/H, (25)

E=n=kA(m—1)[1—(B/H)1"?/(B/H)’, (26)
and again

WYhups = 60°, (27)

independent of B/ H. The HUFS opening angles of Eqs. (17),

(18), and (23) are equal, or nearly equal, to the value found in
the experiments of Nye [3,4] and of Tanner [7,8], where the
drop was supported in a very different way. It is also in gen-
eral agreement with the observations of the caustic of the first
group of hanging water drops as in Fig. 4 if one assumes that the
viewing screen is at the HUFS, or very close to it.

This claim was tested as follows. Since the hyperbolic umbilic
caustic is a three-dimensional structure, varying the location
of the viewing screen will illuminate different cross sections
through the caustic. Thus, one should be able to determine
the location of the HUEFS as being the location where the two
disjoint branches coalesce. Toward this end, a piece of paper was
placed on top of the nextlower siding board and was then moved
inward toward the drop. As this was done, the opening angle of
the V-shape narrowed, and a parabolic fold caustic came into
view just blow the cusp point. This is consistent with the initial
viewing screen position being at the paraxial focus, and the new
viewing screen position being at Z < Zp;raxial-

In order to view larger viewing screen distances, a different
small water drop was suspended using an eye dropper from
the bottom free edge of an extra unused piece of house siding
that was temporarily mounted horizontally. The transmission
caustic was observed on a piece of white cardboard that could
be easily moved progressively farther behind the house siding.
As the viewing screen was moved to increasingly larger values
of Z, the opening angle of the V-shape increased from ¥ ~ 60°
toward W ~ 90° as was observed for larger drops in the second
group described above. As the viewing screen continued to
be moved outward to yet larger Z, the opening angle of the
V-shape continued to grow to ¥ ~ 140°, typical of the very
large drops in the third group. For even larger Z, the two arms of
the V-shape became more smoothly rounded, more resembling
aU-shape than a V-shape.

When Z of the movable viewing screen was sufficiently larger
than Zaraxial> it was observed that the transverse cusp caustic
started to retract away from the parabolic fold. This was also
observed in the experiments of [9-12]. The reason for this is
described in Appendix A. Some of the rays incident near the top
of the drop that would have otherwise contributed to the caustic
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Fig. 9. Locations on the near-zone transmission caustic and the
noncaustic features on the @6 viewing screen (right) corresponding
to rays passing through various locations on the hyperbola-shaped
zero-curvature path in the x — y exit plane (left) that is mapped into
the caustic.

on the viewing screen are now blocked by the connection of the
hanging drop to the protruding lower edge of the house siding.
This blocking has been termed an aperture effect (see pp. 26,
123, 133 of [4]). In the present situation, when the retracting
cusp entered the aperturing region, its continued visibility was
prevented, leaving only the parabolic fold due to rays refracted
through the upper part of the drop.

B. Transmission Caustic of the Larger Drops of the
Second Group

In order to determine whether the observed transmission caustic
of the larger drops in the second group with 78° < W < 101°
corresponds to 3§ > 1 or 36 <1, and to ¢ > 0 or ¢ <0, the
incident sunlight illuminating different parts of the hanging
drop was blocked, and the effect this had on the observed caustic
was noted. Even though the blocking was done in the drop’s
entrance plane, it gives the same result as blocking the same
portion of the drop’s exit plane, since from ray tracing with
B > A, paraxial rays incident on the drop to the left and right
of center and refracted through the drop do not cross each other
until after they have passed the drop’s exit plane. It was found
that blocking the lower left part of the hanging drop (points 4
to 5 in Fig. 9) extinguished the upper right part of the parabolic
fold caustic (again points 4 to 5), and blocking the lower right
part of the hanging drop (points 5 to 6 in Fig. 9) extinguished
the upper left part of the parabolic fold. Blocking the upper left
part of the hanging drop (points 2 to 3 in Fig. 9) extinguished
the upper left part of the transverse cusp caustic, and blocking
the upper right part of the hanging drop (points 1 to 2 in Fig. 9)
extinguished the upper right part of the transverse cusp. These
blocking results are consistent with either (i) 36 <nandc >0
(i.e., Z < Zpaaxial)> giving Wryps > 90°, or (ii) 3£ > n and
c<0 (i.e., Z > Zparaxial)> giVing lIJHUFS < 90°.

In order to verify that Z > Z,raxial for the water drops of
the second group, a piece of paper was again placed on top
of the next lower siding board, and as it was moved inward
toward the drop, the V-shape and the elliptical-shape within
the V-shape were observed to coincide at the HUFS with
60° < Wyyps < 70°, and resembled the coma aberration
of a thin lens (see Fig. 6.19 of [23]). This test verifies that
3¢ > 1, ¢ <0, and Wyups < 90° for the caustic of the large
hanging drops of the second group.
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When describing the blocking experiments, it should also
be noted that in the aperturing region where the hyperbolic
umbilic caustic is cut off due to the blocking by the lower edge
of the house siding, blocking off the top left portion of the
hanging drop (point 3 in Fig. 9) extinguished the top left part
of the upper portion of the approximate elliptical-shape and
the broad swath of illumination to the upper right. Blocking
off the top right portion of the hanging drop (point 1 in Fig. 9)
extinguished the top right part of the upper portion of the
approximate elliptical-shape and the broad swath of illumi-
nation to the upper left. This is consistent with the following
noncaustic interpretation of these features. Rays with large
values of |y| exiting near the top of the hanging drop on the
right side are refracted upward and toward the left while other
rays exiting near the top on the left side are refracted upward
and toward the right. The two sets of noncaustic-producing
rays cross each other in the vicinity of the viewing screen. Their
overlap on the viewing screen forms the top portion of the
approximate elliptical-shape within the V, and the illuminated
regions beyond the overlap region are the broad swaths of illu-
mination fanning out to the upper left and upper right above the
caustic as mentioned in Section 1.

