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ABSTRACT: To describe nonequilibrium transport processes in a
quantum device with infinite baths, we propose to formulate the
problems as a reduced-order problem. Starting with the Liouville-von
Neumann equation for the density-matrix, the reduced-order
technique yields a finite system with open boundary conditions.
We show that with appropriate choices of subspaces, the reduced
model can be obtained systematically from the Petrov-Galerkin
projection. The self-energy associated with the bath emerges
naturally. The results from the numerical experiments indicate that
the reduced models are able to capture both the transient and steady

states.

1. INTRODUCTION

In the past decades, there has been significant progress in the
investigation of molecular electronics and quantum mechanical
transport,' "~ one emerging issue among which is the modeling
of interfaces or junctions between molecular entities."”” The
junctions encompass two sections: (i) a molecular core at the
nanometer scale that bridges two metallic devices and (ii) the
surrounding areas from contacting materials. Notable examples
include quantum dots, quantum wires, and molecule-lead
conjunctions. The junctions play an essential role in
determining the functionality and properties of the entire
device and structure, such as photovoltaic cells,”” intra-
molecular vibrational relaxation,"”~"? infrared chromophore
spectroscopy, and photochemistry.'*~"” At such a small spatial
and temporal scale, modeling the transport properties and
processes demands a quantum theory that directly targets the
electronic structures.

Such problems have been traditionally treated with the
Landauer-Biittiker formalism,"®™* which aims at computing
the steady-state of a system interacting with two or more
macroscopic electrodes, and the nonequilibrium Green’s
function (NEGF) approach, which, often based on the tight-
binding (TB) representation, can naturally incorporate the
external potential and predict the steady-state current.”' This
approach was later extended to the first-principle level”*™**
using the density-functional theory (DFT).*>*°

Due to the dynamic nature and the involvement of electron
excitations, one natural computational framework for transport
problems is the time-dependent density-functional theory
(TDDFT),”’~*" which extends the DFT to model electron
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dynamics. This effort was initiated by Stefanucci and
Almbladh®?? and Kurth et al,”” where the wave functions
are projected into the center and bath regions. An algorithm
was developed to propagate the wave functions confined to the
center region so that the influence from the bath is taken into
account. This is later treated by using the complex absorbing
potential (CAP) method” by Varga.” One computational
challenge from this framework is the computation of the initial
eigenstates. Kurth et al.>” addressed this issue by diagonalizing
the Green’s function. However, the normalization is still
nontrivial, since the wave functions also have components in
the bath regions. Another issue is that the CAP method is
usually developed for constant external potentials. For time-
dependent scalar potentials, a gauge transformation is usually
needed to express the absorbing boundary condition,* and it
is not yet clear how this can be implemented within CAP.
Another framework is based on the Liouville-von Neumann
(LvN) equation‘%’37 to compute the density-matrix operator
directly. One advantage of the LvN approach is that the initial
density-matrix can be obtained quite easily from the Green’s
function. Therefore, diagonalization and normalization are not
needed. To incorporate the influence of the bath, the LvN
equation has been modified by adding a driving term at the
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contact regions according to the potential bias. This approach
was later extended by Zelovich and co-workers,**™*’ which is
again motivated by the CAP method. The heuristic derivation
in ref 38 starts with the LvN equation, supplemented with an
absorbing potential to mimic electron absorption, and then in
the anticommutator, the time-dependent density-matrix in the
leads are replaced by the corresponding equilibrium density-
matrix. This approach was later extended in ref 40 where the
empirical driving rates are replaced by state-dependent
broadening factors that can be computed from the self-energy
of the leads.

This paper follows the density-matrix-based framework.
Compared to the driven LvN approach by Sanchez et al.,,*® and
subsequent works where the LvN equation is modified by
adding a driven term that is proportional to the deviation of a
target density, we derive the open quantum system using the
reduced-order techniques that have been widely successful in
many engineering applications.”' ~** We first formulate the full
quantum system as a large-dimensional dynamical system with
low-dimensional input and output. This motivates a subspace
projection approach, which has been the most robust method
in reduced-order modeling.*"** In particular, we employ the
Petrov-Galerkin projection, a standard tool in numerical
computations, e.g, linear systems, eigenvalue problems, matrix
equations, and partial differential equations (PDEs).**~*” With
appropriate choices of the subspaces, we obtain a reduced LvN
equation, modeling an open quantum system where the
computational domain only consists of the center and contact
regions. We illustrate the procedure for a one-dimensional
model system, as a first step to treat more realistic systems.
The numerical results have shown that the reduced LvN
equations can capture both the transient and the steady state
solutions.

The rest of the paper is organized as follows. In Section 2,
we provide a detailed account of our methodology, including
the mathematical framework and the derivation of the reduced
models. In Section 3, we present results from some numerical
experiments to examine the effectiveness of the derived
models. Section 4 summarizes the methodology and provides
an outlook of future works.

