Executing Instructions in Situated Collaborative Interactions

Alane Suhr Claudia Yan Jacob Schluger*
Cornell University IBM Cornell University
suhr@cs.cornell.edu claudiab.yan@gmail.com jes543@cornell.edu

Stanley Yu* Hadi Khader**
Columbia University Intel

stanley.yu@columbia.edu

Marwa Mouallem™*
IBM

marwamouallem@gmail.com

Abstract

We study a collaborative scenario where a user
not only instructs a system to complete tasks,
but also acts alongside it. This allows the user
to adapt to the system abilities by changing
their language or deciding to simply accom-
plish some tasks themselves, and requires the
system to effectively recover from errors as
the user strategically assigns it new goals. We
build a game environment to study this sce-
nario, and learn to map user instructions to
system actions. We introduce a learning ap-
proach focused on recovery from cascading er-
rors between instructions, and modeling meth-
ods to explicitly reason about instructions with
multiple goals. We evaluate with a new evalu-
ation protocol using recorded interactions and
online games with human users, and observe
how users adapt to the system abilities.

1 Introduction

Sequential instruction scenarios commonly as-
sume only the system performs actions, and there-
fore only its behavior influences the world state.
This ignores the collaborative potential of such
interactive scenarios and the challenges it intro-
duces. When the user acts in the world as well,
they can adapt to the system abilities not only by
adopting simpler language, but also by deciding
to accomplish tasks themselves. The system must
then recover from errors as new instructions arrive
and be robust to changes in the environment that
are not a result of its own actions.

In this paper, we introduce CEREALBAR, a
collaborative game with natural language instruc-
tion, and design modeling, learning, and evalua-
tion methods for the problem of sequential instruc-
tion following in collaborative interactions. In CE-
REALBAR, two agents, a leader and a follower,

*,**: Equal contribution. All work done at Cornell.

Iris Zhang
Facebook

irisz@fb.com

hadi.kh.khader@gmail.com

Yoav Artzi
Cornell University

yoav@cs.cornell.edu

Leader’s view

Z3: turn left and head toward the yellow hearts, but don’t
pick them up yet. I'll get the next card first.

Za: Okay, pick up yellow hearts and run past me toward
the bush sticking out, on the opposite side is 3 green stars

[Set made. New score: 4]

Figure 1: A snapshot from an interaction in CEREAL-
BAR. The current instruction is in bold. The large im-
age shows the entire environment. This overhead view
is available only to the leader. The follower sees a first-
person view only (bottom right). The zoom boxes (top)
show the leader and follower.

move in a 3D environment and collect valid sets
of cards to earn points. A valid set is a set of three
cards with distinct color, shape, and count. The
game is turn-based, and only one player can act
in each turn. In addition to collecting cards, the
leader sends natural language instructions to the
follower. The follower’s role is to execute these
instructions. Figure 1 shows a snapshot from the
game where the leader plans to pick up a nearby
card (red square) and delegates to the follower two
cards, one close and the other much further away.
Before that, the leader planned ahead and asked
the follower to move in preparation for the next
set. The agents have different skills to incentivize
collaboration. The follower has more moves per
turn, but can only see from first-person view, while
the leader observes the entire environment but has
fewer moves. This makes natural language inter-

action key to success. We address the problem
of mapping the leader instructions to follower ac-
tions. In addition to the collaborative challenges,
this requires grounding natural language to resolve
spatial relations and references to objects, reason
about dependencies on the interaction history, re-
act to the changing environment as cards appear
and disappear, and generate actions.

CEREALBAR requires reasoning about the
changing environment (e.g., when selecting cards)
and instructions with multiple goals (e.g., select-
ing multiple cards). We build on the Visitation
Prediction Network model (VPN; Blukis et al.,
2018b), which casts planning as mapping instruc-
tions to the probability of visiting positions in the
environment. Our new model generalizes the plan-
ning space of VPN to reason about intermediate
goals and obstacles, and includes recurrent action
generation for trajectories with multiple goals.

We collect 1,202 human-to-human games for
training and evaluation. While our model could be
trained from these recorded games only, it would
often fail when an instruction would start at the
wrong position because of an error in following
the previous one. We design a learning algorithm
that dynamically augments the data with examples
that require recovering from such errors, and train
our model to distinguish such recovery reasoning
from regular instruction execution.

Evaluation with recorded games poses addi-
tional challenges. As agent errors lead to unex-
pected states, later instructions become invalid.
Because measuring task completion from such
states is meaningless, we propose cascaded eval-
uation, a new evaluation protocol that starts the
agent at different points in the interaction and mea-
sures how much of the remaining instructions it
can complete. In contrast to executing complete
sequences or single instructions, this method al-
lows to evaluate all instructions while still mea-
suring the effects of error propagation.

We evaluate using both static recorded games
and live interaction with human players. Our hu-
man evaluation shows users adapt to the system
and use the agent effectively, scoring on average
6.2 points, compared to 12.7 for human players.
Our data, code, and demo videos are available at
lil.nlp.cornell.edu/cerealbar/.

2 Setup and Technical Overview

We consider a setup where two agents, a leader
and a follower, collaborate. Both execute actions

in a shared environment. The leader, additionally,
instructs the follower using natural language. The
leader goal is to maximize the task reward, and the
follower goal is to execute leader instructions. We
consider a turn-based version, where at each turn
only one agent acts. We instantiate this scenario in
CEREALBAR, a navigation card game (Figure 1),
where a leader and follower move in an environ-
ment selecting cards to complete sets.'
CEREALBAR Overview The objective of CE-
REALBAR is to earn points by selecting valid sets
of cards. A valid set has three cards with distinct
color, shape, and count. When the only cards se-
lected in the world form a valid set, the players
receive a point, the selected cards disappear, three
new cards are added randomly, and the number of
remaining turns increases. The increase in turns
decays for each set completed. An agent stepping
on a card flips its selection status. The players
form sets together. The follower has more steps
per turn than the leader. This makes using the fol-
lower critical for success. The follower only sees
a first-person view of the environment, preventing
them from planning themselves, and requiring in-
structions to be sensible from the follower’s per-
spective. The leader chooses the next target set,
plans which of the two players should get which
card, and instructs the follower. The follower can
not respond to the leader, and should not plan
themselves, or risk sabotaging the leader’s plan,
wasting moves and lowering their potential score.
Followers mark an instruction as finished before
observing the next one. This provides alignment
between instructions and follower actions. In con-
trast to the original setup that we use for data col-
lection, in our model (Section 4), we assume the
follower has full observability, leaving the chal-
lenge of partial observability for future work. Ap-
pendix A provides further game design details.
Problem Setup We distinguish between the
world state and the interaction state. Let S be the
set of all world states, I' be the set of all interac-
tion states, and X" be the set of all natural language
instructions. A world state s € S describes the
current environment. In CEREALBAR, the world
state describes the spatial environment, the loca-
tion of cards, whether they are selected or not, and
the location of the agents. An interaction state
v € Tis a tuple (Q, o, v). The first-in-first-out
"The name CEREALBAR does not carry special meaning.

It was given to the project early on, and we came to like it.
Our game is inspired by the card game Set.

http://lil.nlp.cornell.edu/cerealbar/
https://en.wikipedia.org/wiki/Set_(card_game)

queue Q = [Zg, ..., T,] contains the instructions
T; € X available to execute. The current instruc-
tion is the left-most instruction Z,. The current
turn-taker « € {Leader, Follower} indicates the
agent currently executing actions, and ¢ € IN>q is
the number of steps remaining in the current turn.
At each time step, the current turn-taker agent
takes an action. An action may be the leader is-
suing an instruction, or either agent performing
an action in the environment. Let 4 = A, U
{DONE} U X be the set of all actions. The set .A,,
includes the actions available to the agents in the
environment. In CEREALBAR, this includes mov-
ing forward or backward, and turning left or right.
Moving onto a card flips it selection status. DONE
indicates completing the current instruction for the
follower or ending the turn for the leader. An in-
struction action @ = € X can only be taken by
the leader and adds the instruction Z to the queue
Q. The effect of each action is determined by the
transition function 7 : SxI'x A — S x I, which
is formally defined in Appendix B. Only world ac-
tions a € A,, decrease the remaining steps).
The goal of the leader is to maximize the to-
tal reward of the interaction. An interaction I =
((s1,7m,a1),..-, (87, Wi 7)) is a sequence
of state-action tuples, where T (s;,7vi,a;) =
(Si+1,7%i+1). The reward function R : Sx A — R
assigns a numerical reward to a world state and
an action. The total reward of an interaction I is
Zyz‘o R(s;j,a;). In CEREALBAR, the agents re-
ceive a reward of 1 when a valid set is selected.
Task Our goal is to learn a follower policy to
execute the leader instructions. At time ¢, given
the current world and interaction states s; and ~y;,
and the interaction so far I;, the follower policy
(8¢, Vt, I<¢) predicts the next action ay.
Model We decompose the follower policy
7(s¢,7t, I<¢) to predicting a set of distributions
over positions in the environment, including posi-
tions to visit, intermediate goals (e.g., cards to se-
lect), positions to avoid (e.g., cards not to touch),
and positions that are not passable. These distri-
bution are used in a second stage to generate a se-
quence of actions. Section 4 describes the model.
Learning We assume access to a set of N
recorded interactions {7()}N , and create exam-
ples where each instruction is paired with a se-
quence of state-action tuples. We maximize the
action-level cross entropy objective, and use two
auxiliary objectives (Section 5). We first train each
stage of the model separately, and then fine-tune

them jointly. During fine-turning, we continuously
generate additional examples using model failures.
These examples help the agent to learn how to re-
cover from errors in prior instructions.
Evaluation We measure correct execution of in-
structions and the overall game reward. We as-
sume access to a test set of M recorded interac-
tions {7)} M We measure instruction-level and
interaction-level performance, and develop cas-
caded evaluation, an evaluation protocol that pro-
vides a more graded measure than treating each in-
teraction as a single example, while still account-
ing for error propagation (Section 6). Finally, we
conduct online evaluation with human leaders.

