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Unfitted meshes formulation by including penalty terms to handle interface conditions. One observation
Octree grid made here is that by over-penalizing the pressure continuity interface condition one

can avoid including additional jump terms along the fracture junctions. This simplifies
the formulation while ensuring the optimal convergence order of the method. The
application of the trace finite element method allows to treat both planar and curvilinear
fractures with the same ease. The paper presents convergence analysis and assesses the
performance of the method in a series of numerical experiments. For the background
mesh we use an octree grid with cubic cells. The flow in the fracture can be easily
coupled with the flow in matrix, but we do not pursue the topic of discretizing such
coupled system here.
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1. Introduction

Numerical modeling of a flow in a fractured porous medium is a standard problem in geosciences and reservoir
simulation [1,2]. While the literature on this topic is overwhelming (see, e.g., [3-7] for a snapshot of recent research), the
problem of developing an accurate and effective numerical method for a complex network of fractures still constitutes a
challenge. The present paper contributes to the topic by introducing a finite element method for the Darcy problem posed
in a system of intersecting fractures represented by a set of 2D surfaces embedded in a bulk domain. The enabling feature
of the method is that it solely uses the background triangulation of the bulk domain (i.e., a tessellation in simplexes or
more general polytopes) which is completely independent of the fracture network. Moreover, it does not require any 2D
mesh fitted to the fracture surfaces or their intersections.

Application of geometrically unfitted finite element methods for the modeling of flow and transport in fractured
porous medium has been addressed recently in a number of publications; see, e.g., [8-10]. Developments most closely
related to the approach taken in the present paper are those found in [11-13]. In [12] the authors consider a low order
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Raviart-Thomas finite element method for the Darcy flow on a 1D network of fractures. Although a triangulation of each
fracture surface was built, these triangulations do not match the fracture intersection points, and the authors applied XFEM
methodology to handle discontinuities in the solution over the junctions. The recent paper [14] reviews this and other
numerical approaches, where a different degree of the conformity of fracture meshes at junction interfaces is assumed.
Triangulating each fracture branch can be itself a demanding task for large networks or complex geometry. Hence, the
next level of nonconformity is to abandon the triangulation of the fracture in the usual sense and to discretize the flow
problem along the fracture network only with the help of degrees of freedom tailored to the ambient mesh in the matrix.
This ambient (background) mesh should be independent of the embedded fracture network. This approach was first taken
in [15] to discretize scalar elliptic PDEs posed on surfaces and later it evolves to become the Trace FEM methodology [16]
and a part of the Cut FEM [17]. Trace FEM for the transport and diffusion of a contaminant in a fractured porous media
was recently developed in [11]. For the Darcy problem, the Trace FEM was first studied in [13]. In that paper, the authors
considered the Darcy problem posed on a surface embedded in a bulk tetrahedra grid. They use a variant of Hughes-Masud
week formulation to solve for the pressure and tangential velocity.

Following [13], we apply Trace FEM in combination with a variant of Hughes-Masud week formulation. The novelty of
the present work is two-fold. First, for the ambient mesh we consider octree Cartesian grids, which can be easily adapted.
Second and more importantly, we assume intersecting piecewise smooth surfaces (representing branching fractures),
while in the previous work only closed smooth manifolds were considered. The branching leads to discontinuous fluxes
and only piecewise smooth pressure field. Handling those without mesh fitting, but preserving optimal convergence order,
is not straightforward. In the paper, this is achieved by allowing discontinuous velocity and pressure fields in background
cells intersected by the fracture junctions and by including a penalty term. This treatment of fracture junctions draw
an analogy with the Nitsche-XFEM method of Hansbo and Hansbo [18] for interface problems and more general with
CutFEM [17]. One interesting difference, however, is that we use another scaling for the penalty term and skip certain
consistency terms (typical for discontinuous Galerkin FEM and Nitsche’s method) along the junctions without sacrificing
optimal asymptotic accuracy. The paper includes both numerical analysis and computational assessment of the method.

The remainder of the paper is organized as follows. Section 2 defines the mathematical model. Section 3 introduces
the finite element method. Section 4 presents the convergence analysis of the method. Section 5 collects the results of
several numerical experiments that illustrate the analysis and the performance of the method.

2. Mathematical model

Assume a piecewise smooth surface I" C 2 embedded in the given bulk domain £ C R3. The surface I" represents
a 2D fracture network and consists of several connected components I" = UY_, T';, where each I7 is smooth orientable
surface without self-intersections. For the purpose of analysis, we shall assume that each /3 is a subdomain of a larger
C2?-smooth surface I}, such that 87; N £2 = @ and 97} is piecewise smooth and Lipschitz as a curve in T}. The individual
components I} may intersect only by a curve, i.e. meas,(I"; N fj) = 0 fori # j, and also I3 N I = @, for i # j (this
condition means that parts of a fracture separated by a junction are treated as different components). Further n is a unit
normal vector defined everywhere on I" except junction interfaces. We shall write n; for n on 75 and similar for other
vector and scalar fields defined on UY | I7.

