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Abstract

Many problems in contemporary astrophysics—from understanding the formation of black holes to untangling the
chemical evolution of galaxies—rely on knowledge about binary stars. This, in turn, depends on the discovery and
characterization of binary companions for large numbers of different kinds of stars in different chemical and
dynamical environments. Current stellar spectroscopic surveys observe hundreds of thousands to millions of stars
with (typically) few observational epochs, which allows for binary discovery but makes orbital characterization
challenging. We use a custom Monte Carlo sampler (TheJoker) to perform discovery and characterization of
binary systems through radial velocities, in the regime of sparse, noisy, and poorly sampled multi-epoch data. We
use it to generate posterior samplings in Keplerian parameters for 232,495 sources released in APOGEE Data
Release 16. Our final catalog contains 19,635 high-confidence close-binary (Pfew years, afew au) systems
that show interesting relationships between binary occurrence rate and location in the color–magnitude diagram.
We find notable faint companions at high masses (black hole candidates), at low masses (substellar candidates),
and at very close separations (mass-transfer candidates). We also use the posterior samplings in a (toy) hierarchical
inference to measure the long-period binary-star eccentricity distribution. We release the full set of posterior
samplings for the entire parent sample of 232,495 stars. This set of samplings involves no heuristic “discovery”
threshold and therefore can be used for myriad statistical purposes, including hierarchical inferences about binary-
star populations and subthreshold searches.

Unified Astronomy Thesaurus concepts: Binary stars (154); Close binary stars (254); Radial velocity (1332);
Spectroscopy (1558); Astronomy data analysis (1858); Bayesian statistics (1900); Astrostatistics (1882);
Surveys (1671)

1. Introduction

Binary-star systems provide key context and constraints for
nearly all subfields in astrophysics (e.g., Price-Whelan et al.
2019; Rix et al. 2019). For two concrete examples, a
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measurement of the occurrence rate of stellar-mass black holes
in the Milky Way would enable new constraints on binary
black hole formation channels to explain merger events
observed by LIGO (Abbott et al. 2016, 2019), and interpreta-
tion of spectroscopic observations of high-redshift galaxies and
their stellar populations depends on understanding the impacts
of binary-star evolution on stellar population parameters (e.g.,
Eldridge et al. 2017). One common need for all applications is
improved constraints on the population properties (e.g., period,
eccentricity, mass ratio distributions, and occurrence rates) of
stellar multiplets and their variations with stellar type,
chemistry, and dynamical environment, especially at the
extrema of these stellar characteristics. This has only been
comprehensively done for a sample of a few hundred stars in
the solar neighborhood (Raghavan et al. 2010), for specific
stellar types (e.g., Moe & Di Stefano 2017), or with imprecise
statistics using large samples of stars (Badenes et al. 2018).

While this problem spans a huge range in timescales (from
hours to millennia), current or near-future stellar surveys such
as Gaia, APOGEE, LAMOST, and SDSS-V (Zhao et al. 2012;
Gaia Collaboration et al. 2016, 2018; Kollmeier et al. 2017;
Majewski et al. 2017) have the capacity to deliver samples of
binary stars and stellar companions orders of magnitude larger
than are presently known, throughout all stages of stellar
evolution. Even with existing data sets, we now have
sufficiently large sample sizes and the robust tools needed to
perform hierarchical inferences to constrain much more
detailed models of binary-star formation and evolution (e.g.,
Moe & Kratter 2018; El-Badry & Rix 2019). However, the
most precise measurements of the binary-star population
properties will benefit from joint analysis of all stellar surveys,
which cover a range of stellar types, wavelengths, and
measurement techniques.

As a step toward large-scale population inference, we focus
here on multi-epoch spectroscopic data from the APOGEE
surveys. This survey sequence has predominantly targeted red
giant stars (although with DR16 there are now many main-
sequence stars, see below). Because of operational revisit
decisions to reach signal-to-noise thresholds, the surveys
deliver some time-domain information, although they were
not designed with binary-star characterization as the highest
priority. The fundamental data are R∼20,000 H-band
spectroscopy taken with the primary purpose of mapping the
Milky Way in elemental abundances and kinematics. This
survey is not the perfect target for binary-star identification, but
it arguably has one of the best combinations of spatial reach
around the Milky Way, coverage of the color–magnitude
diagram, and multi-epoch data.

The challenge of working with data that were not taken
primarily for binary characterization is that the data are sparse,
time baselines are variable, and most individual systems are not
characterized uniquely (in orbital parameters). Indeed, period-
fitting tasks generically produce multimodal likelihood func-
tions and posterior pdfs for periods, amplitudes, and phases,
and the Kepler problem is no different. These multimodal
likelihood functions are a nightmare for optimization or
sampling. For this reason, we created a custom sampler,
TheJoker (Price-Whelan et al. 2017), that performs brute-force
rejection sampling using a large, initial prior sampling. Because
this sampler does not produce Markov chains, but rather just
uses dense prior samples, it does not get “stuck” in local
optima. Instead, it samples the full parameter space, with zero

autocorrelation among samples. To proceed, however, the
sampler makes strong assumptions—for example, that the
source is a single-lined spectroscopic binary (SB1) with only
one companion. The advantage is that it generates full
samplings over orbital parameters for arbitrarily sampled
radial-velocity data.
It is important to clarify that we use TheJoker to sample

everyAPOGEE target as if it were an SB1 (see Section 7 for
some discussion of the implications of this assumption).
Discovery of which stars really do have companions then
becomes a post-processing step on the confidence of the
characterization. This project deliberately conflates discovery
with characterization. Doing so has the added advantage that
we can deliver full posterior samplings even for stars that are
not obviously in binary systems; these can then be used for
statistical studies and subthreshold searches when new data
arrive (e.g., from future surveys or follow-up). In what follows,
we run TheJoker on all of APOGEE DR16 (subject to some
quality cuts), and release the resulting catalog of posterior
samples, along with some summary metadata for the subsample
with good, uniquely determined companions and orbits. We
demonstrate the use of the samplings with a few examples of
interesting objects and a simple hierarchical probabilistic
populations inference.
This article is similar to Price-Whelan et al. (2018), but

should be viewed as a strict replacement (rather than an
improvement) of the catalogs and results of that work. We have
made substantial improvements to the methodology (improve-
ments to TheJoker; see Appendix A), and the APOGEE data
in DR16 are of higher quality, substantially larger in volume,
and have more observation epochs.

2. Data

We use spectroscopic data from data release 16 (DR16) of
the APOGEE surveys (Majewski et al. 2017; Ahumada et al.
2019; H. Jönsson et al. 2020, in preparation). APOGEE is a
component of the Sloan Digital Sky Survey IV (SDSS-IV;
Gunn et al. 2006; Blanton et al. 2017); its main goal is to
survey the chemical and dynamical properties of stars across
much of the Milky Way disk by obtaining high-resolution
(R∼22,500; Wilson et al. 2019), infrared (H-band) spectrosc-
opy of hundreds of thousands of stars. The primary survey
targets are selected with simple color and magnitude cuts
(Zasowski et al. 2013, 2017), but the survey uses fiber-plugged
plates that cover only a small fraction of the available area,
which leads to extremely nonuniform coverage of the Galactic
stellar distribution (see, e.g., Figure 1 in Ahumada et al. 2019).
DR16 is the first SDSS data release to contain APOGEE data

observed with a duplicate of the APOGEE spectrograph on the
2.5 m Irénée du Pont telescope (Bowen & Vaughan 1973) at
Las Campanas Observatory, providing access to targets in the
Southern Hemisphere. For the first time, this data release also
contains calibrated stellar parameters for dwarf stars (H.
Jönsson et al. 2020, in preparation). These two facts mean
that DR16 contains nearly three times more sources with
calibrated stellar parameters than the previous public data
release, DR14 (Abolfathi et al. 2018; Holtzman et al. 2018).
The interested reader may refer to Section 4 of Ahumada et al.
(2019) for many more details about APOGEE DR16.
Most APOGEE stars are observed multiple times in

separate “visits” that are combined before the APOGEE data
reduction pipeline (Nidever et al. 2015; Zamora et al. 2015;
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García Pérez et al. 2016) determines stellar parameters and
chemical abundances for each source. While the visit spectra
naturally provide time-domain velocity information about sources
(thus enabling searches for massive companions), studying stellar
multiplicity is not the primary goal of the survey: the cadence and
time baseline for a typical APOGEE source are primarily
governed by trying to schedule a set number of visits determined
by signal-to-noise thresholds for the faintest targets in a given
field. A small number of fields (five) were designed specifically
for companion studies and have >10 visits spaced to enable
binary-system characterization.