3 Related Work

Goal-driven natural language interactions have
been studied in various scenarios, including dia-
logue where only one side acts in the world (An-
derson et al., 1991; Williams et al., 2013; Vlachos
and Clark, 2014; de Vries et al., 2018; Kim et al.,
2019; Hu et al., 2019), coordination for agreed
selection of an object (He et al., 2017; Udagawa
and Aizawa, 2019), and negotiation (Lewis et al.,
2017; He et al., 2018). We focus on collaborative
interactions where both the user and the system
perform sequences of actions in the same environ-
ment. This allows the user to adapt to the language
understanding ability of the system and balance
between delegating goals to it and accomplishing
them themselves. For example, a user may decide
to complete a short but hard-to-describe task and
delegate to the system a long but easy-to-describe
one. In prior work, in contrast, recovery is limited
to users paraphrasing their requests. The Cards
corpus (Djalali et al., 2011, 2012; Potts, 2012)
was used for linguistic analysis of collaborative
bi-directional language interaction. The structure
of collaborative interactions was also studied us-
ing Wizard-of-Oz studies (Lochbaum, 1998; Sid-
ner et al., 2000; Koulouri and Lauria, 2009). In
contrast, we focus on building agents that follow
instructions. Ilinykh et al. (2019) present a cor-
pus for the related task of natural language co-
ordination in navigation. Collaboration has also
been studied for emergent communication (e.g.,
Andreas et al., 2017; Evtimova et al., 2017).
Understanding sequences of natural language
utterances has been addressed using semantic
parsing (e.g., Miller et al., 1996; MacMahon et al.,
2006; Chen and Mooney, 2011; Artzi and Zettle-
moyer, 2013; Artzi et al., 2014; Long et al., 2016;

Iyyer et al., 2017; Suhr et al., 2018; Arkin et al.,
2017; Broad et al.,, 2017). Interactions were
also used for semantic parser induction (Artzi and
Zettlemoyer, 2011; Thomason et al., 2015; Wang
et al., 2016). These methods require hand-crafted
symbolic meaning representation, while we use
low-level actions (Suhr and Artzi, 2018). The in-
teractions in our environment interleave actions
of both agents with leader utterances, an aspect
not addressed by these methods. Executing single
instructions has been widely studied (e.g., Tellex
et al., 2011; Duvallet et al., 2013; Misra et al.,
2017, 2018; Anderson et al., 2018; Blukis et al.,
2018a,b; Chen et al., 2019). The distinction we
make between actions specified in the instruction
and implicit recovery actions is similar to how
Artzi and Zettlemoyer (2013) use implicit actions
for single instructions. Finally, our model is based
on the VPN model of Blukis et al. (2018b). While
we assume full observability, their original work
did not. This indicates that our model is likely to
generalize well to partially observable scenarios.

4 Model

We use a two-stage model for the follower policy
7(st,7Vt, I<t), where s; is a world state, ~y; is an
interaction state, and I_; is the interaction history.
The instruction Z that is the first in the queue Q,
which is part of 74, is the currently executed in-
struction. In our model, we assume the follower
observes the entire environment. First, we map
T and s; to distributions over locations in the en-
vironment, including what locations to visit and
what are the goals. These distributions are consid-
ered as an execution plan, and are used to generate
a sequence of actions in the second stage. The dis-
tribution can also be used to easily easily visualize
the agent plan. The first stage is used when start-
ing a new instruction, and the predicted distribu-
tions are re-used for all actions for that instruction.
Figure 2 illustrates the architecture and the distri-
butions visualization. The two-stage approach was
introduced by Blukis et al. (2018b). We general-
ize its planning space and add a recurrent action
generator for execution.

Input Representation The inputs to the first
stage are the instruction & and the world state
s¢. We generate feature maps for both. We
use a learned embedding function ¢t and a
bi-directional recurrent neural network (RNN;
Elman, 1990) with a long short-term memory
cell (LSTM; Hochreiter and Schmidhuber, 1997)

RNN? to map Z to a vector X. The world state s;
is a 3D tensor that encodes the properties of each
position. The dimensions of s; are P x W x H,
where P is the number of properties, and W and
H are the environment width and height. Each of
the W x H positions is represented in s; as a binary
vector of length P. For example, a position with
a red hut will have 1’s for the red and hut dimen-
sions and 0’s for all other dimensions. We map
the world state to a tensor feature map F(by em-
bedding s; and processing it using the text repre-
sentation X. We use a learned embedding function
#° to map each position vector to a dense embed-
ding of size N; by summing embeddings of each
of the position’s properties. The embeddings are
combined to a tensor S of dimension Ny x W x H
representing a featurized global view of the envi-
ronment. We create a text-conditioned state repre-
sentation by creating a kernel K, and convolving
with it over S. We use a linear transformation to
create Ky = WX + by, where W and by are
learned weights. We reshape K toa 1 x 1 convo-
Iution kernel with N output channels, and com-
pute S’ = S x K. We concatenate S and S’ along
the channel dimension and rotate and center so the
follower position is at center pixel to generate F.>
Stage 1: Plan Prediction We treat plan gen-
eration as predicting distributions over positions
p in the environment. There are W x H
possible positions. We predict four distribu-
tions: (a) p(p| s, z), the probability of vis-
iting p while executing the instruction z; (b)
p(GOAL =1 | p, s¢,Z), the binary probability
that p is a goal (i.e., GOAL = 1 when contain-
ing a card to select); (c) p(AVOID =1 | p, s, &),
the binary probability that the agent must not
pass in p (i.e., AVOID = 1 when it con-
tains a card that should not be touched); and (d)
p(NOPASS =1 | p, s, &), the binary probability
the agent cannot pass in p (i.e., NOPASS = 1
when it contains another object).

We use LINGUNET (Misra et al., 2018) to pre-
dict the distributions. The inputs to LINGUNET
are the instruction embedding X and featurized
world state Fy, which is relative to the agent’s
frame of reference. The output are four matri-
ces, each of dimension W x H corresponding to
the environment. LINGUNET is formally defined
in Misra et al. (2018) and Appendix D. Roughly

2Appendix D describes the relationship between the en-

vironment representations and the agent’s initial and current
orientation.

Z: Okay, pick up yellow hearts and run past me toward the
bush sticking out, on the opposite side is 3 green stars

Stage 1: Plan Trajectory distributionl | Plan distributions | Stage 2: Action
prediction Goal distribution@ . F generation
S = g Locations to avoid @ ‘-E.g LYy I ';J"v, (s1,71)
| Impassable locationsH i Y N ¢ e SN
e BOVAUE =
0 Il]
Goal K . o
auxiliary ’ Fy L5 G By a8 a = 7 [52,72)
— {000 —RiE—e——{H, “ J“ |
g . o A b %Y —> RNN [.FORWARD~7
K
Com2D 2 N DGZ.*E[I[II] B Z .9 ‘ o
[]Transpose Conv2d T 53y 73}
DLeakyReLU F3 G PH l RNN [-FORWARD~7~
= 000 HEEI——0000- Hs »
DInstanchonn?D A KT Discriminator
UFully connected + bias LingUNet F, 2 Gy H auxiliary
ULQ norm el 4

Figure 2: Illustration of the model architecture. Given the instruction z and the world state s, we compute F from
the embeddings of the instruction X and environment S. We use LINGUNET to predict four distributions, which
are visualized over the map (grayscaled to emphasize the distributions). We show three action generation steps.