Modeling fractures as 2D interfaces for flow in porous media has been considered in many places in the literature;
see, e.g., [19-22]. In this framework, the flow along the fracture component 7 is described in terms of tangential velocity
field u;(x), having the physical meaning of the flow rate through the cross-section of the fracture, and pressure field p;(x),
x € I. The steady state flow in I, is governed by the Darcy systems

I<i71ll,‘ + Vrpi=f;
divruyj=¢g inflj i=1,...,N, (1)
u-n =0

together with interface and boundary conditions specified below. In (1) and further in the text, V- and div; denote the
surface tangential gradient and divergence operators; g stands for the source term, which is typically due to the fluid
exchange with the porous matrix (not treated in this paper); f; is an exterior force per unit area, f; is tangential to I5; K;
denotes the permeability tensor along the fracture; all K; are symmetric and such that for any tangential vector field v,
ie.v-n; =0, it holds v/ Kjv > ;l-|v|2 with some ¢; > 0, and nl.TK,»v = 0. Hence, Kl.’lv is well defined for a tangential field
v. Note that fracture aperture can be included in K; by scaling; see, e.g. [19].

When I' is piecewise smooth, we need further conditions on the edges (fracture junctions). Consider an edge e shared

by M, smooth components I5,, k =1, ..., M,. Here and in the rest of the paper, {ix}1,...v, denote the subset of indexes
from {1, ..., N}, which is specific for each given e. Denote by m; the normal vector on dI"; in the plane tangential to I;
and pointing outward. The conservation of fluid mass yields

Me

Z“ik -m;, =0 on e. (2)

k=1
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The second interface condition is the continuity of pressure over e,

piy =" =Dpiy, oON e (3)
Denote by E the collections of all fracture junctions. It is reasonable to assume that E is a finite set and 0 < meas;(e) < +00
for any e € E.

Firilly, we prescribe the pressure boundary condition on d1"p and the flux boundary condition on 01y, respectively,
Wlth oI = 8FD UHFN,

m;-u;=¢; ondl'yNoly, i=1,...,N
p=pp onalp.

(4)

3. Finite element method

First we assume a tessellation 7 of the bulk domain £2 (matrix). 7, can be a consistent subdivision into shape-regular
tetrahedra. In this paper, we consider Cartesian background mesh with cubic cells. We allow local refinement of the mesh
by sequential division of any cubic cell into 8 cubic subcells. This leads to a grid with an octree hierarchical structure. This
mesh gives the tessellation 7;, of the bulk domain £, 2 = Urer, T. We allow the fracture network I” C £2 to cut through
this mesh in an arbitrary way. For the purpose of analysis, we shall assume that the cells cut by I" have a quasi-uniform
size with the characteristic size h.

Consider now the ambient finite element space of all piecewise trilinear continuous functions with respect to the bulk
octree mesh 7:

Vi={veC(2)|vlgeQ VSeTy, with Q =span{l,xq,xa, X3, X1X2, X1X3, X2X3, X1X2X3}. (5)
For every fracture I in the network I" we define the subdomain of £2 consisting of all cells cut by I3,

Qi=JiTen : Tnr#0),
and define the restriction of V, on .Q;l i.e. the space of piecewise trilinear continuous functions on 9;1

Vi :={ueC(2})|3veVysuchthat u= vlgi}- (6)

Our trial and test finite element spaces are built from V,i: We define the pressure space and velocity spaces

N N
Qn = ®V;l and U, = ®[V,i]3.
et im1

According to the Trace FEM approach, the finite element solutions of (1)-(4) will be given by traces of functions from
Qn and Uy, on I, but the finite element formulation will be written in terms of function defined on | J), £2i. Hence, the
method leads to a system of algebraic equations for standard nodal degrees of freedom in the ambient mesh 7;.

Further we use the notation (-, -)p for the L? scalar product over a domain Q, which can be a 3D, 2D or 1D manifold
on different occasions. For example, with this notation, the Green formula on I; reads:

(divpv, @), = —(v, Vrq) +(m; - v, @)y, (7)

for any smooth tangential vector field v and scalar function q on I7;.

The proposed finite element formulation extends the stabilized mixed formulation for the Darcy problem originally
introduced in [23] for the planar domains. The key observation here is that the smooth solution to (1)-(4) satisfies the
identity

. 1 1
(K™ 'w+ Vrp, V), + (divrw, @) + S (KT + Vip, v+ KiVra), = (8, O + 5 (. —v+KVra)y,
forallq e H\(I}),ve I*I})andi=1,...,N. We now set ¢ = 0 on dI"p and apply (7). After simple calculations this
gives
(K 'a, V)5 + (Vrp, V)i — (Vrg,w)n + (KVrp, Vig)r +2(m; - w, @)ar, = 2(8, @)r, + (F, =V + K Vrq)r,. (8)

One further helpful observation is that p and q can be identified with their normal extensions to a neighborhood of I (for
each i). This identification (which is assumed further in the paper) implies the equality V-p = Vp, which can be further
used in (8) to yield

(K", V)i + (Vp, V)i, — (Va, w)r + (KiVp, V@) + 2(m; - u, @)sr, = 2(8, @)y + (F, —v + K:Vq)r;. (9)

