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HEEGAARD FLOER INVARIANTS IN CODIMENSION ONE

ADAM SIMON LEVINE AND DANIEL RUBERMAN

Abstract. Using Heegaard Floer homology, we construct a numerical invari-
ant for any smooth, oriented 4-manifold X with the homology of S1 × S3.
Specifically, we show that for any smoothly embedded 3-manifold Y represent-
ing a generator of H3(X), a suitable version of the Heegaard Floer d invariant
of Y , defined using twisted coefficients, is a diffeomorphism invariant of X. We
show how this invariant can be used to obstruct embeddings of certain types
of 3-manifolds, including those obtained as a connected sum of a rational ho-
mology 3-sphere and any number of copies of S1 × S2. We also give similar
obstructions to embeddings in certain open 4-manifolds, including exotic R4s.

1. Introduction

A powerful way to study a nonsimply connected manifold X is to look at in-
variants of a codimension one submanifold Y dual to an element of H1(X). This
idea goes back to work of Pontrjagin, Rohlin, and Novikov in the 1950s and 1960s
exploring “codimension 1 (and higher) signatures” (see [24, 31]). In dimension
4, if X has the homology of S1 × S3, then the Rohlin invariant of a submani-
fold Y representing a generator of H3(X), with spin structure induced from X,
is a diffeomorphism invariant of X [33]. (We call Y a cross-section of X.) This
invariant has interpretations in terms of Seiberg–Witten theory [21] and conjec-
turally in terms of Yang–Mills theory [34–37]. More recently, Frøyshov [5] observed
that if X has a cross-section Y that is a rational homology 3-sphere, the invari-
ant h(Y, sX) ∈ Q associated to the unique Spinc structure sX on Y induced from
X, which is defined using monopole Floer homology, is also a smooth invariant
of X. Frøyshov’s argument uses only the rational homology cobordism invariance
property of h(Y, sX), so it applies verbatim to the version of h(Y, sX) defined by
Kronheimer and Mrowka [13, §39.1] (presumed, but not known, to be equal to
Frøyshov’s) and the similarly defined Heegaard Floer correction term d(Y, sX) [25].
In this paper, we extend the range of the Heegaard Floer invariant to an arbitrary
smooth 4-manifold X with the homology of S1 ×S3, without the requirement that
X admit a rational homology sphere cross-section. Note that this is a nontrivial
restriction; for instance, the Alexander polynomial obstructs the existence of such
cross-sections.

The definition of the correction term d(Y, s) for a rational homology sphere Y
relies on the fact that HF∞(Y, s) is isomorphic to F[U,U−1]. (Here F denotes the
field of two elements.) In our earlier work [15, 16], we showed how to extend the
definition of the correction terms for manifolds with b1(Y ) > 0 for which HF∞(Y, s)
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is “standard”. (Here, s is assumed to be a torsion spinc structure.) Work of Lidman
[17] shows that this condition holds whenever the triple cup product on H1(Y ;Z)
vanishes identically. However, an arbitrary 4-manifold X with the homology of
S1 × S3 need not have any cross-section with standard HF∞.

In the present paper, we use a further generalization of the correction terms.
For any subspace A of H1(Y ) on which the triple cup product vanishes, we show
in Theorem 3.1 that the twisted Heegaard Floer homology group HF∞(Y, s;MA)
with coefficients in MA = F[H1(Y )/A] is standard in a suitable sense, allowing us
to define a twisted correction term d(Y, s;MA). (The case where A = 0 has been
studied by Behrens and Golla [1].) When Y is a cross-section of X, we identify
a particular such subspace by studying the cohomology of the infinite cyclic cover
X̃. Our main result, which is stated more precisely below as Theorem 4.10, is as
follows.

Theorem 1.1. Let X be a homology S1 × S3, and let Y be any cross-section of
X representing a fixed generator y of H3(X). Then the correction term of (Y, sX),
suitably normalized, is independent of the choice of Y . Thus, we obtain an invariant
d̃(X, y), which depends only on the diffeomorphism type of X and the choice of
generator y ∈ H3(X).

In principle, the invariant d̃(X, y) could be used to detect exotic smooth struc-
tures on S1 × S3, but we do not know of any candidates.

A more tractable application comes from the behavior of d̃(X, y) under reversing
either the orientation of X or the choice of generator of H3(X). In general, the

four numbers d̃(±X,±y) are a priori unrelated to each other, so they can obstruct
the existence of symmetries that reverse the orientations of X or Y . Moreover, in
Section 3.3 we describe a class of 3-manifolds which are called d-symmetric; this
includes any manifold of the form Q# n(S1 × S2), where Q is a rational homology
sphere and n ≥ 0. The following proposition describes some further symmetries of
the invariants d̃(±X,±y).

Proposition 1.2. Let X be a homology S1 × S3.

• If X has a cross-section that is a rational homology sphere, then

(1.1) d̃(X, y) = d̃(−X, y) = −d̃(X,−y) = −d̃(−X,−y).

• If X has a cross-section that is d-symmetric, then

(1.2) d̃(X, y) = −d̃(−X,−y) and d̃(−X, y) = −d̃(X,−y).

• If X is the mapping torus of a diffeomorphism φ : Y → Y , then

(1.3)
d̃(X, y) = d̃(−X, y) = d(Y, sX) +

b1(Y )

2
,

d̃(X,−y) = d̃(−X,−y) = d(−Y, sX) +
b1(Y )

2
,

where d denotes the twisted correction term defined by Behrens and Golla
[1].

In particular, the failure of (1.1) or (1.2) for a given 4-manifold X enables us
to obstruct the existence of particular types of cross-sections in X. In Section 5,
we apply this obstruction to the study of 3-dimensional Seifert surfaces for knotted
2-spheres in S4.
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The proof of Theorem 1.1 relies on examining the lift of a cross-section of X to
the infinite cyclic cover X̃. In fact, our techniques are more general; we consider
a d invariant associated to any open 4-manifold X̃ satisfying certain homological
properties similar to those of an infinite cyclic cover and any embedded 3-manifold
Y representing a generator of H3(X̃), which we also call a cross-section. While this
quantity depends on the choice of Y and not just its homology class, we prove an
inequality relating the invariants of disjoint cross-sections, which implies Theorem
1.1 in the case where X̃ is actually the Z cover of a homology S1×S3. In the general
case, the inequality still gives interesting restrictions on the types of cross-sections
that can occur. As one application (Example 4.12), we construct an exotic R4 that
has no d-symmetric 3-manifold sufficiently far out in its end. In his forthcoming
Ph.D. thesis, Mckee Krumpak has shown that results analogous to those of this
paper hold in the setting of monopole homology [13].