Each step receives the map cropped around the agent and the previous action, and outputs the next action.

speaking, LINGUNET reasons about the environ-
ment representation Fg at L levels. First, F is
used to generate feature maps of decreasing size
F;, j = 1...L using a series of convolutions.
We create convolution kernels from the instruc-
tion representation X, and apply them to the fea-
ture maps F'; to generate text-conditioned feature
maps G. Finally, feature maps of increasing size
H are generated using a series of L deconvolu-
tions. The last deconvolution generates a tensor
of size 4 x W x H with a channel for each of
the four distributions. We use a softmax over one
channel to compute p(p | s;,Z). Because the
other distributions are binary, we use a sigmoid
on each value independently for the other chan-
nels. When computing p(GOAL = 1 | p, s, 7)
and p(AVOID = 1 | p, s¢, Z) we mask positions
without objects that can be changed (i.e., positions
without cards) to assign them zero probability.

Stage 2: Action Generation We use the four
distributions to generate a sequence of actions.
We concatenate the distributions channel-wise to
a tensor P € R>*W>H We use a forward LSTM
RNN to predict a sequence of actions. At each
prediction step ¢, we rotate, transform, and crop P
to generate the egocentric tensor P} € RN XCxC
where the agent is always at the center and facing
in the same direction, such that P} is relative to
the agent’s current frame of reference. The input
to the action generation RNN at time ¢ is:

p, = vec(NORM(RELU(CNN”(P}))))
p: = RELU(W;[p;;RELU(W{p; +b1)]+b3) |

where CNNY is a convolutional layer, RELU

is a non-linearity, NORM is instance normaliza-

tion (Ulyanov et al., 2017), and WP W2 bl

b are learned weights. The action probability is:
hy = RNN?(hi—y,[6" (ar-1); pe])

pa) o exp(Why;pi] +b%))

where RNN4 is an LSTM RNN, qﬁA is a learned
action embedding function, ag is a special START
action, and W+ and b are learned. During in-
ference, we assign zero probabilities to actions a
when 7, (s, a) is invalid (Appendix B), for exam-
ple when an agent would move into an obstacle.

5 Learning

We assume access to a set of N recorded inter-
actions {IW}N,. We generate instruction-level
examples D = Ugl{l_(i@}jj\f{), where M@ is
the number of examples from (9. Each I(#J) =
<(8§i,j)7 ,yy,j)? agm‘)), . (SSJ)’ ,Y,(:J)’ al(;}j)» is a
subsequence of tuples in 19, where agi’j) is the
first action the follower takes after observing the
j-th instruction in IV, and aS’j) is the DONE action
completing that instruction. We first estimate the
parameters for plan prediction #; and action gen-
eration 5 separately (Section 5.1), and then fine-
tune jointly with data augmentation (Section 5.2).

5.1 Pretraining

Stage 1: Plan Prediction The input of Stage 1 is
the world state s and the instruction I at the head
of the queue ().> We generate labels for the four

3We omit example indices for succinctness.

output distributions using I(»7). The visitation dis-
tribution p(p | s1,) label is proportional to num-
ber of states s; € I(47) where the follower is in
position p. The goal and avoidance distributions
model how the agent plans to manipulate parts of
its environment to achieve the specified goals, but
avoid manipulating other parts. In CEREALBAR,
this translates to changing the status of cards, or
avoiding doing so. For p(GOAL =1 | p, s1,%),
we set the label to 1 for all p that contain a card that
the follower changed its selection status in I(»7),
and O for all other positions. Similarly, for the
avoidance distribution p(AVOID = 1 | p, s1,%),
the label is 1 for all p that have cards that the fol-
lower does not change during the interaction I (@:3),
Finally, for p(NOPASS = 1 | p, s1,), the label
is 1 for all positions the agent cannot move onto,
and zero otherwise. We define four cross-entropy
losses: visitation Ly, goal Lq, avoidance L 4, and
no passing Lp. We also use an auxiliary cross-
entropy goal-prediction loss L using a probabil-
ity pi;(GOAL = 1 | p,s1,Z) we predict from
the pre-LINGUNET representation S’ by classify-
ing each position. The complete loss is a weighted
sum with coefficients:*
L1(61) =AvLy(61) + AaLa(61) + AaLla(61)
+ApLp(01) + Agr Lo (61) .

Stage 2: Action Generation We use the gold
distribution to create the input P, and optimize to-
wards the annotated set of actions using teacher
forcing (Williams and Zipser, 1989). We compute
the loss only over actions taken by the follower:

cg (02) = - Z::l Il-atzFollowerp(at))

where p(a;) is computed by Equation 1.

5.2 Fine-tuning with Example Aggregation

Simply combining the separately-trained networks
together results in low performance. We perform
additional fine-tuning with the two stages com-
bined, and introduce a data augmentation method
to learn to recover from error propagation.

Error Propagation Executing a sequence of
instructions is susceptible to error propagation,
where an agent fails to correctly complete an in-
struction, and because of it also fails on the follow-
ing ones. While the collaborative, turn-switching
setup allows the leader to adjust their plan fol-
lowing a follower mistake, leaders often strategi-
cally issue multiple instructions to use the avail-

4 Additional details are in Appendix E.1.

able follower steps optimally. Given an agent fail-
ure, subsequent instructions may not align with the
state of the world resulting from the follower’s er-
ror. In supervised learning, we do not have the
opportunity to learn to recover from such errors,
even when it is relatively simple. This usually re-
quires exploration. However, conventional frame-
works like reinforcement learning (RL) or imita-
tion learning (IL) are poorly suitable. In a live
interaction, when an agent makes a mistake (e.g.,
selecting the wrong card), the leader is likely to
adjust their actions. Because of this, in a recorded
interaction, which contains the leader actions fol-
lowing a correct execution, it is not possible to re-
liably compute an RL reward for states following
erroneous executions. For similar reasons, we can-
not compute an IL oracle.

We identify two classes of erroneous states in
CEREALBAR: (a) not selecting the correct set of
cards; and (b) finishing with the right card selec-
tion, but stopping at the wrong position.> Case (a)
requires to modify the model, for example to know
when to skip instructions that refer to a state that
is no longer possible. We leave this case for fu-
ture work. We address case (b) by augmenting the
data with new examples that are aggregated during
learning. Our process is similar to DAGGER (Ross
et al., 2011). We alternate between: (a) collect-
ing new training examples using a heuristic ora-
cle, and (b) performing model updates. We gen-
erate training examples that demonstrate recovery
by starting in an incorrect initial position for an
instruction, having arrived there by executing the
previous instruction. We train our model to distin-
guish between the reasoning required for generat-
ing implicit actions to correct errors, and explicit
actions directly mentioned in the instruction.
Learning with Example Aggregation We al-
ternate between aggregating a new set of recov-
ery examples D’ and updating our parameters. At
each epoch, we first use the current policy to cre-
ate new training examples. We run inference for
each example 1(»7) in D, the original training set,
using the current policy.® We compare the state s’
at the end of execution to the final state in 1(»7)
to generate an error-recovery example I/(%7+1) for
the subsequent example I(7+1) We only gener-
ate such examples if the position or rotation of the

5See Appendix E.2 for further discussion of the two cases.

®We do not perform inference for the last instruction in an
interaction, as there is no subsequent example for which to
generate a new example.

agent are different, and there are no other differ-
ence between the states. Starting from s, we gen-
erate the shortest-path sequence of actions that: (a)
changes the cards as specified in 7(»7+1) and (b)
executes DONE in the same position as in (1.
We then create I'(>7+1) ysing 7(:7+1) and the new
sequence of state-action pairs, and add it to D’.”

Given the original set of examples D and the
aggregate examples D’ we update our model pa-
rameters. We randomly sample without replace-
ment at most EZ]\; | M@ examples, the size of D,
from D’. We use all the examples in D and the
sampled examples to do a single parameter update
epoch. We limit the number of examples from D’
to maintain the effect of the original data.

Optimizing with Implicit Action Prediction
The examples we generate during aggregation of-
ten include sequences of state-action pairs that do
not align with the instruction, for example when
a mentioned spatial relation is incorrect from the
new starting position. Such examples require rea-
soning differently about the text and world state
than with the original data. We identify such ex-
amples in D’ by comparing their follower starting
position to the starting position in the original cor-
responding example in D. If the distance is over
two, we treat the examples as requiring implicit
actions (Artzi and Zettlemoyer, 2013). All other
examples, including all original examples in D are
considered as not requiring implicit reasoning. We
encourage the model to reason differently about
these examples with a discriminator that classifies
if the example requires implicit reasoning or not
using the internal activations of LINGUNET.

The discriminator classifies each of the L layers
in LINGUNET for implicit reasoning. The goal
is to encourage implicit reasoning at all levels of
reasoning in the first stage. The probability of im-

plicit reasoning for each LINGUNET layer [is:
p(IMPLICT = 1|1, 51,%) =

o(AVGPOOL(Gy * KIMP)) =1

[>1

)

o(AvGPooL(H; x K[MP))

where KIMP are 1 x 1 learned kernels and
AVGPOOL does average pooling. We define a
cross-entropy loss Lyyp that averages across the
L layers. The complete fine-tuning loss is:

L(01,02) = L1(01) + L2(02) + Aivap L1vp (01) -

" Appendix E.2 describes this process.