This corresponds to so-called full gradient formulation of the surface PDES; see [24,25]. The full gradient formulation
exploits the embedding of I" in the ambient Euclidean space and, in general, provides extra stability for a finite element
method based on external elements. The formulation is consistent for any ambient finite element method, which aims
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to approximate the surface solution together with its normal extension. In the context of the surface Darcy problem, the
full gradient formulation was used in [13]. We finally sum up equalities (9) for all i = 1,..., N and use the interface
condition (2) and the boundary condition for fluxes from (4) to conclude that any smooth solution of (1)-(4) satisfies

Me—1 M,

2
(K0, V) + (VP V)r = (Va, W+ (KVp, Va)r + 3 Y 0 ) (my -ty — my, - i, g, — Gy, e

ecE ¢ k=1 f=k+1

=2(g,Q)r + (£, —v+KVaq)r —2(y¥, Q)ary (10)

for any q € ®,~=1 H'(I}) such that g = 0 on 31" and v € [*(I"). To handle the sum of the edge terms, we used (2) and
the identity

M M M-1 M

Zaibi = % (% ai)(z bi) + Z Z(ai — a;)(b; — bj)

i=1 i=1 i=1 i=1 j=i+1

for any a;, b; € R.

Our finite element method is based on the equality (10). Note that we may assume that K; is extended to be symmetric
positive definite in R?, rather than only on the tangential space, since this does not affect any quantities in (10), but
would be helpful, when we proceed with the finite element formulation. To approximate pressure, we use finite element
functions from Qp, which are discontinuous across e € E. Therefore, we add a penalty term to our formulation to weekly
enforce the pressure continuity condition from (4). Furthermore, we over-penalize this condition, by choosing a different
scaling of the penalty parameter compared to the standard Nitsche’s [ 18] or discontinuous Galerkin methods [26]. It turns
out that the over-penalization allows one to skip other edge terms in the finite formulation. This greatly simplifies the
method while keeping the consistency order optimal. Summarizing, the finite element method reads: Find u, € U, and
Pr € Qy such that py|sr,= I2(pp) and

a(uy, pn; Vi, qn) = f(Vh, qn) (11)
for all v, € U, and g, € Q, such that gy|y,= 0, with
f Me—1 Me
a(w, p; v, @) = (K", V)r + (Y0, ¥)r = (V@ Wr + KV, Va)r + 3 15 > > (Pic = Pips Gip — G )e
ecE k=1 (=k
penalty term to enforce pressure continuity
N N
+ ) puh(ny - VUi, ni - V)i + ) pph(ny - Vi mi - Vi), (12)
i=1 i=1

normal volume stabilization
fv,q)=2(g, q)r + (£, —=v+KiVa)r —2(¢, Qary-

Here p’s are tunable parameters, which we set (in both analysis and experiments) to be equal to 1; I,ll’(pD) is the
interpolation of the boundary condition, which we define by extending pressure values from 9/ along normal directions
in 942 to the corresponding nodal values from £2; N 0£2.

Remark 3.1 (Normal Volume Stabilization). We briefly discuss the “normal volume stabilization” terms in (12). The term
involves the extension of the normal vector to .(2,’1 which can be defined as n;(x) = Vdist(x, I3). Assuming that the
mesh is fine enough to resolve the (curvilinear) geometry, this definition gives the meaning to the normal vector in all
2}, including mesh cells cut by dI";. Next, we note that the normal volume stabilization terms vanish for the solution
u, p of the Darcy equations (1), because we assume the normal extension of the solution off the fracture components.
Finally, these terms are included, following [27,28], to ensure that algebraic properties of the resulting linear systems are
insensitive to the position of I" in the background mesh. Indeed, if p, = 0 or p, = 0, then for a natural nodal basis in
U, and Qp, small cuts of the background elements by the surface may lead to arbitrarily small diagonal entries in the
resulting matrix. The stabilization terms in (12) eliminate this problem since for the choice of p, = O(1) and p, = 0(1)
they allow to get control over the LZ(Q},)—norms ofv, € (Vf’;)3, gn € V,i by the problem induced norms. The analysis of this
acquired algebraic stability can be found at several places in the literature, e.g. [27,28] for the Laplace-Beltrami problem
or [29] for the surface Stokes problem, so we refrain from repeating it here.

Remark 3.2 (Overpenalty). In the framework of discontinuous Galerkin (DG) methods, a technique similar to the
overpenalty used to enforce pressure continuity here is known as a superpenalty; see [26] and references there. Compared
to the superpenalty technique in DG FEM, we have a weaker dependence of the penalty parameter on the negative power
of h, which is beneficial for the condition number of the resulting matrices. On the analysis size, the superpenalty DG
method exploits the availability of a continuous finite element interpolant across the element edges, which is not the
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a)

Fig. 1. (a) Example of a bulk domain with one fracture. In this example, the background mesh is refined near the fracture; (b) The reconstructed
I'y; (c) The zoom-in of the induced surface triangulation used for numerical integration.

case here. As a consequence, to show a suitable consistency bound, we have to apply a different argument comparing to
the analysis of the superpenalty DG method. This results in the extra smoothness assumption for pressure solution, e.g. p
is from H> on every [} rather than from H>2.

Remark 3.3 (Internal Parts of aI"). For the finite element formulation in (12) we assumed that dI" C 9£2. If 31 has a
part strictly inside 2, then the pressure boundary condition can be enforced by including additional penalty term of the
form

Pi
—(Pi — Pp. 4i)rinry

=

i=1
to the finite element formulation (12). Internal boundaries with prescribed fluxes, i.e. 3y C £2, do not affect the
formulation in (12).

