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Abstract

This paper presents the first general solution to the problem
of optimizing both occupancy and Instruction-Level Paral-
lelism (ILP) when compiling for a Graphics Processing Unit
(GPU). Exploiting ILP (minimizing schedule length) requires
using more registers, but using more registers decreases oc-
cupancy (the number of thread groups that can be run in
parallel). The problem of balancing these two conflicting
objectives to achieve the best overall performance is a chal-
lenging open problem in code optimization. In this paper,
we present a two-pass Branch-and-Bound (B&B) algorithm
for solving this problem by treating occupancy as a primary
objective and ILP as a secondary objective. In the first pass,
the algorithm searches for a maximum-occupancy schedule,
while in the second pass it iteratively searches for the short-
est schedule that gives the maximum occupancy found in
the first pass. The proposed scheduling algorithm was imple-
mented in the LLVM compiler and applied to an AMD GPU.
The algorithm’s performance was evaluated using bench-
marks from the PlaidML machine learning framework rel-
ative to LLVM’s scheduling algorithm, AMD’s production
scheduling algorithm and an existing B&B scheduling algo-
rithm that uses a different approach. The results show that
the proposed B&B scheduling algorithm speeds up almost
every benchmark by up to 35% relative to LLVM’s sched-
uler, up to 31% relative to AMD’s scheduler and up to 18%
relative to the existing B&B scheduler. The geometric-mean
improvements are 16.3% relative to LLVM’s scheduler, 5.5%
relative to AMD’s production scheduler and 6.2% relative
to the existing B&B scheduler. If more compile time can be
tolerated, a geometric-mean improvement of 6.3% relative
to AMD’s scheduler can be achieved.
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1 Introduction

The performance of a kernel running on the Graphics Pro-
cessing Unit (GPU) is highly dependent on occupancy, which
is the number of thread groups (wavefronts) that can be run
in parallel. Occupancy depends on the amount of resources
used by a thread group. Since registers are scarce resources,
register usage in each thread is an important factor that de-
termines occupancy. If a single thread uses fewer registers,
the hardware scheduler can run more threads in parallel. The
number of registers used by a thread is determined by the
compiler’s register allocation algorithm. Register allocation
is highly dependent on the instruction order produced by
the pre-allocation instruction scheduler. The instruction or-
der determines register pressure (RP), which is the number
of virtual registers that are simultaneously live and must
be assigned to different physical registers. Therefore, pre-
allocation instruction scheduling must minimize RP to maxi-
mize occupancy.

However, minimizing RP conflicts with another objective
of instruction scheduling, which is minimizing the schedule
length or exploiting Instruction-Level Parallelism (ILP). Ex-
ploiting ILP tends to increase RP, because scheduling more in-
dependent instructions in parallel requires more registers to
hold the results of these parallel instructions. The instruction
scheduling algorithm must then balance the two conflicting
objectives of exploiting ILP and minimizing RP.

On the GPU, minimizing RP to maximize occupancy is
critically important, because occupancy has a high impact
on GPU performance [9]. As detailed in Section 2, reducing
RP by one register can in some cases double the occupancy,
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and that can potentially double the program’s speed if it does
not have any negative side effects.

On the other hand, compiler scheduling for ILP is also
important on the GPU, because although the hardware can
exploit thread-level parallelism (TLP), it does not reorder in-
structions within a single thread. Therefore, compiler sched-
uling for ILP can still give a significant performance gain.

In this paper, we present a combinatorial scheduling al-
gorithm that optimizes both occupancy and ILP (schedule
length) on the GPU by first maximizing occupancy and then
searching for the shortest schedule that gives that maxi-
mum occupancy. The algorithm proposed in this paper uses
a Branch-and-Bound (B&B) enumeration technique similar
to that proposed in our previous work [26, 28]. However,
unlike the previous algorithm, which minimizes a weighted
sum of RP and schedule length in a single pass, the proposed
algorithm is a two-pass algorithm that optimizes RP as a
primary objective in the first pass and then optimizes ILP as
a secondary objective in the second pass.

As explained in the paper, the proposed algorithm has
great advantages relative to the previous algorithm in the
GPU environment, including:

1. It separates the two complex problems of minimizing RP
and minimizing schedule length, thus making it possible to
solve one problem at a time more efficiently.

2.1t guarantees that a certain amount of time is spent opti-
mizing occupancy, which is the primary objective.

3. As detailed in the paper, it makes it possible to use kernel-
level occupancy information collected in the occupancy pass
to relax RP constraints in the ILP pass.

To ensure reasonable compile time when a combinatorial
scheduling algorithm is used, a limit must be set on the
scheduling time. In the proposed two-pass algorithm, each
pass has its own time limit to ensure that enough time is
spent optimizing each objective.

The proposed algorithm was implemented in the LLVM
compiler and its performance was evaluated experimentally
using 13 benchmarks from the PlaidML machine learning
framework. The evaluation was done relative to LLVM’s
generic scheduling algorithm [17], AMD’s well-tuned pro-
duction scheduling algorithm [2] and the previous B&B algo-
rithm [26, 28]. The results show that the proposed algorithm
speeds up every PlaidML benchmark (except for one neg-
ligibly small regression) by up to 35% relative to LLVM’s
scheduler, 31% relative to AMD’s scheduler and 18% rela-
tive to the previous B&B scheduler. The geometric-mean
gains are 16.3% relative to LLVM’s scheduler, 5.5% relative
to AMD’s scheduler and 6.2% relative to the previous B&B
scheduler. These performance gains are achieved with lim-
ited increase in compile time. If more compile time can be
tolerated, a geometric-mean gain of 6.3% relative to AMD’s
scheduler can be achieved.

To the best of our knowledge, the proposed algorithm
is the first combinatorial scheduling algorithm that gives
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substantial performance gains relative to a state-of-the-art
scheduling algorithm with a practically acceptable increase
in compile time. Furthermore, the proposed algorithm is
the first general algorithm for the register-pressure-aware
scheduling problem on the GPU.

The rest of this paper is organized as follows. Section 2
defines the problem. Section 3 summarizes previous work.
Section 4 discusses the background and the motivation. Sec-
tion 5 describes the proposed algorithm. Section 6 presents
the experimental results, and Section 7 summarizes the con-
clusions and outlines future work.

2 Problem Definition

The problem addressed in this paper is pre-allocation instruc-
tion scheduling with the primary objective of maximizing
occupancy and the secondary objective of minimizing sched-
ule length. Thus, the objective is finding the shortest schedule
among all maximum-occupancy schedules.