2. METHODS AND ALGORITHMS

2.1. Density-Matrix Formulation. Following the con-
ventions from existing literature,”*>”>**° we consider a
molecular junction, where a molecule is connected to two
semi-infinite leads. More specifically, the physical domain for
the entire system is denoted by €, divided into three parts, Q;,
Q, and Qy representing the left lead, the center region, and
the right lead, respectively, as illustrated in Figure 1.

We will start with the LvN equation, which for molecular
conduction problems, has been proposed and implemented in
a series of papers.’ > The LvN equation governs the
dynamics of the density-matrix operator p, which can be
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Figure 1. Schematic representation of a two semi-infinite lead
junction model consisting of two semi-infinite leads: left lead (L),
right lead (R), and an extended molecule (C) in the center.

connected to the wave functions (e.g, the Kohn—Sham
orbitals) as follows,

plr, v, t) = z n}-lf/j(r, t)l/’}j(r’, t)*

j (1)
with n; being the occupation numbers. The equation can be
derived from a time-dependent Schrodinger equation (TDSE),
and for the entire system €, it can be written as,

i0p(t) = H(t)p(t) — p(H(t) = [A(t), p(t)] )
where the bracket is the general quantum commutator,

A Ak kA
[A,B]: = A B — B A, and A* denotes the conjugate trans-
pose (or Hermitian transpose of A). Notice that with this
generalization, A or B can be non-Hermitian.

Our goal is to derive an open quantum system for the
density-matrix at the center region ¢, where the influence
from the leads is implicitly incorporated. For convenience, we
first assume that the entire system (2) has been appropriately
discretized in real (geographic) space Q so that p(r, ¥/, t) is a
matrix defined at certain grid points, here denoted by €, with
A indicating the grid size. Namely, p(r, v/, t) is the density-
matrix with r, ' € Q,. The representation in real space can be
obtained through finite-difference, finite-element, or wavelet
methods,*® where the derivatives in the kinetic energy is
approximated by local Taylor expansions or via weak
formulations. As a result, one arrives at a matrix-valued
infinite-dimensional system, and hence, we will drop the *
notation from now on. Another important class of approx-
imations is tight-binding, where the wave functions are
projected to atomic-centered orbitals, in which case, the LvN
equation would contain the overlap matrix on the left-hand
side when the basis functions are not orthogonal.*”****>% In
this paper, we choose a simple TB Hamiltonian as an intuitive
example to illustrate the derivations. This lays the groundwork
to treat more general electronic-structure calculation methods.
In principle, the reduction method is applicable to any single-
particle Hamiltonian description of the system.

Following the setup by Cini,”’ we treat the problem as an
initial value problem (IVP), starting with an initial density p, =
feq(t — Hy) as an equilibrium density at ¢ = 0. Such setup is
particularly amenable for numerical computations. While it is
challenging to compute the wave function in a subdomain,
which in general requires solving nonlinear eigenvalue
problems and normalization,>" efficient algorithms are available
to calculate the density-matrix in a subdomain.’*~>* These
algorithms take advantage of the relation between the density-
matrix and the Green’s function,

p = %yﬁ G(z)dz, G(z) = (zI — H)"

2 (3)

where the contour encloses all the occupied states. The
restrictions of the density-matrix to a finite subdomain can be
obtained by E*pE, where the operator E, with proper
arrangement, can be written simply as E* = [I, 0], with the
identity operator I corresponding to the subdomain and the
zero matrix corresponding to the exterior (bath). This
observation, together with (3), reduces the problem to the
computation of the following expression that we have slightly
generalized the linear algebraic system to,
[x 0]zl — H)_l[x]
0 (4)
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where the left and right vectors have finite supports. Namely,
the nonzero entries are denoted by X in vectors. Although this
amounts to solving an infinite-dimensional linear system, a
finite number of unknowns are needed due to the multi-
plication by the sparse vector on the left and right. The
number of nonzero elements in the vectors is related to the size
of the center domain and far less than the degrees of freedom
in the bath. For one-dimensional (or quasi one-dimensional)
systems, an iterative scheme can be used’>® to invert the
block tridiagonal matrix. For multidimensional problems, a
discrete boundary element method®” can be used.”® We will
refer to these algorithms in general as selective inversion.>”

Although our model works with the density-matrix, our
primary interest is in the electric current induced by a time-
dependent external potential that is switched on at t = 0,.
Similar to the theory of linear response,sg_61 we consider H(t)
as a deviation from its initial value H, and write H(t) = H, +
SH(t) with SH(t) being the applied potential from the leads.
The response of the system due to the external potential could
be represented in terms of the perturbed density,