3.1. Numerical integration

The finite element formulation (12) requires computing surface integrals. If I; is a planar component, then numerical
integration is straightforward. For a curvilinear I, in general, we need to know a (local) parametrization of the surface
to compute integrals in (12). For implicitly given surfaces (for example, for surfaces defined as the zero of a distance
function), the numerical integration is a more subtle issue; see, e.g., [30]. In the present paper, for numerical tests with
curvilinear surfaces we compute surface integrals by using a polygonal second order approximation of 5, denoted by 17, ;.
We construct I, ; as follows. For I let ¢ be a Lipschitz-continuous level set function, such that ¢(x) = 0 on ;. We set
¢n = I(¢), a nodal interpolant of ¢ by a piecewise trilinear continuous function with respect to the octree grid 7. Further,
consider the zero level set of ¢y, I = {X € £2 : ¢p(x) = 0}. If I is smooth, then I'},; is an approximation to /3 in the
following sense:

dist(13, Ihi) < chi, [n(x) — np(X)| < chio, (13)

where x is the closest point on I for X € fh,i and hyo is the local mesh size. We note that in some applications, ¢ is
computed from a solution of a discrete indicator function equation, without a direct knowledge of I".

Once ¢y is computed, we recover [}; by the cubical marching squares method from [31] (a variant of the very
well-known marching cubes method). The method provides a triangulation of I}, within each cube such that the global
triangulation is continuous, the number of triangles within each cube is finite and bounded by a constant independent of
I'y; and a number of refinement levels. Moreover, the vertices of triangles from F, are lying on I} ;. This final discrete
surface I} ; is still an approximation of I5 in the sense of (13). An example of bulk domain with embedded surface and
background mesh is illustrated in Fig. 1. Note that the resulting “triangulation” of I},; is not shape regular. This is not a
problem, since this triangulation is used only to define quadratures in the finite element method, while approximation
properties of the method depend on the volumetric octree mesh.

4. Error analysis

The error analysis fits the standard finite element framework. Certain care and less standard arguments will be needed
to show optimal order consistency for the formulation in (12). Interpolation results rely on approximation properties of the
polynomial traces on smooth surfaces. We start with the definition of the norms used further and the proof of numerical
stability.
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4.1. Stability

For analysis, we need the broken Sobolev spaces

N N
Q=QH'(@YNH'(I) and U=QH'(2)P, QCQ, UyCu

i=1

The subspaces of functions from Q and Qy, vanishing on 31"}, are denoted by Q° and Q,? , respectively. The stability estimate
of the method involves the following problem-dependent velocity and pressure norms:

Me—1 Me
p
IviIZ = (K~ VVr+E puhlm; - VV:IIQ., llqll? —IIKVCIIIFJrE > E E i, — i, II7 +E pphlim; - VCI:IIQ,,
i=1 ecE k=1 (=k i=1

where v € U, g € Q. For the later expression to define a norm on Q° we shall assume that meas;(d/"p) > 0 and I is
connected. Otherwise, if meas;(01"p) = 0, one uses a factor norm, since the pressure solution to (1)-(4) is defined only
up to the addition of the hydrostatic constant mode. On the product space U x Q, we define

1
v, qll = (IvIIZ + llqli?)2.

Given the definitions above, one immediately checks the coercivity and continuity bounds for the finite element
method bilinear form,

Iv.ql* < a(v.q;v,q) VveU, qgeQq, (14)
and
a(u, p; v, q) < 2|lu, plliiv,q Yu,velU, p.qgeQ. (15)
The repeating application of the Sobolev inequality
lgll; < C(I e)UIVrgln + lglle) g € H'(I3), e € 3T, meass(e) > O,
and the trace inequality
lglle < C(Ti e)IIVrallr + llall;) g € H'(F3), e € 87, meas;(e) > 0, (16)

leads to the Poincare inequality on I":

Me—1 Me
P,
lqllr < C (nwnr D Z > llgi, — i 112 ) <Cliqll. ¥qeQ. (17)

ecE =1 {¢=k

where C depends on I, 91" p and the permeability tensor K.
With the help of the Poincare, Cauchy-Schwartz, trace and triangle inequalities, one shows

1 _1 1 1
fv,q) < 2lglirligllr + (K28 FIK™2vlF + IK2 P IK2Vallr) — 20¥ lary lIgllar
1 1
= C Qg + 1 lary + K3 E1Pl + IKEEL VL)
Finally, from (11), (14) and the estimate above we get the stability bound for the finite element solution

wnll + 1pallc < € (Iglhr + 1% llary + IflF) (18)

where C depends on I, dI'p and K, but not on the position of I" in the background mesh. Penalty and volumetric
stabilization terms (cf. Remark 3.1) in the definition of the norms on the left-hand side depend on h.

4.2. Error bound

For the error analysis, we shall assume that all fractures are planar, so that ﬁ ~ RR? is just a plane. We believe that
the error estimate below still holds for fractures with non-zero curvatures, but the analysis needs trace and extensions
results for functions defined on submanifolds as in (19) and (21), which we do not find in the literature and including
their proof would made this paper excessively technical.

