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Abstract. Collective migration in biological species is often guided by
distributed leaders that modulate their peers’ motion behaviors. Dis-
tributed leadership is important for artificial swarms, but designing the
leaders’ controllers is difficult. A swarm control strategy that leverages
trained leaders to influence the collective’s trajectory in spatial naviga-
tion tasks was formulated. The neuro-evolutionary learning based control
method was used to train a few leaders to influence motion behaviors.
The leadership control strategy is applied to a rally task with varying
swarm sizes and leadership percentages. Increasing the leadership repre-
sentation improved task performance. Leaders moved quickly when the
swarm had a higher percentage of leaders and slowly when the percentage
was small.

1 Introduction

Biologically-inspired swarm robotic systems exhibit emergent behavior based on
local interactions. However, coordinating swarms is challenging. Swarms’ dis-
tributed, localized communication networks hinder access to global information
[7], including navigation goals.

Collective behaviors in fish, birds, and bees suggests that motion coordination
can be achieved by a decentralized system without global control or communica-
tion mechanisms [13]. Navigation tasks are often facilitated by distributed leaders
responding to environmental stimuli [5,17–20,26,29]. The leaders are typically
anonymous in large homogeneous collectives [11] and only directly influence indi-
viduals within their localized interaction neighborhoods; however, their actions
propagate, creating a collective response [8,34].

Leaders play an important role in biological swarm coordination, but it is
unclear how they tune their behaviors to maximize their influence over the
swarm’s behavior. A neuro-evolutionary learning method to train leaders is
developed and evaluated in order to explore leadership mechanisms for artifi-
cial swarms. A key contribution is a learning based leadership strategy, where a
simulated swarm can be influenced with leadership percentages as low as 4%.
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2 Related Work

Collective navigation is critical for large groups and is often guided by individu-
als assuming leadership roles. Leadership in biological swarms can be a transient
role assumed by any individual [17,21,29]. Fish trained to forage based on envi-
ronmental features were inserted into a shoal of naive fish and led the shoal to
the food source, even though the majority were uninformed [26]. Leadership that
emerges based on internal and environmental conditions allows any swarm mem-
ber to assume a leadership role, which makes them anonymous and the swarm
robust to leader loss. The leader percentage in biological swarms is often small:
5% for swarming honeybees [30], and 9% for fish [26].

The mechanisms biological leaders use to guide a swarm are not well-
characterized, but they can assume frontal positions [10,24]. Honeybees mov-
ing to a new hive have a few fast-flying members [5]. Frontal fish, often faster
swimming food deprived individuals, have greater influence on the shoal’s direc-
tion [19]. However, leaders that move too aggressively tend to leave the swarm
members behind, suggesting that leaders must remain aware of their followers
[16].

Learning based methods for deriving controllers are often applied to robotic
swarms. Attributing global performance to individual agents’ behaviors is diffi-
cult for large scale systems [33], particularly when the global state is unobserv-
able by the individuals [4]. Several related efforts mitigate this multi-agent credit
assignment problem using team learning [22] to train the swarm using identical
controllers and reward signals for all agents [1–3,14,25].

Neuro-evolutionary team learning methods are common when generating
swarm agents’ controllers using a fitness function representative of collective
behavior. The design paradigm emphasizes simple agent control policies based
on locally observable information [7], where directly mapping sensor inputs to
control actions is often suitable [2,6,23,31,32]. Several efforts [2,31,32] demon-
strated that swarm aggregation tasks can be accomplished with neural network
(NN) controllers using this mapping approach. Similar methods successfully gen-
erated controllers for more complex tasks (i.e., predator avoidance [28] and col-
laborative foraging [12]). However, influencing the swarm via distributed leaders
is a complex task that has not been investigated with learning based methods.

3 Approach

A swarm of n nonholonomic homogeneous agents, R = {r1, r2, · · · , rn}, navigates
a continuous 2D environment to perform a rally task, in which leaders, L ⊂ R,
know the goal location and are to lead the swarm to the goal. All agents in
S = R−L are oblivious to the goal. Each agent controls its velocity v ε [0, vmax],
where vmax is a constant upper limit, and desired heading angle ψ ε [−π, π].