Sp(t): = p(t) — p,, p(0) =0 ()

which satisfies a response equation,

; % 5p(t) = [H(), 5p()] + (1) ©

Here the nonhomogeneous term O(t),
O(t) = [6H(t), p,] )

incorporates the influence from the external potential.
. 27,36,38,62 . .
As is customary, we neglect the direct coupling
between the two leads and partition the density-matrix and the

0

O(t) = | = Up(t)n, (0)

Hamiltonian operator in accordance with the partition of the
domain indicated in Figure 1. Here we use the subscripts L, R
to denote the left, right lead domains and C to denote the
extended molecule part in the center. For example, Hc is the
restriction of Hamiltonian in the center domain €. According
to the previous partition, eq 6 can be translated to a more
transparent block-wise form,

Oy, OPic OPrg
i% 0P, OPcc OPcr
OPr OPrc OPpr

Hy, Hye 0 opu, OPic 9Py
= ||Her Hee Her | [9Pc, 00cc O ||+ ©
0 Hpe Hpp

OPpy OPrc OPrr
(8)
We are interested in the case when 6H corresponds to scalar

potentials in the leads, denoted by U, (t) and Ug(t), and 6H
writes as a diagonal matrix in the form

UL 00
SH(t) = |0 00
0 0 UGr(Hx (9)

where I,z are identity matrices of size np,z. Direct
computations from (eq 7) yield that the matrix function
O(t) follows

UL()pc(0) (UL(t) — Up(t))p, (0)

— Ur(t)p (0)

~ (U(1) = Up(£)p (0) U(D)pye(0) 0 (10)

In practice, to mimic the infinite leads, one has to pick much
larger regions € to prevent the finite size effect, e.g, a
recurrence. This makes a direct implementation using eq 8
impractical and demands tremendous computational cost to
simulate the bath environment modeled by two leads. An
appropriate reduction is needed to reduce the complexity of
the full problem and provide equations of much less degrees of
freedom that describe and predict the properties of the center
region exclusively. This can be done by eliminating the semi-
infinite blocks dp;; and Opgp in the density-matrix dp and
deriving closed equations for dpcc which is able to determine
the properties of the center region.

It suffices to illustrate the reduction of the degrees of
freedom in the left bath. A direct computation yields

i L5 () = [ (1), 3p,, (D] + K (2)

dt (11)

where Hy;(t) = Hy;(0) + 6H;;(t) and 6Hy; (¢) is the external
potential imposed on the left lead. F (t) represents the
influence from the interior and can be extracted from (eq 8),

E(t) = HLcéﬂCL(t) - 5ﬂLC(t)HcL + 0, (1) (12)

Now our key observation is that eqs 11 and 12 constitute an
infinite-dimensional control problem with control variables
0pcy and output dpy;. In practice, only the entries in dpy; near
the interface (between Q; and Q) are needed. Such a large-
dimensional dynamical system with low-dimensional input and
output can be effectively treated by using the reduced-order
techniques.*"*>%37%°

2.2. General Petrov-Galerkin Projection Methods.
Motivated by the development of reduced-order modeling
techniques””**°° that have been widely used in control
problems,43 circuit simulation,* and microelectromechanical
systems,”” etc, we propose a Petrov-Galerkin projection
approach to derive a reduced model from the infinite-
dimensional LvN eq 11. The objective is to provide a reduced
dynamics for the device region that captures both the transient
and the steady state.

The first ingredient is to pick an appropriate subspace where
the approximate solution is sought. To start with, we pick an n-
dimensional subspace V; spanned by a group of basis
functions {401,}?;1. The subspace can be expressed in a matrix

form as Vi = [@y, @y, .y @,.): V,, = range(V; ). Throughout this
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paper, we will not distinguish a subspace V| and its matrix
representation V.

As a simple illustration, the basis functions can be standard
hat functions centered at certain grid points, as shown in
Figure 2, which is popular in finite element discretizations.
Alternatively Gaussian-like atomic orbitals can be used to form
the subspace.

P4P3P2¥1
l.\ n l.\ l.\ l.\ I.\

2 T A U B Y A |
L N B U B U B ¥

Figure 2. A diagram of hat functions on € that span a subspace V|,
with dimension #.

In accordance with the Galerkin projection approach, one
can seek a low-rank approximation of dpy;(t) as 6p, in the
following form,

6ﬁLL(t): = ‘/LDLL(t)VIik (13)

Here Dy (t) is an n X n matrix, whose entries are the
coefficients of Jp , (t) being expanded under the basis

{qoigoj* }?,;': 1 and represents the nodal values of 5pNLL(t) in the

subspace spanned by Vi. This representation automatically
guarantees that the resulting density-matrix is Hermitian and
semi positive-definite, as long as Dy has those properties. The
residual error from this approximation can be directly deduced
from the LvN eq 11 by subtraction,

d
8(DLL: t) = iVL 5 DLL(t)VIik - [H(t)z VLDLL(t)Vf] - FL(t)
(14)