As usual, the error analysis needs some extra regularity of the solution, namely w; € H!(I37)* and p; € H3(I3) for each
i=1,...,N. We first observe that the finite element formulation (11) is consistent up to missing interface integrals. To
see thls we give sense to the solution components u; and p; no/t\ jl.lSt on [; but in the neighborhood .Qh To this end, we
first consider Stein’s [32] extensions of w;, p; to some Ew; € H'(I)? and Ep; € H3(F,) such that

Eu;j=uw;on i, Ep;=p;onl; and lEwillg 7y < Clluillgiry,  NEPillaagy < ClPillwsm (19)
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with some ﬁmte C depending only on I';. Now we define normal extensions in £2/, p{ = Ep;op, where p is the closest point
projection on E, and similar we define uf. From the propertles of the normal extension we get p{ € H3(.Q »uf € H! (£2, )3

and for the norms it holds ||pf ||H3 ah = <Ch ||Ep,|| ||ue||H] ah = <Ch ||E“’”H1(r) see, e.g., [25]. Combmmg this with
(19) gives
IIUfIIHl(g;']) < Chllaillgry, 1Pz iy = Chlpillar), (20)

with some finite C depending only on I7;. If no confusion arises, we further identify u and p with their extensions defined
above.

For handling fracture junctions terms, we also consider the h-neighborhood of 977} in f, denoted by O(d73). Then it
holds (see, Lemma 4.10 in [33])

Iolar < Chllvlg g, forve H(T). (21)

)
We can always assume that ©(d73) is wide enough so that T N T‘, co@Iy)forall T € T, such that T N al; # @.

Now the normal volume stabilization terms make sense (and equals zero) for u and p, and we see that the piecewise
smooth solution u, p to the network Darcy problem (1)-(4) satisfies the equality

a(u, p;v,q) =f(v,q) —E(u;q) VvelU, geQ, (22)
with
Me—1 Me
Z Z Z(mlk u, —m;, - u;, g, — (i, Je-
ecE =1 {(=k
Using the Cauchy-Schwarz and triangle inequalities, the definition of the || - ||, norm on Q and |m;| = 1, one readily

checks the upper bound,

E(u; (ZZ“ZH%H ) lqll.. (23)

ecE k=

with a constant C depending only on I".
We proceed with the interpolation bounds.

Lemma 4.1. Letu e @), H'(I1)? p € @, H}(I}). Assume h < ho, where hy may depend on I, then it holds
inf _Jlu—wp, p—&ull < Ch(llully + [Ipll3). (24)

wpeUy, &peQy

with a constant C independent on how I intersects with Tp,.

Proof. The analysis of the interpolation properties of the Trace FEM is commonly based on the local trace inequality, see
e.g. [25,27], which in our case takes the form:

1012 n7) < CCE 0I5, + b Volh,) Vv eH'(T) and T e 2], (25)

2(TN) —
where hy = diam(T) and C is independent of T, v and how T} cuts through T. A quick proof of (25) consists in dividing
the cubic cell T into a finite number of regular tetrahedra and further applying Lemma 4.2 from [18] on each of these
tetrahedra. For handling edge terms, we need the extension of (25) for curves cutting through the mesh. More precisely,
we need the following inequality:

10 grary < CR2 002, + V01 + REID?vIZ, ) Yo € HAT) and T € 2}, TNOT # 6, (26)

where C is independent of T, v and how a5 cuts through T. We provide the proof of (26) in the Appendix.

We recall that w; € H'(I3})® and p; € H3(I}) are identified with their extensions to 2} such that (20) holds. Let
wy = Ih(u) € Uy, qn = I(p) € Qy be the finite element (Clement) interpolants. Let us first treat the edge term in the
definition of the ||p —gyll«: Let e C dT; for e € E. Using interpolation properties of bilinear polynomials and (26), we have
forany T € 2!, TNe # @:

1D — Gl gy < CORT2IP = GnliZer, + 19D — @)l g, + REIDX (D — an)liZ)) < CHEIDIZs -

Summing up the above inequality over all T intersecting e (the domain formed by all such cells is denoted by £~2}1), we
get

1P = nllfaey < ChZIIPIIHz(Q = Ch3||P|IHz(O(dr) Ch4||P||H3(m (27)
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Here we used (20) (which remains true with ?2,’, and O(dT1;) instead of 9,; and I7) and (21). For the rest of ||p — qnl+ we
use interpolation properties of bilinear polynomials, (25) and (20) to obtain

1KV (P — a)li7, < € D (hy IV(P — awliZagpy + hrliD*(p — w2y )
TEQ;‘

(28)
< C X hrlpliay = ChlIPIGs o) < CO2IPIE gy < CHIPIe
Te.s?;l
and
PohlIm; - V(p = )Gy < CR PN o0 < CHUIPIa ) < CHIPIGa (29)

Estimates (27)-(29) lead to the desired bound on ||p—qp||+. Similar to (28)—(29), we use interpolation properties of bilinear
polynomials, (25) and (20), to obtain

N
lu =Wl < Ch Y llullyiy < Chljuls,
i=1
with a constant C independent of h and how I" intersects the background mesh. O

Since for each component I'; we associate with u; and p; their extensions to (2,’1 the error functions u —u, and p — pj,
are well-defined as functions of U and Q. We are ready to prove the following convergence result.