2. The surgery formula

In this section, we state a twisted version of the mapping cone formula for the
Heegaard Floer homology of surgeries on knots. This formula is known to experts
but does not appear in the literature; the proof is a straightforward generalization of
Ozsváth and Szabó’s original integer surgery formula [29]. We will use this formula
in Section 3 in order to prove that HF∞ with appropriately twisted coefficients has
a standard form.

2.1. Heegaard Floer preliminaries. Throughout the paper, all Heegaard Floer
homology groups are taken over the ground field F = Z/2Z. Singular and simplicial
homology and cohomology groups are taken with coefficients in Z unless otherwise
specified.

We first provide a brief overview of Heegaard Floer homology with twisted co-
efficients. See Ozsváth–Szabó [27] for the original definition and Jabuka–Mark [11]
for an excellent exposition. Here we emphasize two aspects of the theory that will
be needed later: passing from HF+ to HF∞ via the U–completed version HF∞ and
the behavior of the coefficient modules under cobordism maps.

Let Y be a closed, connected, oriented 3-manifold, and let s be a spinc struc-
ture on Y . Let HY = F[H1(Y )]; this can be identified with the ring of Laurent
polynomials in b1(Y ) variables.1 Associated to (Y, s), there are chain complexes
CF−(Y, s;HY ), CF

∞(Y, s;HY ), and CF+(Y, s;HY ) over HY [U ], well-defined up to
chain homotopy equivalence, which fit into a short exact sequence

(2.1) 0 → CF−(Y, s;HY )
ι−→ CF∞(Y, s;HY )

π−→ CF+(Y, s;HY ) → 0.

We use CF◦(Y, s;HY ) to refer to any of the three complexes (or, by abuse of nota-
tion, the exact sequence relating them). Note that CF◦(Y, s;HY ) always has a rela-
tive Z–grading, which multiplication by U drops by 2. If s is torsion, multiplication
by any element of HY preserves this grading, and the grading lifts to an absolute Q–
grading. (When s is nontorsion, one must put a nontrivial grading on HY to define
the relative Z–grading, but we shall focus on torsion spinc structures throughout the
paper.) If M is any HY –module, then let CF◦(Y, s;M) = CF◦(Y, s;HY ) ⊗HY

M ;

1The ring HY is called RY in [11]; we use the notation HY to avoid confusion with the manifold
RY in Section 4.
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these groups fit into a short exact sequence just like (2.1).2 The homology groups
are denoted by HF◦(Y, s;M) and fit into a long exact sequence

(2.2) · · · → HF−(Y, s;M)
ιM−−→ HF∞(Y, s;M)

πM−−→ HF+(Y, s;M) → . . . .

(We will frequently omit the subscripts from ιM and πM unless they are needed for
clarity.)

Any element ζ ∈ H1(Y ) induces a degree −1, HY [U ]–linear chain map

Aζ : CF◦(Y, s;HY ) → CF◦(Y, s;HY ),

which is well-defined up to chain homotopy. Let AM
ζ denote the induced map on

CF◦(Y, s;M). These induce an action of Λ∗(H1(Y )/Tors)⊗HY [U ] on HF◦(Y, s;M).
Moreover, following [11, Remark 5.2], define

ZM = {α ∈ H1(Y ) | αm = m ∀m ∈ M},(2.3)

Z⊥
M = {ζ ∈ H1(Y ) | 〈α, ζ〉 = 0 ∀α ∈ ZM}.(2.4)

For any ζ ∈ Z⊥
M , AM

ζ is chain-homotopic to 0. Thus, the H1 action descends to an

action of Λ∗(H1(Y )/Z⊥
M )⊗HY [U ].

If A is a subspace of H1(Y ) such that H1(Y )/A is torsion-free (i.e., a direct
summand of H1(Y )), let MA = F[H1(Y )/A], viewed as an HY –module via the
quotient map. Concretely, if α1, . . . , αn are a basis for H1(Y ) such that A =
Span(α1, . . . , αk) and ti ∈ HY corresponds to αi, then

MA = HY /(t1 − 1, . . . , tk − 1).

Moreover, ZMA
= A and Z⊥

M = A⊥, and H1(Y )/A⊥ is naturally isomorphic to the
dual of A.

Ignoring the HY –module structure and the H1 action, we note the following
basic fact.

Lemma 2.1. Let Y be a closed, oriented 3-manifold, s a torsion spinc structure
on Y , and A ⊂ H1(Y ) a direct summand of rank k. Then HF∞(Y, s;MA) is a free,
finitely generated F[U,U−1]–module with rank at most 2k.

Proof. Ozsváth and Szabó [27, Theorem 10.12] proved the k = 0 case:

HF∞(Y, s;HY ) ∼= F[U,U−1],

where every element of H1(Y ) acts by the identity. Thus, assume k > 0. Up to
an overall shift, assume that HF∞(Y, s;HY ) is supported in even integer gradings.
Consider the universal coefficient spectral sequence for changing coefficients from
HY to MA. The E2 page satisfies

E2
p,q = TorHY

p (HF∞(Y, s;HY ),MA)

=

{
F(

k
p) q even,

0 q odd.

For each s ∈ Z, by summing over all p, q with p + q = s, we thus deduce that
dimF HF∞

s (Y, s;MA) ≤ 2k−1. Choose bases (over F) for the summands in grading

2We will not be focusing on nontorsion spinc structures in this paper, but the fact that
CF◦(Y, s;HY ) is relatively Z–graded (and not just Z/2dZ–graded for some d > 0) is one of the
advantages of twisted coefficients in other settings. Moreover, depending on the choice of M , the
Z–grading sometimes descends to CF◦(Y, s;M) even when s is nontorsion. See [11, §3] for a nice
discussion.
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0 and 1; since HF∞(Y, s;MA) is relatively Z-graded, these combine to give a basis
for HF∞(Y, s;MA) over F[U,U

−1]. �

In the proof of the surgery formula (Theorem 2.3) below, we will need to pass
from a result about HF+ to a result about HF∞. This is best done by first consid-
ering the U -completed version, introduced in [18]. Define

CF∞(Y, s;M) = CF∞(Y, s;M)⊗F[U,U−1] F[[U,U
−1].

Denote the homology of this complex by HF∞(Y, s;M). Because F[[U,U−1] is flat
over F[U,U−1], we have

(2.5) HF∞(Y, s;M) ∼= HF∞(Y, s;M)⊗F[U,U−1] F[[U,U
−1].