Occupancy is the number of wavefronts that are run in par-
allel. A wavefront is a group of threads that must be executed
in lockstep. Occupancy depends on multiple factors, includ-
ing the number of registers used in each thread, which is
highly dependent on instruction scheduling. Register usage
is one of the most important factors that determine occu-
pancy, because registers are scarce resources, and thus more
threads can be run in parallel if each thread uses fewer regis-
ters. In this paper, register usage is used to model occupancy
in the instruction scheduling pass.

Register usage in each thread for a given register type is
modeled in instruction scheduling by the peak register pres-
sure (PRP) for that register type. PRP is the maximum register
pressure at any point in the scheduling region. A scheduling
region is assumed to be a straight-line piece of code (a basic
block or part of a basic block), and this assumption is true
for the scheduling regions in LLVM.

It should be noted that the PRP calculated in instruction
scheduling is not necessarily equal to the actual number of
registers used by the register allocator. Since register alloca-
tion is an NP-hard problem [5], the register allocation algo-
rithm may produce a sub-optimal solution in which register
usage exceeds the PRP. However, with accurate modeling
of the register file during pre-allocation scheduling and a
precise register allocation algorithm, we may assume that
the PRP is a good approximation of the actual register usage
in most cases. This assumption has been validated for the
GPU used in the experimental evaluation.

On a GPU, a range of PRP values may produce the same
occupancy value. To account for this, we introduce the ad-
justed peak register pressure (APRP) step function to model
occupancy during instruction scheduling. The APRP of a
given PRP value x is the maximum PRP value that gives the
same occupancy as Xx.
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For example, on the AMD GPU used in the experimental
evaluation, there are vector general-purpose registers (VG-
PRs) and scaler general-purpose registers (SGPRs). VGPR
usage is usually the bottleneck that determines occupancy,
because the demand for VGPRs is much higher in most cases.
A total of 256 VGPRs are available for each thread. Using 24
or fewer VGPRs gives the maximum occupancy of 10 wave-
fronts. Using more than 24 VGPRs gives occupancy values
less than 10, as given by the equation:

Occupancy = min(10, floor(64/ceiling(PRP/4)) (1)

where PRP is the per-thread PRP of VGPR. Table 1 shows the
occupancy values computed by Equation (1). For example,
the table shows that PRP values of 25, 26, 27 and 28 give
the same occupancy of 9 wavefronts. Therefore, all of these
PRP values map to an APRP of 28. As explained in Section
5, this mapping can greatly improve the performance of the
proposed B&B algorithm. If a schedule with a PRP of 28 is
found at some point in the search, any schedule with a PRP
value between 25 and 28 will not give better occupancy and
can thus be pruned early to speed up the search.

Table 1. Register usage and occupancy on an AMD GPU

‘ VGPR PRP ‘ Occupancy ‘

<24 10
<28 9
<32
<36
< 40
<48
< 64
< 84
<128
< 256 1

> 256 1 with spills

N W T

3 Previous Work

Compiler researchers have been studying instruction sched-
uling for many decades. However, most published work on
scheduling, especially earlier work, focused on exploiting
ILP. Published work on RP-aware scheduling or balancing
RP and ILP is limited. Work on RP-aware scheduling for the
GPU is even more limited. In this section, we summarize pre-
vious work on RP-aware scheduling, as well as some related
work on GPU performance.

Instruction scheduling for minimum RP, or the Minimum-
Register Instruction Sequence (MRIS) problem, has been stud-
ied since 1970 by Sethi and Ullman [24] who proposed an
algorithm that solves the problem optimally for an expres-
sion tree. Unfortunately, expressions in current production
compilers are not necessarily trees. Therefore, that algorithm
cannot be used in a production compiler.

A more practical algorithm for avoiding high RP while
scheduling for ILP was proposed by Goodman and Hsu [7]
using a heuristic approach. The idea is to track RP during
scheduling, and if RP approaches the physical limit (number
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of physical registers available), favor an instruction that min-
imizes RP. Other heuristic approaches were later proposed by
Govindarajan et al. [8], Touati [29], and Barany and Krall [3].
Production compilers use similar heuristic approaches [19].
However, our experimentation shows that the scheduling
algorithm in LLVM may produce poor schedules, because it
does not achieve a good balance between RP and ILP.

Recently, some researchers proposed combinatorial ap-
proaches. Kessler [15] proposed a dynamic programming
approach to the MRIS problem and the problem of balancing
RP and ILP. Govindarajan et al. [8] and Barany and Krall [3]
proposed Integer Linear Programming solutions to the MRIS
problem. Malik [20] proposed a Constraint Programming
(CP) solution for the MRIS problem, and Domagala et al.
[6] used CP to integrate RP-aware scheduling and loop un-
rolling. Lozano et al. 18] also used CP to solve the integrated
instruction scheduling and register allocation problem.

In previous work, we proposed a B&B algorithm for solv-
ing the RP-aware scheduling problem [26, 28]. Using that
algorithm, we achieved significant performance gains rel-
ative to LLVM’s scheduling algorithm on Intel and ARM
processors. As detailed in Section 4, that algorithm is not
suitable for the GPU. The B&B algorithm proposed in the
current paper uses a two-pass approach and a GPU-specific
cost function to satisfy the scheduling needs of the GPU.

The only published work that directly addresses the prob-
lem of RP-aware scheduling on the GPU is the work of Rawat
et al., who describe a re-ordering algorithm that minimizes
RP for stencil computation on the GPU [21]. They model
stencil computation as a DAG of trees. For each tree, they
use the Sethi-Ullman algorithm [24] to find the optimal order.
At the DAG level, they use a greedy heuristic to schedule
the DAG of trees. They report speedups in the range of 1.22x
to 2.43x for the NVCC compiler and 1.15x to 2.08x for the
LLVM compiler. Rawat et al. later generalize their work and
develop a source-to-source instruction reordering strategy
for reducing RP [22]. They apply the generalized algorithm
to various kinds of benchmarks on two different multi-core
Intel processors and report significant performance gains.

Volkov studied the interaction between occupancy and
ILP and its effect on GPU performance [30]. He showed that
in many cases, it may be possible to achieve better perfor-
mance by lowering occupancy and exploiting more ILP. It is
not clear what compiler scheduling algorithm was used in
Volkov’s experiments. As shown in the experimental evalua-
tion, the greedy algorithms that most production compilers
currently use are unable to balance occupancy and ILP; they
often maximize occupancy at the cost of degrading ILP. Our
proposed algorithm is capable of optimizing both occupancy
and ILP, as it intelligently searches for ILP-optimal schedules
at higher occupancy levels.

In addition to scheduling, some researchers studied alter-
native approaches to improving the performance of GPU
applications. Hong et al. describe an approach to optimizing
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GPU kernels by identifying bottleneck resources and then
searching for a combination of optimizations to alleviate the
bottleneck [13]. Their GPU performance model is based on
abstract kernel emulation. Hayes and Zhang propose a uni-
fied memory allocation framework to alleviate single-thread
RP [10] and a framework for GPU occupancy tuning [9].