6 Cascaded Evaluation

Sequential instruction scenarios are commonly
evaluated using recorded interactions by executing
individual instructions or executing complete in-
teractions starting from their beginning (e.g., Chen
and Mooney, 2011; Long et al., 2016). Both have
limitations. Instruction-level metrics ignore error
propagation, and do not accurately reflect the sys-
tem’s performance. In contrast, interaction-level
metrics do consider error propagation and capture
overall system performance well. However, they
poorly utilize the test data, especially when perfor-
mance is relatively low. When early failures lead
to unexpected world states, later instructions be-
come impossible to follow, and measuring perfor-
mance on them is meaningless. For example, with
our best-performing model, 82% of development
instructions become impossible due cascading er-
rors when executing complete interactions.

The two measures may also fail to distinguish
models. For example, consider an interaction with
three instructions. Two models, A and B, success-
fully execute the third instruction in isolation, but
fail on the two others. They also both fail when
executing the entire interaction starting from the
beginning. According to common measures, the
models are equal. However, if model B can actu-
ally recover from failing on the second instruction
to successfully execute the third, it means it is bet-
ter than model A. Both metrics fail to reflect this.

We propose cascaded evaluation, an evaluation
protocol for sequential instruction using static cor-
pora. Our method utilizes all instructions during
testing, while still accounting for the effect of er-
ror propagation. Unlike instruction-level evalua-
tion, cascaded evaluation executes the instructions
in sequence. However, instead of starting of start-
ing only from the start state of the first instruc-
tion, we create separate examples for starting from
the starting state of each instruction in the inter-
action and continuing until the end of the inter-
action. For example, given a sequence of three
instructions (1,2,3) we will create three exam-
ples: (1,2,3), (2,3), and (3). To evaluate perfor-
mance in CEREALBAR, we compute two statistics
using cascaded evaluation: the proportion of the
remaining instructions followed successfully, and
the proportion of potential points scored. We only
consider the remaining instructions and points left
to achieve in the example. For example, for the se-
quence (2, 3), we will subtract any points achieved

before the second instruction to compute the pro-
portion of potential points scored. Appendix F de-
scribes cascaded evaluation formally.

7 Experimental Setup

Data We collect 1,202 human-human interac-
tions using Mechanical Turk, split into train (960
games), development (120), and test (122). Ap-
pendix C details data collection and statistics.
Recorded Interactions Metrics We evaluate
instruction-level, interaction-level, and cascaded
(Section 6) performance. We allow the follower
ten steps per turn, and interleave the actions taken
by the leader during each turn in the recorded
interaction. Instruction execution often crosses
turns. At the instruction-level, we evaluate the
mean card state accuracy comparing the state of
the cards after inference with the correct card
state, environment state accuracy comparing both
cards and the agent’s final position, and action se-
quence accuracy comparing the generated action
sequence with the correct action sequence. For
complete interactions, we measure mean full game
points. Finally, for cascaded evaluation, we mea-
sure the mean proportion of instructions correctly
executed and of possible points scored.

Human Evaluation We perform evaluation
with human leaders, comparing our model and hu-
man followers. Workers are told they will work
with a human or an automated follower, but are
not told which in each game. We evaluate both
human (105 games) and automated agents at the
same time (109 games). We evaluate the game
scores, and also elicit free-form feedback.
Systems We evaluate three systems: (a) the
full model; (b) SEQ2SEQ+ATTN:® sequence-to-
sequence with attention; and (c) a static oracle
that executes the gold sequence of actions in the
recorded interaction. We report mean and standard
deviation across three trials for development re-
sults. We ablate model and learning components,
and additionally evaluate the action generator with
access to gold plans.” On the test set and for hu-
man evaluation, we use the model with the highest
proportion of points scored. We provide imple-
mentation and learning details in Appendix G.

8 Results

Table 1 shows development and test results, in-
cluding ablations. We consider the proportion of
8This baseline is similar to Mei et al. (2016).

“We do not measure interaction-level metrics with gold
plans as they are only available for the gold start positions.

points scored computed with cascaded evaluation
as the main metric. Our complete approach signif-
icantly outperforms SEQ2SEQ+ATTN. Key to this
difference is the added structure within the model
and the direct supervision on it. The results also
show the large remaining gap to the static oracle.'®
Our results show how considering error prop-
agation for all available instructions in cascaded
evaluation guides different design choices. For
example, example aggregation and the implicit
discriminator lower performance according to
instruction-level metrics, which do not consider
error propagation. We see a similar trend for the
implicit discriminator when looking at full game
points, an interaction-level metric that does not ac-
count for performance on over 80% of the data be-
cause of error propagation. In contrast, the pro-
portion of points scored computed using cascaded
evaluation shows the benefit of both mechanisms.
Our ablations demonstrate the benefit of each
model component. All four distributions help.
Without the trajectory distribution (— Trajectory
distribution), performance drops almost to the
level of SEQ2SEQ+ATTN. This indicates the ac-
tion predictor is not robust enough to construct
a path given only the three other disjoint distri-
butions. While the predicted trajectory distribu-
tion contains all information necessary to reach
the correct cards and goal location, the other three
distributions further improve performance. This is
likely because redundancy with the trajectory dis-
tribution makes the model more robust to noisy
predictions in the trajectory distribution. For ex-
ample, the GOAL distribution guides the agent to
move towards goal cards even if the predicted tra-
jectory is discontinuous. The action generation re-
currence is also critical (- Action recurrence), al-
lowing the agent to keep track of which locations
it already passed when navigating complex paths
that branch, loop, or overlap with themselves.
While we observe that each stage separately
performs well after pretraining, combining them
without fine-tuning (— Fine-tuning) leads to low
performance because of the shift in the second
stage input. Providing the gold distributions to
the action generator illustrates this (+ Gold plan).
Removing early goal auxiliary loss Lg (Sec-
tion 5.1) leads to a slight drop in performance
on all metrics (— Early goal auxiliary). Learn-
ing with aggregated recovery examples helps the

19 Appendix F explains the static oracle performance.

System Card Env. Action Seq. || Full Game || Prop. Instr. | Prop. Points
State Acc. | State Acc. | Accuracy Points Followed Scored
Development Results & Ablation Analysis
Full model 58.2+05 32.6+038 15.8+05 0.66+0.1 20.5+12 18.1+038
— Trajectory distribution 38.5+27 10.1+27 5.5+26 0.29+0.02 10.0+09 7.9+07
— GOAL distribution 56.2+15 30.8+04 14.9+03 0.66+0.09 17.9+10 159413
— AVOID distribution 57.0+03 32.6+16 154+13 0.63+0.04 18.8+15 17.8+07
— NOPASS distribution 59.2+05 32.0+038 15.0+05 0.70+0.03 18.4+09 16.6+09
— Action recurrence 42.3+15 16.7+12 10.0+07 0.42+0.03 12.8+17 10.7+05
— Fine-tuning 43.6+19 8.5+11 4.5+05 0.65+0.09 14.1+13 9.2409
— Early goal auxiliary 57.2+23 31.2+17 14.9+16 0.65+0.05 17.941.1 16.5+0.7
— Example aggregation 59.4+18 32.0+10 15.7+06 0.65+0.09 20.4+14 16.5+04
— Implicit discriminator 57.5+21 32.7+10 16.4+03 0.70=+0.02 18.8+1.8 16.7+0.6
— Instructions 15.5+15 2.7+15 1.2+12 0.24+0.07 4.4+10 4.6+0.7
+ Gold plan 87.4+05 80.2+02 63.4+02 - - -
SEQ2SEQ+ATTN 35.3+08 11.1+05 9.4+05 0.20+0.04 8.8+0.1 6.3+0.1
Static oracle 99.7 99.7 100.0 6.58 98.5 97.9
Test Results
Full model 58.4 32.1 15.6 0.62 15.4 17.9
SEQ2SEQ+ATTN 37.3 10.8 8.5 0.22 8.7 6.5
Static oracle 99.7 99.7 100.0 6.66 96.8 95.6

Table 1: Development and test results on all systems, including ablation results.

model to learn to recover from errors in previ-
ous instructions and increases the proportion of
points scored (- Example aggregation). How-
ever, without the implicit reasoning discriminator
(- Implicit discriminator), the additional examples
make learning too difficult, and do not help. Fi-
nally, removing the language input (- Instructions)
significantly decreases performance, showing that
the data is relatively robust to observational biases
and language is necessary for the task.