All agents in S interact based on Reynolds’s rules [27]: repulsion (rrep), ori-
entation (rori), and attraction (ratt) that delineate 2D zones around each agent,
where rrep < rori < ratt. These agents: (1) Veer away from all neighbors within
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rrep, (2) Align with neighbors at distances between rrep and rori, and (3) Move
towards neighbors between rori and ratt.

Leaders exert influence by moving among the swarm, using a policy deter-
mined by a NN to apply repulsion-orientation-attraction forces on the other
agents. All leaders use the same NN, with identical weights and train using
team learning.

3.1 Neuro-Evolutionary Learning Method

A set of m two-layer NNs A = {a1, a2, · · · , am} is initialized with random weights
generated by a Gaussian distribution centered at zero, with a standard deviation
of 1 (μ = 0, σ = 1). The NNs’ hidden and output layers consist of units with arc
tangent activation functions to provide symmetry, and bounded the output to
[−π, π], consistent with the leader robots’ desired heading angle, ψ.

The NN’s four sensory inputs represent the polar coordinates of two points,
relative to the leader’s reference frame. The first pair of inputs are the polar
coordinates, distance (d) and heading (θ), between the robot and the goal posi-
tion, 〈dg, θg〉. The second pair of inputs are the polar coordinates from the robot
to the centroid of the swarm within the leader’s perceptual range, 〈ds, θs〉. All
possible inputs to the NN are defined by the input vector NNx = 〈dg, θg, ds, θs〉.
The NN’s outputs are the leader’s desired velocity and heading NNo = 〈v, ψ〉.

Each epoch simulates a rally task for all m NNs in the population A. An
episode loads a NN ai into the leaders L, positions the leaders and non-leaders
S randomly within a starting location, and simulates a fixed number of steps
τ . The NN’s performance is evaluated using the cost function E (Eq. 1) upon
episode completion. All m NNs are evaluated and the top-performing λ networks,
called parents, are retained. A new set of m−λ NNs are generated by randomly
sampling (with replacement) from the λ parents. These m −λ NNs are mutated
by applying zero-mean Gaussian noise with a fixed standard deviation NNmut

(μ = 0, σ = NNmut) to every NN weight. The mutated NNs are incorporated
into the evolutionary population; thus, returning the population size back to m.

At each simulation step t, the temporal factor, t
τ in [0, 1], represents time

progress over the episode’s total steps τ . The temporal weight wt is a function
of the temporal factor, wt = 1 − cos(π · t

τ ), over its valid input range, t
τ ∈ [0, 1].

The area under the curve, wt( t
τ ), is 1.

The Euclidean distance between each non-leader agent i and the goal at
step t, di

t, is evaluated and weighted by the temporal weight. The weighted
accumulated distance is summed over every step, providing an average weighted
distance di

avg = 1
τ · ∑τ

t=0 di
t · wt representing the cost associated with agent i

for the entire episode. The temporal weighting increases the influence of agents’
deviations from the goal late in the episode. The weighting rewards NNs that
consistently converge towards the goal, rather than those that initially drive the
swarm towards the goal, but later disperse or lose control of the swarm.
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The average accumulated weighted distance di
avg is averaged across all agents

in S at the end of each episode, defining the NN fitness function:

E =
1

|S| ·
∑

i∈S

di
avg. (1)

4 Experimental Design and Results

The primary research question is whether a small percentage of leaders using
the neuro-evolutionary learning algorithm can influence a robot swarm to sig-
nificantly outperform a baseline model that does not incorporate learning.

4.1 Experimental Design

The independent variables are the leadership model, swarm size and the lead-
ership percentage. The leadership model is either the learning based model
described in Sect. 3, or a baseline model. Baseline leaders do not learn and always
align their heading towards the goal. Swarms of 50 and 100 agents were evaluated
with leadership percentages ranging from 4% to 24%, as shown in Table 1. These
percentages reflect observations on leadership in biological swarms [11,26,30].