4 Background and Motivation

The proposed algorithm uses a B&B enumeration technique
similar to that proposed in previous work [28], but it is based
on a two-pass approach rather than a single-pass weighted-
sum approach and has additional features that were designed
specifically for the GPU. In this section, we give a brief de-
scription of the previous algorithm and explain why it does
not perform well on the GPU.

4.1 Previous Algorithm

Our previous algorithm for solving the RP-aware scheduling
problem optimizes a weighted sum of schedule length and
RP. The weight of RP relative to schedule length must be
set to a very high value on the GPU, because reducing RP
is critically important. The algorithm iteratively invokes a
B&B enumerator that searches for a schedule with minimum
RP at a given target schedule length.

First, the algorithm uses a heuristic to find an initial sched-
ule. Then, the enumerator is invoked iteratively at different
target lengths starting at a schedule-length lower bound and
ending at the maximum schedule length that can possibly im-
prove the weighted sum. The schedule-length lower bound
is computed using the algorithm of Langevin and Cerny [16].
The algorithm terminates when it determines that finding a
lower RP schedule at the next target length cannot improve
the current best weighted sum.

We described multiple cost functions for modeling RP dur-
ing scheduling, including the Sum of Live Interval Lengths
(SLIL) [26] and the Peak Excess Register Pressure (PERP)
[28]. Excess RP is the difference between RP and the phys-
ical limit, and the PERP is the maximum excess RP at any
point in the schedule.

In each iteration, the B&B enumerator searches exhaus-
tively for a schedule that minimizes the RP cost function at
a given target length. To efficiently conduct an exhaustive
search, certain pruning techniques are used.

4.2 GPU-Specific Scheduling Needs

Although our previous algorithm produced good results on
the CPU, it did not work well on the GPU, because of the
following differences between the GPU and the CPU:

1. In compiling for the CPU, the purpose of minimizing RP is
to avoid spilling. As long as RP does not exceed the number
of physical registers, no spills will be generated, and per-
formance won’t be affected. Our previous results show that
spills occur in only a subset of scientific applications [26].
In compiling for the GPU, spilling is extremely costly [4]
and rare, and the main purpose of reducing RP is increasing
occupancy, which highly impacts the performance of a wider
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range of GPU applications. Reducing RP by one register may
increase occupancy from 1 to 2, thus potentially doubling
the speed of a GPU application.

2. Although the GPU hardware has a wavefront-level sched-
uler, it does not have an instruction-level scheduler within a
thread. The GPU scheduler can hide latencies by switching
between ready-to-execute wavefronts [1], but it does not do
any reordering within a thread. Therefore, exploiting ILP
within a thread is the responsibility of the compiler, and com-
piler scheduling for ILP can give a significant performance
gain. Our experimental results show that schedulers that
deemphasize ILP, like the LLVM scheduler, generate poor
code for the GPU. Therefore, a good scheduling algorithm
for the GPU must spend adequate time optimizing each of
the two objectives (RP and ILP).

3. As explained in Section 2, multiple PRP values may give
the same occupancy. Therefore, an efficient scheduling al-
gorithm for the GPU should not waste time searching for a
schedule with a lower PRP unless it increases occupancy.

4. A GPU kernel generally consists of multiple scheduling
regions. The occupancy of a kernel is a function of the high-
est register usage in any region in the kernel. For example,
if a kernel running on an AMD GPU consists of ten schedul-
ing regions, and one region uses 32 VGPRs, while the other
nine regions use 24 VGPRs each, the kernel occupancy will
be 8 (see Table 1), because occupancy is determined by the
bottleneck region that uses 32 registers. Therefore, limiting
register usage in the nine non-bottleneck regions to 24 when
optimizing ILP will be unnecessarily restrictive. Allowing all
ten regions to use up to 32 registers will give a much higher
degree of freedom in optimizing ILP in the non-bottleneck
regions. This, however, requires making kernel-level register
usage information available to all scheduling regions in the
kernel, which cannot be done in a single-pass scheduler.

5. Another factor that may limit occupancy in a kernel is lo-
cal data share (LDS) usage. Since LDS usage is known before
scheduling, an effective GPU scheduling algorithm can take
advantage of this to avoid searching for lower RP values that
will not give better occupancy. For example, if it is known
that occupancy is limited to 8 because of LDS, the scheduler
will not need to find schedules that use fewer than 32 VGPRs.
Taking advantage of this will both tighten the RP solution
space and relax the RP constraint when optimizing ILP.

4.3 Disadvantages of the Previous Algorithm

The previous algorithm does not perform well on the GPU,
because it does not satisfy any of the GPU-specific needs
described in the previous subsection. The details are:

1. It first searches for a maximum-occupancy (minimum
RP) at the schedule-length lower bound. Such a schedule is
unlikely to exist, because the shortest possible schedule is
unlikely to use the fewest registers. Usually, a minimum-RP
schedule tends to use more cycles. Therefore, the algorithm
may waste substantial time searching for a schedule that does
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not exist. Thus, it may timeout without finding a maximum-
occupancy schedule. This is unacceptable on the GPU, as
maximizing occupancy is very important.

2. It does not take advantage of the fact that multiple PRP
values map to the same occupancy, and that may cause it to
waste time searching for a lower RP schedule that does not
actually give higher occupancy.

3. It does not take advantage of the fact that the kernel oc-
cupancy is determined by register usage in the bottleneck
region, and thus over-constrains the search in the ILP pass.
4.1t does not take advantage of LDS information to limit the
search and better optimize ILP.

5 Algorithm Description

In this section, we describe the new algorithm that we have
designed to address the GPU-specific scheduling needs de-
scribed in the previous section. The pseudo-code is listed in
Alg. 1. The proposed algorithm is a two-pass algorithm that
first finds a possibly-long maximum-occupancy schedule,
and then searches for the shortest schedule that maintains
that maximum occupancy. In the occupancy pass, instruction
latencies are ignored (set to unity) and the B&B enumera-
tor is invoked to search for a minimum-APRP (maximum-
occupancy) schedule. In the ILP pass, the B&B enumerator is
invoked iteratively to search for the shortest possible sched-
ule that gives the best kernel-level occupancy found in the
occupancy pass. The best kernel-level occupancy is the best
occupancy that could be found in the bottleneck scheduling
region in that kernel.

The B&B enumerator used in this work is based on that
proposed in previous work [26, 28] but is modified to work
efficiently in each of the two passes of the current algorithm.
The details are described in the following subsections.