While some past studies have made use of other fields with
large numbers of visits to study binary-star systems (Troup
et al. 2016; Fernández-Trincado et al. 2019), a consequence of
this strategy is that the time resolution and number of visits for
the vast majority of APOGEE sources in DR16 is not sufficient
for fully determining companion orbital properties, as illu-
strated below. Still, the large number of targets in APOGEE
and the dynamic range in stellar and chemical properties offers
an exciting opportunity to study the population of binary-star
systems as a function of these intrinsic properties, even if most
individual systems are poorly constrained. We have previously
developed tools to enable such studies (Price-Whelan et al.
2017), as summarized in Section 3 below. Here, we describe
quality cuts we apply to the APOGEE DR16 catalogs before
proceeding, and modifications to the visit-level velocity
uncertainties to account for the fact that they are generally
underestimated by the APOGEE data reduction pipeline.

2.1. Quality Cuts and Defining a Parent Sample

The primary goal of this Article is to produce a catalog of
posterior samplings in Keplerian orbital parameters for all
high-quality APOGEEsources in DR16 with multiple, well-
measured radial velocities. We therefore impose a set of quality
cuts to subselect APOGEE DR16 sources by rejecting sources
or visits using the following APOGEEbitmasks (Holtzman
et al. 2018; H. Jönsson et al. 2020, in preparation):

1. Source-level (allStar) STARFLAG must not contain
VERY_BRIGHT_NEIGHBOR, SUSPECT_RV_COMBI-
NATION (bitmask values: 3, 16).

2. Source-level (allStar) ASPCAPFLAG must not con-
tain TEFF_BAD, LOGG_BAD, VMICRO_BAD, ROTA-
TION_BAD, VSINI_BAD (bitmask value: 16, 17, 18,
26, 30).

3. Visit-level (allVisit) STARFLAG must not contain
VERY_BRIGHT_NEIGHBOR, SUSPECT_RV_COMBI-
NATION, LOW_SNR, PERSIST_HIGH, PERSIST_
JUMP_POS, PERSIST_JUMP_NEG (bitmask value: 3,
9, 12, 13, 16).

These bitmasks are designed to remove the most obvious data
reduction or calibration failures that would directly impact the
visit-level radial-velocity determinations. However, we later
impose a stricter set of quality masks when showing results in
Section 6.2. After applying the above masks, we additionally
reject any source with <3 visits. Our final parent sample
contains 232,495 unique sources, selected from the 437,485
unique sources in all of APOGEE DR16. Of the ≈200,000
sources removed, the vast majority were dropped because they
had <3 visits (≈17,000 were removed by the quality cuts).

Figure 1 shows the sources in our parent sample—i.e.,
APOGEE sources with three or more visits that pass the quality

cuts described above—as a function of spectroscopic stellar
parameters Teff, effective temperature, and glog , the log-
surface gravity. While the majority of sources are giant-branch
stars (>150,000), a substantial number of main-sequence stars
are present (>60,000), thanks to the APOGEE data reduction
pipeline improvements for DR16 (H. Jönsson et al. 2020, in
preparation). Figure 2 shows some statistics about the time
coverage of the visits for sources in our parent sample. About
half of the sources have a small number of visits spread over a
small time baseline (the time spanned from the first to last visit
for each source): 50% of sources have <5 visits over
<100 days. About 7% of sources (15,366) have �10 visits
over �100 days.

2.2. Visit Velocity Uncertainty Calibration

The significance of apparent radial-velocity variations,
especially when considering low-mass or long-period compa-
nions, will depend strongly on the accuracy of the visit-velocity
measurement errors. However, the catalog-level APOGEE visit-
velocity errors (VRELERR in the allVisit file) are known to
be underestimated (e.g., Cottaar et al. 2014; Badenes et al.
2018). Here, we adopt the relation defined in A. G. A. Brown
et al. (2020, in preparation) to scale up the visit-velocity errors:

s = + -3.5 0.072 km s , 1v
2 1.2 2 1 2( ( ) ) ( ) ( )VRELERR

where σv is the adopted visit-velocity error for a given visit, and
VRELERR is the uncertainty reported in the APOGEE DR16
catalog. The form of this expression, s +a cv

b 2 2( ) , comes from
the assumption that the visit-velocity noise variance values
have a finite minimum value (i.e., a noise “floor”), and should
either be increased or decreased by a multiplicative factor that
scales with the pipeline-reported value of the uncertainty. The
values of the constants in this function (a, b, c) come from
robustly fitting this relation to the observed visit velocity

Figure 1. Two spectroscopic (ASPCAP) stellar parameters—effective temp-
erature, Teff, and log-surface gravity, log g—of the APOGEE DR16 sources
that pass our quality cuts. These sources represent our “parent sample.” Pixel
coloration indicates the number of sources in each bin of stellar parameters.
Outlined regions roughly identify the red giant branch (upper polygon, blue),
subgiant branch (middle polygon, black), and (FGK-type) main sequence
(lower polygon, green). Numbers next to each selection polygon indicate the
number of sources in each.
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scatters for each source as a function of their median visit
velocity error values. This effectively applies a floor to the
visit-velocity errors of 72 -m s 1and globally scales up the
error values.

3. Methods

As illustrated above, a large number of sources in APOGEE
DR16 have few visits that span a short time baseline. For most
sources, we therefore expect that even if visit-level radial-
velocity variations are detected with high significance, the
companion orbital parameters will be very uncertain—i.e., the
posterior probability distribution function (pdf) over orbital
parameters will generally be multimodal with many modes of
comparable integrated probability (e.g., Price-Whelan et al.
2017). Still, in unison, or within the context of a hierarchical
model that utilizes the individual posterior samplings, the
combination of all of these individually weakly constrained
binary-star orbits provides information about the population of
binary stars. We have previously defined and implemented a
custom Monte Carlo sampler for precisely this problem:
TheJoker (Price-Whelan et al. 2017). TheJoker is designed
to deliver converged posterior samplings over Keplerian orbital
parameters given radial-velocity observations, even when the
observations are sparse or very noisy. Its prior application to
APOGEE DR14 (Price-Whelan et al. 2018) resulted in a
released catalog of over 5000 binary-star systems; this article
and companion catalog supersede the previous work and its
catalog.

As before, we use a parameterization of the two-body
problem in which the radial velocity, v, of an observed star in a
binary system (referred to as the primary, even if it is less
massive than its companion) can be expressed as:

z w= +v t K t P e M t v; , , , , , 20 0 0( ) ( ) ( )

where K and v0 are linear parameters (in time t). The other
parameters—period P, eccentricity e, argument of periastron ω,

reference time t0, and mean anomaly at reference time
M0—enter through the nonlinear function

z w w w= + +t P e M t f e; , , , , cos cos , 30 0( ) ( ) ( )

where f is the true anomaly, and we always set the reference
time, t0, to the minimum observation time for a given set of
radial-velocity observations.

3.1. Updates to TheJoker

Since our initial paper defining TheJoker, we identified a
conceptual error in the assumptions made about the prior over
the linear parameters (K, v0) in Price-Whelan et al. (2017). We
previously assumed that adopting a sufficiently broad,
Gaussian prior over the linear parameters meant that we could
ignore an explicit definition of this prior. In particular, this
allowed us to drop any terms related to the prior over
these parameters in the marginal likelihood expression
(Equation (11) in Price-Whelan et al. 2017). This assumption
is not correct, and can lead to unexpected behavior when
applied to data that are very noisy or have a small time baseline
compared to the samples of interest. We have rewritten the
expression for the marginal likelihood that underlies TheJoker
in Appendix A, based on the notation in D. W. Hogg et al.
(2020, in preparation).
Another issue with the assumption in the original imple-

mentation of TheJokeris that the prior over the velocity semi-
amplitude, K, was identical at all period and eccentricity values.
This implies vastly different prior beliefs about the companion
mass as a function of orbital period. For example, a zero-mean
Gaussian prior on K with a standard deviation of 30 -km s 1

transforms to reasonable prior beliefs about companion mass at
periods around 1 yr, but gives substantial prior probability to
companion masses >100 M at periods >104 days. We there-
fore, by default, adopt a new (also Gaussian) prior on the semi-
amplitude with a variance, sK

2 , that scales with the period and

Figure 2. Some statistics of APOGEE DR16 visits. Left:number of sources with more than a given number of visits, nvis. While ≈50% of sources have three visits,
(114,263, 57,593, 15,862) sources have >(3, 5, 10) visits, respectively. A very small number of sources have >50 visits. Right:number of sources with a time
baseline, τ, longer than given (on the horizontal axis). While ≈50% of sources have a time baseline τ56 days, (88,737, 9743) sources have τ>(100, 1000) days.
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eccentricity such that

s s= -
-

-P

P
e1 , 4K K

2
,0

2

0

2 3
2 1( ) ( )

⎛
⎝⎜

⎞
⎠⎟

where σK,0 and P0 are additional hyperparameters that must be
specified. This new prior on K has the advantage that, at fixed
primary mass, it has a fixed form in companion mass that does
not depend on period or eccentricity.