The swarm begins each rally trial gathered at a starting point dinit distance
units (u) from, and at a random angle to the goal. dinit = 400 distance units (u)
to minimize locating the goal by chance, while also completing the trial within a
reasonable number of time steps. A zero-mean Gaussian noise with variance σinit

was added to the starting positions of each agent, in order to avoid collisions.
Swarm agents are initialized with uniform random orientations, and the swarm’s
starting speed is set to vinit, which is 50% of the swarm’s maximum speed, vmax.
This stochasticity encourages the learning of generalized behaviors. The rrep,
rori, and ratt radii govern the non-leader agents’ motion, and were selected to
be 20 u, 30 u, and 50 u, respectively, based on biological swarms [15]. The total
number of NNs, m, and the number of parents, λ, were set to be 15 and 5,
respectively. The training session lasted 400 epochs, ensuring convergence of all
training errors.

The percentage of non-leader agents within a radius of the goal location,
rgoal, is calculated at trial completion, and averaged over all trials to calculate
the percent reached (PR). The test error (E) represents the accumulated distance
to the goal, and is calculated using Eq. 1.

Leaders were trained using all independent variable configurations. After 400
training epochs, each NN was evaluated over 100 trials without any mutations,
and the NN with the minimum root-mean-squared error deemed the champion.
The process was repeated 10 times, resulting in 10 champions. The champion
NNs’ performance metrics are reported in all results.
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Table 1. Experimental parameters and independent variables.

Parameters Values Parameters Values

Swarm size 50, 100 rrep 20 u

Leader percentage 4%, 8%, 12%, 16%, 20%, 24% rori 30 u

τ 20000 steps ratr 50 u

vinit 1 u/step rgoal 150 u

σinit 50 vmax 2 u/step

λ 5 m 15

4.2 Results

The performance, percent reached (PR), improved with increasing leadership
percentage, as shown in Table 2 and Fig. 1. The learning based agents successfully
guided the swarm, with both 50 and 100 agents, even with the 4% leadership.
However, the baseline leaders generally failed to lead any swarm members to the
goal with the 4% and 8% leadership. The baseline model matched or exceeded
the learning model when leaders composed 20% and 24% of the swarm, but
pairwise T-tests (degrees of freedom [dof] = 999 in all tests) found no significant
differences between the models. The learning based method significantly outper-
formed the baseline for all other cases (p < 0.01). The PR was generally better
with a swarm size of 50 and pairwise T-tests comparing PR by swarm size found
significant differences only at the 4% and 8% leadership percentages (p< 0.01).

Table 2. The percent reached (PR) descriptive statistics (mean - (μ), standard error
- SE) by swarm size, leadership percentage, and leadership model.

Leader % 50 agents 100 agents

Baseline Learning Baseline Learning

μ SE μ SE μ SE μ SE

4% 0.04 0.06 32.01 2.75 0.01 0.02 20.31 2.38

8% 0.02 0.04 54.24 3.01 0.01 0.02 40.33 2.94

12% 21.21 8.01 69.73 2.81 5.05 4.29 69.52 2.79

16% 64.67 9.36 84.77 2.21 43.43 9.71 86.34 2.08

20% 89.92 5.89 87.48 2.02 75.76 8.40 90.00 1.82

24% 97.98 2.76 93.71 1.49 93.94 4.68 85.42 2.14

The test error (E) results, presented in Table 3, were grouped into bins (size
= 10), as shown in Fig. 2. The E for a majority of trials (>80%) was less than
400, and trials with E ≥ 400 were deemed unsuccessful, and are grouped into
the final bin. E is impacted by the time required to reach the goal, but there is
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Fig. 1. Percent reached by leadership model, leadership percentage and swarm size.

no effect on the PR if the agents reach the goal by trial completion. Thus, slow
moving swarms have higher Es. The PR metric suggests that agents occasionally
reach the goal area, even with 4% and 8% leadership, but with higher minimum
errors than swarms with higher leadership percentages. The leaders move slower
when their percentage is low, and faster when their percentage is higher.