C. Transmission Caustics of the Largest Drops of the
Third Group

As more water is added to a hanging drop in order to advance
from drops of the first group, to the second group, to the third
group, it was observed that 4 and B remained roughly constant
while H increased (see Fig. 8). From Eq. (13¢), Zparaxial is then
proportional to fj in the one parameter model of the drop
shape. Combining this with either Eq. (19) or Eq. (24), one sees
that Z,axial decreases as [ increases for constant B. Thus, the
next lower house siding board with fixed Z lies progressively
farther beyond the paraxial focal distance. This suggests that for
the largest drops of the third group Z >> Z;axia1, and that again
the causticis described by 3§ > 1, ¢ < 0,and Wyyrs < 90°.

5. CONCLUSION

After a gentle rain, a myriad of water drops hang from various
horizontal surfaces, such as twigs of trees, vines, and the horizon-
tal boards of fences. When the hanging drops are near-normally
illuminated by the sun low in the sky, light transmitted through
them partially focuses as a near-zone hyperbolic umbilic caustic.
But, in the usual state of affairs, no viewing screen is located a
suitable distance behind the hanging drops, and their trans-
mission caustic goes unnoticed. An exception is provided by
the protruding lower surface of a board of house siding, with
the viewing screen being the flat surface of the next lower siding
board. In this case, the hyperbolic umbilic caustic of the near-
zone transmitted light can be easily observed when the sun is
low in the sky. The structural stability of this caustic is verified
by the wide variety of drop shape profiles g (x/ H) and f(x/H)
for which the caustic is theoretically predicted to occur. The two
branches of the caustic can be understood, either quantitatively
using Fourier optics methods augmented by catastrophe optics
methods, as in Section 3, or qualitatively by examining the
behavior of vertical and horizontal families of geometrical light
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rays refracted through the hanging drop, as in the following
Appendix A.

APPENDIX A

The fact that an incident plane wave transmitted through a
hanging drop focuses on a near-zone viewing screen as a hyper-
bolic umbilic caustic can be qualitatively understood in the
following alternative way. Consider first a family of rays propa-
gating in the positive z direction as in Fig. 10, with a constant
vertical x coordinate and different horizontal y coordinates.
If the hanging drop was a circular cylinder and the horizontal
family of rays was transmitted through it, they would form
a cylindrical aberration cusp caustic, with three rays passing
through any point within the caustic and one ray passing
through any point outside. The hanging drop, however, is nar-
rower near its bottom than it is near its top. Crudely modeling it
as a tapered cylinder, the apex of the cylindrical aberration cusp
will be closer to the drop near the bottom and further from it
near the top. If a viewing screen is placed perpendicular to the
z axis beyond the cusp apex point for the bottom of the drop,
but not as far out as the cusp apex for the top of the drop, the
cylindrical aberration caustic will intersect the viewing screen in
the shape of a downward-pointing cusp. This is the transverse
cusp branch of the hyperbolic umbilic caustic. As the viewing
screen is moved further away from the drop, it intersects pro-
gressively less of the cylindrical aberration caustic. When the
viewing screen is moved past the cusp apex formed by light pass-
ing through the top of the drop, the drop’s attachment to the
lower edge of the siding board completely cuts off the transverse
cusp. As was mentioned earlier, this is an example of an aperture
effect (see pp. 26,123, 133 of [4]).

Now consider a family of rays propagating in the positive z
direction as in Fig. 11 in the vertical x-z plane. Each ray refracts
upward both at its entrance to and its exit from the hanging
drop. Thus, one might expect that rays incident near the bottom
of the drop would intersect the vertical 2 axis on the viewing
screen lower than rays incident near the top of the drop, due to
their lower initial height. But by Snell’s law, the lower incident
rays refract upward by a greater amount than rays incident near
the top of the drop. These two opposing tendencies compete
against each other, producing a situation reminiscent of what
occurs in the off-axis coma aberration of a thin spherical lens
(see Fig. 9G of [24]). Starting with the lowest incident ray and

onar
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Fig. 10.  (a) Cylindrical aberration caustic of a circular cylinder.
(b) The cylindrical aberration caustic of a tapered circular cylinder is
larger at the top than at the bottom. A viewing screen (v.s.) cuts this
aberration caustic in the shape of a downward-pointing cusp.
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Fig.11. Lightincident on the axis of a tapered cylinder is transmit-
ted through it with a near-zone caustic. A viewing screen (v.s.) cuts this
caustic with the contribution of two rays above it and no rays below it.

ending with the highest incident one, the point where a ray
crosses the « axis on the viewing screen will first decrease, then
reach a relative minimum, and then increase again. This relative
minimum position is the low point on the parabolic fold caustic.
As is the case for the coma aberration mentioned above, the rela-
tive minimum position on the viewing screen is formed by rays
leaving the lower portion of the drop when the viewing screen
is close to the hanging drop, and it is formed by rays leaving the
upper portion of the drop when the viewing screen is far from
the drop. The transverse cusp apex and the low point of the
parabolic fold subdivide the vertical # axis on the viewing screen
into three regions, a zero-ray region below the relative minimum
point, a two-ray region between the relative minimum and the
transverse cusp apex, and a four-ray region within the cusp. In
the two-ray region, each of the contributing rays is a member
of the vertical family incident near the middle of the drop. In
the four-ray region, two of the rays are members of the vertical
families incident near the top and near the bottom of the drop,
while the other two are members of a horizontal family that cross
each other on the # axis inside the cylindrical aberration caustic.
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