We have also made a number of improvements to the Python
implementation of the sampler.29 For example, the prior
distributions over all parameters are now specified as pymc3
(Salvatier et al. 2016) distribution objects, meaning that the
priors over the nonlinear Keplerian parameters (P, e, ω, andM0;
see Price-Whelan et al. 2017) are now fully customizable.
Using pymc3 also enables compatibility with more efficient
Markov chain Monte Carlo methods, such as Hamiltonian
Monte Carlo (HMC), which is useful for seamlessly transition-
ing from generating posterior orbit samples with TheJokerto
HMC when the system parameters are highly constrained (as
discussed below).

3.2. Assumptions, Caveats, and Known Failures

The assumptions that underlie the sampling procedure
described above are enumerated in Section 3.1 in Price-Whelan
et al. (2018). We therefore briefly rephrase the most important
implications of these assumptions as a set of caveats and points
of caution for any users of the posterior samplings released
with this article.

First, despite allowing for a per-source, additive (in
variance), extra uncertainty parameter (s in Table 1), we are
very sensitive to outliers—or more generally, any visit
velocities with strongly non-Gaussian noise properties. In
APOGEE, this might occur for blended sources, multiple-star
systems with more than one star that contribute significantly to

infrared flux, or sources with stellar parameters that are beyond
the grid of template spectra (Nidever et al. 2015).
Second, related to the first point, we make the strong

assumption that all sources are single-lined, i.e., that any binary
companions do not contribute significantly to the observed
spectra. This is wrong in general: some systems will be double-
lined (sometimes only subtly, but detectable, e.g., El-Badry
et al. 2018), and we will be biased in cases where these sources
are not properly filtered by the quality cuts done above. This
also means that we will definitely miss systems with similar
masses (and especially “twin” binaries; El-Badry et al. 2019).
We expect this assumption to be worse on the main sequence
than on the giant branch, because any lower-mass companion
to a giant-branch star will have a luminosity hundreds or
thousands of times fainter.
Third, the adopted prior pdf over systemic velocities, v0, is

reasonable for considering all APOGEE sources (i.e., for a
mixture of kinematically disk-like and halo-like sources), but
may lead to biased posterior samplings for sources in globular
clusters or dwarf galaxies. For such systems, it would be safer
to rerun TheJoker with specialized priors over systemic
velocity for each individual host system.
Fourth, in this work, we assume that all systems are binary

systems, so triples or higher-order stellar multiplets will
generally have incorrect samplings. We will generate sam-
plings for systems that are consistent with being hierarchical
triple-star systems, but this is beyond the scope of the general-
use catalog considered here.
Finally, related to the fourth point, we assume that all

velocity variations represent orbital motion (i.e., not pulsation
or similar intrinsic stellar phenomena). As shown later, this
assumption is violated when glog 1, where stellar surface
jitter masquerades as orbital motion and leads to (a small
amount of) contamination in our sample of binary-star systems.

4. Running TheJoker on APOGEE DR16

For each of the 232,495 sources in the parent catalog of
sources selected from APOGEE DR16 (Section 2), we run
TheJoker (Price-Whelan et al. 2017) in order to generate
posterior samplings over the Keplerian orbital parameters,
including an additional per-source uncertainty or “jitter”
parameter that is added in quadrature to the (adjusted)
APOGEE visit-velocity uncertainties (see above). We start by
generating a cache of 100,000,000 prior samples for the
nonlinear parameters generated from the prior pdf summarized
in Table 1 (top rows). For each source, we iteratively read
random blocks of samples out of this cache, evaluate the
marginal likelihood, and rejection sample to produce posterior
samplings in the nonlinear parameters. We repeat this iterative
process until we reach the total number of samples in the cache,
or until we obtain a requested number of prior samples, Mmin;
this is an arbitrary parameter that we set to Mmin=512for this
work. In practice, this is done by parallelizing the sampling
(over sources) and takes about 8 hr to run on 720 cores on our
local compute cluster (at the Flatiron Institute) for the entire
sample.
After this procedure, the sources are in one of two stages of

completion: Sources either have Mmin=512posterior samples
(227,999 sources) and are complete, or Mmin<512posterior
samples (4496 sources) and more samples are needed. For
sources that require more samples, these can be split again into
two classes—sources with unimodal samplings in period, and

Table 1
Summary and Description of Parameters and Prior pdfs

Parameter Prior Description

Nonlinear parameters

P ~ Pln 2, 16384 day( ) Period
e e∼Beta(0.867, 3.03) Eccentricity
t0 Fixed (minimum time) Reference time
M0 p~ M 0, 2 rad0 ( ) Mean anomaly at reference time
ω w p~  0, 2 rad( ) Mrgument of pericenter
s m s~ sln ,y y

2( ) Extra “jitter” added in quadrature to
each visit-velocity error

Linear parameters

K s~ -K 0, km sK
2 1( ) Velocity semi-amplitude, where σK is

given by Equation (4)
σK,0=30 -km s 1 (see Equation (4))
P0=365 days (see Equation (4))

v0 s~ -v 0, km sv0
2 1

0( ) System barycentric velocity

sv0=100 -km s 1

Note. Beta(a, b) is the beta distribution with shape parameters (a, b),  a b,( )
the uniform distribution over the domain (a, b), and m s , 2( ) is the normal
distribution with mean μ and variance σ2.

29 https://github.com/adrn/thejoker
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sources with multimodal samplings—following the criteria
described in Price-Whelan et al. (2017). For incomplete sources
with multimodal samplings (2787 sources), these would need
to be rerun with a much larger number of prior samples to reach
512posterior samples, but here we mark these sources as
incomplete. For incomplete sources with unimodal samplings
(1709 sources), we use the samples returned from TheJoker to
initialize a Hamiltonian Monte Carlo (HMC) to continue
generating posterior samples. We use pymc3 with the
No-U-Turn Sampler (NUTS; Homan & Gelman 2014), using
the dense mass-matrix tuning prescription implemented in
exoplanet (Foreman-Mackey et al. 2019), and run four
chains in parallel, each for 1000 tuning steps and 4000
steps subsequently. We use these four chains and pymc3 to
compute the Gelman-Rubin convergence statistic, R̂ (Gelman
& Rubin 1992), for each parameter for each source; If <R 1.1ˆ
for all parameters, we downsample to 512 samples and mark
that source as MCMC-completed. If the HMC sampling fails
(e.g., chains diverge substantially), we fall back to the sampling
from TheJoker—this generally only happens for data with
serious systematic issues (e.g., one outlier visit velocity with an
unreasonable velocity measurement).

At this point, we now have up to 512 posterior samples of
the parameters listed in Table 1 for most of the 232,495APO-
GEE sources in the parent sample. These full samplings will be
released as a Value-Added Catalog (VAC) with the SDSS
DR16+ “mini” data release planned for 2020 July.

5. A Catalog of Binary Stars

For some science cases and exploration, it is useful to define
catalogs of systems with likely companions from the posterior
samplings generated here, as we illustrate below. This requires
making decisions and imposing hard cuts on the samplings
returned by the above procedure. However, most of the orbital
parameter samplings for most sources are highly uncertain and
multimodal, and it is therefore not possible to define simple
cuts on physical parameters (e.g., companion mass) to produce
a simple catalog. In the previous iteration of this work (Price-
Whelan et al. 2018), we defined cuts based on percentiles
computed from the distribution of lnK values after comparing
to running the same pipeline on a control sample of data
generated with purely Gaussian noise properties and time
information taken from the APOGEE DR14 visits. Here, we
use both a selection based on the posterior samples in K, as
well as a likelihood ratio comparing the Keplerian orbit model
assumed by TheJokerwith a (robust) constant-velocity model
for each source.