The second ingredient to determine Dy, is by projecting the
residual error to the orthogonal complement of a test subspace,
‘W], spanned by the columns of Wi, that is

WiED )W, =0 (15)

This yields a finite-dimensional system, and the reduction
procedure described above is known in general as the Petrov-
Galerkin projection, which has been a classical numerical
method in the solutions of differential equations,”” order-
reduction problems,*** and matrix equations.”**’

The reduced equation from the Petrov-Galerkin projection
eqs 13 to 15 can be written as,

d . -
i I Dy (t) = [H My, Dy ] — E(t) (16)

where the matrices are given by
M, = (VlikWL)_l;
Hy(t) = ViH, (HW,
B(8) = M{WIR(OWM, (17)

Notice that in eq 16 we have used the generalized notation
of commutators. At this point, we will keep the subspaces

spanned by V; and Wy at the abstract level, and the specific
choices will be discussed in the next section.

The same model reduction procedure can be applied to the
right lead and it yields a similar finite-dimensional equation,

d ~ ~
! dtDRR(t) = [HyrMg, Dpgl — () (18)

Eqs 16 and 18 are related by the nonhomogeneous terms
E(t), a =L, R that involve the evolution of dpc, and their
Hermitian transpose.

In the center region, no reduction is needed and we will
retain this part of eq 8. Therefore, we can construct a Petrov-
Galerkin projection for the entire system, by gluing the
subspaces as follows,

V, 0 0 W, 0 0
v=[0 I 0| w=[0 I, 0
00 W 0 0 W (19)

We seek an approximate solution

Sp(t) = 6p (t): = VvD(t)V* (20)
for the projected dynamics of eq 6, such that,

W*E(D, )W =0 (21)

where E(D, t) is the residual error,

&, 1) = i % 5 (1) — [H(D), 57/ (0)] - ©(r)

(22)
Direct computations yield,
d ~
i — D(t) = [Hy, D] + O(t
dt ( ) [ effs ] ( ) (23)
where H,; is the reduced Hamiltonian,
ViHLW (VW)™ ViHc 0
Hy = HCLWL(VikwL)_l Hee HCRWR(VEWR)_l
0 Vitle  ViHaWa(ViWR)™
(24)

and O(t) is related to the nonhomegeneous term in (eq 7)
O(t) = M*W*e(t) WM (25)
Here the matrix M is block-diagonal,

(Vi)™ 0 0

M=|0 I"c 0
0 0 (Vinp)™! (26)

It is worthwhile to point out that the subspaces can also be
time-dependent. This offers the flexibility to pick subspaces
that evolve in time. It should also be emphasized that our
discussions regarding the Petrov-Galerkin projection are
suitable for general cases and not limited to one-dimensional
junction models, i.e., the typical lead-molecule-lead structures.
With appropriate domain decomposition, it can be applied to
high-dimensional systems with more general device structures.

2.3. Selection of the Subspaces. In this section, we
discuss specific choices of the subspaces in the Galerkin-Petrov
projection. Without loss of generality, we again start by

https://dx.doi.org/10.1021/acs.jctc.9b01090
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considering the left lead €. Let Qp, C €, be a subdomain in

the left lead that is adjacent to the center region, as shown in
Figure 3. In our case, we pick Qr. in such a way that the
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Figure 3. A schematic representation of junction model with contact
regions in green.

remaining component in the lead has no coupling with the
center region, i.e, H;; = 0 fori € Qc amd j € Q; — Qp,. This
imposes a lower bound on the size of the contact region.
Similarly, for the right lead, we pick € such that H;; = 0 for i

€Qcamdj € Qp — Qp . Q- and Q. are often referred to as

contact regions that have direct coupling with the interior.**”’

In reduced-order modeling problems, the subspaces are
often chosen based on how the input/control variables enter
the large-dimensional system, e.g,, see the review papers.*"**
In our setting, we consider the dynamics in the left lead
described by the density-matrix in the contact region. We pick

the basis V;" to act as a restriction operator from € to Qr,
i
VL = [0; In],’L] (27)

where I, is an identity matrix with the dimension nr;, being
the number of grid points in Q.

The same procedure can be applied to the other lead region.
When the subspaces are combined as in eq 19, we have

[0 0 o
I, 0 0
T,L
v=|0 I, 0
C
0 0 I,
T,R
0 0 0 | (28)

The entire density-matrix is approximated as in eq 20. It is
now clear that V is a restriction operator to an extended center
domain, Q¢ = Qp U Q¢ U Q. Consequently, D in eq 23

becomes the density-matrix in C,
D(t) = ' (H)lg.xa, (29)

The subspaces Wy remain to be chosen. Motivated by the

Green’s function approach for quantum transport,”' ™" we
consider the test space,
—1
Wi(e) = (el = Hy) (30)

where € € C is in the resolvent space of the Hamiltonian Hy;.
We require that Im(¢) < 0 to ensure the stability of the
reduced models. In this case, it corresponds to the advanced
Green’s function as the imaginary part of & goes to zero,

lim W (e) = G/ (e)V;
i (&) = G (), (31)
The selection of Wy is similar. Intuitively, the subspace W
obtained this way represents the solution of the corresponding
TDSE with initial conditions supported in the extended device

region C. We notice in passing that unlike the basis V; amd V,
the basis W}, and Wy do not have compact support.