In the human evaluation, we observe a mean of
6.2 points (max of 14) with our follower model,
compared to 12.7 (max of 20) with human fol-
lowers. While this shows there is much room
for improvement, it illustrates how human lead-
ers adapt and use the agent effectively. One key
strategy of adaptation is to use simplified language
that fits the model better. This includes shorter in-
structions, with 8.5 tokens on average with auto-
mated followers compared to 12.3 with humans,
and a smaller vocabulary, 578 word types with au-
tomated followers and 1037 with humans. In gen-
eral, human leaders commented that they are able
to easily distinguish between automated and hu-
man followers, and find working with the auto-
mated agent frustrating.

9 Discussion

Our human evaluation highlights several direc-
tions for future work. While human leaders adapt
to the agent, scoring up to 14 points, there remains
a significant gap to collaborations with human fol-
lowers. Reported errors include getting stuck be-
hind objects, selecting unmentioned cards, going

in the wrong direction, and ignoring instructions.
At least one worker developed a strategy that took
advantage of the agent’s full observability, writ-
ing instructions with only simple card references.
An important direction for future work is to re-
move our full observability assumption. Other
future directions include experimenting with us-
ing the interaction history, expanding the learning
example aggregation to error cases beyond incor-
rect start positions, and making agent reasoning
interpretable to reduce user frustration. CERE-
ALBAR also provides opportunities to study prag-
matic reasoning for language understanding (An-
dreas and Klein, 2016; Fried et al., 2018; Liang
et al., 2019). While we currently focus on lan-
guage understanding by limiting the communica-
tion to be unidirectional, bidirectional communi-
cation would allow for more natural and efficient
collaborations (Potts, 2012; Ilinykh et al., 2019).
CEREALBAR could be easily adapted to allow
bidirectional communication, and provide a plat-
form to study challenges in language generation.

Acknowledgments

This research was supported by the NSF under
Grant No. 1750499, a Google Focused Award,
an AI2 KSC Award, a Workday Faculty Award,
Unity, and an Amazon Cloud Credits Grant. This
material is based on work supported by the Na-
tional Science Foundation Graduate Research Fel-
lowship under Grant No. DGE-1650441. We
thank Valts Blukis, Jin Sun, and Mark Yatskar for
comments and suggestions, the workers who par-
ticipated in our data collection, and the reviewers.

References

Anne H. Anderson, Miles Bader, Ellen Gurman Bard,
Elizabeth Boyle, Gwyneth Doherty, Simon Garrod,
Stephen Isard, Jacqueline Kowtko, Jan McAllister,
Jim Miller, Catherine Sotillo, Henry S. Thompson,
and Regina Weinert. 1991. The HCRC map task
corpus. Language and Speech, 34.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Siinderhauf, Ian D. Reid,
Stephen Gould, and Anton van den Hengel.
2018. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real en-
vironments. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3674—3683.

Jacob Andreas, Anca Dragan, and Dan Klein. 2017.
Translating neuralese. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 232-242.

Jacob Andreas and Dan Klein. 2016. Reasoning about
pragmatics with neural listeners and speakers. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 1173—
1182.

Jacob Arkin, Matthew R. Walter, Adrian Boteanu,
Michael E. Napoli, Harel Biggie, Hadas Kress-
Gazit, and Thomas M. Howard. 2017. Contextual
awareness: Understanding monologic natural lan-
guage instructions for autonomous robots. In /EEE
International Symposium on Robot and Human In-
teractive Communication, pages 502-509.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014.
Learning compact lexicons for CCG semantic pars-
ing. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1273-1283.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrap-
ping semantic parsers from conversations. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 421-432.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion of Computational Linguistics, 1:49-62.

Valts Blukis, Nataly Brukhim, Andrew Bennett,
Ross A. Knepper, and Yoav Artzi. 2018a. Follow-
ing high-level navigation instructions on a simulated
quadcopter with imitation learning. In Proceedings
of the Robotics: Science and Systems Conference.

Valts Blukis, Dipendra Misra, Ross A. Knepper, and
Yoav Artzi. 2018b. Mapping navigation instructions
to continuous control actions with position visita-
tion prediction. In Proceedings of the Conference
on Robot Learning.

Alexander Broad, Jacob Arkin, Nathan Ratliff, Thomas
Howard, and Brenna Argall. 2017. Real-time natu-
ral language corrections for assistive robotic manip-

ulators. The International Journal of Robotics Re-
search, 36(5-7):684-698.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Natural
language navigation and spatial reasoning in visual
street environments. In IEEE Conference on Com-
puter Vision and Pattern Recognition.

Alex Dijalali, David Clausen, Sven Lauer, Karl Schultz,
and Christopher Potts. 2011. Modeling expert ef-
fects and common ground using questions under
discussion. In AAAI Fall Symposium: Building
Representations of Common Ground with Intelligent
Agents.

Alex Djalali, Sven Lauer, and Christopher Potts. 2012.
Corpus evidence for preference-driven interpreta-

tion. In Logic, Language and Meaning, pages 150—
159.

Felix Duvallet, Thomas Kollar, and Anthony Stentz.
2013. Imitation learning for natural language direc-
tion following through unknown environments. In
IEEE International Conference on Robotics and Au-
tomation, pages 1047-1053.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14:179-211.

Katrina Evtimova, Andrew Drozdov, Douwe Kiela,
and Kyunghyun Cho. 2017. Emergent communica-
tion in a multi-modal, multi-step referential game.
In Proceedings of the International Conference on
Learning Representations.

Daniel Fried, Jacob Andreas, and Dan Klein. 2018.
Unified pragmatic models for generating and follow-
ing instructions. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1951-1963.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative di-
alogue agents with dynamic knowledge graph em-
beddings. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics,

pages 1766-1776.

He He, Derek Chen, Anusha Balakrishnan, and Percy
Liang. 2018. Decoupling strategy and generation in
negotiation dialogues. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 2333-2343.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9.

https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.18653/v1/P17-1022
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.18653/v1/D16-1125
https://doi.org/10.1109/ROMAN.2017.8172349
https://doi.org/10.1109/ROMAN.2017.8172349
https://doi.org/10.1109/ROMAN.2017.8172349
https://doi.org/10.3115/v1/D14-1134
https://doi.org/10.3115/v1/D14-1134
http://www.aclweb.org/anthology/D11-1039
http://www.aclweb.org/anthology/D11-1039
http://aclweb.org/anthology/Q13-1005
http://aclweb.org/anthology/Q13-1005
http://aclweb.org/anthology/Q13-1005
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://www.aclweb.org/anthology/D18-1256
https://www.aclweb.org/anthology/D18-1256

Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuan-
dong Tian, and Mike Lewis. 2019. Hierarchical de-
cision making by generating and following natural
language instructions. CoRR, abs/906.00744.

Nikolai Ilinykh, Sina Zarrie3, and David Schlangen.
2019. MeetUp! A corpus of joint activity dialogues
in a visual environment. CoRR, abs/1907.05084.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics, pages 1821-1831.

Jin-Hwa Kim, Nikita Kitaev, Xinlei Chen, Marcus
Rohrbach, Yuandong Tian, Dhruv Batra, and Devi
Parikh. 2019. CoDraw: Collaborative Drawing as a
Testbed for Grounded Goal-driven Communication.
CoRR, abs/1704.04517.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Theodora Koulouri and Stanislao Lauria. 2009. Ex-
ploring miscommunication and collaborative be-
haviour in human-robot interaction. In Proceedings
of the SIGDIAL Conference, pages 111-119.

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh,
and Dhruv Batra. 2017. Deal or no deal? End-to-end
learning of negotiation dialogues. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 2443-2453.

Claire Liang, Julia Proft, Erik Andersen, and Ross A.
Knepper. 2019. Implicit communication of action-
able information in human-Al teams. In Proceed-
ings of the CHI Conference on Human Factors in
Computing Systems, pages 95:1-95:13.

Karen E. Lochbaum. 1998. A collaborative planning
model of intentional structure. Computational Lin-
guistics, 24(4):525-572.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 1456-1465.

Matthew MacMahon, Brian Stankiewics, and Ben-
jamin Kuipers. 2006. Walk the talk: Connecting
language, knowledge, action in route instructions.
In Proceedings of the National Conference on Ar-
tificial Intelligence.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
Proceedings of the AAAI Conference on Artificial In-
telligence.

Scott Miller, David Stallard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical approach
to natural language interfaces. In Proceedings of
the Annual Meeting of the Association for Compu-
tational Linguistics, pages 55-61.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3D environments
with visual goal prediction. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2667-2678.

Dipendra Misra, John Langford, and Yoav Artzi. 2017.
Mapping instructions and visual observations to ac-
tions with reinforcement learning. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 1004—1015.

Christopher Potts. 2012. Goal-driven answers in the
Cards dialogue corpus. In Proceedings of the West
Coast Conference on Formal Linguistics, pages 1—
20.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Pro-
ceedings of the International Conference on Artifi-
cial Intelligence and Statistics.

Candace L. Sidner, Carolyn Boettner, and Charles
Rich. 2000. Lessons learned in building spoken
language collaborative interface agents. In ANLP-
NAACL Workshop: Conversational Systems.

