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HEEGAARD FLOER INVARIANTS IN CODIMENSION ONE

ADAM SIMON LEVINE AND DANIEL RUBERMAN

ABSTRACT. Using Heegaard Floer homology, we construct a numerical invari-
ant for any smooth, oriented 4-manifold X with the homology of St x S3.
Specifically, we show that for any smoothly embedded 3-manifold Y represent-
ing a generator of H3(X), a suitable version of the Heegaard Floer d invariant
of Y, defined using twisted coefficients, is a diffeomorphism invariant of X. We
show how this invariant can be used to obstruct embeddings of certain types
of 3-manifolds, including those obtained as a connected sum of a rational ho-
mology 3-sphere and any number of copies of S' x S2. We also give similar
obstructions to embeddings in certain open 4-manifolds, including exotic R%s.

1. INTRODUCTION

A powerful way to study a nonsimply connected manifold X is to look at in-
variants of a codimension one submanifold ¥ dual to an element of H'(X). This
idea goes back to work of Pontrjagin, Rohlin, and Novikov in the 1950s and 1960s
exploring “codimension 1 (and higher) signatures” (see [24,31]). In dimension
4, if X has the homology of S x S3, then the Rohlin invariant of a submani-
fold Y representing a generator of H3(X), with spin structure induced from X,
is a diffeomorphism invariant of X [33]. (We call Y a cross-section of X.) This
invariant has interpretations in terms of Seiberg—Witten theory [21] and conjec-
turally in terms of Yang—Mills theory [34-37]. More recently, Frgyshov [5] observed
that if X has a cross-section Y that is a rational homology 3-sphere, the invari-
ant h(Y,sx) € Q associated to the unique Spin® structure sx on Y induced from
X, which is defined using monopole Floer homology, is also a smooth invariant
of X. Frgyshov’s argument uses only the rational homology cobordism invariance
property of h(Y,sx), so it applies verbatim to the version of h(Y,sx) defined by
Kronheimer and Mrowka [13, §39.1] (presumed, but not known, to be equal to
Frgyshov’s) and the similarly defined Heegaard Floer correction term d(Y,sx) [25].
In this paper, we extend the range of the Heegaard Floer invariant to an arbitrary
smooth 4-manifold X with the homology of S x S2, without the requirement that
X admit a rational homology sphere cross-section. Note that this is a nontrivial
restriction; for instance, the Alexander polynomial obstructs the existence of such
cross-sections.

The definition of the correction term d(Y,s) for a rational homology sphere YV
relies on the fact that HF*°(Y,s) is isomorphic to F[U,U~!]. (Here F denotes the
field of two elements.) In our earlier work [15,16], we showed how to extend the
definition of the correction terms for manifolds with b1 (Y") > 0 for which HF*° (Y, s)
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is “standard”. (Here, s is assumed to be a torsion spin® structure.) Work of Lidman
[17] shows that this condition holds whenever the triple cup product on H*(Y;Z)
vanishes identically. However, an arbitrary 4-manifold X with the homology of
S1 x 83 need not have any cross-section with standard HF>.

In the present paper, we use a further generalization of the correction terms.
For any subspace A of H'(Y) on which the triple cup product vanishes, we show
in Theorem 3.1 that the twisted Heegaard Floer homology group HF> (Y, s; M4)
with coefficients in M4 = F[H'(Y)/A] is standard in a suitable sense, allowing us
to define a twisted correction term d(Y,s; M4). (The case where A = 0 has been
studied by Behrens and Golla [1].) When Y is a cross-section of X, we identify
a particular such subspace by studying the cohomology of the infinite cyclic cover
X. Our main result, which is stated more precisely below as Theorem 4.10, is as
follows.

Theorem 1.1. Let X be a homology S* x S2, and let Y be any cross-section of
X representing a fized generator y of H3(X). Then the correction term of (Y,sx),
suitably normalized, is independent of the choice of Y. Thus, we obtain an invariant

d(X,y), which depends only on the diffeomorphism type of X and the choice of
generator y € Hz(X).

In principle, the invariant J(X ,y) could be used to detect exotic smooth struc-
tures on S* x S3, but we do not know of any candidates.

A more tractable application comes from the behavior of d~(X ,y) under reversing
either the orientation of X or the choice of generator of H3(X). In general, the
four numbers d~(:|:X ,£y) are a priori unrelated to each other, so they can obstruct
the existence of symmetries that reverse the orientations of X or Y. Moreover, in
Section 3.3 we describe a class of 3-manifolds which are called d-symmetric; this
includes any manifold of the form @Q # n(S! x S?), where @ is a rational homology
sphere and n > 0. The following proposition describes some further symmetries of
the invariants d(+X, +y).

Proposition 1.2. Let X be a homology S* x S3.

o If X has a cross-section that is a rational homology sphere, then
o If X has a cross-section that is d-symmetric, then

(1.2) d(X,y) = —d(-X,~y) and d(-X,y) = —d(X,~y).
o If X is the mapping torus of a diffeomorphism ¢: Y — Y, then

~ ~ b1 (Y
A(X.y) = d(-X,p) = d(¥,ax) + 20
(1.3)
s s _ bi(Y)
d(X, _y) - d(_Xa _y) - C_i(_Ya 5X) + T,
where d denotes the twisted correction term defined by Behrens and Golla

).

In particular, the failure of (1.1) or (1.2) for a given 4-manifold X enables us
to obstruct the existence of particular types of cross-sections in X. In Section 5,
we apply this obstruction to the study of 3-dimensional Seifert surfaces for knotted
2-spheres in S%.
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The proof of Theorem 1.1 relies on examining the lift of a cross-section of X to
the infinite cyclic cover X. In fact, our techniques are more general; we consider
a d invariant associated to any open 4-manifold X satisfying certain homological
properties similar to those of an infinite cyclic cover and any embedded 3-manifold
Y representing a generator of Hz(X), which we also call a cross-section. While this
quantity depends on the choice of Y and not just its homology class, we prove an
inequality relating the invariants of disjoint cross-sections, which implies Theorem
1.1 in the case where X is actually the Z cover of a homology S* x S3. In the general
case, the inequality still gives interesting restrictions on the types of cross-sections
that can occur. As one application (Example 4.12), we construct an exotic R* that
has no d-symmetric 3-manifold sufficiently far out in its end. In his forthcoming
Ph.D. thesis, Mckee Krumpak has shown that results analogous to those of this
paper hold in the setting of monopole homology [13].

2. THE SURGERY FORMULA

In this section, we state a twisted version of the mapping cone formula for the
Heegaard Floer homology of surgeries on knots. This formula is known to experts
but does not appear in the literature; the proof is a straightforward generalization of
Ozsvéth and Szabd’s original integer surgery formula [29]. We will use this formula
in Section 3 in order to prove that HF*® with appropriately twisted coefficients has
a standard form.

2.1. Heegaard Floer preliminaries. Throughout the paper, all Heegaard Floer
homology groups are taken over the ground field F = Z/27Z. Singular and simplicial
homology and cohomology groups are taken with coefficients in Z unless otherwise
specified.

We first provide a brief overview of Heegaard Floer homology with twisted co-
efficients. See Ozsvdth—Szabé [27] for the original definition and Jabuka—Mark [11]
for an excellent exposition. Here we emphasize two aspects of the theory that will
be needed later: passing from HF ' to HF* via the U-completed version HF* and
the behavior of the coefficient modules under cobordism maps.

Let Y be a closed, connected, oriented 3-manifold, and let s be a spin® struc-
ture on Y. Let Hy = F[H!(Y)]; this can be identified with the ring of Laurent
polynomials in b (Y') variables.! Associated to (Y,s), there are chain complexes
CF™(Y,s;Hy), CF*(Y,s; Hy), and CF1 (Y, s; Hy) over Hy[U], well-defined up to
chain homotopy equivalence, which fit into a short exact sequence

(2.1) 0 — CF (Y,s;Hy) = CF>®(Y,s; Hy) = CFT(Y,s; Hy) — 0.

We use CF°(Y,s; Hy) to refer to any of the three complexes (or, by abuse of nota-
tion, the exact sequence relating them). Note that CF° (Y, s; Hy ) always has a rela-
tive Z—grading, which multiplication by U drops by 2. If s is torsion, multiplication
by any element of Hy preserves this grading, and the grading lifts to an absolute Q-
grading. (When s is nontorsion, one must put a nontrivial grading on Hy to define
the relative Z—grading, but we shall focus on torsion spin® structures throughout the
paper.) If M is any Hy-module, then let CF°(Y,s; M) = CF°(Y,s; Hy ) @, M;

IThe ring Hy is called Ry in [11]; we use the notation Hy to avoid confusion with the manifold
Ry in Section 4.
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these groups fit into a short exact sequence just like (2.1).2 The homology groups
are denoted by HF°(Y,s; M) and fit into a long exact sequence

(2.2) <o > HF (Y, 5; M) 25 HF>®(Y,5; M) 25 HF T (Y, 5; M) — ... .
(We will frequently omit the subscripts from ¢j; and s unless they are needed for
clarity.)

Any element ¢ € H1(Y) induces a degree —1, Hy [U]-linear chain map
Ag: CFO(Y,ﬁ;Hy) — CFO(Y,S;Hy),
which is well-defined up to chain homotopy. Let Aéw denote the induced map on

CF°(Y,s; M). These induce an action of A*(Hy(Y)/ Tors)@Hy [U] on HF®(Y, s; M).
Moreover, following [11, Remark 5.2], define

(2.3) Zy ={a€ HY(Y) |am =m ¥m € M},
(2.4) Zy={Ce Hi(Y) ]| (a,() =0 Va € Zy}.

For any ( € Z If/[, Aéw is chain-homotopic to 0. Thus, the H; action descends to an
action of A*(H1(Y)/Z3;) @ Hy [U].

If Ais a subspace of H'(Y) such that H'(Y)/A is torsion-free (i.e., a direct
summand of H'(Y)), let My = F[H*(Y)/A], viewed as an Hy-module via the
quotient map. Concretely, if a1,...,q, are a basis for H'(Y) such that A =
Span(ay, ..., qr) and t; € Hy corresponds to «;, then

My=Hy/(t1 —1,...,tp —1).
Moreover, Zy;, = A and Z3; = A+, and H,(Y)/A* is naturally isomorphic to the
dual of A.

Ignoring the Hy-module structure and the H; action, we note the following
basic fact.

Lemma 2.1. Let Y be a closed, oriented 3-manifold, s a torsion spin® structure
onY, and A C H(Y) a direct summand of rank k. Then HFE> (Y, s; M) is a free,
finitely generated F[U, U~']-module with rank at most 2~.

Proof. Ozsvéth and Szabé [27, Theorem 10.12] proved the k = 0 case:
HF> (Y, 55 Hy) = F[U, U],

where every element of H'(Y) acts by the identity. Thus, assume k > 0. Up to
an overall shift, assume that HF* (Y, s; Hy) is supported in even integer gradings.
Consider the universal coefficient spectral sequence for changing coefficients from
Hy to My. The E? page satisfies

E} = Tor™¥ (HF>(Y,s; Hy), Ma)

. IF(D q even,
0 q odd.