We now examine the specific form of the reduced model (eq
23). With the specific choices of the subspaces as in eqs 27 and
30, one can simplify the matrix M in eq 26 as follows,

My = (ViW)" = el = Hp, (t) = Z.(t, €)

el — Heff,L(tl 8) (32)
Similarly,
Mgy = €l — Hg(t, €) (33)

24,74—76

Here X, is the self-energy contributed by the left (a

= L) or right (@ = R) lead,
2,(t, &) = Hp (eI = H, ()" H, . (34)
and H.g, is the effective Hamiltonian associated with Qra,w
Hy,(t, €) = Hp p(t) + Z,(t, €) (35)

Overall, the effective Hamiltonian Hg in eq 23 is simplified
to

H(t): = Hc(t) + X(t, €) (36)

where H_ is the Hamiltonian restricted in the extended center
region 2,

Hc(t): = H(t)lg xa, (37)

and X is a block-wise diagonal matrix that incorporates the self-
energies of two leads,

> (t,e) 00
2(t,e) = |0 00
0 0 gt €) (38)

The self-energy (eq 34) involves the inverse of a large-
dimensional (or infinite-dimensional) matrix. Similar to the
inversion in eq 4, it can be efficiently computed using a
recursive algorithm, which has been well-documented.>*”*7?
The self-energy only needs to be computed once for constant
external potential, and for periodic external potentials, it can be
precomputed for one period.

Let pc be the density-matrix restricted in the extended
center region Q¢, i.e.,

pe(D): = p(Dlgxq. = D(t) + p(0) (39)

The reduced model for this part of the density-matrix can
now be written as,

N
1 a pc(t) - [Heff(t)J pc(t)] + ®C(t) (40)

With our choice of the subspaces, the reduced dynamics is
driven by the effective Hamiltonian H,. The nonhomoge-
neous term ®¢ embodies the effect of the potential,

Oc(t) = MV ("I — HY'[H, ,1(el — H'VM  (41)
where p, = p, — VV*pOVV*, M is computed from eq 32 and
V is in the form of

https://dx.doi.org/10.1021/acs.jctc.9b01090
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v —He O
V=|- Hcerf(f - Hy)V, € - He - HCFRV;:(*? - Hpp) Vo
0 — Hp¢ 1

(42)

The practical implementation of the reduced model hinges
on the availability of efficient algorithms to compute (i) the
self-energy (34); (ii) the initial density-matrix in the center and
contact region; and (iii) the nonhomogeneous term (eq 41).
The computation of the self-energy and the initial density-
matrix, as previously discussed, can be computed using the
selective inversion techniques, which is applicable for problems
that can be cast into the form of (eq 4) where the Green’s
function is accompanied by sparse vectors. As for the
nonhomogenous term, we find that V, and H,, @ = L, R
have nonzero elements only associated with those degrees of

freedom in the domain S~2, which implies the sparsity of V.
Upon closer inspection, we find that the product of inverse
matrices in O(t), ie, (eI — H)'O(t)(el — H)™!, can be
written as a sum of single matrix inverses (partial fractions),
provided that ¢ is in the resolvent of H and Im(¢) # 0. For
example, we have,

1

&€ —z

(I - HY Y (eI -H)' = ((zI = HY™ = (eI — H)™)

Consequently, all those blocks can be written in the general
form (eq 4), and one compute @ efficiently by using the
selective inversion techniques.>”

2.4. Properties of the Reduced Models. 2.4.1. Hermi-
tian Property of pc(t). The projection method produces an
approximation of the density-matrix in the extended center
region, leading to an open quantum-mechanical model that can
be subsequently used to predict the current. The influence
from the infinite leads, through the self-energy, has been
implicitly incorporated into the effective Hamiltonian. By
taking the Hermitian of the reduced model (eq 40), and
noticing the anti-Hermitian property of the term 6, we find
that pék also satisfies (eq 40) with initial condition p: (0). As
pc(0) is Hermitian, and in light of the uniqueness of the
solution, we obtain the Hermitian property for pc(%).