Following Price-Whelan et al. (2018), we again compute the
first-percentile values of the posterior samples in lnK for each
source and refer to these values as P1%(ln K ); this amounts to
an estimate of the 99% confidence lower limit on the (log)
velocity semi-amplitude. We again also generate a simulated
control sample of data to assess contamination when making
selections using this quantity. For each APOGEE source in our
parent sample, we take the maximum a posteriori sample
returned from the procedure defined above and subtract the
orbit computed from this sample from the visit velocity data.
We then rerun TheJoker on all of the residual data, and
compute P1%(lnK ) for each star in the control sample. We find
that <5% of the control sample passes a cut of P1%(ln K )>0
(i.e., a conservative cut to require that sources have a velocity
semi-amplitude >1 -km s 1).

For each APOGEE source, after generating the posterior
samplings, we compute and store the maximum (over posterior
samples) unmarginalized log-likelihood value for the Keplerian
orbit model, i.e., for one source with N visit-velocity
measurements vn at times tn,

å q s= L v v tln ln ; , , 5
n

N

n n n1 max
2ˆ ( ∣ ( ) ) ( )

where σn are the adjusted visit-velocity errors (Equation (1)),
and v(·) is given by Equation (2) and is evaluated using the
parameters for the maximum likelihood posterior sample, qmax.
For each source, we then also compute the maximum log-

likelihood value for the visit data under a model that assumes
that the visit velocities are drawn from a constant velocity with
Gaussian uncertainties but allowing for <20% outliers; we
refer to this model as a robust constant-velocity model for the
visit velocities. Using the same notation for the visit-velocity
data as above, the likelihood under this model is given by

m s

m s

=  -

+ + S





L f v

f v

1 ,

, , 6
n
N

n v n

n v n

2
2

2

ˆ [( ) ( ∣ )
( ∣ )] ( )

where f is the outlier fraction, μv is the constant-velocity value,
and Σ is the variance of the outlier model component (assumed
to be large). We optimize this likelihood using the BFGS
algorithm (Nocedal & Wright 2006) with bounds on the
parameters such that fä(0, 0.2), μvä(−500, 500) -km s 1,
and Σä(0, 3000) ( -km s 1)2. We store the optimized log-
likelihood value of the robust constant-velocity model and refer
to this as Lln 2

ˆ
We define a catalog of binary-star systems based on the

posterior samplings generated from TheJoker by selecting
sources for which

>P Kln 0 71%( ) ( )

- >L Lln ln 4.6. 81 2( ˆ ˆ ) ( )

The cut on the log-likelihood ratio comes from the (adopted)
condition that the maximum Kepler model likelihood should be
>100 times the maximum robust constant-velocity likelihood
value. Of the 232,495 total sources in our parent sample,
19,635 sources pass the selection above; those are binary
systems where we can provide meaningful orbit parameter
samplings. Summary information for the samplings generated
from all sources in the parent sample is included in Table B1;
in this table, the Boolean mask binary_catalog can be
used to select the 19,635 sources that pass the binary-star
selections defined in Equation (8).
Figures 3 and 4 show some examples of binary systems that

passed the selection above. In each figure, each row is a
different APOGEE source, the two figures show some example
short baseline (Figure 3) and long baseline (Figure 4) cases.
The left column of panels in each figure show the radial
velocity data (black markers) for randomly chosen sources with
(3, 5, 7, 9) visits (from top to bottom), and the blue lines show
radial-velocity orbits computed from the posterior samplings
generated by TheJoker. The right column of panels show the
same posterior samples (blue markers), but in a projection of
the parameter space (period P and minimum companion mass
M2,min). To compute M2,min, we use the posterior samplings
from TheJoker along with primary stellar masses computed by
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Queiroz et al. (2019) by sampling over the reported uncertainties
on prior mass (assuming a Gaussian noise distribution on
primary mass).

5.1. The Gold Sample

The majority of binary-star systems that comprise the catalog
defined above have strongly multimodal samplings in orbital
properties. While this is useful for binary population studies, it
is more difficult to summarize the system orbital properties and
their trends with stellar properties, as it is not possible to simply
compress the samplings. We therefore construct an additional
catalog for the subset of sources that pass a more stringent set
of quality cuts and have converged, unimodal, or bimodal
posterior samplings. We define this Gold Sample as sources
that pass the following cuts:

1. Matches to a Gaia source within 2″ of the reported
2MASS sky position.

2. Has a stellar mass measurement in the STARHORSE
catalog (Queiroz et al. 2019).

3. No additional Gaia sources within 2″ with a G-band
magnitude difference ΔG>−5 (to remove sources that

would lie within the APOGEE fiber and appreciably
contaminate the spectrum).

4. No additional Gaia sources within 10″ with a G-band
magnitude difference ΔG>2.5 (to remove bright
neighbor stars).

5. - < <g0.5 log 5.5 (reliable stellar parameters).
6. < <T3500 K 10,000 Keff (reliable stellar parameters).30

7. −2.5< M H[ ]<0.5 (reliable stellar parameters).
8. sMAP<0.5 -km s 1 (a small inferred excess variance).
9. nvis>5 (more than five visit spectra).

Here, sMAP is the maximum a posteriori (MAP) sample in the
excess variance parameter.
We identify sources with unimodal posterior samplings as

sources for which the MCMC procedure succeeded (see
Section 3). We identify sources with bimodal samplings using
the same procedure as Price-Whelan et al. (2018). Briefly, we
use a k-means clustering algorithm with k=2 to identify

Table B1
Description of the Metadata Table Containing Summary Information for All APOGEE Sources in the Parent Sample

Metadata for All Sources in the Parent Sample

Column Name Unit/Format Description

APOGEE_ID APOGEE source identifier
n_visits Number of visits that pass our quality cuts
MAP_P days P, orbital period
MAP_P_err days
MAP_e e, orbital eccentricity
MAP_e_err
MAP_omega rad ω, argument of pericenter
MAP_omega_err rad
MAP_M0 rad M0, phase at reference epoch
MAP_M0_err rad
MAP_K km s−1 K, velocity semi-amplitude
MAP_K_err km s−1

MAP_v0 km s−1 v0, systemic velocity
MAP_v0_err km s−1

MAP_s km s−1 s, excess variance parameter
MAP_s_err km s−1

t0_bmjd Reference epoch (Barycentric MJD)
baseline days Time baseline of the visits
MAP_ln_likelihood The log-marginal-likelihood value of the MAP sample
MAP_ln_prior The log-prior value of the MAP sample
max_unmarginalized_ln_likelihood Maximum value of the unmarginalized likelihood
max_phase_gap Maximum gap in phase of the data for the MAP sample
periods_spanned Number of (MAP) periods spanned by the data
phase_coverage Phase coverage of the data folded on the MAP period
phase_coverage_per_period Maximum number of data points within a single MAP period
unimodal boolean True if the sampling is unimodal in period
joker_completed boolean True if the source has 512 samples from TheJoker
mcmc_completed boolean True if the source has 512 samples from MCMC
mcmc_success boolean True if the MCMC sampling converged
gelman_rubin_max Maximum (over parameters) value of R̂
robust_constant_ln_likelihood Maximum log-likelihood value of a robust constant-velocity fit to the visit data
binary_catalog boolean True if the source is in the binary catalog (Section 5)

(232,495 rows)

Note. All columns ending in _err are estimates of the standard deviation of the posterior samples around the MAP sample, but are only computed for unimodal
samplings.
(This table is available in its entirety in FITS format.)

30 While the new APOGEE MARCS grids extend below 3500K (Ahumada
et al. 2019; H. Jönsson et al. 2020, in preparation), there are few calibrator stars
with such low temperatures, so the stellar parameters are less reliable for stars
with <T 3500 Keff .
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clusters of samples in orbital period, and assess whether the
samplings in each cluster are unimodal by checking whether all
samples in each cluster lie within the mode size defined in
Price-Whelan et al. (2017). In total, the Gold Sample contains
1032 systems with unimodal samplings, and 127 systems with
bimodal samplings. Summary information and a list of sources
in the Gold Sample are included in Table B2; this sample is
also available for investigation through a Filtergraph
portal.31

6. Results

The epoch baselines for most APOGEE sources, τ1 yr,
imply that most of the ∼20,000 binary systems (and certainly
the ∼1000 gold sample systems) will have Pyears and
afew au. However, the overall binary-star population
extends from close binaries to systems with a20,000 au,
with a broad, approximately log-normal period distribution

centered at ∼log(250 yr) (Raghavan et al. 2010). The binary
systems we identified and study here are commonly referred
to as “close binaries” (Badenes et al. 2018; Moe &
Kratter 2018), representing the closest ∼20%–40% of all
bound binary-star systems. With this in mind, we use our
sample to study some simple population properties of these
binary systems, as well as to highlight some interesting
systems in our sample.