For each s € Z, by summing over all p,q with p + ¢ = s, we thus deduce that
dimp HF2°(Y, 5; M) < 28=1. Choose bases (over F) for the summands in grading

2We will not be focusing on nontorsion spin® structures in this paper, but the fact that
CF°(Y,s; Hy) is relatively Z—graded (and not just Z/2dZ-graded for some d > 0) is one of the
advantages of twisted coefficients in other settings. Moreover, depending on the choice of M, the
Z-grading sometimes descends to CF°(Y,s; M) even when s is nontorsion. See [11, §3] for a nice
discussion.
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0 and 1; since HF* (Y, s; M 4) is relatively Z-graded, these combine to give a basis
for HF*°(Y, s; M 4) over F[U, U~1]. O

In the proof of the surgery formula (Theorem 2.3) below, we will need to pass
from a result about HF ' to a result about HF*°. This is best done by first consid-
ering the U-completed version, introduced in [18]. Define

CF>(Y,s; M) = CF™(Y, 5, M) @p[v,u—1] F[[U, Ul

Denote the homology of this complex by HF™ (Y, s; M). Because F[[U,U~!] is flat
over F[U,U~1], we have

(2.5) HF> (Y, 5; M) = HF® (Y, 5; M) @01 F[[U, U],
Because multiplication by U drops grading by 2, it can also be understood as a

grading-preserving map CFT(Y,s; M) — CFT(Y,s; M)[2].> Tt is easy to see that
CF*(Y,s; M) is isomorphic to the inverse limit of the directed system

L eFt (Y s M) [-2] S CFH(Y, s M) L CFH(Y s M)[2] S
For conciseness, we write
CF>(Y,s; M) = @(CFJF(Y, s M), U).
There is therefore a short exact sequence
0— @nl(HFWY,s;M),U)*,l - HFX(Y,s; M) — @(HF*(Y,s;M),U)* —0

(where the # denotes the homological grading). The system (HF'(Y,s; M), U)
satisfies the Mittag-Leffler condition, since for all n sufficiently large, the image
of U™ is equal to the image of m: HF™(Y,s; M) — HFT(Y,s; M). (See, e.g.,
[38, Proposition 3.5.7].) Thus, the derived functor @1 (HF (Y, s; M), U) vanishes,
and we deduce that

(2.6) HF>(Y,s; M) = lim(HF " (Y, 5, M), U).

For a nontorsion spin® structure s, HF* (Y, s; M) does not generally determine
HE* (Y, s5; M); see [18, Section 2]. However, when s is torsion and M = M4 for some
summand A C H(Y), the two theories are essentially interchangeable. Specifically,
by Lemma 2.1 and (2.5), HF>(Y,s; M,) is a finitely generated, free F[[U, U]~
module whose rank (over F[[U, U ~!]) is the same as the rank of HF*> (Y, 5; M) (over
F[U,U1]). Tt is thus clear how to recover HF*(Y,s; M) from HF*(Y,s; M4).
Moreover, the action of Hy is grading-preserving, and the action of H;(Y) drops
grading by 1, so these actions on HF>(Y,s; M) and HF>(Y,s; M) are readily
identified.

Next, we discuss the cobordism maps on twisted Heegaard Floer homology. If
W:Y — Y’ is a cobordism between closed, connected, oriented 3-manifolds, con-
sider the exact sequence

(2.7) HYOW) 2% H2(W,0W) 2% H2(W),

and let K (W) = im(dw) = ker(jw ). The map dy makes F[K (W)] into an Hy—Hy~
bimodule. Given an Hy—module M, let M (W) = M ®4, F[K(W)]. Note that the
map jw is given by the intersection form on W if this form vanishes (meaning there

3We use the following convention: If C' is a graded vector space and n € Q, C[n] denotes the
graded vector space with C[n]y = Cx_p,.
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are no classes in Ha(W) of nonzero square), then K (W) = H?(W,0W). According
to [28, §2.7], for any spin® structure t on W, there is an induced map

(2.8) Fgy o HF(Y,ty; M) — HE (Y tly; M(W)),

which is an invariant of (W, t) up to multiplication by units in Hy and Hy-.
For future reference, let us describe F[K ()] in the case where W is given by a
single handle attachment. To be precise, we assume that

W =Y x[0,1] U k-handle,

where the handle is attached along a (k — 1)-sphere in Y x {1} and k € {1,2,3}.
(Note that any connected cobordism between connected 3-manifolds has a handle
decomposition with only 1-, 2-, and 3-handles.) In each of these cases, it is easy
to describe K (W) as an Hy—module. It is easier to work in terms of homology,
identifying the sequence (2.7) with

via Poincaré duality.

e When k& = 1, the inclusion ¥ — W induces an isomorphism H(Y) —
Hy(W), and hence K(W) = H?(W,0W) = H'(Y). Hence, for any Hy—
module M, we have M (W) = M. Similarly, when k = 3, if we let t € Hy,
denote the Poincaré dual of the attaching sphere (which is assumed to be
nonseparating and therefore a primitive class), we see that F[K(W)] =
Hy,/(t — 1), and therefore M(W) = M/(t — 1)M.

e When k£ = 2, let K C Y denote the attaching circle for the 2-handle. The
exact sequence on homology for the pair (W,Y") gives

(2.9) 0— Ho(Y) = Ho(W) — Z — Hy(Y),

where 1 € Z maps to [K] € H1(Y).

If K is rationally null-homologous, let d > 0 denote its order in H; (Y').
A capped-off rational Seifert surface for K produces a class [S] € Ho(W)
that maps to d € Z in (2.9). Therefore, Ho(W) = Hy(Y) @ Z; the Ha(Y)
summand is canonical, while the Z is generated by [S]. If the 2-handle is
attached along a multiple of the rational longitude for K (meaning that
the self-intersection of [S] is zero), then the map Hy(Y') — Ho(W) is
surjective, so K (W) = H2(W,0W) = H*(Y)®Z. We thus have F[K(W)] =
Hy [t,t71], and for any Hy-module M, M(W) =2 M[t,t~!]. On the other
hand, if the self-intersection of [S] is nonzero, then the image of Hy(Y") in
W agrees with the image of Ha(Y). Therefore, K(W) = HY(Y) = H'(Y"),
and M (W) = M for any Hy-module M.

If K represents a nontorsion element of H;(Y), then the map Hy(Y) —
Ho(W) is an isomorphism, so K(W) = H(Y). In this case, however,
H(Y") is smaller than H'(Y); indeed, we may find an identification of
Hy, with Hy,[t,t71].

2.2. The exact triangle with twisted coefficients. Throughout this section,
let Y be a closed, oriented 3-manifold, and let s be a torsion spin® structure on Y.
Let K C Y be a null-homologous knot, and let S be a Seifert surface for K.

For any integer m, let W,, be the m-framed 2-handle cobordism from Y to
Y = Y, (K). Let S,,, C W, denote the capped-off Seifert surface; when m = 0,
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we may view this as lying in Y. For any integer k, let t,, ; denote the unique spin®
structure on W,, with

(2.10) toily =5, (c1(tmi), [Sm]) +m = 2k,

and let $,, p = tmkly,,. Additionally, let W, denote W, with reversed orientation,
viewed as a cobordism from Y;,, to Y.

As seen in the previous section, when m #* 0, we have a natural identification
Hy = Hy,,, so we may view any Hy-module M as an Hy,,—module, and vice
versa, and M (W,,) = M. Likewise, if we consider M as an Hy,, module, then the
module induced on Y by W/ is again isomorphic to M. It follows that there are

m
maps

Fst,tm,k : HFO(sz; M) - HFO(Ymvsmﬁ; M)7
Fiyr oot HE (Yo, 803 M) — HF® (Y, 55 M).

m?

On the other hand, when m = 0, we have Hy, = Hy[t*!], and for any Hy—
module M, M(Wy) = M[t*1]. Hence, for each k, we have a map

Fiy 0,0 HF(Y 8 M) — HF®(Yp, to 55 M[t™1]),
which can then be extended to a map
Fivoso,: HEO(Y, 5 M) [t — HF® (Yo, to 5 M[t™1])
by the formula
iy oo (@ @) = t'Fyy o ().
When m # 0, for each [k] € Z/m, we define
HF® (Yo, [smali M) = @ HF°(Yp, 50,5 M).

1=k (mod m)

A key property is that for m sufficiently large and |k| < %, the only non-zero
summand in this decomposition of HF T (Yy, [s,,.1]; M) is HF T (Yy,s0.4; M). The

following theorem is a slight generalization of [11, Theorem 9.1 and Proposition 9.3].

Theorem 2.2. LetY be a closed, oriented 3-manifold, and let s be a torsion spin®
structure on'Y . Let K C'Y be a null-homologous knot, and let S be a Seifert surface
for K. Let M be a module for Hy. For any integer m > 0 and any [k] € Z/m,
there is a sequence of Hy [t*'] @ F[U]-linear maps:

F

(2.11)  HF T (Yo (K), smx; M) [t HET(Y, s; M) [t*!]
HE " (Yo (K), [sm.); M[tH1])
Moreover, up to an overall power of t, the map F appearing in (2.11) is given by

(2.12) F= > Fy

m atmql
=k (mod m)

o ¢l/m).
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2.3. The mapping cone. Let CFK> (Y, K;Hy) denote the totally twisted knot
Floer complex of (Y, K) with coefficients, coming from a doubly pointed Heegaard
diagram (X, at, B, w, z). This is generated by tuples [x, 4, j] with j—i = A(x), where
A(x) is the Alexander grading of x, with differential given by

X,’L,] Z Z #M [YaZ _nw(¢) .] _nz(¢)]7
YETaNTg pET2(x,y)
n(¢)=1

where A is the additive assignment used for defining twisted coefficients. Define an
action of F[U,U~' on C by U - [x,4,j] = [x,i — 1,j — 1]. Fix an Hy-module M,
and let C' = CFK™(Y, K; M) = CFK™(Y, K;Hy) ®3, M. Let C = C ®pjy,u-1
F[[U,U1].

Note that C can be identified as either CF*>° (X, ¢, 3, w; M) or CF*° (X, e, B, z; M)
by ignoring either j or i respectively. There is thus a chain homotopy equivalence
®: C — C which takes C{j < s} into C{i < s} for any s and therefore descends
to a homotopy equivalence C{j > s} — C{i > s}. (Note that there is no control
on how ® interacts with the second filtration on each complex.) The map & also
extends naturally to C.