5.1 The B&B Enumerator

The enumerator takes as input a scheduling region with
a data dependence graph (DDG), a target schedule length
and a target APRP. It exhaustively searches for a feasible
schedule. A feasible schedule is a schedule that satisfies the
latency constraints in the DDG, its length is equal to the
target length and its APRP is less than or equal to the target
APRP. The target APRP is the APRP that corresponds to the
target occupancy. In Table 1, for example, a target occupancy
of 8 corresponds to a target APRP of 32 VGPRs.

The APRP passed to the enumerator for each scheduling
region is the kernel-level target APRP. In the occupancy pass,
the kernel-level target occupancy is normally the GPU’s
maximum occupancy, but a lower target occupancy may be
used because of LDS usage constraints or manual occupancy
target lowering via a command-line option. In the ILP pass,
the target occupancy for each scheduling region is the best
occupancy that was actually achieved in the occupancy pass
for the bottleneck scheduling region in the kernel.

The B&B enumerator searches for a schedule that meets
both the length and the APRP targets by constructing a
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schedule incrementally. At each step, it adds an instruction
or a stall. The search can be represented by a decision tree
in which the root represents an empty schedule, leaf nodes
represent complete schedules and internal nodes represent
partial schedules. After adding one instruction to the sched-
ule, the enumerator steps forward from the current tree node
to one of its child nodes.

The enumerator stores the current best schedule and the
current best cost found so far. Initially, the current best sched-
ule is the initial schedule input to the enumerator. In the
occupancy pass, the initial schedule is produced using some
heuristic, such as LLVM’s generic heuristic. In the ILP pass,
the initial schedule is the best schedule found in the occu-
pancy pass, as explained below. Whenever the enumerator
finds a lower cost schedule, it updates the current best sched-
ule and the current best cost.

The enumeration algorithm applies at each tree node
certain pruning techniques to eliminate infeasible or non-
promising solutions as early as possible. A pruning technique
is either a feasibility test that checks if a feasible schedule
may be found below the current tree node or a cost test that
checks if there is a feasible schedule with a lower cost than
the current best cost. If any feasibility or cost test fails, the
enumerator undoes the last decision and backtracks to the
previous tree node to examine another option.

In our B&B enumerator, we use the pruning techniques
proposed in previous work [26, 28] but modify them to take
advantage of the special properties of each pass as follows.
1. Range Tightening (Lines 1 and 2 in CheckNode()). The
decisions made by the enumerator can be used to tighten
instructions’ scheduling ranges. A scheduling range is the
range of cycles in which an instruction may appear in a
feasible schedule [25]. For example, if an instruction initially
has a range of [4-7], and the enumerator fills cycle 4 with
other instructions, cycle 4 will no longer be feasible for this
instruction, and the scheduling range will be tightened to
[5-7]. Range tightening is not needed in the occupancy pass,
because, with all latencies set to unity, a schedule length that
is equal to the number of instructions is always feasible.

2. Dynamic Lower Bound (Lines 3 and 4 in CheckNode()).
Rim and Jain’s algorithm [23] is used to compute a dynamic
lower bound (DLB) on the schedule length at the current
node. This DLB is then compared with the number of cycles
(used and remaining) to determine if the target length is
still feasible. The DLB is not needed in the occupancy pass,
because the target length is always feasible.

3. Register Pressure Cost (Lines 6, 7 and 8 in CheckNode()).
The enumerator computes the RP cost (APRP) at each tree
node. Since APRP is a monotonically increasing function
during the search (its value at a child node will always be
greater than or equal to its value at its parent), the APRP at
the current node is a valid lower bound on the APRP at any
node in the sub-tree below it. Therefore, if the APRP value
at the current node is not less than the best cost found so far,
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Function Schedule (kernel)
1 targetAPRP = GetTargetAPRP()
2 foreach region in the kernel do
3 OccupancyPass(region)
4 targetAPRP = UpdateTargetAPRP(region.bestSched)
5 foreach region in the kernel do
6 ILPPass(region)
Function OccupancyPass (region)
1 region.bestSched = FindHeuristicSched()
2 if region.bestSched APRP > targetAPRP then
3 SetAllLatenciesToOne(region.DDG)
4 Enumerate(region, region.instCnt, targetAPRP)
Function ILPPass(region)
1 UB = SatisfyLatencies(region.DDG, region.bestSched)
2 LB = ComputeLB(region.DDG)
3 if region.bestSched.length == LB then return
4 for targetLength = LB to UB-1do
5 targetsMet = Enumerate(region, targetLength, targetAPRP)
6 if targetsMet then return
7 return
Function Enumerate (region, targetLength, targetAPRP)
1 targetsMet = FALSE
2 enumBestAPRP = region.bestSched. APRP
3 currentNode = rootNode
4 while ! allNodesExplored && ! targetsMet do
5 node = GetNextFeasibleNode()
6 if CheckNode(node, targetLength, targetAPRP) == TRUE then
7 currentNode=StepForward(node)
8 else
9 if currentNode == rootNode then
allNodesExplored = TRUE
else
currentNode=BackTrack()
if targetsMet then region.bestSched = enumBestSched
Function CheckNode (node, targetLength, targetAPRP)
feasible = TightenSchedRanges(node)
if !feasible then return FALSE
DLB = ComputeDLB(node)
if DLB > targetLength then return FALSE
if CheckHistory(node) == FALSE then return FALSE
APRP = ComputeAPRP(node)
if pass==occupancy then return APRP < enumBestAPRP
else return APRP <= targetAPRP

Algorithm 1: The proposed two-pass B&B algorithm

® N A A R @ N e

the entire sub-tree below the current node may be pruned.
The APRP is computed incrementally by updating the set of
live registers after each decision.

4. History-Based Domination (Line 5 in CheckNode()). In
this technique, information about previously enumerated
tree nodes is stored in a history table and then used to prove,
under certain conditions, that the current node cannot have
below it a better schedule than the best schedule below the
history node. The current node is compared with previously
visited similar nodes. Two nodes are similar if their partial
schedules are permutations of the same set of instructions.

5.2 Occupancy Pass

In this pass, ILP is ignored by setting all latencies in the DDG
to one and assuming a single-issue target machine. With
these settings, the schedule length will be equal to the num-
ber of instructions for any instruction order, thus effectively
ignoring ILP and scheduling for the sole objective of mini-
mizing the APRP (maximizing occupancy). This ensures that
the algorithm spends sufficient time maximizing occupancy.
Note that setting latencies to one and focusing on minimiz-
ing APRP simplifies the problem and makes it possible to
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do a faster search. Longer latencies make the scheduling
problem harder and thus slow down the search.

A certain time limit is set on the search time in this pass.
The best schedule found within this limit is input to the ILP
pass. Note that the schedule found in this pass may not be
optimal if the search does not complete within the time limit.