6.1. Close Binary Fraction Trends with Stellar Properties

Our catalog of binary stars is not complete, in the sense that
the cuts we have made on the orbital-parameter samplings will
impart nonuniform selection biases that depend on the true
orbital properties of binaries and on the cadence of observa-
tions (visits) for each source. However, because of the simple
target selection and observation strategy used by APOGEE
(Zasowski et al. 2013, 2017) and APOGEE-2S (south;
R. Beaton et al. 2020, in preparation; F. Santana et al. 2020,
in preparation), we do not expect these binary-star selection

Figure 3. Example binary-star systems that pass the selection and are included in the catalog released here for APOGEE sources with short visit baselines
(τ<100 days). Each row is an APOGEE source (indicated on the left panel). Left panels show the visit velocity data (black markers; error bars are typically smaller
than the marker) and radial-velocity orbits computed from the posterior samples (blue lines). Right panels show the same samples in period P and minimum
companion mass M2,min.

31 https://filtergraph.com/apogee_dr16_binaries/
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biases to depend strongly on stellar parameters (e.g.,
metallicity, surface gravity). We can therefore still use this
catalog to study the relative close binary fraction within our
sample, but caution against interpreting the binary fractions
discussed below in an absolute sense. Note that here we use
“binary fraction” to mean the observed fraction of detected
binary systems, not the intrinsic or birth fraction of binary
systems.

Figure 5 (right) shows a near-infrared, binned color–
magnitude diagram for all APOGEE sources in the subset of
our sample that cross-match to the Gaia DR2 astrometric
catalog (Gaia Collaboration et al. 2016, 2018; Lindegren et al.
2018) and have a parallax signal-to-noise ϖ/σϖ>8; we
compute the absolute H-band magnitudes by converting
parallax into distance as d=1/ϖ. Each pixel is colored by
the ratio of the number of binary-star systems identified by the
selections defined above (Equation (8)) over the total number
of sources in the parent sample; pixels with fewer than four
stars in the parent sample are white. The solid (orange) line
shows a 5 Gyr MIST isochrone (Dotter 2016; Choi et al. 2016;
Paxton et al. 2011, 2013, 2015), with metallicity indicated in
the figure legend. The dashed line shows the equal-mass binary

sequence for this isochrone, 0.75 mag above the main
sequence. Note that, as expected, the observed binary fraction
is higher in this region of the CMD, and is also higher toward
younger and more massive main-sequence stars. Observe also
that the red clump (around (J−K )≈0.6, H≈−1.8) has a
low binary fraction, as noted in Badenes et al. (2018). The
width of the binary sequence (in H magnitude) can be
explained by the spread in metallicities in the APOGEE
sample.
The top left panel of Figure 5 shows another view of the

observed binary fraction, here shown as a 1D function of
surface gravity for stars in the giant branch selection region
shown in Figure 1. There is a clear and sharp dip in the
occurrence of binary systems near the red clump, and the close-
binary fraction decreases appreciably with decreasing surface
gravity (i.e., increased size). Both of these features are likely
signatures of companion engulfment: as red giant stars evolve
up the giant branch, any companions with orbital semimajor
axes smaller than a few times the surface size of the primary
star could be consumed (Ivanova et al. 2013), thus leading to
an overall decrease in the binary fraction for larger stars. Note
that the apparent upturn of the observed binary fraction at low

Figure 4. Same as Figure 3, but for APOGEEsources with long visit baselines (τ>1000 days).

9

The Astrophysical Journal, 895:2 (19pp), 2020 May 20 Price-Whelan et al.



glog is most likely dominated by contamination: intrinsic
radial-velocity noise is interpreted as a binary system detection
by the simplistic definition of binary fraction defined above.

The bottom-left panel shows the same, but as a function of
effective temperature (as a proxy for the mass of the primary)
for stars in the main-sequence selection region shown in
Figure 1. As has been noted in many past studies, we find that
the observed binary fraction (detected companion frequency)
increases with stellar mass (effective temperature) along the
main sequence (e.g., Duchêne & Kraus 2013). Like the
compilation of companion frequencies shown in Duchêne &
Kraus (2013) and a number of studies of local samples of
binary systems (e.g., Eggleton & Tokovinin 2008; Raghavan
et al. 2010; Gao et al. 2014), we find that the binary fraction
increases steeply for primary stellar masses M11.1 M
(Teff 6000 K).

Figure 6 shows the total fraction of detected close binaries
for main-sequence stars as a function of bulk metallicity,
M H[ ]. As has been recently emphasized, we find that the
observed fraction of close binaries is significantly antic-
orrelated with metallicity (El-Badry & Rix 2019; Moe et al.
2019), in disagreement with previous work (with a much
smaller sample) that had found no dependency with metallicity
(Jenkins et al. 2015). We find a shallower dependence of these
properties, with a slope of ≈−0.1 as compared to the
previously determined slope of −0.2, which was also for close
binaries (Moe et al. 2019). While we do not expect there to be
strong selection biases that imprint on these quantities, we
emphasize that we have not corrected for detection efficiency
or completeness with our sample.

6.2. Orbital Parameter Trends with Stellar Properties

Figure 7 shows the inferred orbital periods for all stars in the
Gold Sample as a function of orbital eccentricity (left) and

surface gravity (right), where the range of periods is limited (at
large P) by the length of the APOGEE surveys. The left panel
clearly shows the impact of tidal circularization (e.g.,
Zahn 1977; Meibom & Mathieu 2005): the eccentricities of
systems with P10 days are much more peaked near e=0 as
compared to systems with larger orbital periods (e.g.,
P100 days). However, for systems with giant-star members,
circularization occurs at longer periods (e.g., Price-Whelan &
Goodman 2018): systems with low eccentricities and
P>30 days tend to have lower glog values (darker points)
as compared to systems with P<10 days. In this panel, we
visually inspected the small number of systems with
P5 days and e0.4 and found that most of these cases
appear to result from (unexplained) systematic errors with the
visit velocity data that were not removed by the quality cuts.
Some of these cases also arise from failures of our assumption
of binarity: when the data shows signs of more complex
velocity variations, such as from a higher-order multiple-star
system, the samplings returned by TheJokerwill be erroneous.
The right panel of Figure 7 shows orbital periods of systems

in the Gold Sample (with unimodal or bimodal samplings) as a
function of surface gravity. The diagonal lines in this panel
show the orbital periods at which the orbital pericenter of a
0.3 M companion is equal to the stellar surface radius for a
1.1 M primary star (the median red giant branch mass in our
sample) at the given surface gravity and eccentricity indicated.
The apparent lack of systems with orbital periods shorter than
or within ∼1 dex of these critical lines (with glog 1)
suggests that a substantial fraction of binaries must merge or
disrupt during the evolution of the primary star. The
paradoxical points with seemingly small orbital periods at
small glog (i.e., suggesting they orbit within the surface of the
primary star) are likely due to contamination from asteroseis-
mic modes that manifest as velocity “jitter” in low-surface-
gravity giant stars. This jitter can reach amplitudes of
>1 -km s 1 already by glog ≈1 and likely increases toward
even lower values of glog (e.g., Hekker et al. 2008).
Also note the gradients in eccentricity (i.e., marker color)

with respect to orbital period in the right panel of Figure 7. At a
given surface gravity, there tend to be more black points (low
eccentricity) closer to the stellar surface (closer to the diagonal
lines). However, near the red clump (2 glog 3), there
appears to be an overabundance of low-eccentricity points at
orbital periods P100 days. Figure 8 shows histograms of
maximum a posteriori MAP eccentricity values for sources in
the Gold Sample with MAP period values P>50 days in four
bins of surface gravity, from the main sequence (farthest left) to
the upper giant branch (farthest right). Note that, around the red
clump (third panel from the left), there are significantly more
e<0.1 systems than expected (i.e., as compared to the
previous bin). We therefore posit that systems with a primary
around the red clump that have low eccentricities (especially
e0.2) have likely already ascended the giant branch, but
asteroseismic observations would be required to test this
hypothesis.