For each s € Z, let AT = C{max(i,j —s) > 0}, and let Bt = C{i > 0} =
CFT(Y,s; M). Define maps

v? h: C = C
as follows: vg° is the identity, and AS® is multiplication by U® followed by ®. It is
easy to verify that these maps descend to

+ h-‘r A+ N B+
defined just as in [29]. (That is, v} is the projection onto C'{i > 0}, and h/ is the
projection onto C'{j > s}, followed by multiplication by U*® to identify this with
C{j > 0}, followed by ®.)
Let
DgS,: Ot = C[t*]
be the map of Hy [t*!] ® F[U, U~!]-modules given by
Dy = v +t-h =1+tU%®
This descends to a map
Df s AH[t*'] = BT[],
given by
Dafszvj—l—t-hj.
Let X§, (resp. X,) denote the mapping cone of Dy, (resp. D). Let XG°, be the
U-completion of X%, which can be viewed as the mapping cone of the extension
of Dg5, to C[t+1]. Clearly, lim(X{,, U) = X5,
The surgery formula then states the following.

Theorem 2.3. For any s € Z, there are isomorphisms of relatively graded Hy ®

F[U]-modules
(2.13) H (X{,) = HFT (Yy, 50,6 M[tE]),
(2.14) H, (XG%,) = HF™ (Yy, 50,53 M[tF1]).
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If M = M4 for some summand A C H*(Y) and s = 0, we also have
(2.15) H.(X§%) = HF™ (Yo, 50,0 M[tF1)).
Moreover, under each isomorphism, the map
Fiyo . HF(Y, 8 M)[t*'] — HF°(Yp, s0,6; M[t*1])
is given (up to a power of t) by the inclusion of the subcomplex B° C K&s.

Proof. We begin with (2.13). Just as in the untwisted case, the large surgery
formula, states that for m sufficiently large and |s| < m/2, there is an identification
of A with CFT(Y,,(K), $m.s; M) such that the maps vJ and h{ compute Fv—lt';n,tm .
and FVJ(,T,Mt respectively. (See [26, Theorem 4.4] or [29, Theorem 2.3]; the
proof goes through identically with coefficients in M.) Just as in [29], we use the
procedure of “truncation” applied to the surgery exact sequence of Theorem 2.2 to
obtain (2.13). Taking inverse limits and using (2.6) yields (2.14).

The proof of (2.15) follows just as in [17, Lemma 4.10], using Lemma 2.1 to
observe that HF is finitely generated and free over F[U, U ~1]. O

m,s+m’

We also describe the H; action. For any ¢ € H;(Y), the induced chain map
A¢: C — C commutes with the differential on C' and commutes up to homotopy
with ®: say A:® + @A = 0H; + Hc0. We may then extend A; to X% by the
formula

Ac(a,b) = (A¢(a),tU°He(a) + Ag (b)),
which descends to X .. These maps give an action of A, (H:(Y)/Z3;) on H,. (X3 ,).
Moreover, there is an easy identification
Hy(Y)/Zx = Hi(Y0) [ Zagppeny-
Following through the proof of Theorem 2.3, it is not hard to see that these chain
maps A agree with the Hy action on HF T (Yy, s50,s; M[t1]). (See [9, Section 4.2].)
We do not need to worry about defining a chain map associated to the homology
class of the meridian of K in H;(Yp), since its action on HF T (Y, s, 5; M [tT1]) is 0.

For the purposes of this paper, the most important consequence of the preceding
discussion is the following.

Proposition 2.4. Let Y be a closed, oriented 3-manifold, let s be a torsion spin®
structure on Y, and let M be a finitely generated Hy —module. Let K be a null
homologous knot in'Y', let W be the 2-handle cobordism from'Y to Yy(K), let to be
the torsion extension of s to W, and let so = toly, (k). Then the map

Fiy, o HE®(Y, 5, M) — HF™(Yo(K), s0; M[t+])
is an isomorphism.

Proof. We apply Theorem 2.3. Let C' = CFK*(Y, K; M) denote the doubly filtered
knot Floer complex of (Y, K) with coefficients in M, and let ®: C' — C denote
the homotopy equivalence discussed above. The surgery formula then says that
HF*(Yy, s0; M[t*!]) can be computed as the mapping cone of

(1+t®): C[t*] — C[tH,

and the map Fyj7, is given (up to a power of t) by the inclusion of C' into the second
copy of C[t*!]. From this description, it is easy to see that HF*(Yy, s0; M[t*!]) =
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HF*° (Y, s; M), where the action of ¢ is given by ®; 1, and that Fyp is an isomor-

* 9

phism. O

Remark 2.5. Following [30], we may adapt the results of this section (specifically
Proposition 2.4) to the case where K is merely a rationally null homologous knot,
representing a class of order d > 1in H;(Y). Assume that K has trivial self-linking,
so that it has a well-defined O-framing. We briefly sketch the necessary modifications
to the surgery formula, leaving details to the reader. The set of relative spin®
structures for K, Spin®(Y, K), forms an affine set for H?(Y, K). Spin® structures
on Yp(K) then correspond to the orbits of the action of PD[K},], the Poincaré
dual of the O-framed pushoff of K, each of which has d elements. The relative
spin® structures also correspond naturally with spin® structures on the 2-handle
cobordism Wy (K).

Associated to each £ € Spin®(Y, K), there is a doubly filtered complex C¢ =
CFK™(Y, K, &; M) and quotients A; and Bgr (see [30] for all definitions). We also
have maps

Ugo: Cg — Cg, hgol Cg — CE+PD[K)\]a
which induce

’Ugr: Agr — Bg, he: Aér — BngPD[KA],
defined similarly to the above. Specifically, vg® is the identity, and hg° is a homotopy
equivalence induced by Heegaard moves.

Suppose {&1,...,&q} is the orbit corresponding to a torsion spin® structure sg
on Yy, where &1 = £ + PD[K] (indices modulo d). Let s; be the (absolute) spin®
structure on Y extending &;, and let t; be the spin® structure on Wy corresponding
to &. Write C; for C¢, and ®; for hg" The twisted mapping cone that computes
HF* (Yo, s0; M[t*1]) has the form

C[t*] Co[t*1] Cy[t*]
AN
Cl [til] Cz [til] N Cd[til] t-Pg

L

Up to isomorphism, it doesn’t matter which of the ®; arrows comes with a power
of t; the important point is that exactly one of them does. The map

B0 HE®(Y, 5 M) — HF™(Yy, s0; M[t*'])

is given (up to a power of ¢) by the inclusion of C; in the bottom row. Just as in
the proof of Proposition 2.4, we deduce that this map is an isomorphism. We will
make use of this generalization in Section 4.

3. TWISTED CORRECTION TERMS

In this section, we define the twisted correction terms. Throughout, let Y be
a closed, oriented 3-manifold, and let A C H'(Y) be a direct summand on which
the triple cup product vanishes. As above, let Hy = F[H(Y)], and let My =
F[H(Y)/A], viewed as an Hy-module.
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3.1. Construction of the invariants. To begin, we show that HF*>(Y,s; M 4) is
standard, in the following sense.

Theorem 3.1. Let Y be a closed, oriented 3-manifold, and let s be a torsion spin®
structure on Y. Let A C HY(Y) be a direct summand on which the triple cup
product vanishes, and let My = F[H*(Y))/A]. Then

HF>(Y,s; M) = A*(A) @ F[U, U]

as a N*(H(Y)/AY) @ F[U, U~ -module (where the action of A*(Hy(Y)/AL) on
A*(A) is induced from the natural action of A*(H1(Y)/ Tors) on A*(H(Y))).

Proof. We induct on the rank of H(Y)/A, starting with the extremal case when
A = HY(Y) and the triple cup product on H'(Y') vanishes identically. The state-
ment in this case follows from [17], as explained in [15, Theorem 3.2].

For the induction, assume that H!(Y)/A # 0. Let J C Y be a knot representing
a primitive homology class in At C H;(Y) such that (3,[J]) = 1 for some 3 €
H'(Y) \ A. Let Z be obtained by surgery on J with some arbitrary framing, and
let K C Z denote the core of the surgery solid torus, so that ¥ = Zy(K). Let W
be the 2-handle cobordism from Z to Y, and let ty: Y — W and tz: Z — W be
the inclusions.

The map t3: HY (W) — H(Z) is an isomorphism, and ¢} o (¢})~! restricts
to an injection on A. Let A’ C H'(Z) be the image of this restriction, and let
My = F[HY(Z)/A']. Then My = Ma (W) = Ma[tt!]. Also, let s’ be the
restriction to Z of the unique spin® structure on W that extends s.

By the induction hypothesis,

HF>(Z,s'; Ma) = A*(A) @ F[U, U]

as a A*(Hy(Z)/AY) @ F[U, U~ t-module. The result then follows from Proposition
24. ]

Remark 3.2. As noted in the proof of Lemma 2.1 above, the other extremal case of
Theorem 3.1 was proven by Ozsvath and Szabé [27, Theorem 10.12]: when A = 0,
the totally twisted homology satisfies

HE>®(Y,s; Hy) = F[U, U],

Remark 3.3. Note that Theorem 3.1 does not describe the structure of
HF>(Y,s; M4) as an Hy module. The action of any element of H'(Y) is a
grading-preserving automorphism of HF** (Y, s; M4 ) that commutes with the action
of A*(H,(Z)/AY) @ F[U, U], but in principle this map need not be the identity.

We may now define the d invariant that we use below, which is analogous to the
diop invariant defined in [16, Definition 3.3]. We make use of notation from [15].
First, given any finitely generated, free abelian group V and any A*(V)-module
N, define QV(N) = N/(V-N)and KY(N) ={n € N|v-n =0V €V} (ie,
the quotient and kernel of the action of V, respectively). We sometimes omit the
superscripts if they are understood from context.

Definition 3.4. Let Y be a closed, oriented 3-manifold, s a torsion spin€ structure,
and A C H'(Y) a subspace on which the triple cup product vanishes. Let

7 HF®(Y,8;Ma) — HF' (Y, 5, M4)
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denote the canonical map. Then there are isomorphisms
(3.1) QI (/AT (HF>® (Y, 5: My)) = F[U, U1,
(3:2) Q:"/A” (im(m)) = FIU, U~")/UFU),
such that the induced map

m QMOVA (HEX(Y,5: M) — QYA (m(m))

is the natural projection. The correction term d(Y,s; Ms) € Q is defined as
minimal grading in which 7 is nontrivial or, equivalently, as the grading of 1 €
F[U,U~1]/UF[U] under the identification (3.2). The shifted correction term is de-
fined as

(3:3) cZ(Y,a M,) =d(Y,s; M4) — rank(A) + b (QY)

If H?(Y) is torsion-free, so that Y has a unique torsion spin® structure, we some-
times omit s from the notation.

When A = HY(Y) (so that M4 = F) and the triple cup product vanishes iden-
tically, d(Y,8;F) = diop(Y,5). When A = 0 (so that M4 = Hy), d(Y,s;Hy) is
precisely the invariant d defined by Behrens and Golla [1].