Alane Suhr and Yoav Artzi. 2018. Situated mapping
of sequential instructions to actions with single-step
reward observation. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics, pages 2072-2082.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to ex-
ecutable formal queries. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2238-2249.

Stephanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R. Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. 2011. Understanding nat-
ural language commands for robotic navigation and
mobile manipulation. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

Jesse Thomason, Shiqi Zhang, Raymond Mooney, and
Peter Stone. 2015. Learning to interpret natural lan-
guage commands through human-robot dialog. In
Proceedings of the International Joint Conference
on Artificial Intelligence.

Takuma Udagawa and Akiko Aizawa. 2019. A nat-
ural language corpus of common grounding under
continuous and partially-observable context. In Pro-
ceedings of the Conference on Artificial Intelligence.

https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://www.aclweb.org/anthology/W09-3915
https://www.aclweb.org/anthology/W09-3915
https://www.aclweb.org/anthology/W09-3915
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.1145/3290605.3300325
https://doi.org/10.1145/3290605.3300325
https://www.aclweb.org/anthology/J98-4001
https://www.aclweb.org/anthology/J98-4001
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.3115/981863.981871
https://doi.org/10.3115/981863.981871
https://www.aclweb.org/anthology/D18-1287
https://www.aclweb.org/anthology/D18-1287
https://doi.org/10.18653/v1/D17-1106
https://doi.org/10.18653/v1/D17-1106
https://www.aclweb.org/anthology/W00-0301
https://www.aclweb.org/anthology/W00-0301
http://aclweb.org/anthology/P18-1193
http://aclweb.org/anthology/P18-1193
http://aclweb.org/anthology/P18-1193
http://aclweb.org/anthology/N18-1203
http://aclweb.org/anthology/N18-1203

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lem-
pitsky. 2017. Improved texture networks: Maximiz-
ing quality and diversity in feed-forward stylization
and texture synthesis. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4105—
4113.

Andreas Vlachos and Stephen Clark. 2014. A new cor-
pus and imitation learning framework for context-
dependent semantic parsing. Transactions of the As-
sociation for Computational Linguistics, 2:547-560.

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi
Parikh, Jason Weston, and Douwe Kiela. 2018.
Talk the Walk: Navigating New York City
through grounded dialogue. arXiv preprint
arXiv:1807.03367.

Sida I. Wang, Percy Liang, and Christopher D. Man-
ning. 2016. Learning language games through in-
teraction. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics,
pages 2368-2378.

Jason Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In Proceedings of the SIGDIAL Con-
ference, pages 404—413.

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Computation, 1:270-280.

https://doi.org/10.1109/CVPR.2017.437
https://doi.org/10.1109/CVPR.2017.437
https://doi.org/10.1109/CVPR.2017.437
https://doi.org/10.1162/tacl_a_00202
https://doi.org/10.1162/tacl_a_00202
https://doi.org/10.1162/tacl_a_00202
https://doi.org/10.18653/v1/P16-1224
https://doi.org/10.18653/v1/P16-1224
https://www.aclweb.org/anthology/W13-4065
https://www.aclweb.org/anthology/W13-4065

A CEREALBAR Game Design

This appendix supplements Section 2 with further
game design details and discussion of the reason-
ing behind them.

World View Figure 3 shows the leader’s point
of view, and Figure 4 shows the follower’s. The
leader observes the entire environment, while the
follower only has access to a restricted first per-
son view. The leader can also toggle to an over-
head view to see obstructed cards using the cam-
era button, and has access to the follower’s current
view to aide them in writing instructions that make
sense to the follower. Selected cards are outlined
in blue for both players. Invalid selections appear
in red for the leader only. This setup makes the
follower dependent on the leader, limits the fol-
lower ability to plan the card collection strategy,
and encourages collaboration.

Game Progression The two players switch con-
trol of the game by taking turns. During each
turn, the follower can take ten (¥ = 10) steps
while the leader can take five (¥; = 5). Allow-
ing the follower more steps than the leader incen-
tivizes delegating lengthier tasks to the follower,
such as grabbing multiple cards per turn or moving
further away. We do not count actions which do
not change the player’s location or rotation, such
as moving forward into an obstacle, against this
limit. We additionally limit the amount of time
each player has per turn. This requires players
to move quickly without frustrating their partner
by taking a long time, and additionally limits the
maximum time per game. Both players begin with
six turns each. The game ends when the players
run out of turns.

The leader turn ends once they press the end
turn button or after 45 seconds. The end turn but-
ton is disabled as long as there are no instructions
in the follower queue to nudge the leader to use
the follower if time allows it. The allotted 45 sec-
onds allow the leader sufficient time to move, plan,
and write instructions. During the leader’s turn,
they can add any number of new instructions to
the queue.

The follower only receives control if there are
instructions in the queue. If the queue is empty
when the leader finishes their turn, the follower’s
turn is skipped, but the number of turns remain-
ing still decreases. The follower’s turn ends au-
tomatically when they run out of steps, after 15
seconds, or when they complete all instructions in

the queue. During the follower’s turn, they can
mark any number of instructions as complete us-
ing the DONE action. The follower sees the cur-
rent and previous instructions, even if there are
more instructions in the queue. They must mark
the current instruction as complete before seeing
the next. This is done to simplify the reasoning
available to the follower. For example, to avoid
cases where the follower skips a command based
on future ones. Because there may be more future
instructions in the queue, this incentivizes the fol-
lower to not waste moves in the current instruction
and be as efficient as possible. During data collec-
tion, this provides alignment of actions to instruc-
tions because it prohibits a follower from taking
actions aligning with a future instruction without
marking the current instruction as complete. With-
out instruction completion annotation, the prob-
lem of alignment between instructions and actions
becomes much more difficult when processing the
recorded interactions.

Scoring Points When a valid set is made, the
selected cards disappear, and three cards are ran-
domly generated and placed on the grid such that
the new grid contains a least one valid set. The two
players earn a point, and are given extra turns. The
number of added turns decays as they complete
more sets, eventually reaching zero added turns.
The maximum possible number of turns in a game
is 65. In the training data, 454 games reached this
number of turns. Adding extra turns when a set is
made allows us to collect more data from games
that are going well. It also allows us to pay play-
ers based on the number of sets completed, and
incentivizes them to play as well as possible. If a
game is going poorly, e.g., if the pair fails to earn a
point in the first six turns, the game will end early.
However, if the game is going well, implying the
pair is collaborating well, the game will continue
for longer, and will contain a longer sequence of
instructions.

B CEREALBAR Transition Function

The transition function in CEREALBAR T : S x
I' x A — S x I is formally defined in Table 2.
Each of the rules in the table is additionally asso-
ciated with a domain over which it is not defined,
for example when oo = Follower and a € X (i.e.,
the follower can not give instructions). The rules
are:

Rule 1: When an instruction is issued, it is added
to the end of the queue. This action does not

Rule No. Domain Definition
1 Vie X,seS T(s,(Q,Leader,v),Z) = (s,(QT,Leader,v))
2 Vs e S, Q] >1 T(s,(Q,Leader,v),DONE) = (s, (Q,Follower, ¥¢))
3 Vs e S, Q=0 T(s,((),Leader,?¢),DONE) = (s(Q,Leader, ¥;))
4 Va € Ay, s €S T(s,(Q,Leader,1),a) = (Tw(s,a),{Q,Leader,0))
5 Vs €S,|Q| >1 | T(s,(ZQ,Follower,v),DONE) = (s, (Q, Follower, 1))
6 Vs e S, Q=1 T (s, (Q, Follower, 1), DONE) = (s, ({), Leader, ¥;))
7 Va € Ay,s €S T (s,(Q,Follower,1),a) = (Tuw(s,a),(Q,Leader,¥;))
Va € Ay, s €S ~ _
8 Vi) € Nsq (s, (Q, a,), a) = (7:0(5, a), (Q, o, — 1))
Vo € {Leader, Follower}

Table 2: Definition of transition function 7. 7, is the world state transition function.

use a step, so the number of steps remaining
1) does not decrease. This rule is not defined
when a@ = Follower because the follower
cannot give an instruction.

Rule 2: When the leader ends their turn, and the
queue is not empty, control switches to the
follower, and the number of steps remaining
in the turn is the maximum number for the
follower V.

Rule 3: When the leader ends their turn, and the
queue is empty, control does not switch to the
follower; instead, a new leader turn begins
with W; available steps.

Rule 4: When the leader runs out of remaining
steps, control does not immediately switch
to the follower. This allows the leader to is-
sue more instructions before manually ending
their turn or when their time runs out.

Rule 5: When the follower marks an instruction
as finished, and more instructions remain in
the queue, the current instruction at the head
of the queue is removed. This action does not
use a step.