2.4.2. Stability of the Reduced Models. Next, let us turn to
the analysis of stability. Since the stability of the linear
nonhomogeneous system is implied by the stability of the
homogeneous system, we focus on the homogeneous case in
eq 40 to study its stability. The problem can be addressed as
the stability of a finite system X(t),

< X(0) = HE(OX() = X(OH(0),

X(0) = p-(0) (43)

where H.¢ = H¢ + X. Since p:(0) has an eigen-decomposition
p:(0) =3, n,y/loy/,o*, it is not difficult to verify that
X(t) =2, ﬂll//[(t)ljll*(t) is the solution of eq 43 if y;(t) satisfies

) = HOw(0),

y(0) =y’ (44)

It suffices to analyze the stability of eq 44.

There exists a decomposition Hg(t) = A,(t) + iA,(t),
where A, and A, are real-valued symmetric matrices and A,
is determined from X due to the Hermitian property of Hc.
Further computation yields,

~ ~ %k
O A ()P, 0 0
A,(t) =1|o0 00

~ vk

0 0 DpAp(t)Pp (45)
where &)a =Hp ,®, and @, are the eigenvectors of H,,.
Thanks to the special form of 2, one can compute that A, is a
real diagonal matrix, in the form, A, = diag(4)", 45, .., 4,),
with

/11(1 = Im[ %k ! a\]
&€ — K (46)

where u," is the eigenvalue of H,,.

a

To ensure the stability, it is enough to require that A, has
only nonpositive eigenvalues,80 ie,

1 } _ Im(e)

& a
&€ —Ml

A= Im[ % ez <0
le™ — '] (47)

This confirms that when ¢ has a negative imaginary part, the
stability of eq 40 is guaranteed.

2.5. Higher Order Subspace Projections. The Galerkin-
Petrov projection method can be extended to higher order, by
expanding the subspaces V; ;; and Wy /i to higher dimensions.
Here we provide two options to extend the current subspaces.

2.5.1. Expanding the Contact Region. One straightforward
approach is to keep the choices of V and W according to eq 27
and eq 30 but increase the size of the region Qr to increase the
subspace. Through numerical tests, we observe that this is a
rather simple alternative, and it captures steady state current
with subspaces of relatively small dimensions .

2.5.2. Block Krylov Subspaces. Another approach, as
motivated by the block Krylov techniques®' for large-
dimensional dynamical systems, is to expand the subspace V,

to the block Krylov subspace,
Vim = [VLHLLVL"'HE’L_IVL] =: K, (Hy; V) (48)
The corresponding Wy, has a similar structure,
Wi, = WLV HETW] = K (Hus W) (49)

The Krylov subspaces are composed of a generating matrix
and a starting block. In order to keep the additional blocks full
rank, we pick V| based on the interaction range in Hy,. For
example, if Hy; is based on a one-dimensional nearest-neighbor
Hamiltonian, then we pick np = 1 to define Vi, which would be
a one-dimensional vector; we picked np- = 2 for a next nearest
neighbor Hamiltonian, etc.

3. NUMERICAL EXPERIMENTS AND DISCUSSIONS

To test the reduction method, we consider a one-dimensional
two-lead molecular junction model within a TB setting, similar
to the setup in Zelovich et al.’® More specifically, in the
computation, the leads are represented by two finite atomic
chains with increasing lengths (n, and ng, respectively) to
mimic an infinite dimensional system and eliminate the finite

https://dx.doi.org/10.1021/acs.jctc.9b01090
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size effect. The extended molecule with length nc is 0.04
represented by a finite atomic chain coupled with both leads. 5 0'0(2)
Here, the atomic unit is used throughout the paper if not %_0 0
stated otherwise. 0.04
Initially, the system is configured in thermodynamic 0 500 1000 1500 2000
equilibrium at temperature T = 0 K, with all single-particle time
levels occupied up to the Fermi energy ¢ = 0.3 a.u. The on- =~
site energy is taken as @ = 1 au, and the hopping integral 5 —NL=200
betw t neighbors is § = —0.5 au. At time £ = 0,, a bi g ~NE=300
etween nearest neighbors is f = —0.5 au. At time ¢ = 0,, a bias 3 o NL=1000

potential is switched on in the electrodes. With the computed
density-matrix, we study the bond current through the
molecular junction to monitor the dynamics, using the
formula®

I(t) = 2pImlp,_, ,(£)] (50)

For the time propagation of the density-matrix, we use the
fourth-order Runge—Kutta scheme to solve the full model (eq
2), as well as (eq 40). We fix the size of the center region n¢ =

20 and simulate the system under two different types of
su

external potentials: (1) constant biased potential: Uy j, = 5

to mimic direct current (DC) circuit and (2) time-dependent
potential: a sinusoidal signal in the left lead, Uy = 6U sin wt, to
mimic an alternating current (AC) and the potential on the
right stays at zero.

In principle, the bath size needs to be infinite to model the
two semi-infinite leads; but in practical computations, one can
only treat a system of finite-size and expect the system to reach
a steady state in the limit as the bath size goes to infinity. We
pick this microcanonical formulation® as our starting full
model, which can be viewed as two sufficiently large (but
finite) charged electrodes that discharge across a molecular
junction. The electric current through the conjunction can be
calculated without implementing scattering boundary con-
ditions and by the use of effective one-electron time-dependent
LvN equations. An alternative choice is the driven LvN
method presented in ref 40 where a target density is supplied
to act like the source injecting electrons from electrodes. When
the driving rate is zero, this model coincides with the
microcanonical setup.