Theorem 4.1. Let (u, p) be the solution of (1)-(4) and assume that u € ®f'=] HY () pe ®f'=] H3(I7). Let (uy, pp) € Up x Qy
be the solution of (11). The following discretization error bound holds:

lu —up, p— pull < Ch(flully + lipll3). (30)

Here || - |lk, k = 1, 3 denotes the broken Sobolev spaces norms for ®§\’=1 HX(I7); the constant C depends on I, but not on how
I intersects the background mesh.

Proof. Using the coercivity and consistency properties in (14) and (22) as well as continuity estimates for the a and E
forms (15), (23), we obtain, for arbitrary (wy, &) € Uy X Qp:
llap — Wi, pp — &> < a(ay, — Wi, pp — &3 Uy — Wi, P — &)
= a(u — Wy, p — &p; Wy — W, pr — &p) — E(W; pr — &)

1
Me 2
< Cllu—wy, p — &lllun — Wy, pr — &l + C (Zthnumﬁ) 1Ph — &lls-

ecE k=1

Therefore, after cancellation and using the trace inequality (16) we get

1
M, 2
llap — Wi pr — &nll < C [ flu—wh, p— &l + (Zthuuiknﬁ)

ecE k=1

(31)

N
<C (nu — Wi p—&ll+hY ||u||H1<m) :

i=1

For (wp, &) € Uy x Q we take optimal finite element interpolants for the (normal extensions of the) solution w, = I, (u)
qn = In(p). Now, the triangle inequality, (31) and (24) lead to (30):

lu—wn, p—ppll < llup — Wy, pp = &nll + [u — Wi, p — &l < Ch(llully + [|pll3).

Remark 4.1 (O(h?) Convergence). In [13] the trace finite element method as in (12) applied on a smooth closed surface
I" was proved to enjoy higher convergence in weaker norms for the pressure and fluxes. In our setting, this would mean
the estimate

Ilp = pullr < Chllu—uy, p—pill = O(h*) (32)

for the pressure error. The convergence leverage argument, as usual, is based on the H?-regularity estimate for the solution
of the dual problem, which is the same system of Darcy equations in the fracture network in our case. However, we are
not aware of suitable regularity results for the case of intersecting fractures. Namely, we would need the estimate of the
norm ||p|> + |lu|l1 < C|Ifll1 + |lgllr, again || - ||x are norms on the broken Sobolev spaces. Moreover, the studies in [34] of
the Poisson problem posed in a domain with intersecting interfaces suggest that this higher regularity results might not
hold in our case.
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Table 1
Error norms and convergence rates for Example 1 with « = 20°, 8 = 0°.
#dof.  u—wl.  Rate  [p—psl2  Rate  [p—puli  Rate
384 7.606e—2 4.602e—3 2.612e—2
1728 3.779e-2 1.01 1.371e-3 1.75 1.250e—2 1.06
7904 2.081e—2 0.86 3.925e—4 1.80 6.118e—3 1.03
33072 1.095e—2 0.93 1.097e—4 1.84 3.006e—3 1.02
Table 2
Error norms and convergence rates for Example 1 with o = 24°, 8 = 4°.
#d.of. lu — a2 Rate lp — paull2 Rate D — pnlli~ Rate
354 9.451e—2 6.023e—3 3.738e—2
1766 4.446e—2 1.09 1.518e—3 1.99 2.310e—2 0.70
7320 1.926e—2 1.20 2.879e—4 2.39 1.026e—2 1.17
30388 8.879e—3 1.13 8.149e—5 1.82 4.890e—3 1.07

5. Numerical results and discussion

This section collects several numerical examples, which demonstrate the accuracy and capability of our unfitted finite
element method. To verify the convergence rates of the method, we start with a few examples where exact solution
is known. This includes the case of planar intersecting fractures and Darcy flow along curvilinear surfaces. Further we
include an example of a pressure drop driven flow in a more complex network of fractures.

5.1. A multiple fracture problem with a synthetic solution

To test the convergence of the method, we first consider the example of an analytically prescribed solution on the two
intersecting fractures; the test is built on an example from [35]. The setup is given below.

Example 1. Consider £2 = (0, 1)>. The initial configuration of the fracture network I" is given by the union of the two
rectangles {(x,y,z) € £2 | x=0.5} and {(x,y,z) € 2 |y = 0.5} so that I = U?:] I;.

To define the exact solution (u;, p;) for the initial configuration, we first introduce the functions t;(x) = y + z — 0.5,
H(x)=x42z—0.5, t3(x) = —y +z 4+ 0.5 and t4(x) = —x + z + 0.5. The pressure and the Darcy velocity in each fracture
component are given by

pi(x) = ™ and  wi(x) = — sin(t;(x))e“ N (dy (i), dy (i), 1), (33)
wherei=1,...,4and dy = (0, 1,0, —-1),d, = (1,0, —1, 0). This p and u satisfy (1)-(4) with f =0 and
g = 2(cos(ti(x)) — sin?(£;(x)))e (i),

To generate less regular intersections of the fractures and the junction line with the bulk mesh, we next perform the
deformation of the fracture system by applying counterclockwise rotations by the angle & about the axis x = z = 0.5 and
by the angle § about the axis x = y = 0.5. The resulting fracture network is denoted by I"(«, 8). The corresponding change
of variables is applied to prescribe the exact solution on I'(«, ) using (u;, p;) defined above. For numerical experiments,
we take o = 20°, = 0° and o = 24°, B = 4°.