6.3. Interesting Low- and High-mass Companions

By construction, all sources in the Gold Sample have
primary stellar-mass estimates, M1, from the STARHORSE
catalog (Queiroz et al. 2019). For these systems, we can then
also convert the inferred orbital parameters into measurements
of the minimum companion mass, M2,min (i.e., M2 sini where

Table B2
Description of the Data Table Containing Summary Information for All

Sources in the Gold Sample

Metadata for the Gold Sample

Column Name
Unit/
Format Description

APOGEE_ID APOGEE source identifier
mass Me Mass of the primary, from the STAR-

HORSE catalog
mass_err Me Uncertainty on the primary mass
m2_min_1 Me 1st percentile value of M2,min

m2_min_5 Me 5th percentile value of M2,min

m2_min_16 Me 16th percentile value of M2,min

m2_min_50 Me Median value of M2,min

m2_min_84 Me 84th percentile value of M2,min

m2_min_95 Me 95th percentile value of M2,min

m2_min_99 Me 99th percentile value of M2,min

M All columns from Table B1
M All columns from APOGEE allStar file
M All columns from Gaia DR2 gaia_-

source table

(1032 rows)

(This table is available in its entirety in FITS format.)
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the unknown inclination i is set to 90°). Figure 9 (left panel)
shows these minimum companion-mass estimates as a function
of the STARHORSE primary masses for all sources in the Gold
Sample. While the uncertainties in these quantities are not
shown for most sources, the eight highlighted systems (red
markers with error bars) show typical values of the errors on
the masses (but note that the errors will be strongly correlated).
The two dashed (blue) lines show the approximate hydrogen-
burning limit (lower horizontal line), and the upper curve
shows the line of equality where the minimum companion mass

is equal to the primary mass. Of these, 95 systems have
M2,min<80MJ: Some of these may be high-inclination stellar-
mass systems, but all should be considered brown dwarf
candidates. Based on the quality cuts applied to define the
parent sample (which should remove sources with blended
spectral lines), systems with M2,min>M1 should not exist in
the sample if the companion is luminous. The 40 systems with
M2,min>M1 are therefore excellent candidate compact object
companions and will be discussed in a separate paper (A. M.
Price-Whelan et al. 2020, in preparation).
The right panel of Figure 9 shows the ratio of the primary

stellar radius over the (projected) system semimajor axis as a
function of (minimum) mass ratio. Here, the curved, dashed
line shows an estimate of the Roche radius (Eggleton 1983).
Systems above this line are likely interacting. One such system
(2M08160493+2858542), indicated by the square (orange)
marker in this panel, appears to be strongly photometrically
variable in data from the ASAS-SN survey (Shappee et al.
2014; Jayasinghe et al. 2019). However, most other candidate
interacting systems do not have ASAS-SN light curves and
could instead be followed up with TESS (Ricker et al. 2014).
Figure 10 shows the radial velocity data (black markers)—

underplotted (blue lines) with orbits computed from posterior
samples—for the four highlighted systems below the 80MJ
line in Figure 9 (left). The left panels show the time series. The
right panels show the same data and orbits, but now phase-
folded using the MAP period value. The inferred minimum
companion masses are indicated in each right panel. These
systems were chosen from a vetted subsample of all substellar
companion candidates in order to highlight systems with a
range of companion masses, eccentricities, and numbers of
observations.
Figure 11 shows the same, but for the four highlighted

systems above the M2,min=M1 line in Figure 9. The
companions in the systems shown in the top two rows are
just barely consistent with being high-mass neutron stars (e.g.,
Cromartie et al. 2020), but the systems shown in the bottom

Figure 5. Close binarity across the color–magnitude diagram. Upper left:observed close-binary fraction as a function of spectroscopic surface gravity, log g, for all
stars that pass the giant-branch selection indicated in Figure 1. Lower left:observed binary fraction as a function of spectroscopic effective temperature, Teff, for all
stars that pass the main-sequence selection indicated in Figure 1. Right:extinction-corrected 2MASS color–magnitude diagram (CMD) for all APOGEE sources,
colored by the fraction of sources identified as binary-star systems (Section 5). Solid (dark purple) line shows a MIST isochrone for a 5 Gyr stellar population with
Fe H[ ]=−0.2, and dashed line indicates the corresponding equal-mass binary sequence for main-sequence stars. Panels in this figure are meant to be illustrative
only, since the observed binary fraction is not the same as the true, complete binary fraction (see Section 5 for selection criteria).

Figure 6. Observed close-binary fraction as a function of bulk metallicity, [M/
H]. Binary fraction is anticorrelated with metallicity, here measured with a
slope of −0.1. Normalization of our observed binary fraction is set by the
selection function of the APOGEE surveys and detection efficiency of our
selection criteria (see Section 6.1). As the binary fraction is uncorrected for
completeness, we tend to measure smaller binary fractions at, e.g., solar
metallicity, as compared to other work (e.g., Raghavan et al. 2010).
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two rows contain candidate noninteracting black hole compa-
nions (these are discussed in more detail in the companion paper;
A. M. Price-Whelan et al. 2020, in preparation). The recently
discovered noninteracting black hole–giant star system (that
made use of APOGEE data; Thompson et al. 2019) does not
appear in our candidates, because it only has three visit spectra
with APOGEE data alone—and thus does not pass the strict cuts
we used to construct the Gold Sample.

6.4. Hierarchical Inference of the Eccentricity Distribution

Most of the results highlighted above make use of the
catalogs created from defining selections on the posterior
samplings generated with TheJoker. However, the real power
in the individual system posterior samplings is that they enable
further hierarchical modeling of binary-star population proper-
ties without having to make hard cuts on the samples.

In performing a hierarchical inference, the idea is to replace
the rigid priors over per-source parameters (i.e., the priors we
used to do the samplings described in Section 3) with a
parameterized prior that represents the population of binaries.
After defining hyperpriors over the hyperparameters of the
population model, inference of the population properties is
equivalent to, e.g., generating posterior samplings over the
hyperparameters. In future work, we will use the per-source
samplings generated in this work to construct a joint model for
the period, eccentricity, and mass ratio distributions of binary
stars as a function of stellar parameters, but this will also
require modeling the sample selection function and our
detection efficiency. While the full hierarchical inference is
out of scope for this article, here we demonstrate how this
could be done using a simpler, toy problem: namely, inferring
the eccentricity distribution of long-period binary stars using a
parametric model.

We first select all 53,790 sources with samplings from
TheJoker (or subsequent MCMC) with 4000K<Teff<7000 K

and −2< M H[ ]<0.5 in order to select main-sequence, FGK-
type stars. We then only keep 8599 sources that have >128
samples with P>100 days and K>1 -km s 1, of which 158
sources have unimodal samplings (i.e., generated with MCMC).
The second criterion (on velocity semi-amplitude, K ) would not
be necessary if we instead constructed a mixture model with
components to represent stars with companions and the
background population, but here, for simplicity, we instead just
make a cut on the posterior samplings. For each j source in this
sample of binaries with FGK-type primary stars, we then haveMj

(up to 512) samples in orbital eccentricity, ejm. We parameterize
the eccentricity distribution using a beta distribution, B(a, b), and
use the importance-sampling trick to reweight the ejm samples to
infer the hyperparameters (a, b) (Hogg et al. 2010).
In detail, we would like to evaluate or generate samples from

the posterior probability distribution over the hyperparameters
of the eccentricity distribution

µp a b D p D a b p a b, , , , 9( ∣ ) ( ∣ ) ( ) ( )

where D represents all visit data for all sources, i.e.,

=p D a b p D a b, , , 10
j

j( ∣ ) ( ∣ ) ( )

and (a, b) are the parameters of our assumed beta distribution
model. There is no obvious way to evaluate this posterior
probability—especially the likelihood term—given the hyper-
parameters. However, recall that we have samplings from the
per-source posterior distributions over eccentricity,

a aµp e D p D e p e, 11j j j j j0 0( ∣ ) ( ∣ ) ( ∣ ) ( )

a~e p e D , , 12jm j 0( ∣ ) ( )

where α0 is meant to represent the parameters of our assumed
“interim” prior over eccentricity that we used to generate the
per-source samplings (see Table 1), and here “∼” means “is

Figure 7. Left:inferred orbital periods, P, and eccentricities, e, for Gold Sample systems with unimodal samplings. Markers are colored by surface gravity, glog .
Right:similar to left panel, but showing orbital periods and APOGEE glog measurements. Circular markers again indicate the1032 sources with unimodal samplings,
and square markers indicate the127 sources with bimodal samplings, where the mean of each mode is plotted and connected by a horizontal gray line and the relative
sizes of the square markers indicate the fraction of the samples that lie in each mode. Diagonal (blue) lines show the orbital period of a 0.3 M companion with an
orbital pericentric radius equal to the surface size of a 1.1 M star with the given surface gravity and labeled eccentricity, e.
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sampled from.” Through math that is explained in more detail
in other work (e.g., Hogg et al. 2010; Price-Whelan et al.
2018), it is determined that the hierarchical likelihood can be
written as a sum over the ratio of probabilities

å a
»


p D a b
M

p e a b

p e
,

,
, 13j

j k

M
jm

jm 0
( ∣ )

( ∣ )
( ∣ )

( )

where  is a normalization constant. In practice, we evaluate
the hierarchical log-likelihood, ln p(Dj|a, b), as

a

= å

- -

p D a b p e a b

p e M

ln , logsumexp ln ,

ln ln . 14

j
m
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With a method for evaluating the hierarchical likelihood
(Equation (9)), we now just need to specify prior probability
distributions over the hyperparameters of the beta distribution
(a, b). For each parameter, we use a uniform distribution over
the domain (0.1, 10). We implement this model, including the
sums over the eccentricity samples, within the context of a
pymc3 model and use the built-in NUTS sampler to generate
posterior samples in the parameters of the eccentricity
distribution. We run the sampler for 1000 steps to tune, then
run four chains in parallel, each for an additional 2000 steps.
We assess convergence again by computing the Gelman-Rubin
statistic, R̂, and find that all parameters have converged
samplings at the end of our run.