Because multiplication by U drops grading by 2, it can also be understood as a
grading-preserving map CF+(Y, s;M) → CF+(Y, s;M)[2].3 It is easy to see that
CF∞(Y, s;M) is isomorphic to the inverse limit of the directed system

. . .
U−→ CF+(Y, s;M)[−2]

U−→ CF+(Y, s;M)
U−→ CF+(Y, s;M)[2]

U−→ . . . .

For conciseness, we write

CF∞(Y, s;M) ∼= lim←−(CF+(Y, s;M), U).

There is therefore a short exact sequence

0 → lim←−
1(HF+(Y, s;M), U)∗−1 → HF∞

∗ (Y, s;M) → lim←−(HF+(Y, s;M), U)∗ → 0

(where the ∗ denotes the homological grading). The system (HF+(Y, s;M), U)
satisfies the Mittag-Leffler condition, since for all n sufficiently large, the image
of Un is equal to the image of π : HF∞(Y, s;M) → HF+(Y, s;M). (See, e.g.,
[38, Proposition 3.5.7].) Thus, the derived functor lim←−

1(HF+(Y, s;M), U) vanishes,

and we deduce that

(2.6) HF∞(Y, s;M) ∼= lim←−(HF+(Y, s;M), U).

For a nontorsion spinc structure s, HF∞(Y, s;M) does not generally determine
HF∞(Y, s;M); see [18, Section 2]. However, when s is torsion andM = MA for some
summand A ⊂ H1(Y ), the two theories are essentially interchangeable. Specifically,
by Lemma 2.1 and (2.5), HF∞(Y, s;MA) is a finitely generated, free F[[U,U−1]–
module whose rank (over F[[U,U−1]) is the same as the rank of HF∞(Y, s;MA) (over
F[U,U−1]). It is thus clear how to recover HF∞(Y, s;MA) from HF∞(Y, s;MA).
Moreover, the action of HY is grading-preserving, and the action of H1(Y ) drops
grading by 1, so these actions on HF∞(Y, s;MA) and HF∞(Y, s;MA) are readily
identified.

Next, we discuss the cobordism maps on twisted Heegaard Floer homology. If
W : Y → Y ′ is a cobordism between closed, connected, oriented 3-manifolds, con-
sider the exact sequence

(2.7) H1(∂W )
δW−−→ H2(W,∂W )

jW−−→ H2(W ),

and let K(W ) = im(δW ) = ker(jW ). The map δW makes F[K(W )] into an HY –HY ′

bimodule. Given an HY –module M , let M(W ) = M ⊗HY
F[K(W )]. Note that the

map jW is given by the intersection form on W ; if this form vanishes (meaning there

3We use the following convention: If C is a graded vector space and n ∈ Q, C[n] denotes the
graded vector space with C[n]k = Ck−n.
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are no classes in H2(W ) of nonzero square), then K(W ) = H2(W,∂W ). According
to [28, §2.7], for any spinc structure t on W , there is an induced map

(2.8) F ◦
W,t : HF◦(Y, tY ;M) → HF◦(Y ′, t|Y ′ ;M(W )),

which is an invariant of (W, t) up to multiplication by units in HY and HY ′ .
For future reference, let us describe F[K(W )] in the case where W is given by a

single handle attachment. To be precise, we assume that

W = Y × [0, 1] ∪ k-handle,

where the handle is attached along a (k − 1)–sphere in Y × {1} and k ∈ {1, 2, 3}.
(Note that any connected cobordism between connected 3-manifolds has a handle
decomposition with only 1-, 2-, and 3-handles.) In each of these cases, it is easy
to describe K(W ) as an HY –module. It is easier to work in terms of homology,
identifying the sequence (2.7) with

H2(∂W ) → H2(W ) → H2(W,∂W )

via Poincaré duality.

• When k = 1, the inclusion Y → W induces an isomorphism H2(Y ) →
H2(W ), and hence K(W ) = H2(W,∂W ) ∼= H1(Y ). Hence, for any HY –
module M , we have M(W ) ∼= M . Similarly, when k = 3, if we let t ∈ HY1

denote the Poincaré dual of the attaching sphere (which is assumed to be
nonseparating and therefore a primitive class), we see that F[K(W )] ∼=
HY1

/(t− 1), and therefore M(W ) ∼= M/(t− 1)M .
• When k = 2, let K ⊂ Y denote the attaching circle for the 2-handle. The
exact sequence on homology for the pair (W,Y ) gives

(2.9) 0 → H2(Y ) → H2(W ) → Z → H1(Y ),

where 1 ∈ Z maps to [K] ∈ H1(Y ).
If K is rationally null-homologous, let d > 0 denote its order in H1(Y ).

A capped-off rational Seifert surface for K produces a class [Ŝ] ∈ H2(W )
that maps to d ∈ Z in (2.9). Therefore, H2(W ) ∼= H2(Y ) ⊕ Z; the H2(Y )

summand is canonical, while the Z is generated by [Ŝ]. If the 2-handle is
attached along a multiple of the rational longitude for K (meaning that

the self-intersection of [Ŝ] is zero), then the map H2(Y
′) → H2(W ) is

surjective, soK(W ) ∼= H2(W,∂W ) ∼= H1(Y )⊕Z. We thus have F[K(W )] ∼=
HY [t, t

−1], and for any HY –module M , M(W ) ∼= M [t, t−1]. On the other

hand, if the self-intersection of [Ŝ] is nonzero, then the image of H2(Y
′) in

W agrees with the image of H2(Y ). Therefore, K(W ) ∼= H1(Y ) ∼= H1(Y ′),
and M(W ) ∼= M for any HY –module M .

If K represents a nontorsion element of H1(Y ), then the map H2(Y ) →
H2(W ) is an isomorphism, so K(W ) ∼= H1(Y ). In this case, however,
H1(Y ′) is smaller than H1(Y ); indeed, we may find an identification of
HY1

with HY2
[t, t−1].

2.2. The exact triangle with twisted coefficients. Throughout this section,
let Y be a closed, oriented 3-manifold, and let s be a torsion spinc structure on Y .
Let K ⊂ Y be a null-homologous knot, and let S be a Seifert surface for K.

For any integer m, let Wm be the m-framed 2-handle cobordism from Y to
Ym = Ym(K). Let Sm ⊂ Wm denote the capped-off Seifert surface; when m = 0,
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we may view this as lying in Y0. For any integer k, let tm,k denote the unique spinc

structure on Wm with

(2.10) tm,k|Y = s, 〈c1(tm,k), [Sm]〉+m = 2k,

and let sm,k = tm,k|Ym
. Additionally, let W ′

m denote Wm with reversed orientation,
viewed as a cobordism from Ym to Y .