We next consider a sequence of uniform tessellations of £2 into cubes with h € {1/9, 1/19, 1/39, 1/79}. The trace of
the second level (h = 1/19) volumetric grid on I"(24°, 4°) and the part of the volumetric grid intersected by the surface
are illustrated in Fig. 2. The computed pressure and velocity for I"(20°, 0°) are shown in Fig. 3. Tables 1-2 present the
error norms for the computed finite element solutions. We measure the error in the L?(I") and L*°(I") for the pressure
and L%(I")? for the velocity. The results show close to the second order convergence for the pressure L?> norm (although
we are unable to prove it) and the first order convergence for the velocity. The L* norm of the error for the pressure also
goes to zero as O(h).

Finally, we consider the case when a part of the fracture’s boundary is immersed in the bulk as illustrated in Fig. 3
(right). This corresponds to I"(20°, 0°), with I, cut so that the immersed part of the boundary is vertical and the width
of I (i.e. the distance between the immersed boundary in the junction) is 0.25. The background mesh does not fit the
immersed boundary. Hence, we impose pressure Dirichlet boundary condition using the penalty term as described in
Remark 3.3. The finite element error, reported in Table 3, appears to be almost unaffected by the presence of the immersed
boundary.



10 A.Y. Chernyshenko and M.A. Olshanskii / Journal of Computational and Applied Mathematics 366 (2020) 112424
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25
=24
—23
- 2.2
— 2.1
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- 19
- 1.8
— 17
= 1.6
1.5
14
1.3
1.2e+00

pressure

Fig. 2. (Left) Second level surface mesh and (Right) part of the bulk mesh intersected by the surface for Example 1 with o = 24°, 8 = 4°.

!
o
pressure

Fig. 3. (Left) The numerical solution (pressure) and surface mesh from Example 1 with @ = 20°, 8 = 0°. (Center) The velocity field. (Right) The
network and mesh for the case when a part of the fracture’s boundary is immersed.

Table 3
Errors norms and convergence rates for Example 1 with & = 20°, 8 = 0° and immersed
part of the boundary.

#d.o.f. la— a2 Rate Ilp — pnll2 Rate lIp — pnllee Rate
280 7.016e—2 4.275e—3 2.459e—2
1422 3.331e-2 0.93 1.182e—3 1.60 1.104e—2 0.99
6612 1.821e—2 0.88 3.419¢e—4 1.79 5.805e—3 0.92
27924 9.575e—3 0.96 9.388e—5 1.86 3.015e—3 0.95

5.2. Darcy flow over curvilinear surfaces

We now check if the fracture curvature influences convergence rates of the unfitted finite element method. To this
end, we consider Darcy problem (1) defined on surface and on the torus. In both examples, I" is given by closed smooth
surfaces (no junctions).

Example 2. We consider I = {x € R® | ||x|, = 1} embedded in £2 = (=2, 2)°. The solution (u, p) is given by

a
p(x) = TTE (3¥ix2 —x3), u=-Vrp, X=(x1,%,X3)€ £2,

with a = 12. One verifies that u and p satisfy (1) with f = 0, and g = 12p, so that g satisfies the compatibility condition
Jrgds=0.

Example 3. This example can be found in [13] for the Darcy flow along the torus surface. We consider I’ = {x € £ |
r? = x5 + (,/x] + x5 — R)*} embedded in £2 = (—1.6, 1.6) x (—1.6, 1.6) x (—0.8,0.8). We set R = 1 and r = 0.5. The
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Fig. 4. The computed Darcy velocity from Examples 2 and 3. The left figure shows the pressure and induced surface mesh in Example 3.

Table 4
Errors norms and convergence rates for Example 2.
#d.o.f. [la — a2 Rate llp — pull2 Rate Ilp — prlli= Rate
556 2.250e—0 2.273e—1 6.005e—1
2332 5.978e—1 191 5.392e—2 2.07 1.593e—1 191
9532 1.559e—1 1.94 1.372e—2 1.97 4.121e-2 1.95
38212 4.907e—2 1.66 3.192e—-3 2.10 9.613e—3 2.10
Table 5
Errors norms and convergence rates for Example 3.
#d.o.f. [[u — w2 Rate Ilp — pull2 Rate Ilp — prlle Rate
560 6.979e—2 1.749e—2 3.762e—2
2300 2.042e-2 1.77 3.775e—3 2.21 1.016e—2 1.89
9096 6.321e—3 2.13 8.759e—4 2.65 2.328e—3 2.68
35528 2.626e—3 1.60 2.154e—4 2.55 5.933e—4 2.48

solution (u, p) to (1) with right-hand sides g = 0 and
x1x3(2 — (1 — R//x2 +x2)/A)

X2X3(—2 — (1 —R/ x? -I-XZ)/A)
f= e with A = (R2 + x4 + %5 — 2R\/x? + X2 + x3),

2 2V a2 1n2
) 2(x7 — x5)(4/x] +x; —R) 5
- —x3/A
X+ X2
is given by

P(X)=x3, = (2xX3, —2xx3, 2(x] — X3)(R — /X3 +x3)/ /X3 +x3).