5.3 ILP Pass

In this pass, actual latency values and machine modeling
information are used, and the B&B enumerator is invoked
iteratively to search for the shortest schedule that maintains
the best kernel-level occupancy found in the occupancy pass.
In each iteration, the B&B enumerator is invoked with a
different target length. The first target length is the schedule-
length lower bound that is computed using the algorithm of
Langevin and Cerny [16]. The last target length is an upper
bound that is computed as follows.

The best-occupancy schedule found in the occupancy pass
will, most likely, be an invalid schedule, because it does not
satisfy latency constraints. At the beginning of the ILP pass,
this schedule is converted into a valid schedule by adding
stalls to satisfy latency and resource constraints. Adding
such stalls produces a valid schedule with the best APRP
found in the occupancy pass (the target APRP). The length
of this schedule is an upper bound on the target length that
needs to be considered.

The algorithm searches for the shortest schedule that
meets the target APRP by iteratively invoking the B&B enu-
merator with target lengths starting at the lower bound and
ending at the upper bound. If a feasible schedule that meets
both the target APRP and the target length is found, that
schedule is optimal and the search terminates.

It should be noted that in the proposed two-pass algorithm,
each pass has its own time limit to ensure that the algorithm
spends enough time optimizing each objective.

5.4 Example

In this subsection, the proposed algorithm is illustrated by
applying it to the seven-instruction DDG in Figure 1. The
Def and Use sets of each instruction are shown on the DDG,
where r1, 12, ..., r7 are virtual registers. For simplicity, we
assume that scheduling is done for a single-issue machine,
and that each PRP value gives a unique occupancy value
(APRP is always equal to PRP).

First, we apply the previous B&B algorithm that optimizes
a weighted sum of schedule length and PRP [26, 28]. To ex-
press the importance of PRP relative to schedule length on
the GPU, the weight of PRP must be set to a sufficiently large
value. Let’s assume that this value is 10 (increasing PRP by 1
is as costly as increasing schedule length by 10). The algo-
rithm starts the search at the schedule-length lower bound.
An effective lower-bound algorithm, such as the algorithm
of Rim and Jain [23], will compute a tight lower bound of 8
cycles for this DDG.
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Thus, the previous algorithm will start the search at target
length 8 and will find the 8-cycle schedule shown on the left
in Figure 1.b. This schedule has a PRP of 4, because at Cycle
4, the four registers defined by instructions A, B, C and D
are simultaneously live. The algorithm will then iteratively
search for a lower PRP schedule at larger target lengths.

First, the algorithm will search for a lower RP schedule at
target length 9 but will not find such a schedule. Then it will
search at length 10 and will successfully find the 10-cycle
schedule with a PRP of 3 shown on the right in Figure 1.b.
For this simple DDG (which happened to be a tree), a PRP of
3 is clearly optimal, but there is no known polynomial-time
algorithm for computing a tight lower bound on the PRP for
a general DDG. Therefore, the algorithm will not terminate
at this point and will continue to search for a schedule with
a lower PRP at larger schedule lengths.

Since the weight of PRP relative to schedule length is 10,
reducing the PRP by 1 will decrease the weighted sum by
10 points, while increasing the schedule length by 9 will
increase the weighted sum by only 9 points. Accordingly,
the algorithm will search for lower PRP schedules at target
lengths between 11 and 19. This search will clearly waste
compile time without finding any better schedule.

Next, we show how the proposed algorithm schedules this
DDG. In the occupancy pass, the proposed algorithm will
set all latencies to unity and search for a minimum-APRP
schedule. It will find the seven-cycle schedule shown on the
left in Figure 1.c. Note that by ignoring ILP, the search for a
minimum PRP schedule can be done much faster. Specifically,
it is already known that any schedule in the occupancy pass
will have exactly seven cycles (the number of instructions).
Therefore, there will be no need to compute a schedule-
length lower bound at each node to check for feasibility.

In the ILP pass, latencies are accounted for again. At the
beginning of the ILP pass, the proposed algorithm will add
stalls to the schedule found in the occupancy pass to satisfy
latency constraints. The resulting schedule is the 13-cycle
schedule shown in the middle of Figure 1.c. This schedule
has the minimum PRP of 3 but its length is not optimal. The
length of this schedule is an upper bound on the target length
that needs to be considered in the ILP pass (compare this
with an upper bound of 19 in the previous algorithm).

In the ILP pass, the proposed algorithm will search for a
shorter schedule with a PRP of 3. In the first iteration, it will
search at the schedule-length lower bound, which is 8. In
this iteration, the B&B algorithm will search for a schedule
that meets both a target length of 8 and a target PRP of 3. It
will backtrack as soon as it determines that with the current
partial schedule, one of these two targets cannot be met.

Having to meet two targets greatly tightens the solution
space and thus speeds up the search. In this iteration, the
algorithm will quickly determine that meeting both targets
is impossible. More specifically, whenever the algorithm
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Def r3

Def r5
Use r5, r6
Def r7
(b) Previous algorithm
At length 8 At length 10

1: A 1:A
2:B 2:B
3:D 3:D
4:C 4: stall
5: stall 5: stall
6:E 6:E
7:F 7:C
8:G 8: stall
PRP =4 9:F

10: G

PRP =3

(c) Proposed algorithm

Occupancy Pass

ILP-pass initial

Defr4

ILP-pass finial

1: A 1: A 1: A
2:B 2:B 2:B
3:E 3: stall 3:D
4:C 4: stall 4: stall
5:D 5: stall 5: stall
6: F 6:E 6:E
7:G 7:C 7:C
PRP =3 8:D 8: stall

9: stall 9:F

10: stall 10: G

11: stall PRP =3

12:F

13: G

PRP =3

Figure 1. Example

constructs a partial schedule that starts with A, B, C and D (in
any order), it will determine that the PRP is already 4 (greater
than the target) and will thus backtrack without exploring
any deeper nodes. Similarly, whenever it constructs a partial
schedule that starts with A and B (in any order) and adds
two stalls to schedule E before C or D, it will determine that,
with 4 cycles used and 5 cycles remaining, the target length
of 8 cannot be met. Therefore, the algorithm will determine
within the top 4 levels in the tree hat meeting both targets is
impossible.

Next, the proposed algorithm will explore a target length
of 9 and will determine fairly quickly that it is impossible to
achieve a PRP of 3 at this length. The search at this length
could be slightly slower than the search at length 8 (because it
is less constrained), but using the Rim-and-Jain lower bound
will allow the B&B algorithm to determine without exploring
deeper nodes that a target length of 9 cannot be met with
any partial schedule that maintains a PRP of 3.
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In the next iteration, the algorithm will search for a sched-
ule with a PRP of 3 at target length 10 and will find the
right-most schedule in Figure 1.c. Unlike the previous algo-
rithm, the proposed algorithm will now terminate with a
provably optimal schedule. Since a PRP of 3 is known to be
optimal, there will be no point in considering longer sched-
ules. This early termination with a provably optimal schedule
is a great advantage of the proposed algorithm relative to the
previous algorithm. This advantage is more pronounced on
architectures having instructions with very long latencies,
such as memory instructions on a GPU.