As seen in the previous section, when m �= 0, we have a natural identification
HY

∼= HYm
, so we may view any HY –module M as an HYm

–module, and vice
versa, and M(Wm) ∼= M . Likewise, if we consider M as an HYm

module, then the
module induced on Y by W ′

m is again isomorphic to M . It follows that there are
maps

F ◦
Wm,tm,k

: HF◦(Y, s;M) → HF◦(Ym, sm,k;M),

F ◦
W ′

m,tm,k
: HF◦(Ym, sm,k;M) → HF◦(Y, s;M).

On the other hand, when m = 0, we have HY0
∼= HY [t

±1], and for any HY –
module M , M(W0) ∼= M [t±1]. Hence, for each k, we have a map

F ◦
W0,s0,k

: HF◦(Y, s;M) → HF◦(Y0, t0,k;M [t±1]),

which can then be extended to a map

F ◦
W0,s0,k

: HF◦(Y, s;M)[t±1] → HF◦(Y0, t0,k;M [t±1])

by the formula

F ◦
W0,s0,k

(x⊗ ti) = tiF ◦
W0,s0,k

(x).

When m �= 0, for each [k] ∈ Z/m, we define

HF◦(Y0, [sm,k];M) =
⊕

l≡k (mod m)

HF◦(Y0, s0,l;M).

A key property is that for m sufficiently large and |k| ≤ m
2 , the only non-zero

summand in this decomposition of HF+(Y0, [sm,k];M) is HF+(Y0, s0,k;M). The
following theorem is a slight generalization of [11, Theorem 9.1 and Proposition 9.3].

Theorem 2.2. Let Y be a closed, oriented 3-manifold, and let s be a torsion spinc

structure on Y . Let K ⊂ Y be a null-homologous knot, and let S be a Seifert surface
for K. Let M be a module for HY . For any integer m > 0 and any [k] ∈ Z/m,
there is a sequence of HY [t

±1]⊗ F[U ]–linear maps:

(2.11) HF+(Ym(K), sm,k;M)[t±1]
F �� HF+(Y, s;M)[t±1]

G
�����

���
���

���

HF+(Y0(K), [sm,k];M [t±1])

H

����������������

Moreover, up to an overall power of t, the map F appearing in (2.11) is given by

(2.12) F =
∑

l≡k (mod m)

F+
W ′

m,tm,l
⊗ t�l/m	.
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2.3. The mapping cone. Let CFK∞(Y,K;HY ) denote the totally twisted knot
Floer complex of (Y,K) with coefficients, coming from a doubly pointed Heegaard
diagram (Σ,α,β, w, z). This is generated by tuples [x, i, j] with j−i = A(x), where
A(x) is the Alexander grading of x, with differential given by

∂[x, i, j] =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
μ(φ)=1

#M̂(Φ)eA(φ)[y, i− nw(φ), j − nz(φ)],

where A is the additive assignment used for defining twisted coefficients. Define an
action of F[U,U−1] on C by U · [x, i, j] = [x, i − 1, j − 1]. Fix an HY –module M ,
and let C = CFK∞(Y,K;M) = CFK∞(Y,K;HY ) ⊗HY

M . Let C = C ⊗F[U,U−1]

F[[U,U−1].
Note that C can be identified as either CF∞(Σ,α,β, w;M) or CF∞(Σ,α,β, z;M)

by ignoring either j or i respectively. There is thus a chain homotopy equivalence
Φ: C → C which takes C{j < s} into C{i < s} for any s and therefore descends
to a homotopy equivalence C{j ≥ s} → C{i ≥ s}. (Note that there is no control
on how Φ interacts with the second filtration on each complex.) The map Φ also
extends naturally to C.

For each s ∈ Z, let A+
s = C{max(i, j − s) ≥ 0}, and let B+ = C{i ≥ 0} =

CF+(Y, s;M). Define maps

v∞s , h∞
s : C → C

as follows: v∞s is the identity, and h∞
s is multiplication by Us followed by Φ. It is

easy to verify that these maps descend to

v+s , h
+
s : A+

s → B+,

defined just as in [29]. (That is, v+s is the projection onto C{i ≥ 0}, and h+
s is the

projection onto C{j ≥ s}, followed by multiplication by Us to identify this with
C{j ≥ 0}, followed by Φ.)

Let

D∞
0,s : C[t±1] → C[t±1]

be the map of HY [t
±1]⊗ F[U,U−1]–modules given by

D∞
0,s = v∞s + t · h∞

s = 1 + tUsΦ.

This descends to a map

D+
0,s : A+

s [t
±1] → B+[t±1],

given by

D+
0,s = v+s + t · h+

s .

Let X+
0,s (resp. X

∞
0,s) denote the mapping cone of D+

0,s (resp. D
∞
0,s). Let X

∞
0,s be the

U -completion of X∞
0,s, which can be viewed as the mapping cone of the extension

of D∞
0,s to C[t±1]. Clearly, lim←−(X+

0,s, U) = X∞
0,s.

The surgery formula then states the following.

Theorem 2.3. For any s ∈ Z, there are isomorphisms of relatively graded HY ⊗
F[U ]–modules

H∗(X
+
0,s)

∼= HF+(Y0, s0,s;M [t±1]),(2.13)

H∗(X
∞
0,s)

∼= HF∞(Y0, s0,s;M [t±1]).(2.14)
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If M = MA for some summand A ⊂ H1(Y ) and s = 0, we also have

(2.15) H∗(X
∞
0,0)

∼= HF∞(Y0, s0,0;M [t±1]).

Moreover, under each isomorphism, the map

F ◦
W0,t0,s

: HF◦(Y, s;M)[t±1] → HF◦(Y0, s0,s;M [t±1])

is given (up to a power of t) by the inclusion of the subcomplex B◦ ⊂ X◦
0,s.

Proof. We begin with (2.13). Just as in the untwisted case, the large surgery
formula, states that for m sufficiently large and |s| ≤ m/2, there is an identification
of A+

s with CF+(Ym(K), sm,s;M) such that the maps v+s and h+
s compute F+

W ′
m,tm,s

and F+
W ′

m,tm,s+m
, respectively. (See [26, Theorem 4.4] or [29, Theorem 2.3]; the

proof goes through identically with coefficients in M .) Just as in [29], we use the
procedure of “truncation” applied to the surgery exact sequence of Theorem 2.2 to
obtain (2.13). Taking inverse limits and using (2.6) yields (2.14).