Again, we use a sequence of octree bulk grids. We start with the initial uniform grids with h = 1/4 for Example 2 and
h = 8/25 for Example 3, which were further gradely refined towards the surfaces. Tables 4 and 5 show finite element
errors and convergence rates for the computed solutions over several levels of refinement. We see that the convergence
rates overall improve compared to the case with junctions, which is expected from the analysis. At the same time, the
fracture bending does not affect the efficiency of the method, which is also well known property of the Trace FEM. The
computed solutions and induced surface meshes are illustrated in Fig. 4. Convergence rates for this test well agree with
those reported in [13] for tetrahedra bulk mesh.

5.3. Pressure drop driven flow in a fracture network
The last example demonstrates the flexibility in applying the method for the case of more complex fracture networks.
Example 4. We consider a fracture network consisting of 5 components, both curvilinear and planar, and embedded in

the bulk domain £2 = (—1, 1)3. The fracture network is illustrated in Fig. 5 (left), where each component I},i=1,...,5
has a distinct color. On the parts of 9" crossing the left and the right sides of the cube, we prescribe the Dirichlet pressure
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.0e+00

pressure

=]

Fig. 5. (Left) Fracture network from Example 4. (Right) The computed pressure and velocity field.

boundary conditions: p=2for{xe I} : x=—1}andp=0for{x e I3 Ul : x =1} and for {x € I5 : z = 1}. On the
rest of 1" we prescribe zero-flux conditions. Thus the boundary conditions define the pressure drop that drives the flow
from left to right through the network. The computed solution is shown in Fig. 5 (right).
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Appendix. Proof of the FE trace inequality (26)
The proof largely follows the arguments given in [36] to prove (25) and makes use of the following result found for
example in [37]:
10112350y < ClVllw IVl forall v e HY(w). (34)

for a bounded domain w C R" with Lipschitz boundary.

Lemma A.1. Let T € T;. There exists an extension operator Ry : H*(T) — H(R3) such that Rrv = v on T and
IRrvll 23y + hrll VRrvll 23y + B ID*Rrvll 23y < CllIvllizery + hrlVollzery + BEID? vl 2(r)) (35)

where the constant C is independent of T and v.

Proof. We denote by T the reference cube of unit size. The center of Tis placed at the origin. Then, we know [32] there
exists an extension operator from R : H' (T ) — H (By) such that R0 = v on T and

IRD 2qa,) <Cl1dll2¢7- (36)

where B, is the ball with radius 2 centered at the origin. R

Let F; : T — T be the onto affine mapping and has the form Fy(X) = BX + b. For any v € H%(T) we define © € H?(T)
in the following way: 0(X) = v(Fr(X)). Then, the desired extension is given by (Rrv)(x) = (RD)(F; F=Y(x)). For notational
convenience we use w = Rrv. Then, we see that @ = R?. Using a change of variables formula we get

|D? w||L2(R3) / ID*w(x)]?dx = | |B'D*W(X)B~!|%|detB|dx.
F(By) By

We have |B;| < C hr, |BU’.1| <C hf. Therefore, we obtain using (36)

: |B~'D*w(%)B~'|*|detB|dX < Ch; ||D2w||L2(B , = Chy ||D2Rv||L2(B < Ch;! ||v||H2(T)
2

It is standard to show, again using a change of variable formula, and the bounds for B and B~! above that

he (1012, 5, + IV D124, + 1D*012,5)) < C (vl + B2V Ul Eogy + D201 o)
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Therefore, we have shown

h;1 ||D2RTU||L2(R3) = (||v||,_2(7-) + hT”VU”LZ(T) + h%||D2v||,_2(T)).

The required bounds for [|Rrv||;2z3) and || VRrv||2(g3 follow a similar argument; see Lemma 5 in [36].

We are now ready to prove the FE trace inequality (26). Let T € 7, and let v € H!(T). Then, we apply (34) first for
w = I} and next for v = £2, to get (we again use w = Rrv for notation convenience):

1/2 1/2
Iolliznary < Iwlizarny < Cllwllg iy,

< Cllwllgggnmy 1 ignsy < CUwlizenr + 1wl3 000 V@l o)
< CUIwI A w0l o + Il Tl IV wlh )
< € (Iwllizggy + Iwllgig Vw5, + 1wl i IVwil s, 10wl g,

+ i iy IV, + Tl 30, Vw50, 1D wilh ) -

We apply Young’s inequality and use hy < hg to handle terms on the right hand side. For example, we estimate

1 3
1/4 3/4 -1
Il o) IV, < Zlwlize + 5 ||Vw||Lz(m < Clh wllze + 51V llize)
1
1/4 1/2 1/4 1/2 1/2
lwlllst IVwllly? ID?wllyE < SIVwlipg) + = ||w|| o
L4(2) L4(82) L4(2) — 2 L4(2) L4(82)
1

1 hr
< §||Vw||L2(9) + ||w||L2(9) +— ||D2w||L2(S?

Other terms are treated in the same way to get

lvll2rrar) < C(h;! IRrv 20y + I VRrvll 200y + ArID*Rrvll 2 g))-

The desired result in (26) now follows after applying (35).
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