Another advantage of the proposed algorithm can be seen
by considering a short time limit that causes both algorithms
to timeout (output the best schedules found so far before
completing the search). In this case, the previous algorithm
may output the leftmost schedule in Figure 1.b, which gives
low occupancy, while the proposed algorithm may output
the leftmost schedule in Figure 1.c, which gives higher oc-
cupancy. With maximizing occupancy being the primary
objective, the latter schedule is better.

6 Experimental Results
6.1 Experimental Setup

The proposed B&B algorithm was implemented in the LLVM
compiler for the AMD GPU target. The LLVM revision used
in our evaluation was frozen in April 2019 (LLVM 9.0). The
tests were run on an AMD Radeon RX Vega 64 GPU run-
ning at 1.63 GHz. This GPU has 64 compute units, 40 waves
per compute unit and 64 threads per wave. Compilation for
the GPU was done on an Intel® Xeon® E3-1245 v5 proces-
sor running at 3.5 GHz. The ROCm 2.3 software stack with
OpenCL was used. The benchmarks are 13 machine learning
programs from the PlaidML framework [14].

The GPU used in this evaluation can issue one instruction
every four cycles. An instruction takes at least four cycles
to complete, but some instructions take more cycles. If the
current instruction depends on a previous instruction and the
results are not available, the current instruction must wait
until the results become available. The hardware sequencer
will switch to a different wavefront if it finds a wavefront
with a ready instruction. If it does not, the compute unit
must stall. Therefore, the compiler scheduler can minimize
the stall time by hiding long latencies within a thread.

The performance of the proposed B&B algorithm was eval-
uated relative to each of the following algorithms:

1. The generic scheduling algorithm in LLVM [17], which is
a greedy algorithm based on list scheduling [5].

2. AMD’s production scheduler [2], which is a greedy algo-
rithm that is built on the LLVM scheduler. It extends the
LLVM scheduler to model GPU-specific factors, including
the APRP and using kernel-level occupancy to relax RP con-
straints and achieve better ILP. This scheduler is well tuned

140

Ghassan Shobaki, Austin Kerbow, and Stanislav Mekhanoshin

for the ROCm architecture. Therefore, it is the state-of-the-
art scheduler for the AMD GPU used in this evaluation.
3. The previous B&B scheduling algorithm [26, 28].

We note that the AMD GPU backend includes a load-
store clustering pass that is invoked before the scheduling
algorithm (whether it is the AMD algorithm or the proposed
B&B algorithm). In this pass, constraints are added to the
DDG based on certain heuristics to force loads and stores to
be scheduled in clusters to improve memory performance.
6.2 Benchmark Information

The benchmarks used in this evaluation are machine learning
programs using the PlaidML framework [14]. Table 2 shows
some information about these benchmarks. There are 13
benchmarks, in which there are 3813 GPU kernels containing
16642 scheduling regions, which is a large enough dataset to
give statistical significance. The average scheduling region
size is 48.8 instructions, which is significantly larger than
the sizes reported on the CPU [26]. The largest region has
921 instructions, which is challenging to schedule optimally.

Table 2. Benchmark Information

‘ Stat ‘ Value ‘
Total number of benchmarks 13
Total number of kernels 3813
Total number of scheduling regions | 16,642
Total number of instructions 811,864
Avg. region size 48.8

Max. region size 921

6.3 Combinatorial Scheduling Performance

Table 3 shows statistical information about the performance
of the proposed B&B algorithm in each pass. The initial
heuristic schedule in the occupancy pass was generated using
the LUC heuristic described in previous work [27]. Each pass
was given a time limit of 1ms/instr. So, a 100-instruction
region was given 100ms.

First, we comment on the results for the occupancy pass.
The total number of scheduling regions in the benchmark set
is 16642 regions. Only 541 regions (3.3%) were passed to the
B&B scheduler. The rest of the scheduling regions (96.7%)
were not passed to the B&B scheduler, because their heuris-
tic schedules were already giving the maximum occupancy.
Although the B&B scheduler was applied to only 3.3% of the
regions, these regions are larger regions with higher RP, and
are thus expected to have a higher impact on performance.
Row 7 shows that the average size of a region passed to the
B&B scheduler is 209 instructions, which is about four times
larger than the average region size across the entire set.

Rows 3 and 4 together show that, with the given time limit,
the B&B scheduler scheduled 13.0% of the regions to optimal-
ity, and that 11.7% were improved relative to the heuristic.
For 1.3% of the regions, the B&B scheduler completed within
the time limit without finding a better schedule.
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Table 3. B&B Performance

| | STAT

Occupancy Pass ‘ ILP Pass ‘

209
287
921

70
877
921

Avg. region size passed to B&B
Largest opt. region
Largest imp. region

1 | Total regions processed 16642 16642

2 | Regions passed to B&B 541 (3.3%) 10537 (63.3%)
3 | Regions opt. and imp. 63 (11.7%) 9513 (90.3%)
4 | Regions opt. and not imp. 7 (1.3%) 0 (0.0%)

5 | Regions timed out and imp. 226 (41.8%) 152 (1.4%)

6 | Regions timed out and not imp. | 245 (45.3%) 872 (8.3%)

7

8

9

Row 5 shows that 41.8% of the regions were improved
relative to the heuristic although the exhaustive search did
not complete within the time limit. Row 6 shows that 45.3%
of the regions timed out with no improved schedule.

More advanced algorithmic techniques are needed to op-
timally schedule the harder scheduling regions. In future
work, we plan on applying parallelization and graph trans-
formations [11, 12]. Interestingly, the execution-time results
in the next subsection show that, in spite of the timeouts,
the proposed algorithm gives significant performance gains
relative to the other three algorithms.

Next, we comment on the results of the ILP pass. Row 2
shows that 63% of the scheduling regions were passed to the
B&B scheduler. This relatively high percentage (compared to
3.3% for the occupancy pass) is attributed to the fact that the
schedule input to the ILP pass is the minimum-RP schedule
found in the occupancy pass. Due to the inherent conflict
between RP and ILP, the minimum-RP schedules will be
relatively long (see the middle schedule in Figure 1.c).

Row 3 shows that 90% of the schedules passed to the B&B
scheduler were scheduled to optimality and improved rel-
ative to the minimum-RP schedules. Row 4 shows that all
optimally scheduled regions were improved. Row 5 shows
that 1.4% of the instances timed out but with improved sched-
ules relative to the minimum-RP schedules. Row 6 shows
that 872 instances timed out without improvement.