Example 3.5. When Y = S! x §2, it is easy to compute directly from a Heegaard
diagram that

aviE) =5, (s =0,

1
d(Y;Hy) = —5, d(Y;Hy) =0.

Example 3.6. If Y is obtained by O-surgery on a knot K C 53, then d(Y;F)
and d(Y; Hy) are both determined by the knot Floer complex of K. Specifically,
combining [1, Example 3.9], [25, Proposition 4.12], and [23, Proposition 1.6], we
have

(34)  dAYiE) = d(YiF) ~ L = dplV) — 1 = d(S(E)) = ~2Vo(K),

(3.5) dY;Hy) =d(Y;Hy) + % = dpot (Y) + 5 = d(S52 1 (K)) = 2Vo(K),
where V} is a nonnegative integer invariant defined by Ni and Wu [23, Section 2.2],
and K denotes the mirror of K. (The second inequality in (3.5), proven by Behrens
and Golla, is special to the case of 0-surgery on knots in $3.)

In particular, if K is either the right-handed trefoil 75 5 or its positive, untwisted
Whitehead double D(T53), then Vo(K) = 1 and Vo(K) = 0. The statement for
Ty 3 is a straightforward computation; the statement for D(753) follows from the
fact that CFK*(D(T%,3)) is isomorphic to CFK* (75 3) plus an acyclic summand

that does not affect V [8, Proposition 6.1]. Hence, if Y is obtained by 0-surgery
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on either of these knots, we have
3 -

d(Y;F) = —7, d(Y;F) = -2,
d(Y;Hy) = —%, d(Y;Hy) =0,
d(=Y;F) = % d(-Y;F) =0,

A=Y H y) = g d(-YiH_y) =2

(The results for 0-surgery on the trefoil were also proven earlier by Ozsvéath and
Szabé [25].)

Example 3.7. Let T2 denote the 3-torus. Because the triple cup product on
H'(T3) is nonvanishing, the invariant d(7°; M4) is only defined when rank A = 0,
1, or 2. When A = 0, [25, Proposition 8.5] shows that

(T3 Hyps) = % d(T? Hyps) = 2.

On the other hand, we will see below in Example 4.14 that when rank A = 1 or
2, d(T3; M,) = 0. Since any automorphism of H'(T?3) can be realized by a self-
diffeomorphism of T, it suffices to compute these invariants for a single subspace
A of either rank. Note also that T2 admits orientation-reversing diffeomorphisms,
so the the same statements hold with either orientation on 7.

3.2. Relation with untwisted invariants. We now describe the relationship be-
tween Definition 3.4 and the invariants defined in [15]. Suppose the triple cup
product on H'(Y) vanishes identically, so that the untwisted homology group
HF> (Y, s;F) is standard:
HE>®(Y,5;F) 2 A*H'(Y) @ F[U, U]

as a A*(H,(Y)/ Tors) ® F[U,U~!]-module. In [15], we defined an “intermediate
correction term” d(Y,s, V') associated to each subspace V' C H;(Y). In particular,
diop(Y,s) = d(Y,5,{0}) and dyot(Y,s) = d(Y,s, H1(Y')). The two constructions are
related as follows.

Proposition 3.8. If the triple cup product on H'(Y') vanishes identically, then for
each summand A C H'(Y), we have

(36) d(K57MA) < d(KS,AJ‘)’

and therefore

(3.7) d(Y,s; M) < dpot (Y, 5) + rank(A),
- b1 (Y

(3.8) d(Y, 5, Ma) < dpor (Y, 5) + %

(The case where A = 0 was proven by Behrens and Golla [1, Proposition 3.8].)

Proof. To begin, note that M4 = F[H'(Y)/A] is a commutative ring with unit, not
just a module over Hy, and the projection Hy — My is a ring homomorphism.
Let n = b1(Y) and k = rank A; we assume n > 0. For concreteness, let aq,...,a,
be a basis for H'(Y) such that ai,...,a; are a basis for A. Let (1,...,(, be the
dual basis for H;(Y)/ Tors, so that A* = Span((ry1,---,Cn)-
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Let C, = CF*(Y,s; M4), with differential denoted by 9. As a simplification, let
us shift the homological grading on C, so that it lies in Z (rather than Z+¢ for some
rational number ¢). Furthermore, if A = 0, so that HF* (Y, s; M) = F[U, U 1], we
assume that the nonzero groups are in even grading. If we consider F as an M4—
module, where each element of H'(Y)/A acts as the identity, then by definition,
H,(Cy) = HF °(Y, 5, Ma), while H,(Cy @1, F) = HF°(Y, 5).

Since the untwisted HF> (Y, s) is standard, we have

Hy(C @y, F) = F>" .
By Theorem 3.1, if k£ = 0, we have

F ¢ even,

(3.9) 1,(C) = {0 q odd

while if k£ > 0, we have
(3.10) Hy(C,) =F""

for all ¢. As in Remark 3.3, right now we only know that the isomorphisms (3.9)
and (3.10) hold on the level of groups; we shall see shortly that they hold on the
level of M 4—modules as well.

Consider the following commutative diagram:

TM 5

(3.11) HF>®(Y,s; M) HET(Y,5; M4)

T ®1
HE™ (Y, 5 Ma) @py, F ——2 HF (Y, M4) @1, F

-l ]

HF>(Y,s;F) - HF (Y, s; F)

Here 7y, and 7y are the usual maps HF™ — HF ", and ¢> and g+ are the natural
change-of-coefficient maps. As above, let AT HF™ (Y,s;F) denote the subspace of
HF* (Y, s;F) consisting of all z € HF*(Y,s;F) for which ¢ -2 = 0 for all ¢ € A*,
and let J*(Y,s, A1) denote the image of the restriction of 7 to KA HF® (Y, s; ).
The invariant d(Y,s, A1) is defined to be the minimal grading in which the induced
map
7e: QIIY)/AT AT HE™ (Y, 5 F) — QH1 (/AT jH(y, 5 AL)

is nontrivial.

Claim 1. The upper-left vertical map in (3.11) is an isomorphism; equivalently, the
action of M4 on HF*(Y,s; M4) is trivial.

Claim 2. The map ¢ is injective with image equal to AT HF>(Y,s;TF).
Assuming these two claims, it follows that we have a commutative diagram
HE (Y, 5; M) — > HE* (Y, 5 M)

I

KA HF™(Y, 5;F) ——> J*(Y,s, A+)
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which then descends to

QHF™(Y, 8 My) —2> QHFT (Y, 5; M)

] |

QKA HF™ (Y, 5;F) ——= QJ* (Y5, AL).

By comparing the definitions of the two d invariants, it is then easy to see that
(3.6) holds. Equations (3.7) and (3.8) then follow from [15, Proposition 3.4].

To prove Claims 1 and 2, we use the universal coefficients spectral sequence,
which we explain in some detail because morphisms of spectral sequences can be
confusing. To begin, take a free resolution of F as an M4—module:

d d d dnor
0 F<2 Fp <2 F <2 5 F, <0,

n—k
where F), = MS‘ v ) Consider the complex
.= P ¢,k
p+q=s
(nonzero only when 0 < p < n — k) with differential D;: Cs — Cs_; given by
Dy= Y (-1)°0, @ dp.
p+g=s

Observe that Hs(C.) = Hs(Cy @y, F) 2 HF (Y, 55 F).
The spectral sequence comes from considering the p filtration on C,, so that the
differential on the E"™ has (p, ¢)-bigrading (—r,7 — 1). The E' page is given by

(3.12) B!, 2 H,(C.) @, Fp = Hy(C.)("7"),

and the E? page is given by

(3.13) E2 = Tor)'2 (H,(C.),F).

In particular, in the p = 0 column, we have

(3.14) Ej, =2 HF>®(Y,5;M4) and Ej, = HF>®(Y,s;Ma) @, F,

and the upper-left vertical map in (3.11) is the natural quotient map. Furthermore,
there is a filtration

(3.15) 0=G'c@’cqGlc.-..cam*=H,C,)
so that

o0 v *1,
(3.16) Ep,q = G£+Q/G£+ZI’

in particular, the p = 0 column EgY, is identified with the subspace GY. The map g>

from (3.11) is given by the identification (3.14), followed by the successive quotients

taking Ej , — Eg%,, followed by the inclusion of G into H.,(C.) = HF>(Y,s;F).
By (3.12), we have

N (";k) k=0, g even
(317)  dimz B}, = (” > dimg Hy(C.) = { 0 k=0, qodd
P ("F)2 k>0,
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Summing over p + g = s, we see that

> dimg By, =2""" =dimg H,(C,) = Y dimz B,

p+aq=s pt+q=s

which implies that the spectral sequence collapses at the E' page. Looking in the
p = 0 column, we see that the successive quotient maps

1 2 o)
Eog = Eog = Bog

are all isomorphisms, which proves Claim 1 and the injectivity statement of Claim 2.

It remains to identify G¥ with KA HF>°(Y,s; M). For each i = 1,...,n, there is
a chain map A¢,: C, — C,._1; these give rise to the action of Hi. As noted above,
the maps A¢,_,,...,A¢, are null-homotopic (see [11, Remark 5.2]), but they are
still defined on the chain level. Indeed, we extend each A¢, to a map on C. by
tensoring with the identity map on F,. The maps A¢,. induced on the homology of
C. (which, as noted above, is isomorphic to HF* (Y, s;F)) then generate the action
of A*(H1(Y)/ Tors) on HF* (Y, s;F); that is, (; - * = A¢,«(x).

Moreover, the restriction of A, to G? agrees with the action of ¢; on
HE>(Y,s; My). For i = k+1,...,n, this action vanishes, so

GO C KA HF™(Y,5;F)

for each grading ¢. Because HF*(Y,s;F) is standard, we can see that
KATHF*® (Y, 5; F) is a free F[U, U~!]-module with

€ o0 1 o0
rankg -1 K4 HF® (Y, 5 F) = T rankg(p -1 HF™ (Y, 5; F) = 2"
since taking the kernel of each (; for i = k+1,...,n cuts down the rank by a factor
of 2. If kK = 0, then KAT HF™ (Y,s;F) is a single tower, with 0 and F in alternating
gradings; otherwise, KcA” HF*(Y,s;F) has dimension 27! in each grading. By
(3.17), we see that

dimg K2~ HF™ (Y, 5; F) = dimz E{ , = dimz G,

so GO = At HF>(Y,s; M) as required. U

Example 3.9. Although we do not know of an actual manifold Y for which equality
fails to hold in (3.6), this seems unlikely to be true in general. Figure 1 represents
the totally twisted complexes CF*>°(Y,s; Hy) and CF1(Y,s; Hy) for a hypothetical
(Y,s) with by (Y) = 1. Writing Hy = F[t*!], we view CF>(Y,5;Hy) as a complex
over F[t*!, U*!] generated by a,b,c,d. A solid arrow represents a coefficient of 1
in the differential, a dashed arrow represents 1 — ¢, and a dotted arrow represents
1 —t? = (1 —t)%. The pattern repeats infinitely in both directions in CF* and
infinitely upward in CF". The numbers at the left represent the Maslov gradings,
which we have chosen in analogy with S* x S2.