Table 3. The test error (E) descriptive statistics by leadership model, swarm size and
leadership percentage (L%). Median is reported due to a large number of outliers.

L% 50 agents 100 agents

Baseline Learning Baseline Learning

Med Min Max Med Min Max Med Min Max Med Min Max

4% 308 261 1033 193 67 20992 313 262 993 376 76 19742

8% 302 255 923 140 38 7361 307 274 766 197 43 20247

12% 282 40 320 81 22 6268 304 42 324 83 32 6236

16% 38 36 313 31 20 6540 271 37 321 30 21 6528

20% 36 35 307 29 19 7721 37 36 317 23 20 2681

24% 35 34 317 21 18 9092 35 34 308 25 19 8893

Median and minimum Es of the learning model were lower than the baseline
with leadership percentages higher than 16%, despite the PR not being statis-
tically significant, suggesting that learning agents move faster than the baseline
agents. Trials where the fast moving learning leaders fail to guide the swarm
explain the high maximum E, as the swarms travel farther away from the goal.
The median and minimum Es decreased with increasing leadership percentage.
The largest reduction in the median occurred when the percentage increased
from 4% to 12%. The change in the median and minimum Es was minimal past
the 16% leadership percentage.
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Fig. 2. Learning model test errors by leadership percentage and swarm size. Errors are
packed into bins of size 10, and errors greater than 400 are grouped together into the
top bin (400). The circles represent the median error.

5 Discussion

The learning model resulted in leaders that successfully influenced the swarm to
achieve the rally task with very small leadership percentages, which validates the
proposed learning based controller and answers the primary research question.
Generally, the learning model leaders outperformed the baseline model and were
able to perform significantly better at the lowest leadership percentages. While
swarms led by small sets of leaders took longer and were less likely to reach the
goal, they were able to achieve the task at leadership percentages representative
of biological species, which can be as low as 5% [30] and 9% [26].

Lower leadership percentages (i.e., 4%) require the leaders to learn more
nuanced behaviors in order to be effective, which explains the slow convergence
of the training errors relative to higher percentages. The leaders’ movements are
fast, aggressive and goal driven when their influence over the swarm is high,
and resemble the baseline model. Thus, the baseline method is only viable if the
leader influence is guaranteed to be high throughout the duration of the task.

The biological literature demonstrates that leaders must balance goal-
oriented actions with socially-oriented ones in order to be effective [16]. Leaders
following the learning model act based on both the goal and their followers,
while the baseline leaders are indifferent to their followers. The significant per-
formance differences between the two models emphasize the importance of spa-
tial awareness, and confirms that the learning based model successfully combines
goal-oriented and socially-oriented actions.

Biological swarms rely only on local interactions, and typically use an implicit
leadership mechanism [9]. The learning based strategy draws inspiration from
biological swarms in that it is based on implicit communication and local decision
making. Further, no agent knows whether another agent is a leader or not.

The leadership percentage strongly affects the characteristics of the learned
behaviors. The learned behaviors are more aggressive, and the leaders travel
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straight towards the goal when their overall influence is higher. However, the
leaders follow more complex movement patterns when the leadership percentage
is low. Leaders must be aware of their followers when the leaders’ influence is
low, and use these complex movement patterns in order to ensure they are being
followed, otherwise the leaders lose track of the swarm. The proposed neuro-
controller solves this problem by integrating both the follower positions and the
goal position into the decision making process, which enables reliable swarm
control with only a small percentage of informed leaders.

6 Conclusion

A learning based leadership strategy was developed that allowed small percent-
ages of leaders to drastically improve its task performance over a baseline model.
The leadership model incorporates implicit leadership and communication, which
allows any agent to assume a leadership role at any given time. While a higher
leadership percentage improved task performance, the increase was minimal with
percentages >16%. The task was successful with leadership percentages as low
as 4%, but the consistency of success increased with higher percentages.
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