Table 4 shows the overall effect of the proposed algorithm
on both occupancy and schedule length relative to the other
algorithms, namely LLVM, AMD and the previous B&B (Prev
B&B in the table). The weight of RP relative to schedule
length was set to 100000 in the previous B&B scheduler to
reflect the importance of RP on the GPU. For a fair compari-
son, a time limit of 1ms/instr was used in each pass of the
proposed B&B scheduler, and a time limit of 2ms/instr was
used for the previous B&B scheduler. So, each algorithm was
given a total limit of 2ms/instr. The table shows the percent-
age improvement achieved by the proposed algorithm in
occupancy and schedule length relative to each of the other
three algorithms. The aggregate occupancy and schedule
length for each scheduler were computed by taking the total
sum of occupancies across all kernels and the total sum of
schedule lengths across all scheduling regions.

The numbers in Table 4 show that the proposed algorithm
increases occupancy by 4.13% relative to the LLVM scheduler,
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Table 4. Improvements in occupancy and sched. length

‘ ‘ Occupancy ‘ Sched Length ‘

%Imp relative to LLVM 4.13% 35.61%
%Imp relative to AMD 4.14% 19.20%
%Imp relative to Prev B&B | 4.09% 7.35%

by 4.14% relative to the AMD scheduler and by 4.09% relative
to the previous B&B scheduler. The proposed B&B sched-
uler produces these improvements in spite of the significant
number of timeouts in the occupancy pass. This suggests
that potentially higher occupancy values may be achieved
in the future with further algorithmic enhancements.

Table 4 shows that, on average, the previous B&B sched-
uler produces lower occupancies than the proposed B&B
scheduler. This is attributed to the fact that the previous
B&B scheduler starts its search at the schedule-length lower
bound and a maximum-occupancy schedule is unlikely to
exist at that length (compare the leftmost schedule in Figure
1.b with the leftmost schedule in Figure 1.c).

In terms of schedule length, the proposed B&B scheduler
produces significant improvements relative to other sched-
ulers. It improves schedule length by 35.61% relative to LLVM,
by 19.20% relative to AMD and by 7.35% relative to previous
B&B. The large improvements in schedule length relative to
LLVM and AMD are expected, because both schedulers are
heuristic schedulers that are heavily biased towards minimiz-
ing RP (maximizing occupancy), and minimizing RP tends
to increase schedule length. This result shows that it is ex-
tremely hard to balance two conflicting objectives using a
heuristic approach. The proposed combinatorial approach
produces better results for both occupancy and ILP, because
it first searches for a maximum-occupancy schedule in the
occupancy pass and then it searches for a minimum-length
schedule among all maximum-occupancy schedules in the
ILP pass. These results confirm that an intelligent search
technique can give significantly better results than a heuris-
tic technique for solving the RP-aware scheduling problem.

The results in Table 4 show that the proposed B&B algo-
rithm gives a significant improvement in schedule length
relative to the previous B&B algorithm. This is attributed to
the fact that the proposed algorithm uses the kernel-level
occupancy rather than the region-level occupancy as a target
occupancy in the ILP pass as explained in Sections 4 and 5.

6.4 Execution Times

In this subsection, we present the actual execution-time im-
provements achieved using the proposed algorithm relative
to the other algorithms. Execution times for the machine
learning benchmarks used are measured in examples pro-
cessed per second. The time limit was set to 1ms/instr per
pass for the proposed B&B algorithm and 2ms/instr for the
previous B&B algorithm.

Table 5 shows the percentage increase in speed (examples
per second) produced by the proposed algorithm relative to
each of the other algorithms. Each benchmark was run three
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Table 5. Execution-time improvements

Benchmark %Imp %Imp %Imp
relative relative relative
to LLVM to AMD to PREV B&B
Densenet121 16.95% 3.29% 8.90%
Densenet169 19.81% 2.53% 6.91%
Densenet201 25.82% 2.11% 10.54%
Imdb_lstm 2.75% 1.65% 2.47%
Inception_resnet_v2 | 18.23% 10.85% 7.50%
Inception_v3 34.95% 31.49% 17.65%
Mobilenet 12.20% 9.76% 0.61%
Nasnet_large 9.39% 1.16% 3.45%
Nasnet_mobile 13.50% 1.10% 3.58%
Resnet50 17.70% 1.91% 5.02%
Vgg16 15.29% 4.41% 2.75%
Vgg19 16.65% 4.79% 6.47%
Xception 12.02% -0.34% 5.51%
| Geo-mean | 16.32% | 5.47% | 6.18% |

times using each algorithm, and the median speed was used
in computing the percentage differences in the table. The
proposed algorithm speeds up every benchmark relative to
each of the other algorithms (except for a negligibly small re-
gression on Xception relative to AMD). The geometric-mean
speedup is 16.32% relative to LLVM’s scheduler, 5.47% rela-
tive to AMD’s scheduler and 6.18% relative to the previous
B&B scheduler. The maximum speedup is seen on Incep-
tion_v3, where the proposed algorithm gives a speedup of
34.95% relative to LLVM, 31.49% relative to AMD and 17.65%
relative to the previous B&B algorithm.

The 16.32% geometric-mean speedup of the proposed al-
gorithm relative to LLVM’s algorithm shows the importance
of compiler instruction scheduling on the GPU. Unlike the
AMD scheduler, LLVM’s generic scheduler is not tuned for
the AMD GPU. The proposed scheduler gives a substantial
geometric-mean improvement of 5.47% relative to AMD’s
well-tuned production scheduler, which shows that combi-
natorial scheduling can make a significant difference.

The fact that the previous B&B algorithm under-performs
AMD’s algorithm shows that a combinatorial algorithm may
under-perform a well-tuned heuristic algorithm if it does not
efficiently use the time limit. As explained in Sections 4 and
5, a major difference between the proposed B&B algorithm
and the previous B&B algorithm is the search order. The
previous algorithm is not guaranteed to spend enough time
optimizing occupancy.

6.5 Compile Times
Table 6 shows the total compile time for all benchmarks
when each scheduling algorithm is used. The time limit was
1ms/instr per pass for the proposed B&B (New B&B) and
2ms/instr for the previous B&B (Prev B&B) algorithm.
Clearly, using combinatorial scheduling substantially in-
creases compile time, which is an expected result. Using com-
binatorial optimization techniques like B&B or Constraint
Programming (CP) in compilers is still in the research phase,
but our work is closer to practicality than any published
combinatorial scheduling technique.