Clearly, HF>* (Y, s; Hy ) is isomorphic to F[U, U~], generated as an F[t*1 U*!]-
module by (1 — ¢)b + Ue, with the relation (1 — ¢)((1 — ¢)b + Uc) = 0. Also,
HF'(Y,s; Hy) is generated as an F[t*!]-module by {U™((1 —t)b+ Uc) | n < —1}
along with b, with the relations that (1—#)U"((1—t)b+Uc) = 0 and (1 —1)%b = 0.
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9/2 U~ 2a U~ 2a
2 h Ut 2 h N
1-t vV N 1-t % N
7/2 U2 U-lc U=2b U=l
\ \lylft \ \lylft
5/2 U'a U-1d U ta U~td
C o ~ : S ~
Y AN Y AN
3/2 U1 ¢ U~'h c
| |
\w \w
1/2 a_ d a d
7 N 7
-1/2 b Uc b
|
\ Y
—3/2 Ua Ud
F O\
—5/2 Ub U?c
|
\ Y
—7/2 U2d

FIGURE 1. CF™ (left) and CF™ (right) for a hypothetical manifold
(Y,s) with d(Y,s; Hy) < dpot(Y,8), as in Example 3.9.

We thus see that d(Y,s;Hy) = —1/2. (Notice that the short exact sequence
0 — im(7m) — HF (Y, 5, Hy ) — HF (Y, 5;Hy) — 0

does not split over Hy-, although it does split over F.)

On the other hand, we can also view the same figure as representing the un-
twisted complexes CF*(Y,s;F) and CF'(Y,s;F). Now the solid arrows represent
the differential, the dashed arrows represent the chain map A; associated to a gen-
erator of Hy(Y), and the dotted arrows represent a chain null-homotopy of .Ag.
Here, HF>(Y, ;) is generated over F[U,U~!] by a and ¢, with ¢ generating the
“bottom tower” KHY HF*(Y,s;F). Also, HF (Y, s5;F) is generated as an F-module
by {U"a,U"c | n <0} U{b}. We therefore deduce that die(Y,s) = 3/2.

Moreover, it is not hard to modify the construction to make the difference
dyot (Y, 8) — d(Y, s; Hy ) arbitrarily large.

As noted above in Example 3.6, Behrens and Golla [1, Example 3.9] proved that
for any knot K C S3, d(Sg(K)) = dpot(S3(K)). Thus, a manifold for which (3.6) is
a strict inequality, as in the putative example just discussed, would not be homology
cobordant to O-surgery on any knot in S3.

Remark 3.10. Proposition 3.8 implies that the twisted d invariants can in principle
give stronger constraints on intersection forms of 4-manifolds bounded by Y than
the untwisted d invariants from [15]. For instance, if Z is a negative semi-definite
4-manifold bounded by Y such that the restriction map H'(Z) — H(Y) is trivial
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and t is a spin® structure on Z whose restriction to Y is torsion, Ozsvéth and Szabd
[25, Theorem 9.15] showed that

c1()? 4 by (2) < 4dpot (Y, ty) + 201(Y),

and Behrens and Golla [1, Theorem 1.1] proved an analogous statement with
d(Y, tly; Hy) in place of dpot (Y, t|y). The latter result is thus a potentially stronger
bound. Likewise, for any summand A C H!(Y), it is not hard to prove a stronger
analogue of [15, Theorem 4.7] using d(Y,s; M 4) in place of d(Y,s, A+) (where A is
chosen such that AL = V).

Definition 3.11. For a 3-manifold Y and a torsion spin® structure s on Y, we say
that (Y,s) is d-simple if the triple cup product on H'(Y) vanishes identically (so
that HF* (Y, s; F) is standard) and for every subspace A C H'(Y), equality holds

in (3.8), i.e.,
~ b1 (Y
(3.18) A(Y.5:4) = dy (V. 5) + 2L
We say that Y is d-simple if (Y,s) is d-simple for each torsion spin® structure s
onY.

If (Y,s) is d-simple, then for each A C HY(Y), (3.6) is an equality, meaning that
d(Y,s, AT) = dpoi (Y, 5) + rank(A).

In other words, the untwisted d invariants of (Y,s) are simple in the sense of [15,
Corollary 3.5]. In particular, we have

dtop(K 5) = dbot(Ya 5) + bl (Y)a
and hence

s hi(Y)

(319) d(KS, MA) = dtop(Ks) — T

3.3. Orientation reversal. Unlike with the original d invariant for rational ho-
mology spheres, Examples 3.5 and 3.6 show that d(Y,s; M4) does not determine

d(—Y,s; M4). The only relation between these quantities occurs in the extremal
cases where A =0or A= H(Y).

Proposition 3.12. Let Y be a closed, oriented 3-manifold and let s be a torsion
spin€ structure on'Y . Then

(3.20) d(Y,s; Hy) +d(=Y,5;H_y) > 0.
If the triple cup product on H'(Y') vanishes so that HF>(Y,s;F) is standard, then
(3.21) d(Y,s;F) + d(-Y,s;F) < 0.

Proof. Behrens and Golla [1, Proposition 3.7] showed that the totally twisted d
invariant is additive under connected sums; thus,
dY,s;Hy) +d(=Y,s;H_y) =d(Y # =Y, s # s Hypv).

Note that Y # —Y is the boundary of the 4-manifold Z = (Y \ B?) x [0, 1], whose
intersection form vanishes identically. Applying [1, Theorem 1.1] (see Remark 3.10
above), we deduce that

0<dY #-Y,s#s;Hyp—v)+ b (Y).
This implies (3.20).
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For the second statement, we have d(Y,s;F) = diop(Y,s) by definition and
d(=Y,5;F) = diop(—Y,5) = —duot(Y,s) by [16, Proposition 3.7]. Moreover, by
[16, Lemma 3.5], we have diop(Y,5) < dpot(Y,s) + b1(Y). Thus

which implies (3.21). O
Motivated by Proposition 3.12, we make the following definition.

Definition 3.13. Given a closed, oriented 3-manifold Y and a torsion spin® struc-
ture s on Y, we say that (Y,s) is d-symmetric if for every summand A C H(Y)
on which the triple cup product vanishes, we have

(3.22) d(=Y, 8 My) = —d(Y,5; My).

We say Y is d-symmetric if (Y, s) is d-symmetric for every torsion spin® structure s
onY.

Combining (3.18) and (3.19) with [16, Proposition 3.7], we immediately deduce
that if both (Y,s) and (—Y,s) are d-simple, then they are both d-symmetric. (We
do not know of an example where (Y, s) is d-simple while (—Y,s) is not.)

3.4. Connected sums. The behavior of twisted d-invariants under connected sums
is also potentially more complicated than in the untwisted setting. Given summands
A; C HY(Y7) and Ay C HY(Y3), A; @ Ay is naturally a summand of H'(Y; # Y3).
Evidently, if the triple cup product vanishes on each A;, then it vanishes on A; @ A,
as well. Adapting the usual proof of additivity of d invariants (see [25, Theorem
4.3], [16, Proposition 3.8], [15, Proposition 4.3)), it is straightforward to see that

(3.23) d(Y1 # Yo, 51 # 59, Ma,ga,) > d(Y1,81, Ma,) + d(Ya, 80, Ma,).

Proving the reverse inequality requires orientation reversal, which is not available.
However, if Y7 and Y5 are d-simple, then we have

d(Y1 # Ya,51 # 50, Ma,aa,) < d(Y1 # Yo, 51 # 59, (A; © Ag)h)
=d(Y1 # Ya,51 # 52, A] @ Ay)
= d(Y1,51, A7) + d(Ya, 59, A7)
=d(Y1,51, Ma,) + d(Ya, 82, Ma,),
so equality holds.

Proposition 3.14. If Y is of the form Q # n(S' x S?), where Q is a rational
homology sphere and n > 0, then Y is d-simple and therefore d-symmetric. Indeed,
if s = t# g # - - # 1o, where t is a spin® structure on Q and ty is the unique torsion
spin structure on S x So, then for any subspace A C H'(Y), we have

d(K 55 MA) = d(Q’ t)'
Proof. Clearly, any rational homology sphere is d-simple, as is S! x S2. Given a
subspace A C #n(S* x 5?), there is a self-diffeomorphism of #n(S! x §?) such that
the pullback of A can be viewed as Ay & --- @ A,,, where each A; is a subspace of
H' of the ith S* x §? summand. (That is, any change of basis on H!(#n(S* x S?))
can be realized geometrically by handleslides.) The result then follows. (Il
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3.5. Congruence condition. Given a closed, oriented 3-manifold Y and a torsion
spin® structure s, there is an invariant p(Y,s) € Q/2Z, defined to be the congruence
class of

a(t)? —o(W)

4 )
where (W, t) is any spin® 4-manifold with boundary (Y, s). (Here o(WW) denotes the
signature of W.) In this section we prove the following.

(3.24)

Proposition 3.15. For any closed, oriented 3-manifoldY , any torsion spin struc-
ture s, and any subspace A C H'(Y) on which the triple cup product vanishes, we
have

d(Y,s; Ma) = p(Y,s) (mod 2Z).

The case where Y is a rational homology sphere was proven by Ozsvath and
Szabé [25, Theorem 1.2].

Proof. Suppose b1(Y) = n and rank(A) = k. In the proof of Theorem 3.1, we induc-
tively produced a spin® cobordism (W1, t1): (Y1,81) — (Y, s) by successively attach-
ing n — k 2-handles along 0-framed knots. The untwisted homology HF** (Y1, s1;F)
is standard, and the cobordism induces an isomorphism

F‘%/Olqtl : HFOO(Ylﬂﬁl; IF) - HFOO(K 5, MA)
Since ¢;(t1) is torsion by construction, the grading shift of Fy 4, 1s equal to ’“T”
It follows that

n —
d()/,ﬁ; MA) = dtop(Yhﬁl) -

(mod 27).

By [16, Lemma 3.5],
diop(Y1,51) = diot(Y1,51) +k  (mod 2Z).

Next, we find a cobordism (Wa,t3): (Ya,82) — (Y1,51), where Y5 is a rational
homology sphere, again obtained by successively attaching k£ 2-handles along 0-
framed knots. By [25, Proposition 9.3], the map

Py, o HF™(Y2,82) — HF™(Y1,51)

is injective and takes HF™°(Ya, 59) =2 Z[U, U 1] to the bottom tower in HF*° (Y7, 51).
Hence,

k
dbot(yvl,ﬁl) = d(ng,SQ) — 5 (mod 2Z)
Combining these congruences, we see that

(Y, 5 M) = d(Ya, 52) + k — g (mod 27),

d(Y,s; Ma) = d(Ya,82) = p(Ya,s2) (mod 27Z).