From these posterior samples, we find a=1.749±0.001
and b=2.008±0.001. Figure 12 shows the inferred
eccentricity distribution (black curve, left panel) and the
corresponding cumulative distribution function (right panel),
along with some other eccentricity distributions from the
literature: for example, the (global) exoplanet eccentricity
distribution from Kipping (2013), the (theoretical) eccentricity
distribution for a thermalized population of binaries
(Jeans 1919), and a uniform distribution. At long periods,
binary-star systems seem to have moderate eccentricities that
disfavor circular or very eccentric values. This is in agreement
with past studies that have focused on nearby samples of solar-
type stars with smaller sample sizes (e.g., Duquennoy &
Mayor 1991; Raghavan et al. 2010).

Future analyses should assess the impact of selection effects
and detection efficiency on the inferred eccentricity distribution
using these data. We also emphasize that the extremely precise
constraints we obtain on the parameters of the beta distribution
imply that we have sufficient data to complexify the model,

either by using nonparametric forms for the eccentricity
distribution to move away from rigid models or by parameter-
izing variations in the distribution with stellar parameters. What
we have shown here is meant to be a demonstration of
hierarchical inference that utilizes the per-source posterior
samplings released with this paper. We do not consider the
results of this inference to be one of the key astrophysical
results of this paper.

7. Discussion, Caveats, and Limitations

In what follows, we discuss some important caveats and
considerations for interpreting the results and using the catalogs
described in this article.

7.1. Binary Fraction Trends with Stellar Properties

We find a number of interesting trends in the binary fraction
(or actually, the fraction of stars with binaries detected in this
sample) as a function of stellar parameters and chemical
composition that have far-reaching implications. For one, the
observed binary fraction increases rapidly with decreasing
metallicity, as also noted recently by El-Badry & Rix (2019)
and Moe et al. (2019). Beyond the implications discussed in
Moe et al. (2019), this also motivates appropriate invest-
igation into how a large binary fraction could influence
inferred properties of dwarf galaxies and globular clusters.
For example, stellar binarity impacts velocity dispersion
measurements, which then contaminate estimates of dark
matter masses in these systems (e.g., Aaronson & Olszewski
1987; Kouwenhoven & de Grijs 2008; Martinez et al. 2011;
Spencer et al. 2017, 2018; Minor et al. 2019), but also impact
the long-term stability and dynamical evolution of compact
stellar systems (e.g., Hut et al. 1992; Sigurdsson & Phinney
1993). A large binary fraction also impacts the chemical
evolution of these systems (e.g., Eldridge et al. 2008; Eldridge
& Stanway 2009).
We caution, however, that any real understanding of the

binary fraction (in an absolute sense) from the catalogs
produced here will require models for both the APOGEE
selection function and for our detection efficiency. Still, we
clearly now have samples of binary stars that are sufficiently
large to begin placing strong constraints on theories of binary-
star formation and evolution, as well as their impact on Galactic
stellar populations.

Figure 8. Histograms of MAP eccentricity values for systems with MAP P>50 days. Each panel contains systems with primary-star surface gravities indicated in the
title.
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7.2. Selection, Completeness, False Positives, and
Contamination

As cautioned above, to properly use our catalog of systems
for performing statistical tests (for example, to interpret the
binary-fraction values in Figure 5 in an absolute sense), it is
critical to have estimates of our detection efficiency or
completeness as a function of binary orbital parameters and
stellar parameters. While we have not provided estimates of the
completeness, we do release the full posterior samplings in
orbital parameters for all sources, along with open source
software that could be used to construct these estimates. In
general, our completeness will likely be a strong function of
velocity semi-amplitude, period, and eccentricity (which imply
functions of companion mass, inclination, and separation). It
will also depend on mass ratio, as many sources with bright
companions will be dropped by the quality cuts imposed on the
APOGEE data. As a consequence of this, the systems
considered in this work are primarily close-binary systems
with intermediate mass ratios.

One way to construct completeness estimates would be to
repeat the analysis done in this Article using simulated systems
with known parameters. The sampler used to generate the
posterior orbit samplings is open source and released as a
Python package (Price-Whelan et al. 2017; Price-Whelan &
Hogg 2019). The pipeline software used to define and analyze
the APOGEE parent sample is likewise open source and is also
available as a Python package, hq (Price-Whelan 2019).

7.3. Below-threshold Searches

Another problem with a traditional catalog of detected binary
companions (like ours) is that there are many sources for which
the hypothesis of a single star is clearly rejected, but not
sufficiently strongly rejected for the source to qualify as a
reliable binary “detection.” A user who has informative data for
a source that would take a subthreshold source above threshold
(in terms of our criteria for including a source in the catalog)
has no recourse if only given the rigidly thresholded catalog
entries. Even for well-detected binary systems, in a traditional
catalog of orbital parameters, there is no simple way to
combine the results with new data to improve or adjust
parameter estimates. The samplings provided here can be used

to solve these problems. They can be used to combine the
APOGEE information with new data, without requiring an
ab initio reanalysis of the original APOGEE data. An example
of this kind of use is the following: the posterior samples
delivered here from the APOGEE data are declared to be the
prior samples for a new rejection sampling. In this new
rejection sampling, the likelihood we use here is replaced with
a likelihood from the new data (say, for example, astrometric
data), computed now at each of these new prior samples. The
output of this rejection sampling will be a sampling of a
posterior pdf that accounts correctly for both the APOGEE data
and the new data.
In detail, following the notation in Appendix A, converting

the posterior samples released here into posterior samples over
the APOGEE data, D1, plus some new velocity data, D2,
requires generating samples from the posterior pdf

q q q qµp D D p D p D p, 151 2 1 2( ∣ ) ( ∣ ) ( ∣ ) ( ) ( )
q q qµ p D p D p , 162 1( ∣ )[ ( ∣ ) ( )] ( )

where we have assumed that the new data are independent of
the APOGEE data. Note that the terms in brackets in
Equation (16) are proportional to the posterior probability of
the parameters given only the APOGEE data, i.e., the
distribution we have generated samples from using TheJoker.
We can therefore use the posterior samples generated from the
TheJoker with the APOGEE data to rejection-sample using the
new marginal likelihood, qp D2( ∣ ), to generate samples from p
(q |D1, D2).
The ability to perform subthreshold searches or add external

information is limited by detailed shape of the posterior pdf and
the number of samples we deliver (here, 512). If the new data
are highly informative, or favor a mode in the posterior pdfthat
is not well-sampled, the posterior samplings we deliver will not
be sufficiently dense to provide support for the updated
posterior pdf. This puts limitations on the scope of subthreshold
searches, but at least they are possible with these outputs, in
some regime of applicability.

7.4. Stability of the Posterior Samplings

For any finite-sized radial-velocity data set for a binary-star
system, the posterior pdf over Keplerian orbital parameters will

Figure 9. Left:minimum companion masses, M2,min, as a function of primary mass, M1, for all stars in the Gold Sample. Upper dashed (blue) line shows the line of
equality where M2,min=M2. Systems near or above this threshold have candidate compact-object companions, as the more massive secondary is fainter than the
primary. Lower dashed (blue) line shows the approximate hydrogen-burning limit. Sources below this threshold are candidate substellar objects. Eight highlighted
points (red) are shown below in Figures 10 and 11. Right:ratio of the primary stellar radius to the (projected) system orbital semimajor axis as a function of minimum
mass ratio. Sources above the dashed (blue) line are likely interacting and may be photometrically variable.
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be multimodal. Why, then, do we discuss systems as having
“unimodal” or “bimodal” samplings? For a given data set, the
relative amplitudes or integrated probabilities in the modes of
the posterior pdf can be vastly different, depending on the
precision of the data, number of data points, and phase
coverage. When the data are very informative, typically one or
a few modes dominate, meaning that for a finite-resolution
sampling (like those delivered here), the posterior pdf can
appear to be unimodal or only slightly multimodal. However,
even in these cases, there are many other less significant modes
“hidden” by the finite sizes of the samplings. This fact can lead
to paradoxical or surprising effects for a given source when a
sampling is recomputed after including new data, or when
(especially precise) data change slightly, such as after updates
to data reduction procedures.