The proof of (2.15) follows just as in [17, Lemma 4.10], using Lemma 2.1 to
observe that HF∞ is finitely generated and free over F[U,U−1]. �

We also describe the H1 action. For any ζ ∈ H1(Y ), the induced chain map
Aζ : C → C commutes with the differential on C and commutes up to homotopy
with Φ: say AζΦ + ΦAζ = ∂Hζ + Hζ∂. We may then extend Aζ to X∞

0,s by the
formula

Ãζ(a, b) = (Aζ(a), tU
sHζ(a) +Aζ(b)),

which descends to X+
0,s. These maps give an action of Λ∗(H1(Y )/Z⊥

M ) on H∗(X
◦
0,s).

Moreover, there is an easy identification

H1(Y )/Z⊥
M

∼= H1(Y0)/Z
⊥
M [t±1].

Following through the proof of Theorem 2.3, it is not hard to see that these chain
maps Ãζ agree with the H1 action on HF+(Y0, s0,s;M [t±1]). (See [9, Section 4.2].)
We do not need to worry about defining a chain map associated to the homology
class of the meridian of K in H1(Y0), since its action on HF+(Y0, s0,s;M [t±1]) is 0.

For the purposes of this paper, the most important consequence of the preceding
discussion is the following.

Proposition 2.4. Let Y be a closed, oriented 3-manifold, let s be a torsion spinc

structure on Y , and let M be a finitely generated HY –module. Let K be a null
homologous knot in Y , let W be the 2-handle cobordism from Y to Y0(K), let t0 be
the torsion extension of s to W , and let s0 = t0|Y0(K). Then the map

F∞
W,t0 : HF∞(Y, s;M) → HF∞(Y0(K), s0;M [t±1])

is an isomorphism.

Proof. We apply Theorem 2.3. Let C = CFK∞(Y,K;M) denote the doubly filtered
knot Floer complex of (Y,K) with coefficients in M , and let Φ: C → C denote
the homotopy equivalence discussed above. The surgery formula then says that
HF∞(Y0, s0;M [t±1]) can be computed as the mapping cone of

(1 + tΦ): C[t±1] → C[t±1],

and the map F∞
W,t is given (up to a power of t) by the inclusion of C into the second

copy of C[t±1]. From this description, it is easy to see that HF∞(Y0, s0;M [t±1]) ∼=
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HF∞(Y, s;M), where the action of t is given by Φ−1
∗ , and that F∞

W,t is an isomor-
phism. �

Remark 2.5. Following [30], we may adapt the results of this section (specifically
Proposition 2.4) to the case where K is merely a rationally null homologous knot,
representing a class of order d > 1 in H1(Y ). Assume that K has trivial self-linking,
so that it has a well-defined 0-framing. We briefly sketch the necessary modifications
to the surgery formula, leaving details to the reader. The set of relative spinc

structures for K, Spinc(Y,K), forms an affine set for H2(Y,K). Spinc structures
on Y0(K) then correspond to the orbits of the action of PD[Kλ], the Poincaré
dual of the 0-framed pushoff of K, each of which has d elements. The relative
spinc structures also correspond naturally with spinc structures on the 2-handle
cobordism W0(K).

Associated to each ξ ∈ Spinc(Y,K), there is a doubly filtered complex Cξ =
CFK∞(Y,K, ξ;M) and quotients A+

ξ and B+
ξ (see [30] for all definitions). We also

have maps

v∞ξ : Cξ → Cξ, h∞
ξ : Cξ → Cξ+PD[Kλ],

which induce

v+ξ : A+
ξ → B+

ξ , h∞
ξ : A+

ξ → B+
ξ+PD[Kλ]

,

defined similarly to the above. Specifically, v∞ξ is the identity, and h∞
ξ is a homotopy

equivalence induced by Heegaard moves.
Suppose {ξ1, . . . , ξd} is the orbit corresponding to a torsion spinc structure s0

on Y0, where ξi+1 = ξ +PD[Kλ] (indices modulo d). Let si be the (absolute) spinc

structure on Y extending ξi, and let ti be the spinc structure on W0 corresponding
to ξi. Write Ci for Cξi and Φi for h∞

ξi
. The twisted mapping cone that computes

HF∞(Y0, s0;M [t±1]) has the form

C1[t
±1]

1

��

Φ1

����
��

��
��

�
C2[t

±1]

1

��

Φ2

���
��

��
��

��
�

. . .

Φd−1

���
��

��
��

��
Cd[t

±1]

1

��

��

��

t·Φd

��
��

C1[t
±1] C2[t

±1] . . . Cd[t
±1]

Up to isomorphism, it doesn’t matter which of the Φi arrows comes with a power
of t; the important point is that exactly one of them does. The map

F∞
W0,ti : HF∞(Y, si;M) → HF∞(Y0, s0;M [t±1])

is given (up to a power of t) by the inclusion of Ci in the bottom row. Just as in
the proof of Proposition 2.4, we deduce that this map is an isomorphism. We will
make use of this generalization in Section 4.

3. Twisted correction terms

In this section, we define the twisted correction terms. Throughout, let Y be
a closed, oriented 3-manifold, and let A ⊂ H1(Y ) be a direct summand on which
the triple cup product vanishes. As above, let HY = F[H1(Y )], and let MA =
F[H1(Y )/A], viewed as an HY –module.
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3.1. Construction of the invariants. To begin, we show that HF∞(Y, s;MA) is
standard, in the following sense.

Theorem 3.1. Let Y be a closed, oriented 3-manifold, and let s be a torsion spinc

structure on Y . Let A ⊂ H1(Y ) be a direct summand on which the triple cup
product vanishes, and let MA = F[H1(Y )/A]. Then

HF∞(Y, s;MA) ∼= Λ∗(A)⊗ F[U,U−1]

as a Λ∗(H1(Y )/A⊥) ⊗ F[U,U−1]–module (where the action of Λ∗(H1(Y )/A⊥) on
Λ∗(A) is induced from the natural action of Λ∗(H1(Y )/Tors) on Λ∗(H1(Y ))).

Proof. We induct on the rank of H1(Y )/A, starting with the extremal case when
A = H1(Y ) and the triple cup product on H1(Y ) vanishes identically. The state-
ment in this case follows from [17], as explained in [15, Theorem 3.2].

For the induction, assume that H1(Y )/A �= 0. Let J ⊂ Y be a knot representing
a primitive homology class in A⊥ ⊂ H1(Y ) such that 〈β, [J ]〉 = 1 for some β ∈
H1(Y )� A. Let Z be obtained by surgery on J with some arbitrary framing, and
let K ⊂ Z denote the core of the surgery solid torus, so that Y = Z0(K). Let W
be the 2-handle cobordism from Z to Y , and let ιY : Y → W and ιZ : Z → W be
the inclusions.