Finally, the spin® cobordisms (Wi, ;) and (Wa,t3), each of which has signature 0,
give us p(Y,s) = p(Y1,51) = p(Ya,s2), which concludes the proof. O
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4. CROSS-SECTIONS OF OPEN 4-MANIFOLDS

4.1. Topological preliminaries. Throughout this section, we will be working
with open 4-manifolds obtained as the infinite cyclic covers of homology S' x S3s.
For greater generality, we begin by stating the salient algebraic-topology properties
of such manifolds and then work throughout with open manifolds satisfying those
properties. (The terminology is motivated by Hughes and Ranicki [10], who have
a stronger, homotopy-theoretic notion that they call a ribbon.)

Definition 4.1. A homology ribbon is a smooth, connected, orientable, open 4-
manifold X with two ends that satisfies the following properties:

(1) Hy(X)2~Z. ) )

(2) The intersection form on Hy(X) =2 H2(X) vanishes.

(3) For each end € of X and any field k, we have Hy (X, e;k) = Hy(X, e;k) = 0.
We call X a homology S® x R if (in addition to the above properties) H;(X) =
Hy(X) = 0 and a rational homology S° x R if H;(X;Q) = Hy(X;Q) = 0.

Proposition 4.2. Let X be a smooth, closed, oriented 4-manifold such that H.(X)
>~ H,(S' x S3), and let p: X — X denote the universal abelian cover of X, with
deck transformation group Z. Then X is a homology ribbon, and p,: H3()~() —
H5(X) 2 Z is an isomorphism.

Proof. For property (1), Milnor [19, Remark 1] shows that H3(X) = H(X) = Z.
Let 7: X — X denote a generator of the deck transformation group. Note that
H.(X) is a Z[t,t~']-module, where ¢ acts by .. The Milnor exact sequence

(4.1) v Hy(X) 25 Hy(X) 25 Hy(X) = Hi(X) = -+
implies that 1 — ¢ is an isomorphism on H;(X) and Hy(X) and zero on Hz(X). It

follows that p,.: H3(X) — H3(X) is an isomorphism.

For each integer m > 1, let X X Pmy X denote the intermediate m-fold
cover of X with deck group Z/m. A standard argument shows that when m is a
prime power p¥, H,(X,,; Z,) = H.(S'x S3;Z,), and therefore Ha(X,,; Q) = 0 since
H,.(Xn;Z) is finitely generated. In particular, the intersection form on Ha(X,,;Z)
is trivial. Now, given any classes a,b € HQ(X), let ¥,,3%; be closed, oriented,
embedded surface representatives that intersect transversally. For m sufficiently
large, the restriction of ¢, to 3, U3 is a diffeomorphism onto its image, so a-b =
Gm+(a) - @m«(b) = 0. This proves property (2).

For property (3), it is easiest to work with simplicial homology. Choose a finite
triangulation of X, and lift it to a locally finite triangulation of X. After possibly

replacing 7 by 771, we may assume that 7 shifts in the direction of the end e. Then
O*(Xa 6 k) = O*(XJ k) Okt t—1] k[[t, til]-

Since k[[t,t71] is as flat as a k[t,t~!]-module, we have
H*(Xa 6 k) = H*(Xv k) Okt t—1] k[[t, til]-

Note that H,(X;k) is finitely generated as a k[t,t~!]-module. Since 1 — ¢ acts as
an isomorphism on H;(X;k) for j = 1,2, we have

Hj(X:k) = Dkt ¢/ (m),
=1
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where each p; is a nonzero, monic polynomial. Since p; is invertible in k|[[t, '], we
deduce that

H](X’ k) ®k[t,t‘1] k[[t,t_l] = Oa

as required. (|

For the rest of this section, unless otherwise specified, X will denote an arbitrary
homology ribbon without the requirement that it is the cover of a homology S* x S3.

A cross-section of X is a connected, smoothly embedded, oriented 3-manifold Y
representing a generator of Hg (X ). To find such a cross-section, one can proceed as
in Example 3 of the introduction to [10], which treats the case of a manifold with a
single end. Using a proper exhaustion of X, one finds a smooth proper map f: X -
R with the ends going to co. (The choice of a generator of Hs(X) = H!(X)
determines which end goes to +00.) Then there is a component of the preimage of
a regular value that is a cross-section. Denote the closures of the components of
X\Y by Ly and Ry so that Y = 0Ly = —0Ry as an oriented manifold. Note that
reversing the orientation of Y (and hence the class in Hj (X' ) that Y represents)
interchanges the roles of Ly and Ry: L_y = Ry and R_y = Ly.

If disjoint cross-sections Y7 and Y5 represent the same homology class, we say
that Y3 is to the right of Y;, denoted Y7 < Ya, if Y5 C Ry,. This notion depends
on which homology class Y7 and Y5 represent; if Y7 < Y5, then —Ys < —Y;. In
what follows, whenever we write Y7 < Y5, we implicitly assume that Y; and Y5
represent the same homology class. If Y7 < Y, let W(Y7,Y2) be the closure of
X~ (Ly, U Ry,); this is an oriented cobordism from Y7 to Y.

Fix a torsion spin® structure s on X. By abuse of notation, the restriction of s
to any cross-section Y or any cobordism W (Y7, Ys) will also be denoted by s. If X
is in fact the Z-cover of X, a rational homology S x S3, then let sx denote the
pullback of the unique spin® structure on X.

We begin with a few basic facts concerning the algebraic topology of cross-
sections. First, note that the Mayer—Vietoris sequence for X = Ly URy shows that
Hs(Ly) = H3(Ry) = Z. Next, consider the long exact sequence on cohomology
(both ordinary and compactly supported) for the pair (Ly,Y):

(4.2)

) S
HY(Ly) —> H(Y) —> HX(Ly,Y) —> H:(Ly) > H'(Y) —> H2(Ly,Y)

O
HO(Ly) == HO(Y) % H'(Ly,Y) —> H'(Ly) 2> H'(Y) 2~ H?(Ly,Y)
Note that H?(Ly) = 0 since Ly is noncompact. By Poincaré duality, H} (Ly,Y) =
Hs(Ly) = Z. By looking at the same diagram with coefficients in Z/p for each
prime p, we deduce that the coboundary H°(Y) — H!(Ly,Y) is an isomorphism,
the map j¢ is injective, and the quotient H*(Y)/H!(Ly) = im(5¢ ) is torsion-free.
(That is, H}(Ly) is a direct summand of H'(Y).) In particular, H!(Ly) is a
finitely generated, free abelian group; let b§(Ly) denote its rank. Moreover, the
map kr,: H(Ly)— H'(Ly) is injective. (Analogous statements hold with Ry in
place of Ly .)

Next, consider the Mayer—Vietoris sequences (in both ordinary and compactly

supported cohomology) for the decomposition X = Ly Uy Ry, and the natural
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maps between them:

(4.3) HO(Y) — H}(X) — H}(Ly) @ H;(Ry) — H'(Y) — HZ(X)

Pl e ]
HO(Y) — HY(X) — H'(Ly) ® HY(Ry) — HY(Y) — H?*(X)

(The construction of the upper sequence is most readily carried out if one uses the
simplicial version of cohomology with compact supports, as described in [7, §3.3];
we remark that exactness uses the fact that Y is compact.) Just as before, we
deduce that the map H}(Ly) @ H}!(Ry) — H*(Y) is injective, meaning that the
images of H!(Ly) and H!(Ry) in H'(Y) intersect trivially. However, this map
need not be surjective, as in the following example.

Example 4.3. Suppose X is a homology S' x S3 obtained as the mapping torus
of a self-diffeomorphism of some 3-manifold Y. Then X =Y x R. If we consider
Y =Y x{0} as a cross-section of X, it is easy to check that H*(Ly) = H}(Ry) = 0.
In particular, the coboundary H'(Y) — H?(X) in (4.3) is an isomorphism.

In the case where X is a rational homology S x R, the situation simplifies con-
siderably, so that we can use ordinary rather than compactly supported cohomology
throughout.

Lemma 4.4. If X was a rational homology S* x R, then:
(1) The maps rr: HX(Ly) = H'(Ly) and kgp: H:(Ry) — H'(Ry) are iso-
morphisms, so jy and jy- are identified.
(2) We have HY(Y) =2 H'(Ly) ® H'(Ry) = H}(Ly) ® H:(Ry).
(3) The sequence

Jjy Oy

0— > HY (Ly) -2 H (Y)Y~ H?(Ly,Y)——=0
is short ezact and splits, and H?(Ly,Y) = H'(Ry).

Proof. If X is a rational homology S® xR, then H'(X) = 0, and H?(X) and H2(X)
are both torsion groups. It follows that the maps H'(Ly)® H'(Ry) — H*(Y) and
HY(Ly)® HY(Ry) — H*(Y) in (4.3) are both isomorphisms, so k1, @ kg is as well.
Moreover, by the exact sequence for (X, Ry ) and excision, H(Ry) = H?(X, Ry ) =
H?(Ly,Y). The restriction map H'(Ry) — H!(Y) provides a splitting for the
short exact sequence. O

Returning to the general case, it is useful to consider one more version of the
Mayer—Vietoris sequence, which again is most easily proved using simplicial coho-
mology as in [22, §25]. If € denotes the left end of X corresponding to Ly, we have
an exact sequence

(4.4) HY(X,e) = H (Ly) ® H'(Ry) — H'(Y) — H*(X,e).

In particular, if we take coefficients in Q and apply property (3) from Definition
4.1 together with universal coefficients, we see that

(4.5) HY(Y;Q) = H}(Ly;Q) @ H'(Ry; Q).
Finally, we recall the locally finite homology groups of a (noncompact) polyhe-
dral space Z, HY (Z). These can be defined in greatest generality using an inverse
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limit; see Laitinen [14, §2]. When Z has a locally finite triangulation, it is easiest
to use the simplicial version: the chain group Cl-lf (Z) consists of possibly infinite
sums of i-simplices, and the differential is defined in the usual way. The universal
coefficient theorem [14, Proposition 2.8] relating locally finite homology and com-
pactly supported cohomology takes a slightly unusual form: for any principal ideal
domain R, there is an exact sequence

(4.6) 0 — Ext(H""Y(Z),R) - HY (Z; R) — Hom(H"(Z),R) — 0.

Additionally, if Z is an n-dimensional manifold, then there is a Poincaré duality
isomorphism Hlif(Z) =~ [nk(Z) [14, Theorem 3.1].

4.2. Correction terms. We will be considering Heegaard Floer homology with
coefficients in the module

(4.7) Ly := My (1) =F[H" (Y)/H!(Ly)] = F[im(d5,)].
The key observation is the following.