Numerically, we examine such size effect by varying n;/ny
and observing the current in the center region. More
specifically, we run direct simulations of eq 2 using ny = ny
=200, 500, 1000, 2000. Our results (Figures 4 and S) suggest
that, for the constant potential case, the electric current
gradually develops into a steady state until the propagating
electronic waves reach the ends of the leads and get reflected
toward the bridge. As we extend the leads size to n, = np =
1000, the backscattering effect occurs much later and is no
longer observed within the time window of our simulation. For
the dynamic potential case, we observe periodic changes of the
electric current. Size effects become insignificant when the size
is increased to n; = ny = 500 over the duration of the
simulation. We also examine the occupancy of two leads at
steady-state (double occupancy of each orbital assumed).
When n; = ng = 500, the occupations are close to the Fermi
distributions at zero temperature. We point out that this effort
of using a sufficiently large bath size is only to generate a
faithful result from the full model (eq 2), which will be used as
a reference to examine the accuracy of the reduced model (eq
40). These degrees of freedom will not be explicitly resolved in
the reduced model.

500 1000 1500
time

Figure 4. The finite size effect on the electric current. The figures
show the time evolution of the currents through a junction coupled
with two finite leads of varying sizes nj, = ny. The number of atoms in
the extended molecule (center region) remains the same, nc = 20.
Top: constant bias potential U, = —Uy = 0.1 a.u. Bottom: dynamic
potential U, = 0.2 sin(0.05¢) au., U = 0.

1
—200 (L)
0.8 ——500 (L)
—200 (R)
0.6 == 500 (R)
—Target (L)
0.4 — — Target (R)
0.2 \
0 C
0 0.5 1

E—EF

Figure S. Steady-state occupations obtained using lead models of n;, =
ng = 200 (solid line) and 1, = ny = 500 (dashed line) compared to the
corresponding target lead-equilibrium step-function distributions
(black), with the other same conditions in Figure 4.

Next we compute the transient current of the DC circuit
(case 1) from the effective reduced models (eq 40) and
compare it with the current from the full model (eq 2) to
evaluate the accuracy of the reduction method. Again, the
results from the full model are generated with a sufficiently
large bath. We examine the different choices of increasing the
subspaces (as discussed in section 2.5). In particular, in Figure
6 we show the numerical results from using the subspaces (eq
27) and (eq 30), and we choose the dimension n from 1 to
10. First we notice that no recurrent phenomenon is observed,
which can be attributed to the nonhomogeneous term O¢(t) as
well as the self-energy in eq 40, since they take into account
the influence from the bath. The results improve as we expand
the subspace, V, and W,, @ = L/R in eq 19. The steady state
current has already been well captured by the reduced model
with dimensions nr = 2, while the transient results improve as
we expand np, and we arrive at a very satisfactory result when
nr = 4.

We also examine, as shown in Figure 6, the occupation of
the energy states in order to make sure our current method still
follows Pauli’s exclusion principle as well as the positivity of
the density matrix. We observe that the occupations remain
from 0 to 1 throughout the simulations (double occupancy of
each orbital assumed), and after = S0 au, the system arrives at
steady-states and the occupations start to settle.

https://dx.doi.org/10.1021/acs.jctc.9b01090
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Figure 6. The simulation of the DC circuit (constant bias U, = —Uy =
0.1 au). The full system is modeled with a sufficiently large bath n, =
ng = 500, nc = 20. The shift parameter is set to &€ = 0.3—0.1i. The left
panel shows the time history of the current from the reduced model
(eq 40) with different subspace dimensions np, compared to the result
from the full model (eq 2). The subspaces are chosen from (eq 27)
and (eq 30) by extending the contact region Q. The inset shows the
zoomed-up view of the transient stage of the current. The right panel
shows the occupations of the center region at different time shots with
the subspace dimensions np = 1.

It is worthwhile to comment on the dimension of the
reduced model. The density-matrix in the full model has

dimension (ne + n; + nz)* In contrast, the dimension of the

reduced density-matrix is (nc + 2np)’, which offers drastic
reduction in terms of the number of degrees of freedom.