The map ι∗Z : H1(W ) → H1(Z) is an isomorphism, and ι∗Y ◦ (ι∗Z)
−1 restricts

to an injection on A. Let A′ ⊂ H1(Z) be the image of this restriction, and let
MA′ = F[H1(Z)/A′]. Then MA

∼= MA′(W ) ∼= MA′ [t±1]. Also, let s′ be the
restriction to Z of the unique spinc structure on W that extends s.

By the induction hypothesis,

HF∞(Z, s′;MA′) ∼= Λ∗(A′)⊗ F[U,U−1]

as a Λ∗(H1(Z)/A′⊥)⊗F[U,U−1]–module. The result then follows from Proposition
2.4. �

Remark 3.2. As noted in the proof of Lemma 2.1 above, the other extremal case of
Theorem 3.1 was proven by Ozsváth and Szabó [27, Theorem 10.12]: when A = 0,
the totally twisted homology satisfies

HF∞(Y, s;HY ) ∼= F[U,U−1].

Remark 3.3. Note that Theorem 3.1 does not describe the structure of
HF∞(Y, s;MA) as an HY –module. The action of any element of H1(Y ) is a
grading-preserving automorphism of HF∞(Y, s;MA) that commutes with the action
of Λ∗(H1(Z)/A⊥)⊗ F[U,U−1], but in principle this map need not be the identity.

We may now define the d invariant that we use below, which is analogous to the
dtop invariant defined in [16, Definition 3.3]. We make use of notation from [15].
First, given any finitely generated, free abelian group V and any Λ∗(V )–module
N , define QV (N) = N/(V · N) and KV (N) = {n ∈ N | v · n = 0 ∀v ∈ V } (i.e.,
the quotient and kernel of the action of V , respectively). We sometimes omit the
superscripts if they are understood from context.

Definition 3.4. Let Y be a closed, oriented 3-manifold, s a torsion spinc structure,
and A ⊂ H1(Y ) a subspace on which the triple cup product vanishes. Let

π : HF∞(Y, s;MA) → HF+(Y, s;MA)
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denote the canonical map. Then there are isomorphisms

QH1(Y )/A⊥
(HF∞(Y, s;MA)) ∼= F[U,U−1],(3.1)

QH1(Y )/A⊥
(im(π)) ∼= F[U,U−1]/UF[U ],(3.2)

such that the induced map

π̄ : QH1(Y )/A⊥
(HF∞(Y, s;MA)) → QH1(Y )/A⊥

(im(π))

is the natural projection. The correction term d(Y, s;MA) ∈ Q is defined as
minimal grading in which π̄ is nontrivial or, equivalently, as the grading of 1 ∈
F[U,U−1]/UF[U ] under the identification (3.2). The shifted correction term is de-
fined as

(3.3) d̃(Y, s;MA) = d(Y, s;MA)− rank(A) +
b1(Y )

2
.

If H2(Y ) is torsion-free, so that Y has a unique torsion spinc structure, we some-
times omit s from the notation.

When A = H1(Y ) (so that MA = F) and the triple cup product vanishes iden-
tically, d(Y, s;F) = dtop(Y, s). When A = 0 (so that MA = HY ), d(Y, s;HY ) is
precisely the invariant d defined by Behrens and Golla [1].

Example 3.5. When Y = S1×S2, it is easy to compute directly from a Heegaard
diagram that

d(Y ;F) =
1

2
, d̃(Y ;F) = 0,

d(Y ;HY ) = −1

2
, d̃(Y ;HY ) = 0.

Example 3.6. If Y is obtained by 0-surgery on a knot K ⊂ S3, then d̃(Y ;F)

and d̃(Y ;HY ) are both determined by the knot Floer complex of K. Specifically,
combining [1, Example 3.9], [25, Proposition 4.12], and [23, Proposition 1.6], we
have

d̃(Y ;F) = d(Y ;F)− 1

2
= dtop(Y )− 1

2
= d(S3

1(K)) = −2V0(K),(3.4)

d̃(Y ;HY ) = d(Y ;HY ) +
1

2
= dbot(Y ) +

1

2
= d(S3

−1(K)) = 2V0(K̄),(3.5)

where V0 is a nonnegative integer invariant defined by Ni and Wu [23, Section 2.2],
and K̄ denotes the mirror of K. (The second inequality in (3.5), proven by Behrens
and Golla, is special to the case of 0-surgery on knots in S3.)

In particular, if K is either the right-handed trefoil T2,3 or its positive, untwisted
Whitehead double D(T2,3), then V0(K) = 1 and V0(K̄) = 0. The statement for
T2,3 is a straightforward computation; the statement for D(T2,3) follows from the
fact that CFK∞(D(T2,3)) is isomorphic to CFK∞(T2,3) plus an acyclic summand
that does not affect V0 [8, Proposition 6.1]. Hence, if Y is obtained by 0-surgery
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on either of these knots, we have

d(Y ;F) = −3

2
, d̃(Y ;F) = −2,

d(Y ;HY ) = −1

2
, d̃(Y ;HY ) = 0,

d(−Y ;F) =
1

2
, d̃(−Y ;F) = 0,

d(−Y ;H−Y ) =
3

2
, d̃(−Y ;H−Y ) = 2.

(The results for 0-surgery on the trefoil were also proven earlier by Ozsváth and
Szabó [25].)

Example 3.7. Let T 3 denote the 3-torus. Because the triple cup product on
H1(T 3) is nonvanishing, the invariant d(T 3;MA) is only defined when rankA = 0,
1, or 2. When A = 0, [25, Proposition 8.5] shows that

d(T 3;HT 3) =
1

2
, d̃(T 3;HT 3) = 2.

On the other hand, we will see below in Example 4.14 that when rankA = 1 or
2, d̃(T 3;MA) = 0. Since any automorphism of H1(T 3) can be realized by a self-
diffeomorphism of T 3, it suffices to compute these invariants for a single subspace
A of either rank. Note also that T 3 admits orientation-reversing diffeomorphisms,
so the the same statements hold with either orientation on T 3.

3.2. Relation with untwisted invariants. We now describe the relationship be-
tween Definition 3.4 and the invariants defined in [15]. Suppose the triple cup
product on H1(Y ) vanishes identically, so that the untwisted homology group
HF∞(Y, s;F) is standard:

HF∞(Y, s;F) ∼= Λ∗H1(Y )⊗ F[U,U−1]

as a Λ∗(H1(Y )/Tors) ⊗ F[U,U−1]–module. In [15], we defined an “intermediate
correction term” d(Y, s, V ) associated to each subspace V ⊂ H1(Y ). In particular,
dtop(Y, s) = d(Y, s, {0}) and dbot(Y, s) = d(Y, s, H1(Y )). The two constructions are
related as follows.