Proposition 4.5. Let X be a homology ribbon and let s be a torsion spin® structure
on X. For any cross-section Y, the restriction of the triple cup product form on
H(Y) to the image of H:(Ly) vanishes identically. Therefore,

HE* (Y, 5; Ly) = A" (H, (Ly)) @ F[U,U™"]

as a N*(H(Y)/(HL(Ly)*))®F[U, U~ ]~module. Moreover, we may naturally iden-
tify Hi(Y)/(H:(Ly))* with HY (Ly)/ Tors. Analogous statements hold with Ry
in place of Ly .

Proof. First, note that there is a fundamental class [Ly,Y] € HY (Ly,Y) which
maps to the fundamental class [Y] € H3(Y) under the boundary map. (If we are
given a locally finite triangulation of Ly with Y as a subcomplex, the fundamental
class is given as the sum of all the 4-simplices, with signs determined by the ori-
entation, and the boundary map H. if (Ly,Y) — H3(Y) is just the usual simplicial
boundary.) We then argue just as we would if Ly were a compact manifold: For
any oy, as, a3 € H(Ly), we have

(i (01) Ui* (02) Ui (a), [Y]) = (i* (01 Uz U ), [Y])

= <041 Uag U g, Z*([Y]»

= <a1 Uas U ag,l*(a([LYaYD»
0.

The second and third lines make use of the pairing between H2(Ly) and H. éf (Ly)
given in (4.6) (taking R = Z). The same exact sequence also yields the identification

Hy(Y)/(H}(Ly))* = H{ (Ly)/ Tors.
Finally, the statement about HF* follows directly from Theorem 3.1. ]
Proposition 4.5 allows us to consider the twisted correction term d(Y,s; Ly ) and
the shifted version d(Y,s; Ly ). By definition, we have

(4.8) d(Y,5: Ly) = d(Y,: Ly) + 1) —22bi(Ly).
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Observe that when X is a homology S® x R, Lemma 4.4 implies that b$(Ly) =
b1(Ly) and x(Ly) = b1(Y) — 2by(Ly ), and hence

(4.9) d(Y,s;Ly) = d(Y,s;Ly) + @

Our choice of coefficients in Ly (as opposed to the analogous construction using
the cohomology of Ry ) is justified by the following lemma.

Lemma 4.6. Letf( be a homology ribbon. Suppose Y1,Ys are disjoint, homologous
cross-sections of X with Y1 < Ya, and let W = W (Y1,Y3) be the cobordism between
them. Then Ly,(W) 2 Ly,.

Proof. According to (4.7), we are trying to show that
Flim(0y,)] ®r(a (v1)) FIK(W)] = Flim (67, )].
We prove this by constructing an exact sequence
H' (Y1) — im(65,) ® K(W) — im(85,) — 0

as follows.

First, by property (2) in Definition 4.1, the intersection form on H (W) vanishes
identically. Therefore, the map jy : H2(W,0W) — H?*(W) vanishes identically,
meaning that K (W) = H2(W,0W).

Consider the following commutative diagram, whose rows and columns are exact:

HY (Y1 UY3,Y2)—> HY (Y, UYs) —— HY(Y3) — 2> H2(Y; U Y3, Y3)

L e

Hl(Yl UYQ,YQ) #HCQ(LYQ,}/]A U}/Q) $H02(Ly2,Y2) —h>H2(Y1 UYQ,YQ)

l |

HZ(Ly,) —— HZ(Ly,)
We easily deduce that im(§,) C im(g) and that g~ (im(d5,)) = im(y); thus, the
middle row gives rise to an exact sequence
HY(Y; UYy, Ya) —L > im(y) —> im(6¢,) — 0.
Of course, H' (Y1 U Y, Ys) & HY(Y7).
Next, the Mayer—Vietoris sequence for the decomposition
(LYQ,Yl U }/2) = (LY1 , Yl) U (VV, 3W)
shows that
H?(Ly,, Y1 UYs) = H*(Ly,, Y1) ® H*(W,0W).
Under this identification, it is easy to see that the image of v is identified with
im(&5, ) @ H?*(W,0W), as required. O

Proposition 4.7. Let X be a homology ribbon and let s be a torsion spin® structure

on X. Suppose Y1,Ys are disjoint, homologous cross-sections off( with Y1 < Y3.
Then

(4.10) d(Y1,s; Ly,) < d(Ya,s; Ly,).
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TABLE 1. Summary of handle additions in the proof of Proposition
4.7. The convention is that Aby(Y) = by (Ya) — b1(Y1), ete. It is
easy to see that Ab;(Y) — 2Ab5(Ly) = x(W) and that Aby(Y) =
Ab§(Ly) + Ab§(Ry).

Handle type Ab (Y) | AbS(Ly) | AbS(Ry) | x(W) Py,
1 +1 +1 0 -1 injective
2, [K] torsion +1 0 +1 +1 | isomorphism
2, [K] nontorsion -1 -1 0 +1 surjective
3 -1 0 -1 —1 | isomorphism

Proof. Tt suffices to assume that the cobordism W = W (Y7, Y3) is given by a single-
handle attachment. To be precise, let L’Y1 denote the union of Ly, with the closure
of a product neighborhood of Y, and assume that

Ly, = Ly, U k-handle,

where k € {1,2,3}. When k = 2, because the intersection form on X vanishes, Ly,
cannot be obtained by attaching a 2-handle to a rationally null-homologous curve
with nonzero framing.

The proof proceeds as follows. By Lemma 4.6, the cobordism W induces maps

Fy s HF°(Y1,s; Ly,) — HF°(Ya,5; Ly,).

Since ¢;(s) is torsion, the grading shift of Fy, 5 1s equal to —@. Note that
X(W) =1 when k = 2 and —1 otherwise.
We will show in each case that Fyj7; descends to an isomorphism

QHFOO(H,E; l:yl) — QHFOO(Y275;£Y2).
Thus, by the usual argument,

(4.11) (V1,5 Ly,) < d(Ya,s: Ly,) + @

At the same time, we will see in each case that
(4.12) xX(W) = (b1(Y2) — 2b(Ly,)) — (b1(Y1) — 2b1(Ly,))

from which (4.10) follows.

We now consider the different values for k. A summary can be found in Table 1.
(1) If Ly, = Ly, Ul-handle, then Y, =Y} # 81 %82, 50 by(Y2) = by (Y1) +1. By
looking at the exact sequence on cohomology for the pair (Ly,, Ly, ), we see
that H!(Ly,) = H!(Ly,) & Z, where a generator of the Z factor maps to
the Poincaré dual of [{pt} x S?] in H'(Y2). Hence, b$(Ly,) = b§(Ly,) + 1,

so (4.12) holds.

As in [28, §4.3], we have

HF> (Yz, 59; Ly,) = HF™ (Y1, 81; Ly, )[3] @ HF® (Y1, 515 Ly, ) [— 3],

where the action of the generator of Hi(S! x S?) takes the first summand to
the second, and the map Fy, is given by the inclusion of the first summand.
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FIGURE 2. Standard Heegaard diagram (T2, ag, B, z0) for St x S2.

(2) If Ly, is obtained by attaching a 2-handle to Ly, along a curve K C Y1,
there are two possibilities.

If K represents a torsion class in H;(Y), then the 2-handle must be at-
tached along the rational longitude of K; otherwise, there would be a closed
surface in X with nontrivial self-intersection, which violates our assump-
tions. Thus, Y3 is obtained by O-surgery on K, and b;(Ys) = b1(Y7) + 1.
Moreover, the inclusion Ly, — Ly, induces an isomorphism H}(Ly,) —
H!(Ly,). By Proposition 2.4 (and its extension to the rationally null-
homologous case in Remark 2.5), Fy7; is an isomorphism that respects the
H, actions.

If K represents a nontorsion class in H;(Y7), then b1(Y2) = b1(Y7) —
1. Equation (4.5) implies there is a class a € H}(Ly,;Q) such that
(aly,,[K]) = 1, and therefore [K] is also nontorsion in HY(Ly,). The
restriction map H}(Ly,) — H}(Ly,) is injective, with image equal to the
set of elements that evaluate to 0 on [K], so b§(Ly,) = b§(Ly,) — 1. Just
as in the untwisted case (see [25, Proposition 9.3]), Fjj, descends to an
isomorphism

HF> (Y1, s; Ly,)/([K] - HF> (Y1, s; Ly,)) N HF> (Y3, s; Ly,),

which respects the H; actions.

(3) Suppose Ly, is obtained by attaching a 3-handle to L’Y1 along an embed-
ded, nonseparating sphere S C Y5, which necessarily represents a primitive
homology class. Then Y} = Y, # St x S?, so by(Ya) = by(Y7) — 1, and
H}(Ly,) = H}(Ly,). As seen in Section 2.1, we have Ly, = Ly, /(1 — t) &
Ly, (W), where t is the class in H'(Y;) Poincaré dual to [S].

By [28, Lemma 4.11], we may represent Y7 by a split Heegaard diagram

(E/aal>ﬂlvzl) = (E,a,ﬁ,z) # (T27a0750720)7

where (X, a, 3, z) represents Ya, (T2, av, Bo, 20) is a standard diagram for
S! x §? as shown in Figure 2, and the connected sum is taken in the re-
gions containing the basepoints. The curves «ag, 5y meet in two points a, b.
For any x € T, N Tp, there is a pair of holomorphic bigons o €
ma(x x {a},x x {b}). We may choose the additive assignment such that
for each x, the disks ¢ and ¢ contribute 1 and ¢, respectively, in the dif-
ferential. Just as in Ozsvath and Szabd’s proof of the Kiinneth formula for
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connected sums [27, Theorem 6.2], with respect to a sufficiently stretched
complex structure, CF* (X', o/, 3', 2'; Ly, ) is then isomorphic to the map-
ping cone

CFOO(Ea «, /87 Z3 EYQ)[til] i) CFOO(Z7 «, /87 Z; £Y2)[ti1]>

where the two copies correspond to a and b respectively. The map Fy?, is
given on the chain level by setting ¢ = 1 and projecting onto the second
factor. It follows that

Py or HE™ (Y, 55 Ly, ) — HF™ (Y2, 55 Ly, )
is an isomorphism.

In each of the three cases, it is easy to see that the induced maps on Q HF® are
isomorphisms and that (4.12) holds, as required. O

Proposition 4.8. If X is a homology S® x R, then ci(Y,s; Ly) is an even integer.

Proof. By Proposition 3.15, we know that d(Y,s; Ly) = p(Y,s) (mod 2Z), where
p(Y,s) is defined by equation (3.24). Since the spin® structure s is a spin structure,
we may take the manifold W in (3.24) to be a spin manifold, and so the term
c1(t)2 = 0. As in the proof of [37, Theorem 3.4], the signature of W is the same as
the signature of the open manifold

We = W Uy Ry.