One implication of this is that adding a new velocity
measurement for a source, subtly changing all of the velocity
values, or even just changing the error bars on the data, can
cause the strength of a posterior pdf mode to change
dramatically. An example of this behavior can be seen with

the source 2M13090983+1711572 (top row of Figure 11),
which appears in our Gold Sample with an orbital period
P≈28.6 days. This source also appeared in our previous
catalog of systems with unimodal samplings from APOGEE
DR14 (Price-Whelan et al. 2018), but with an orbital period
P≈14.3 days. Though the same 16 visits appear in the
APOGEE DR14 and DR16 catalogs for this source, our new,
stricter quality cuts for this work (Section 2) filtered out five
suspect velocity measurements, and the remaining 11 visit
velocities used to generate the samplings used here led to a
posterior pdf with different mode amplitudes.
The stability of the posterior samplings described above has

some consequences for users of the catalogs and samplings
released here. For one, the procedure described above for
performing subthreshold searches (Section 7.3) is risky,
because for some sources our samplings are not sufficiently
dense to fully capture the support of the posterior pdf and its
detailed multimodal structure. For these sources, it may be
necessary to rerun the sampler on the updated data instead of
post-processing our samples. Another consequence is that, as

Figure 10. Example binary-star systems from the Gold Sample with low-mass companions that are candidate substellar objects. Each row is a different source
(indicated in the left panels). Left panels show the raw visit velocity data (black markers) underplotted with orbits computed from the posterior samples for each source
(blue lines). Right panels show the same data phase-folded with the MAP orbit sample period and underplotted with an orbit computed from the MAP sample.
Minimum companion mass for each system is indicated in the right panels.
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the velocity data for a given source evolve in terms of the
measured values, error properties, or total number of visits,
some results presented here will change in detail. These caveats
are important to keep in mind for any users of the samplings
and catalogs released with this article.

8. Conclusions

Our key results and conclusions are summarized below:

The close-binary fraction depends on the stellar para-
meters of the primary star.Figure 5 shows the observed
(uncorrected for completeness) estimate of the close-binary
fraction over the color–magnitude diagram, utilizing all
232,495APOGEE sources used in this work. There is a
notable dearth of close companions around the red clump,
where companions may have been engulfed when the
primary star ascended the upper giant branch. We also
rediscover trends in the binary fraction with effective
temperature along the main sequence (i.e., stellar mass),
and show that the binary fraction on the giant branch
depends on the surface gravity (i.e., surface size) of the
primary, also indicating that companion engulfment is an
important outcome of close-binary stellar evolution.

The binary fraction is anticorrelated with metallicity. We
find that the binary fraction decreases linearly with bulk
metallicity, with a slope of −0.1 dex−1, over the domain
−1 M H[ ]+0.4, as shown in Figure 6. This result
and the previous result are technically about the observed
or detected binary fraction within this sample, not the
absolute binary fraction, integrating over all possible
amplitudes and mass ratios.
We detect the clear signature of tidal circularization in
field main-sequence and red giant branch stars.Figure 7
(left) shows inferred periods and eccentricities for systems
with uniquely determined orbits in the Gold Sample. The
abundances of low-eccentricity sources at short periods is a
manifestation of tidal circularization, which should operate
at longer periods for larger, more convective (i.e., giant-
branch) stars.
We identify 95 candidate brown dwarf companions.Using
simplistic cuts on the Gold Sample of high-quality sources
with unimodal posterior samplings, we identify candidate
brown dwarf companions by selecting sources with
median minimum companion mass (M2,min) values below
the hydrogen-burning limit, M2,min<80MJ. Figure 9
(left) shows these sources as points below the horizontal

Figure 11. Same as Figure 10, but for example binary-star systems from the Gold Sample with faint, high-mass companions that are candidate compact objects.
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dashed line. We highlight a few of these systems in
Figure 10.
We identify 40 candidate noninteracting compact-object
companions.Again using simplistic cuts on the Gold
Sample of high-quality sources with unimodal posterior
samplings, we identify candidate compact-object compa-
nions by selecting sources with M2,min>M1. Figure 9
(left) shows these sources as points above the upper,
curved dashed line. We highlight a few of these systems in
Figure 11. As we emphasize above, these systems are just
candidates, but are sufficiently interesting that we believe
they are worthy of follow-up. We encourage a community
effort to continue monitoring these systems to determine
their nature.
The binary-star eccentricity distribution is peaked at
moderate eccentricities. We execute a toy hierarchical
inference using the posterior samplings for ∼8600 FGK-
type main-sequence stars to infer the eccentricity distribu-
tion of long-period (P>100 days), intermediate-mass
main-sequence star binary systems. By representing the
distribution using a beta distribution, we derive precise
posterior constraints on the parameters using this hier-
archical model, and find a=1.749±0.001 and
b=2.008±0.001. Figure 12 shows our inferred eccen-
tricity distribution, indicating that long-period binary-star
systems prefer moderate eccentricities.
We release a sample of 20,000 binary-star systems and
posterior samplings over orbital parameters for 232,495
APOGEE sources.Finally, we release a catalog of 19,635
high-confidence binary-star systems (Table B1). The
majority of these systems have poorly constrained orbital
parameters, but we release posterior samplings over these
parameters for all 232,495APOGEE sources, in order to
enable other probabilistic inferences with these data. We
also define and release a Gold Sample containing 1032
systems with high-quality, unimodal posterior samplings
that can be used and summarized more simply.
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Appendix A
Update to the Marginal Likelihood Expression for

TheJoker

As noted above (see Section 3.1), the assumptions in Price-
Whelan et al. (2017) that led to the simplified form of the
marginal likelihood (Equation (11) in Price-Whelan et al. 2017)
are not valid. We therefore here rederive the marginal
likelihood that forms the basis of the implementation of
TheJoker used in this work.

For each APOGEE source, we have a set of N radial-velocity
measurements (visits) vn at times tn with uncertainties σn.
Under the assumption that the source is in a binary-star system,
our model for the true radial velocity of the source at any time
is given by Equation (2) above. Our goal (as in Price-Whelan
et al. 2017) is to analytically marginalize over the linear
parameters in Equation (2)—(K, v0)—under the assumption
that the uncertainties on each radial-velocity measurement are
Gaussian and independent. To do this, we must write down
expressions for the likelihood, and for the prior probability
distribution over the parameters that we will be marginalizing
over (i.e., the linear parameters). We have already made the
assumption that our likelihood has a Gaussian form, so to do
this marginalization conveniently and analytically, we addi-
tionally assume that the prior pdf also has a Gaussian form.
Under these assumptions, the solution to this marginalization is
given in D. W. Hogg et al. (2020, in preparation).

To see the relation between the specific problem solved by
TheJoker and the derivation in D. W. Hogg et al. (2020, in
preparation), it is convenient to repackage our data and linear

parameters as
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where ζ(·) is given by Equation (3). With these assumptions,
the marginalized likelihood, Q, for a source, given nonlinear
parameters q, can be written

ò m L=  x y M x C xQ d , , A5( ∣ · ) ( ∣ ) ( )

ò=  x x a A y b Bd , , A6( ∣ ) ( ∣ ) ( )

=  y b B, A7( ∣ ) ( )
m=b M A8· ( )
L= +B C M M , A9· · ( )T

where the integral becomes simple because the second normal
distribution,  y b B,( ∣ ), does not depend on the integration
variables, x, and the integral over the first normal distribution is
1 (D. W. Hogg et al. 2020, in preparation). A final point that is
relevant to additional enhancements discussed in Section 3.1
(and is exploited in this work) is to note that m and Λ can
depend on the nonlinear parameters.

Appendix B
Data Tables

The primary data product released with this article are the
posterior samplings generated for each of 232,495 sources in
APOGEE DR16. These samplings will be released in the
upcoming intermediate SDSS data release “DR16+” (expected
in mid-2020). However, we also compute summary informa-
tion and statistics about these samplings and provide these data
in Table B1. We also define a Gold Sample of high-quality,
uniquely solved binary-star systems (see Section 6.2) and
release summary information along with cross-matched data
from Gaia DR2 and the STARHORSE catalog of stellar
parameters in Table B2.
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