Proposition 3.8. If the triple cup product on H1(Y ) vanishes identically, then for
each summand A ⊂ H1(Y ), we have

(3.6) d(Y, s;MA) ≤ d(Y, s, A⊥),

and therefore

d(Y, s;MA) ≤ dbot(Y, s) + rank(A),(3.7)

d̃(Y, s;MA) ≤ dbot(Y, s) +
b1(Y )

2
.(3.8)

(The case where A = 0 was proven by Behrens and Golla [1, Proposition 3.8].)

Proof. To begin, note that MA = F[H1(Y )/A] is a commutative ring with unit, not
just a module over HY , and the projection HY → MA is a ring homomorphism.
Let n = b1(Y ) and k = rankA; we assume n > 0. For concreteness, let a1, . . . , an
be a basis for H1(Y ) such that a1, . . . , ak are a basis for A. Let ζ1, . . . , ζn be the
dual basis for H1(Y )/Tors, so that A⊥ = Span(ζk+1, . . . , ζn).
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Let C∗ = CF∞(Y, s;MA), with differential denoted by ∂. As a simplification, let
us shift the homological grading on C∗ so that it lies in Z (rather than Z+q for some
rational number q). Furthermore, if A = 0, so that HF∞(Y, s;MA) ∼= F[U,U−1], we
assume that the nonzero groups are in even grading. If we consider F as an MA–
module, where each element of H1(Y )/A acts as the identity, then by definition,
Hq(C∗) = HF∞

q (Y, s;MA), while Hq(C∗ ⊗MA
F) = HF∞

q (Y, s).
Since the untwisted HF∞(Y, s) is standard, we have

Hq(C ⊗MA
F) ∼= F2n−1

.

By Theorem 3.1, if k = 0, we have

(3.9) Hq(C∗) ∼=
{
F q even,

0 q odd,

while if k > 0, we have

(3.10) Hq(C∗) ∼= F2k−1

for all q. As in Remark 3.3, right now we only know that the isomorphisms (3.9)
and (3.10) hold on the level of groups; we shall see shortly that they hold on the
level of MA–modules as well.

Consider the following commutative diagram:

(3.11) HF∞(Y, s;MA)
πMA ��

⊗1

��

HF+(Y, s;MA)

⊗1

��
HF∞(Y, s;MA)⊗MA

F
πMA

⊗1
��

g∞

��

HF+(Y, s;MA)⊗MA
F

g+

��
HF∞(Y, s;F)

πF �� HF+(Y, s;F)

Here πMA
and πF are the usual maps HF∞ → HF+, and g∞ and g+ are the natural

change-of-coefficient maps. As above, let KA⊥
HF∞(Y, s;F) denote the subspace of

HF∞(Y, s;F) consisting of all x ∈ HF∞(Y, s;F) for which ζ · x = 0 for all ζ ∈ A⊥,

and let J+(Y, s, A⊥) denote the image of the restriction of πF to KA⊥
HF∞(Y, s;F).

The invariant d(Y, s, A⊥) is defined to be the minimal grading in which the induced
map

π̄F : QH1(Y )/A⊥KA⊥
HF∞(Y, s;F) → QH1(Y )/A⊥

J+(Y, s, A⊥)

is nontrivial.

Claim 1. The upper-left vertical map in (3.11) is an isomorphism; equivalently, the
action of MA on HF∞(Y, s;MA) is trivial.

Claim 2. The map g∞ is injective with image equal to KA⊥
HF∞(Y, s;F).

Assuming these two claims, it follows that we have a commutative diagram

HF∞(Y, s;MA)
πMA ��

∼=
��

HF+(Y, s;MA)

��
KA⊥

HF∞(Y, s;F)
πF �� J+(Y, s, A⊥)
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which then descends to

QHF∞(Y, s;MA)
πMA ��

∼=
��

QHF+(Y, s;MA)

��
QKA⊥

HF∞(Y, s;F)
πF �� QJ+(Y, s, A⊥).

By comparing the definitions of the two d invariants, it is then easy to see that
(3.6) holds. Equations (3.7) and (3.8) then follow from [15, Proposition 3.4].

To prove Claims 1 and 2, we use the universal coefficients spectral sequence,
which we explain in some detail because morphisms of spectral sequences can be
confusing. To begin, take a free resolution of F as an MA–module:

0 ←− F
d0←− F0

d1←− F1
d2←− . . .

dn−k←−−− Fn−k ←− 0,

where Fp = M
(n−k

p )
A . Consider the complex

Cs =
⊕

p+q=s

Cq ⊗ Fp

(nonzero only when 0 ≤ p ≤ n− k) with differential Ds : Cs → Cs−1 given by

Ds =
∑

p+q=s

(−1)s∂q ⊗ dp.

Observe that Hs(C∗) ∼= Hs(C∗ ⊗MA
F) ∼= HF∞

s (Y, s;F).
The spectral sequence comes from considering the p filtration on C∗, so that the

differential on the Er has (p, q)–bigrading (−r, r − 1). The E1 page is given by

(3.12) E1
p,q

∼= Hq(C∗)⊗MA
Fp

∼= Hq(C∗)
(n−k

p ),

and the E2 page is given by

(3.13) E2
p,q

∼= TorMA
p (Hq(C∗),F).

In particular, in the p = 0 column, we have

(3.14) E1
0,∗

∼= HF∞(Y, s;MA) and E2
0,∗

∼= HF∞(Y, s;MA)⊗MA
F,

and the upper-left vertical map in (3.11) is the natural quotient map. Furthermore,
there is a filtration

(3.15) 0 = G−1
s ⊂ G0

s ⊂ G1
s ⊂ · · · ⊂ Gn−k

s = Hs(C∗)
so that

(3.16) E∞
p,q

∼= Gp
p+q/G

p−1
p+q ;

in particular, the p = 0 column E∞
0,∗ is identified with the subspace G0

∗. The map g∞

from (3.11) is given by the identification (3.14), followed by the successive quotients
taking E2

0,∗ → E∞
0,∗, followed by the inclusion of G0

∗ into H∗(C∗) ∼= HF∞(Y, s;F).
By (3.12), we have

(3.17) dimF E
1
p,q =

(
n− k

p

)
dimF Hq(C∗) =

⎧⎪⎨⎪⎩
(
n−k
p

)
k = 0, q even

0 k = 0, q odd(
n−k
p

)
2k−1 k > 0.
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Summing over p+ q = s, we see that∑
p+q=s

dimF E
1
p,q = 2n−1 = dimF Hs(C∗) =

∑
p+q=s

dimF E
∞
p,q,

which implies that the spectral sequence collapses at the E1 page. Looking in the
p = 0 column, we see that the successive quotient maps

E1
0,q → E2

0,q → · · · → E∞
0,q

are all isomorphisms, which proves Claim 1 and the injectivity statement of Claim 2.