The vanishing of the homology of X together with property (3) from Definition
4.1 implies that the intersection form on the spin manifold W, is unimodular, and
hence van der Blij’s theorem [20, §5] says that its signature is divisible by 8. ([l

Remark 4.9. By turning the cobordism W around, it is also easy to see how the
quantity b§(Ry) behaves: we see that bS(Ry,) — b{(Ry,) equals 0 in the case of a
1-handle addition or a 2-handle addition along a nontorsion curve, 1 in the case of a
2-handle addition along a torsion curve, and —1 in the case of a 3-handle addition.
In particular, we see from Table 1 that the quantity

b1 (Y) = b5(Ly) — bi(Ry)

is independent of the choice of cross-section Y. The Mayer—Vietoris sequence (top
row of (4.3)) shows that this quantity equals the rank of the coboundary map
HYY) — H2(X).

4.3. Invariants for homology S' x S®s. We are now finally able to prove the
main theorem from the introduction, which we restate as follows.

Theorem 4.10. Let X be an oriented homology S* x S3, let X be its infinite
cyclic cover, and let sx be the spin® structure on X pulled back from X. Then for
any cross-section Y of X, the shifted correction term ci(Y, sx; Ly) depends only on
the homology class of Y in Hg(f() or equivalently on its image y € H3(X). We
denote this number by ci(X, y); it is an invariant of X under orientation-preserving

diffeomorphisms that preserve the choice of homology class.

Proof. Fix a generator for H3(X). Let 7 be a generator of the deck transformation
group such that for any two cross-sections Y, Y’ representing the fixed generator,
77(Y) <Y’ < 7"(Y) for all n sufficiently large. For any n € Z, note that

d~(Tn(Y)7 5x; ‘CT"(Y)) = J(K 5X; £Y)>
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since the spin® structure sx on X is 7-invariant and the deck transformation 7"
takes Ly to L.n(y). Thus, by Proposition 4.7, we have

d(Y,sx;Ly) <d(Y',s;Lyr) < d(Y,sx:Ly),
and hence equality holds. |
Next, we prove the symmetries stated in Proposition 1.2. It is more convenient

to work in the more general setting of open manifolds. Given a homology ribbon
X equipped with a spin® structure s and any cross-section Y of X, define

(4.13) d(X,Y) =d(Y,s; Ly).

(For convenience, we suppress the spin® structure s from the notation.) When X
is the Z cover of a homology S* x $3 X and s = sy, then by definition CZ(X, Y)=
d(X,y).
There are two possible orientation changes to consider.
e If we leave the orientation on X fixed but change the orientation of Y,
the roles of Ly and Ry are interchanged: L_y = Ry and R_y = Ly.
According to our definition, we have

(4.14) d(X,-Y) =d(-Y,sRy),

where Ry = F[H'(Y)/H'(Ry)]. )
e If we reverse both the orientations of both X and Y, then the roles of Ly

and Ry do not change, since 9(—Ly) = =Y. Thus, we may write
(4.15) d(-X,-Y)=d(-Y,s;Ly).

Combining this argument with the previous one, we deduce that
(4.16) d(=X,Y)=d(Y,s;Ry).

Proof of Proposition 1.2. Suppose that Y is a cross-section of a homology ribbon
X. If Y is a rational homology sphere, then d(X,Y) = d(Y,s). By inspecting
equations (4.13) through (4.16), it is immediate that

(4.17) d(X,Y)=d(-X,Y)=—d(X,-Y) = —d(-X,-Y).
Likewise, when Y is merely d-symmetric, we obtain
(4.18) d(-X,-Y)=—d(X,Y) and d(-X,Y)=—d(X,-Y).

These translate to (1.1) and (1.2), respectively.

Finally, if X is the mapping torus of a diffeomorphism ¢: ¥ — Y and X is its
universal cover, then X = Y x R. As seen in Example 4.3, we have H!(Ly) =
H!(Ry) = 0, and therefore the coefficient modules £y and Ry are both simply
Hy. Equations (4.13) through (4.16) yield (1.3). O

The following proposition is an immediate consequence of Proposition 4.7 and
equation (4.18).

Proposition 4.11. Let X bea homology ribbon and let s be a torsion spin® struc-
ture on X. Suppose Y1 < Yo are disjoint cross-sections ofX and that (Y1,8) and
(Ya,s) are both d-symmetric. Then d(X,Y1) = d(X,Ys). Moreover, if Y' is any
other cross-section with Y1 <Y’ < Y3, then

d(-X,-Y") = —d(X,Y") = —d(X,Y1).
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This result is useful for obstructing the presence of d-symmetric cross-sections
(e.g., rational homology spheres) in the ends of exotic R%s, as in the following
example.

Example 4.12. Let K denote the positive, untwisted Whitehead double of the
right-handed trefoil, let Y = S3(K), and let W be obtained by attaching a 0-
framed 2-handle to D* along K, so that 9W =Y. Let Z denote the complement of
a topological slice disk for K, with 71(Z) = Z. We may choose a smooth structure
on Zy = Z ~ {pt}; then Z; is an open, smooth 4-manifold with 0Z, = Y. Then
R = W Uy —Z, is an exotic R%, and X = (W~ B*) Uy —Zj is an exotic S® x R
with one end smoothly modeled on S® x (—o00,0]. Since by(Ly) = 0, we have
Ly = F[H*(Y)]. As seen in Example 3.6, &(X,Y) =0 and &(—f(, -Y)=2 1f
the generator of H3(Zy) were represented by any d-symmetric manifold, this would
contradict Proposition 4.11.

Remark 4.13. The existence of an exotic R* not containing a homology sphere ar-
bitrarily far out in its end seems to be 4-manifold folklore; compare [12, Remark
1, p. 96]. The proof depends on Donaldson’s diagonalization theorem. Bob Gompf
pointed out to us that the extension of Donaldson’s theorem to nonsimply con-
nected manifolds [4] can be used to show that there is no rational homology sphere
arbitrarily far out in the end.

Example 4.14. The three-torus 72 embeds in R?, so it occurs as a cross-section
of $3 x R. By Lemma 4.4, we have H*(T3) = H'(Lys) ® H'(Rps) = H}(Lps) ®
H!(Rps). Because the triple cup product vanishes on each summand, one sum-
mand must have rank 1 and the other rank 2; by varying the orientations, we
may interchange them. Because S® < T3 < 53, we deduce in either case that
J(T3,5;£Ts) = 0. As we saw in Example 3.7, this means that for any subspace
A C HY(T?) of rank 1 or 2, we have d(T?,s; M) = 0.

On the other hand, let X be a homology S' x 53 obtained as the mapping torus of
a self-diffeomorphism of Y = T'3. (Such manifolds play a key role in the construction
of the Cappell-Shaneson homotopy spheres [2,3].) Then H}(Lgs) = Hy(Rys) = 0.
From Example 3.7, we deduce that d(X,y) = d(—X, —y) = 2. Hence, X does not
admit any d-symmetric cross-section. (Of course, because any cross-section of X
admits a degree 1 map to T and therefore has nonvanishing triple cup product,
cross-sections of the form @ # n(S! x S?) are automatically excluded.)

5. APPLICATIONS TO KNOTTED SPHERES

In this section, we use the invariants defined above to study Seifert surfaces for
2-knots in S*. Given a smoothly embedded, oriented 2-sphere ¥ in S*, a Seifert
surface is a smoothly embedded, compact, connected, oriented 3-manifold with
boundary Y. Let X () denote the surgered manifold S* \ nbd(X) U (D3 x S1),
which is a homology S* x S3. Any Seifert surface of ¥ can be capped off to be
a cross-section of X (X). (In a slight abuse of notation, if ¥ \. B? occurs as a
Seifert surface of ¥, we will sometimes say that ¥ has Y as a Seifert surface.) The
homology class y of a capped-off Seifert surface Y in H3(X) is determined by the
orientation of ¥; therefore, we define d(X) = d(X(X),y), which is an invariant of
the smooth isotopy class of 2.

Licensed to Brandeis Univ. Prepared on Thu Jul 2 08:14:03 EDT 2020 for download from IP 209.6.138.186.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HEEGAARD FLOER INVARIANTS IN CODIMENSION ONE 3079

Let X7 denote ¥ with reversed orientation, and let £ denote the image of ¥
under a reflection of S*. If Y C X(X) is a capped-off Seifert surface for 3, then

d(2") = d(X (%), ~y),
d(2) = d(=X(2),y),
d(Z") = d(-X (%), ~y).

The four numbers d(X), d(X7), d(X), and d(X") may a priori all be different. We say
that ¥ is invertible, positive amphicheiral, or negative amphicheiral if 3 is smoothly
isotopic to X7, ¥, or X7, respectively; the d invariant can thus be used to obstruct
such symmetries. Moreover, the symmetries from Proposition 1.2 each translate to
a symmetry of the 2-knot invariants. For instance, if ¥ has a Seifert surface Y that

is d-symmetric, then
(5.1) d(X) = —d(Z") and d(X7) = —d(D).

In particular, if ¥ is a ribbon knot (i.e., bounds an immersed 3-ball with ribbon
singularities), a theorem of Yanagawa [39] states that ¥ has a Seifert surface dif-
feomorphic to #n(S* x S?) \ B3 for some n; it follows that

dX)=d(X") =d(Z)=d(Z") =0
Likewise, if ¥ is a fibered 2-knot with capped-off fiber Y, then
dX)=d(E) =d(Y,sx;Hy) and d(X7)=d(E") =d(-Y,sx;Hy).
Example 5.1. If ¥ is the 5-twist-spin of the right-handed trefoil, then ¥ has the
Poincaré homology sphere as a fiber [32, p. 306]. Hence, d(¥) = d(¥) = 2 and
d(X") = d(X") = —2. We deduce that ¥ is neither reversible (which was also proven
by Gordon [6]) nor negative amphicheiral.

Example 5.2. Let X be the 6-twist-spin of the right-handed trefoil K and let Y
be the fiber which is the 6-fold cyclic branched cover of K. As explained in [32, p.
307], Y can be obtained by (0, 0) surgery on the positive Whitehead link or, equiv-
alently, by (0,0, —1) surgery on the Borromean rings. (Hence, ¥ has an alternate
description as the circle bundle of Euler number —1 over the torus.) Likewise,
—Y can be obtained by (0,0, 1) surgery on the Borromean rings. Let s denote the
unique torsion spin® structure on Y. Ozsvath and Szabé [25, Lemma 8.7] proved
that d(—Y,s;H_y) = —1, and therefore d(X") = —2. A very similar computation
(following the proofs of [25, Lemmas 8.6 and 8.7]) shows that d(Y,s;Hy) = 1, so
d(¥) = 0. By (1.2), it follows that ¥ does not have any Seifert surface that is
d-symmetric, such as any manifold of the form Q # n(S* x S?).

Remark 5.3. Just as with classical knots, the degree of the Alexander polynomial
A(X) provides a lower bound on by of any Seifert surface for ¥. In particular, if
¥ admits a Seifert surface that is a rational homology sphere, then A(X) = 1. Tt
would thus be interesting to find a 2-knot ¥ with A(X) = 1 that fails to satisfy
(5.1) and therefore does not admit a rational homology sphere Seifert surface. (We
do not know of any other such obstruction.)
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