142

Ghassan Shobaki, Austin Kerbow, and Stanislav Mekhanoshin

Table 6. Compile Times

‘ Scheduler ‘ Total Compile Time (s) ‘

LLVM
AMD
Prev B&B
New B&B

256
259
1287
566

Table 7. Compile time details

‘ ‘ Time (s) ‘
Total compile time 566
Scheduling time 283
Scheduling time in the occupancy pass | 49 (17%)
Scheduling time in the ILP pass 234 (83%)

The results in Table 6 show that on the GPU, the com-
pile time using the proposed B&B is less than half the com-
pile time using the previous B&B algorithm, and Table 5
shows that the execution time is 6.18% faster with the pro-
posed algorithm. Therefore, the proposed algorithm is a
strong candidate for deployment in a production compiler.
For performance-critical GPU applications, the increase in
compile time may be tolerated if it produces a significant
performance gain. For the reasons explained in the previous
sections, the proposed algorithm has the potential to produce
even more significant performance gains in the future.

Table 7 shows more details about the compile time of
the proposed algorithm. The time spent in the scheduling
algorithm is 283s (50% of the total compile time). Most of
the scheduling time (83%) is spent in the ILP pass and only
17% of it is spent in the occupancy pass. As shown in Table
3, the number of scheduling regions processed by the B&B
algorithm in the ILP pass is significantly greater than the
number of regions processed in the occupancy pass.

It is important to note that the compile times reported in
the current paper may be significantly reduced in the future
for the following reasons:

1. Our current implementation is a research prototype that
involves substantial overhead.

2. In our current work, we apply our B&B algorithm to all
scheduling regions. Applying the algorithm to only the hot
regions will significantly reduce the compile time.

3. In future work, we plan on exploring multiple ideas for
speeding up the algorithm, including graph transformations
[11, 12] and parallelization.

6.6 Time Limit

In this subsection, we explore the effect of the time limit
on the compile time and the resulting performance of the
proposed algorithm. Three different time limits between
0.25ms/instr and 5ms/instr per pass are explored. Recall that
the base time limit used in previous subsections is 1ms/instr.

Table 8 shows that increasing the time limit significantly
increases compile time from 49% relative to the base LLVM
compiler with 0.25 ms/instr to 491% relative to the base com-
piler with 5ms/instr. This increase in compile time reduces
the number of timeouts in both passes, but even with the
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highest time limit, many instances time out. Clearly, the
algorithm’s convergence is slow, and further increases of
the time limit are unlikely to solve the remaining instances.
More advanced algorithmic techniques are needed.

Table 8. Effect of time limit in ms/instr on compile time and
timeouts

| | 0.25 | 1.0 | 5.0 |

381 (49%)
483
1049

566 (121%)
471
1024

1513 (491%)
453
998

Compile Time (s)
Occupancy Timeouts
ILP Timeouts

Table 9 shows the execution-time speedup produced by
the proposed scheduler relative to AMD’s scheduler for each
of the time limits in Table 8. If the time limit is reduced from
the base limit of 1ms/instr to 0.25ms/instr, performance drops
by only about 1% (from 5.47% to 4.46%) in geometric-mean,
but the savings in compile time are substantial. As shown
in Table 8, compile time drops from 566 s to 381 s when the
time limit is reduced from 1ms/instr to 0.25ms/instr. With a
time limit of 0.25ms/instr, the geometric-mean performance
gain relative to AMD’s well-tuned scheduler is 4.46%, which
is quite significant. This shows that the proposed algorithm
can give substantial performance gains relative to a state-of-
the-art heuristic with a reasonable increase in compile time.

It is noted that in Table 9, increasing the time limit does not
always produce better run-time performance. For example,
increasing the limit from 1ms/instr to 5ms/instr results in a
slightly worse run-time performance for Inception_v3. This
is attributed to the fact that the proposed algorithm models
only two factors that affect performance, namely APRP and
schedule length. It does not model other factors, such as
memory-system performance and caching,.

It should be emphasized that the proposed algorithm is a
deterministic search algorithm not a stochastic algorithm. It
keeps track of the best solution found so far and updates that
best solution only if a better solution is found. So, if given
more time, the proposed algorithm will either find a better
solution or keep the same solution; it will never find a worse
solution. However, the improvements found by the algorithm

Table 9. Effect of time limit in ms/instr on execution time

| Benchmark [025 |10 |50 |
Densenet121 3.29% 3.29% 3.46%
Densenet169 2.53% 2.53% 2.66%
Densenet201 2.00% 211% 2.43%
Imdb_Istm 1.65% 1.65% 1.65%
Inception_resnet v2 | 7.97% 10.85% | 10.99%
Inception_v3 28.52% | 31.49% | 30.58%
Mobilenet 2.86% 9.76% 19.21%
Nasnet_large 1.52% 1.16% 2.05%
Nasnet_mobile 0.00% 1.10% 1.10%
Resnet50 1.91% 1.91% 1.91%
Vggl6 4.26% | 4.41% | 4.26%
Vggl19 417% | 479% | 4.17%
Xception 0.11% -0.34% | 1.95%
Geo-mean 4.46% 5.47% 6.34%
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are relative to the cost function that it optimizes, and this
cost function models only APRP and schedule length (ILP).
So, even though the proposed algorithm will never find a
schedule with worse APRP or worse schedule length, it may
find a worse schedule relative to some un-modeled factor,
thus degrading run-time performance.

For a specific example, we have examined the effect of
increasing the time limit on Inception_v3. We found that
increasing the time limit from 0.25ms/instr to 1ms/instr im-
proves the total APRP by 6% and the total schedule length
by 0.5% across all scheduling regions. Increasing the time
limit to 5ms/instr, results in improvements of 12% and 1%
in APRP and schedule length, respectively relative to a time
limit of 0.25ms/instr.

These consistent improvements in APRP and schedule
length, however, do not result in consistent improvements in
execution speed, because APRP and schedule length are not
the only factors that determine the execution speed. Further
analysis of this benchmark showed that it has many memory-
bound kernels. For one particular big kernel, the proposed
algorithm increases occupancy from 4 to 7. Increasing occu-
pancy in a memory-bound kernel may degrade performance,
because it increases contention for a bottleneck resource. In
future work, we plan on extending the algorithm to model
memory performance.

7 Conclusions and Future Work

This paper presents a two-pass B&B compiler scheduling
algorithm that optimizes both occupancy and ILP on the
GPU. Unlike the previous B&B algorithm, which simultane-
ously optimizes a weighted sum of RP and schedule length,
the proposed algorithm optimizes each objective in a sep-
arate pass. This allows the algorithm to first focus on the
primary objective of maximizing occupancy and then find
the shortest schedule that achieves that maximum occupancy.
Another important advantage of the proposed two-pass B&B
algorithm is that searching for the shortest schedule in the
ILP pass is constrained by the kernel-level rather than the
region-level best occupancy, which allows the algorithm to
find much shorter schedules for many regions.

In future work, we plan on exploring the parallelization
of our algorithm and using graph transformations [11, 12] to
solve the harder instances that timeout and reduce compile
time. We also plan on modeling memory performance.
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