We now test the Krylov subspaces according to (eq 48) and
(eq 49), as shown in Figure 7. The subspaces can be expanded
by increasing m. The steady state is well captured when m = 2,
while the transient requires higher-order approximations. Our

— |=——Full
—Nsub=1
Nsub=2
—Nsub=3
—— Nsub=4
Landauer

0 Q0 10 20
0 20 40 60 80 100
time

Figure 7. The results from the simulation of the DC circuit (constant
bias U, = —Uy = 0.1 au). The figure shows the time evolution of the
current from the reduced model (eq 40), generated by the block
Krylov subspaces (eq 48 and eq 49) for various choices of dimensions
(Nsub = m), with parameter & = 0.3—0.01i. The results are compared
to the result from the full model (eq 2). The inset shows the transient
stage of the current.

observation is that in order to achieve the same accuracy, we
need larger subspaces than the previous approach. On the
other hand, the Krylov subspace approach is more robust in
the regime where Im(¢) is close to zero.

Another important factor that plays a role in the reduced
model is the selection of the parameter &, which can be viewed
as an interpolation point for the self-energy. Therefore, we
study the dependence of ¢ in the reduced models, by observing
the electric current at steady state for various different choices
of &. For the imaginary part, we require Im(¢) to be strictly less
than zero to ensure that the self-energy (eq 34) is well-defined
and (eq 40) has the stability assurance. We start with Im(¢) =
—0.15. When IIm(¢)| is further decreased (<0.01), the electric
current exhibits oscillations around the true value of the steady
state. For the real part of ¢, the optimal value appears around
the Fermi energy. See Figure 8. This suggests that & should be
around the Fermi level with a small imaginary part, although
when the imaginary part is too small, the numerical robustness
might be affected.

—True
—imag(e)=-0.15
- = imag(e)=-0.13
—-=-imag(e)=-0.11
——imag(e)=-0.09
—imag(e)=-0.07
imag(e)=-0.05
- = imag(e)=-0.03
_| |~ — imag(e)=-0.01

0.2 0.4 0.6 0.8
Real(e)

Figure 8. The example of DC circuit with constant bias (U, = —=Uy =
0.1 a.u.). The Figure shows the steady-state current predicted by the
reduced model (eq 40) using various choices of the parameter & with
nr= 1.

Finally, we turn to the example of the AC circuit. Since a
time-dependent external potential is imposed, Hc and O in eq
40 are time-dependent as well. They need to be evaluated at
each time step. Due to the periodic property, it suffices to
precompute Hc(t) and ©Oc(t) within one time period. As
shown in Figure 9, a periodic electric current has been
reproduced by the reduced model (eq 40), and the accuracy
also improves as we expand the subspace size np. The electric
current is already well captured when np = 4.

4. SUMMARY

We have proposed to formulate the quantum transport
problem in a molecular junction coupled with infinite baths
as a reduced-order modeling problem. The goal is to derive a
finite quantum system with open boundary conditions.
Motivated by the works in refs 36, 38, and 39, we work with
the density-matrix and obtain reduced Liouville-von Neumann
equations for the center and contact regions. The reduced
equations are derived using a systematic projection formalism,
together with appropriate choices of the subspaces. Numerical
experiments have shown that the reduced model is very
effective in capturing the steady-state electric current as well as
the transient process of the electric current. The accuracy
increases as we expand the contact regions in the reduced
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Figure 9. The example of an AC circuit with time-dependent
potential U (¢) = 0.2 sin(0.05¢) a.u.,, Ug = 0. This figure displays the
time evolution of the currents from the reduced models with different
subspace dimensions np, compared to that from the full model. The
parameter € = 0.3—0.1i is used.

model. The reduced model has been very effective in
preventing the backscattering at the boundary. The fact that
the effective Hamiltonian contains an imaginary part, and the
fact that the self-energy is concentrated at the boundary,
indicate a strong connection to the complex absorbing
potential (CAP) method. However, the effective Hamiltonian
is derived from a reduced-order method, which takes into
account the electron structure in the bath, rather than
empirically constructed. On the other hand, the projection to
higher-order Krylov subspaces leads to models that go beyond
the CAP method.

In order to demonstrate the reduction procedure, we have
considered a one-dimensional junction system. The validity of
the projection approach is not restricted to the one-
dimensional system. It can be applied to general coupled
system-bath dynamics that require model reduction due to the
computational complexity. The extension to systems that are of
direct practical interest is underway. Another possible
extension is the data-driven implementation of reduced-order
modeling. In this case, rather than computing the matrices in
the reduced models from the underlying quantum mechanical
models, they are inferred from observations.®"**

Self-consistency has not been included in the Liouville-von
Neumann equation, especially the Coulomb potential, which in
the linear response regime, leads to a dense matrix** from the
Hartree term. This creates considerable difficulty for the
reduce-order modeling since the partition (eq 24) is no longer
reasonable. However, the Coulomb and exchange correlation
are known to be important for the Coulomb blockade
phenomena.*> This difficulty in the modeling of quantum
transport has also been pointed out in refs 27 and 86. In
practice, this is often dealt with by solving Poisson’s equation
in a relatively larger domain with Dirichlet boundary
conditions.”> We will address this issue under the framework
of reduced-order modeling in separate works.
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