Rule 6: When the follower marks an instruc-
tion as finished, if the finished instruction
was the last in the queue, control automati-
cally switches to the leader with ¥; remain-
ing steps.

Rule 7: When the follower runs out of steps in
their turn, control immediately switches to
the leader with W; remaining steps.

Rule 8: Both agents can take actions which
modify the world state s. Each such ac-
tion a € A, costs a step. We assume ac-
cess to a domain-specific transition function,
Tw : S X A, — S, that describes how an en-
vironment action modifies the environment.

There may exist combinations of states and
actions for which 7,, is not defined; for ex-
ample, an agent moving forward onto an ob-
stacle. Additionally, Vs € S and a € A,,
T (s, (Q, Leader, 0), a) results in an invalid
state because, while the leader can still issue
instructions after running out of steps, they
cannot move.

C Data Collection Details

Figures 3 and 4 show the leader’s and follower’s
interfaces.

Crowdsourcing Management We use a quali-
fication task to both teach workers how to play
the game and to mark workers as qualified for
our main task. We restrict those who can qualify
to workers located in majority English-speaking
countries with at least 90% approved HITs and at
least 100 completed HITs. The qualification task
has three components: an interactive tutorial for
the leader role, an interactive tutorial for the fol-
lower role, and a short quiz about the gameplay.
In both tutorials, turn-switching is disabled and
workers have an unlimited number of moves to
use to complete the tutorial. Each tutorial uses the
same map. This allows us to pre-program instruc-
tions for the tutorials.

In the leader tutorial, the worker has access to
the full game board. They are asked to send a
command to the follower, and are instructed via
in-game prompts to collect a specific set of cards.
Finally, they are asked to collect two more sets in
the environment that are valid. Workers who send
a command and collect a total of three sets suc-
cessfully complete this tutorial.

In the follower tutorial, the worker has access
only to the follower view. Pre-written commands
are issued to the worker, and they must follow
them one-by-one to complete a set. The com-
mands include an example of the leader correct-
ing a set-planning mistake. If the worker marks

-- [DONE] turn left and head toward the yellow
hearts, but don't pick them up yet. I'll get the next
card first.

-- [CURRENT] Okay, pick up yellow hearts and
run past me toward the bush sticking out, on the
opposite side is 3 green stars

Send Command.

Figure 3: The CEREALBAR leader gameplay interface.

-- [DONE] turn left and head toward the yellow hearts, but don't pick them up yet. I'll get the next
card first.

-- [CURRENT] Okay, pick up yellow hearts and run past me toward the bush sticking out, on the
opposite side is 3 green stars

Figure 4: The CEREALBAR follower gameplay interface.

all commands as finished and successfully collects
one set, the follower tutorial is complete.

Finally, workers are asked to read the game in-
structions and complete a short quiz. They are
asked questions regarding the validity of card sets,
the responsibilities of both players, and how each
game ends.

We maintain two groups of workers split by ex-
perience with the game, and use separate pools of
HITs for each. A worker can join the expert pool
if they have shown they understand how to play
as a leader and as a follower through at least one
game each. This allows new players to learn the
game rules without frustrating expert players. At
the end of data collection, 95 workers were in the
expert pool while 169 were in the non-expert pool,
for a total of 264 participating workers.

We pay workers a bonus per point they earn, in-
creasing the bonus as more points are earned, in
addition to a base pay of per game. We do not
pay leaders and followers differently. The median
game cost was $5.80.

The CEREALBAR Dataset In total, we collect
1,526 games played by both experts and non-
experts. Of these, we keep 1,202 (78.8%) games,
comprising 23,979 total instructions, discarding
those where no instructions were complete, or
where alignment between instructions and actions
was suspected low-quality. For example, we re-
moved interactions with a low proportion of in-
structions being marked as complete, or very long
action sequences from the follower, both which in-
dicate the follower did not properly complete in-
structions.

When splitting the data, we ensured the mean
score between the three splits was roughly the
same. Table 3 shows basic statistics of the data
we collected after pruning. 82.6% of post-pruning
games are from the expert pool. In the training
set, the mean number of completed instructions is
19.9 and the median is 24.0. 83.3% of games have
a score greater than zero. We include games with
a score of zero if the alignment between instruc-
tions and actions is high-quality according to our
pruning heuristics. The vocabulary size is com-
puted by lowercasing all word types and tokeniz-
ing using the NLTK word tokenizer. Our dataset
contains longer interactions than several existing
datasets for sequential instruction following and
interaction (e.g., Chen and Mooney, 2011; Long
et al., 2016; He et al., 2017; de Vries et al., 2018;

Mean | Median | Max
Total Game Time (m:s) 16:28 18:40 31:31
Score / Interaction 7.9 9.0 19
Instr. / Interaction 19.9 24.0 40
Tokens / Instr. 14.0 13.0 55
Follower Actions / Instr. 8.5 8.0 50
Interactions 1,202
Vocabulary Size 3,641

Table 3: Human-human games data statistics. All
statistics except the number of examples are computed
on the training set only.

Kim et al., 2019; Hu et al., 2019; Udagawa and
Aizawa, 2019), though still shorter than the Cards
corpus (Djalali et al., 2011, 2012; Potts, 2012).
Individual sentences are also longer than several
similar corpora (e.g., Chen and Mooney, 2011;
Djalali et al., 2011; Long et al., 2016; He et al.,
2017; Hu et al., 2019).

D Model Architecture Details

LINGUNET Formal Description We provide a
formal description of LINGUNET for reference
only. LINGUNET was originally introduced by
Misra et al. (2018) and Blukis et al. (2018a).

The input to LINGUNET are the environment
representation Fy and instruction representation
X. LINGUNET consists of three major stages: a
series of convolutions on F, a series of text-based
convolutions derived from X, and a series of trans-
posed convolutions to form a final prediction. The
output of the LINGUNET is a feature map with the
same width and height as Fy. Each stage has the
same number of operations, which we refer to as
the depth L.

First, a series of L convolutional layers is ap-
plied to Fg. Each layer at depth [is a sequence of
two convolution operations separated by a leaky
ReLU non-linearity:

F; = NORM(RELU(RELU(F;_; * K{) « Ki")) .

We use a stride of two when convolving with K&,
and do not apply NORM when [= L.

In the second stage, the instruction represen-
tation X is split into L segments X; such that
X = [X1;...;X] and segments have equal length.
Each segment is mapped to a 1 x 1 kernel KZI using
learned weights Wlf and biases blI . Kll is normal-
ized and used to convolve over F:

G, = NorM(F, | |K/||2) .

As before, we do not apply NORM when [= L.
In the last stage, a series of transposed convolu-
tions!! are applied starting from the bottom layer

"We use * | to represent the transposed convolution oper-

and gradually synthesizing a larger feature map.
Forl > 1:

H; = NoRM(RELU(RELU([H;; 1; Gi]x' K])* 'K{")) ,

where [H; G| indicates channel-wise concatena-
tion of feature maps H and G, Hy 1, is a zero
matrix, and NORM is not applied when | = L.
We use a stride of two when convolving with KIT’ .
At the topmost layer of LINGUNET, a final trans-
posed convolution is applied to form a feature map
H:
H) = [Ha; G1] % KT .

The top layer H; € R*>*W>H g gplit into the

four planning distributions as the output of the
LINGUNET.
Frames of Reference The world state is first
embedded using a feature lookup and a text-
conditioned kernel (Section 4; Input Representa-
tion). This feature map is rotated and centered to
create Fy, so that the agent’s location when be-
ginning to follow the instruction is in the center,
and the agent is facing in a consistent direction.
Therefore, LINGUNET (Section 4; Stage 1: Plan
Prediction) operates over a feature map relative to
the agent’s frame of reference at the time of start-
ing to follow the instruction.

The action generator (Section 4; Stage 2: Ac-
tion Generation) also operates on feature maps rel-
ative to the agent’s frame of reference, updated
as the agent moves and turns in the environment
changing its location and orientation. At each ac-
tion generation prediction step, the concatenated
planning distributions P are rotated, centered, and
cropped around the agent’s current orientation.
This orientation is determined by the orientation
when starting the instructions and the actions it has
executed so far for the current instruction.

E Learning Details
E.1 Stage 1 Loss Computation

This section provides formal details of the loss
computation used in Section 5.1. For ease of
notation, we consider a single example I =
((s1,71,a1)s -+, (Sn,Vn, an)), Where the instruc-
tion at the head of the queue Q is .

The loss of the visitation distribution p(p |
S1,T) is:

Lv(61) == pv(p)logplp|s1,2) ,
P

ation.

where the summation is over all positions p in the
environment and py, (p) is proportional to the num-
ber of states s; € I where the follower is in posi-
tion p.

We compute the goal and avoidance distribution
losses only for positions that have cards:
Lo(r) =

— i 2pec PG(p)10g p(GOAL =1 | p, 51, %)
La(bh) =
— 7 2 pec Pa(p)log p(AVOID = 1 p,51,7) ,

where C' is the set positions that contain cards,
W is the width of the environment, and H is the
height. We set pf;(p) to 1 for all p that contain a
card that the follower changed its selection status
in I, and O for all other positions. Similarly, we
set p* (p) to 1 for all p that have cards that the fol-
lower does not change during the interaction I, but
zero for the initial position regardless of whether
it contains a card.
The loss for the no passing distribution is:

Lr(r) =
— 57 2, PP(p) log p(NOPASS =1 | p, 51, %) ,

where p},(p) is 1 for all positions the agent cannot
move onto, and zero otherwise.
The auxiliary goal-prediction loss is:
L (01) =
— 5 Lpec PE(p)10gpe(GOAL =1 p,s1,7) .

We compute the goal probability with the learned
parameters W& and b"":

pa(GOAL =1 p, s1,2) = o(WE'S, +b) |

where S; is the vector along the channel dimen-
sion for position p in the environment embedding
tensor S'.

E.2 Example Aggregation

Error Classes We identify two classes of erro-
neous states in CEREALBAR: (a) not selecting the
correct set of cards specified by the instruction;
and (b) finishing with the right card selection, but
stopping at the wrong position. To recover from
case (a), the agent could unselect cards it shouldn’t
have selected, or select cards it missed. Alterna-
tively, the agent could recognize it has made an er-
ror, and instead stop and wait for the next leader
instruction, anticipating a correction. However,
learning this requires access to previous world
states and instructions. We focus on modification
of the learning algorithm using example aggrega-

tion, and leave this case for future work. We in-
stead target class (b), and add a discriminator to
the model to allow the model to learn different rea-
soning for examples that require implicit actions,
as discussed in Section 5.2.

Creating Recovery Examples The oracle gen-
erates a sequence of state-action pairs to go from
s, the incorrect initial state from the previous in-
struction, to state s; at index ¢ in the correct se-
quence such that s; is either the first state in the
sequence where a card’s state changes, or if no
cards are changed, the final state s,,. The oracle
finds a sequence of state-action pairs expressing
the shortest path s’ to s;. Finally, it appends the re-
mainder of the correct state-action sequence start-
ing from index ¢, ((s¢, Ve, @t)s - - (Sns Yy Gn))-

If the correct sequence for I(+D g
(Sn,7n,DONE) (i.e., no action was done in
the original example), we do not generate a new
path, but instead use the state-action sequence
(s',4',DONE) as annotation for I"»J+1). These
examples are annotated as not requiring implicit
reasoning.

During inference on the previous example I' (@:3),
it is possible that some leader actions associated
with that example may not be executed (i.e., if the
follower predicted DONE too soon). If this hap-
pens, the leader must execute actions to ‘catch
up’ to the follower in the generated recovery ex-
ample. We first find the sequence of leader ac-
tions starting from the first leader turn associ-
ated with () that was not executed during in-
ference, to the final leader turn associated with
T(3+1) When generating the recovery sequence
I'(3+1) | we take into consideration this sequence
as affecting the world states s. For example, sup-
pose that the agent stops a turn early during in-
ference, and the final leader’s turn consisting of
actions (FORWARD, FORWARD, FORWARD, DONE) was
not executed. Instead of stopping in, for exam-
ple, position (3, 0), this may mean the leader has
stopped in position (0,0). When creating the re-
covery example, the first world state sg shows the
leader at position (0,0) rather than (3,0). To
correct this, the recovery example will start with
a leader turn, where the leader executes the se-
quence (FORWARD, FORWARD, FORWARD, DONE).

F Evaluation Details

Cascaded Evaluation To compute metrics us-
ing cascaded evaluation, we construct a set of cas-
caded evaluation examples from the original test

set. We assume acce]\s/[s to a test set of M recorded
interactions {I (@) }i_l, where each () =

((00) o (i)

each instruction z; in (), we create an example

7(i.3) _ @) @ () @ @ @)
I = <(sj, s Vgt s Qe) e <S|f|’7\j|’a|j\)>’
where j' is the first follower step of executing

Z;. We treat each f(cw) as a separate example.
For each metric, we report the proportion of the

maximum value possible for each I 8’J), and av-

erage across all examples fg”). When comput-
ing the proportion of instructions followed in cas-
caded evaluation, the maximum possible for ex-
ample 1, g’]) is the number of remaining instruc-
tions N — j where IV is the number of instructions
in 7). When computing the proportion of points
scored, we subtract the points scored in the game
before step j to only account for points possible in
the instructions present in I g’]),

Performance of the Static Oracle The static or-
acle does not have perfect performance. This is be-
cause the follower’s turn ended before all ten steps
were used in some recorded interactions. Dur-
ing evaluation, however, we allow the follower to
move for all ten available steps. This sometimes
leads to misalignment between leader and follower
actions. This means some expected sets can not be
completed.

G Implementation and
Hyperparameters

Hyperparameters We tune hyperparameters on
the development set. We use a word embedding
size of 64, and encode instructions into a vector
of length 64 using a single-layer RNN with LSTM
units. We lowercase words in the vocabulary and
map all words with a frequency of one in the train-
ing set to a single out-of-vocabulary token. We use
a hex property embedding size of 32. S’ has four
channels. The text-based kernels map to a feature
map with 24 channels. The convolution and trans-
pose convolution phases of LINGUNET use kernel
sizes of three.

The action generator uses a forward RNN with a
single layer consisting of 128 LSTM hidden units.
The action embedding size is 32. We rotate, trans-
form, and crop the input plan distribution to a
4 x 5 x 5 feature map around the agent’s cur-
rent position and rotation for each generated ac-
tion. CNNY maps the cropped distributions to a
feature map with eight channels, and has a kernel

size of three and stride of one. During fine-tuning,
each K}MP does not have biases. For all LSTMs,
we initialize the hidden state hg as a zero vector.
For brevity, cell memory c?, also initialized as a
zero vector, is omitted from RNN descriptions.
Learning The plan prediction stage (Stage 1) in-
cludes the following parameters and parameter-
ized components: gZ)X , RNNY, gbs , Wy, b, and
LINGUNET. The action generation stage (Stage
2) includes the following parameters and parame-
terized components: CNN”, W W bl b,
&4, RNNA, WA, and b*. We add the follow-
ing parameters for the early goal prediction auxil-
iary objective and implicit reasoning discriminator
W, b and KIMP 1 < < L.

For pretraining Stage 1, we use a learning rate
of 0.0075 using ADAM (Kingma and Ba, 2014)
and an L2 coefficient of 1076. For pretraining
Stage 2 and during fine-tuning, we use a learn-
ing rate of 0.001 and ADAM with no L2 regular-
ization. For pretraining Stage 1 and during fine-
tuning, A\y = 1, A\¢ = 1, A4 = 0.1, Ap = 0.1,
and A\¢v = 1. During fine-tuning, Appp = 0.7.
During evaluation, we limit the maximum action
sequence length to 25.

For all experiments, we keep 5% of the train-
ing data as held-out from parameter updates and
used as a validation set. We use patience for stop-
ping during pretraining of the plan predictor and
the action generator (Section 5.1). We start with
a patience of 10, which increases by a factor of
1.01 each time the stopping metric improves on
the validation set. For plan prediction training,
we use patience on the validation set accuracy of
predicted goal locations. We compute goal loca-
tion predictions by finding all positions p such that
p(GOAL = 1| p,s1,z) > 0.5. For action gen-
eration, we stop when card-state accuracy reaches
a maximum on the validation set. For fine-tuning
(Section 5.2), we stop training after 25 epochs, and
choose the epoch that maximizes the proportion of
points scored computed using cascaded evaluation
(Section 6) on the validation set.
SEQ2SEQ+ATTN Baseline We embed the sen-
tence tokens into 64-dimensional vectors, and
compute a sentence representation using a single-
layer RNN with 64 LSTM hidden units. We
embed each position in the environment with a
learned embedding function ¢° mapping to a vec-
tor of size 32. The resulting feature map is put
through four convolutional layers separated by
leaky ReLLU non-linearities. Each convolutional

layer has a stride of two and divides the number of
channels in half. The output of the last convolu-
tional layer is flattened to a vector.

We initialize the decoder hidden state to a zero-
vector. In each timestep we pass in the concate-
nation of the embedding of the previous output,
the embedded environment vector, and the previ-
ous result of the attention computation on the sen-
tence. We take the initial attention result to be a
zero vector. We compute the attention over the
sentence hidden states using the dot product of
hidden state with the current hidden state in the
decoder RNN. The resulting attention state is con-
catenated with the decoder hidden state and the
embedded environment vector, put through a leaky
ReLU non-linearity, and and finally through a sin-
gle fully-connected layer to predict probabilities
over actions.

We train the model using teacher forcing and
apply the same learning rate, optimizer, and stop-
ping criteria as the fine-tuning experiments.