It remains to identify G0
∗ with KA⊥

HF∞(Y, s;M). For each i = 1, . . . , n, there is
a chain map Aζi : C∗ → C∗−1; these give rise to the action of H1. As noted above,
the maps Aζk+1

, . . . ,Aζn are null-homotopic (see [11, Remark 5.2]), but they are
still defined on the chain level. Indeed, we extend each Aζi to a map on C∗ by
tensoring with the identity map on F∗. The maps Aζi∗ induced on the homology of
C∗ (which, as noted above, is isomorphic to HF∞(Y, s;F)) then generate the action
of Λ∗(H1(Y )/Tors) on HF∞(Y, s;F); that is, ζi · x = Aζi∗(x).

Moreover, the restriction of Aζi∗ to G0
∗ agrees with the action of ζi on

HF∞(Y, s;MA). For i = k + 1, . . . , n, this action vanishes, so

G0
q ⊂ KA⊥

q HF∞(Y, s;F)

for each grading q. Because HF∞(Y, s;F) is standard, we can see that

KA⊥
HF∞(Y, s;F) is a free F[U,U−1]–module with

rankF[U,U−1] KA⊥
HF∞(Y, s;F) =

1

2n−k
rankF[U,U−1] HF∞(Y, s;F) = 2k

since taking the kernel of each ζi for i = k+1, . . . , n cuts down the rank by a factor

of 2. If k = 0, then KA⊥
HF∞(Y, s;F) is a single tower, with 0 and F in alternating

gradings; otherwise, KA⊥
HF∞(Y, s;F) has dimension 2k−1 in each grading. By

(3.17), we see that

dimF KA⊥

q HF∞(Y, s;F) = dimF E
1
0,q = dimF G

0
q,

so G0
∗ = KA⊥

HF∞(Y, s;M) as required. �

Example 3.9. Although we do not know of an actual manifold Y for which equality
fails to hold in (3.6), this seems unlikely to be true in general. Figure 1 represents
the totally twisted complexes CF∞(Y, s;HY ) and CF+(Y, s;HY ) for a hypothetical
(Y, s) with b1(Y ) = 1. Writing HY = F[t±1], we view CF∞(Y, s;HY ) as a complex
over F[t±1, U±1] generated by a, b, c, d. A solid arrow represents a coefficient of 1
in the differential, a dashed arrow represents 1− t, and a dotted arrow represents
1 − t2 = (1 − t)2. The pattern repeats infinitely in both directions in CF∞ and
infinitely upward in CF+. The numbers at the left represent the Maslov gradings,
which we have chosen in analogy with S1 × S2.

Clearly, HF∞(Y, s;HY ) is isomorphic to F[U,U−1], generated as an F[t±1, U±1]–
module by (1 − t)b + Uc, with the relation (1 − t)((1 − t)b + Uc) = 0. Also,
HF+(Y, s;HY ) is generated as an F[t±1]–module by {Un((1− t)b+ Uc) | n ≤ −1}
along with b, with the relations that (1− t)Un((1− t)b+Uc) = 0 and (1− t)2b = 0.
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���
��

��
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���
�
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Figure 1. CF∞ (left) and CF+ (right) for a hypothetical manifold
(Y, s) with d(Y, s;HY ) < dbot(Y, s), as in Example 3.9.

We thus see that d(Y, s;HY ) = −1/2. (Notice that the short exact sequence

0 → im(π) → HF+(Y, s;HY ) → HF+
red(Y, s;HY ) → 0

does not split over HY , although it does split over F.)
On the other hand, we can also view the same figure as representing the un-

twisted complexes CF∞(Y, s;F) and CF+(Y, s;F). Now the solid arrows represent
the differential, the dashed arrows represent the chain map Aζ associated to a gen-
erator of H1(Y ), and the dotted arrows represent a chain null-homotopy of A2

ζ .

Here, HF∞(Y, s;F) is generated over F[U,U−1] by a and c, with c generating the
“bottom tower” KHY HF∞(Y, s;F). Also, HF+(Y, s;F) is generated as an F–module
by {Una, Unc | n ≤ 0} ∪ {b}. We therefore deduce that dbot(Y, s) = 3/2.

Moreover, it is not hard to modify the construction to make the difference
dbot(Y, s)− d(Y, s;HY ) arbitrarily large.

As noted above in Example 3.6, Behrens and Golla [1, Example 3.9] proved that
for any knot K ⊂ S3, d(S3

0(K)) = dbot(S
3
0(K)). Thus, a manifold for which (3.6) is

a strict inequality, as in the putative example just discussed, would not be homology
cobordant to 0-surgery on any knot in S3.

Remark 3.10. Proposition 3.8 implies that the twisted d invariants can in principle
give stronger constraints on intersection forms of 4-manifolds bounded by Y than
the untwisted d invariants from [15]. For instance, if Z is a negative semi-definite
4-manifold bounded by Y such that the restriction map H1(Z) → H1(Y ) is trivial
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and t is a spinc structure on Z whose restriction to Y is torsion, Ozsváth and Szabó
[25, Theorem 9.15] showed that

c1(t)
2 + b−2 (Z) ≤ 4dbot(Y, t|Y ) + 2b1(Y ),

and Behrens and Golla [1, Theorem 1.1] proved an analogous statement with
d(Y, t|Y ;HY ) in place of dbot(Y, t|Y ). The latter result is thus a potentially stronger
bound. Likewise, for any summand A ⊂ H1(Y ), it is not hard to prove a stronger
analogue of [15, Theorem 4.7] using d(Y, s;MA) in place of d(Y, s, A⊥) (where A is
chosen such that A⊥ = V ).

Definition 3.11. For a 3-manifold Y and a torsion spinc structure s on Y , we say
that (Y, s) is d-simple if the triple cup product on H1(Y ) vanishes identically (so
that HF∞(Y, s;F) is standard) and for every subspace A ⊂ H1(Y ), equality holds
in (3.8), i.e.,

(3.18) d̃(Y, s;A) = dbot(Y, s) +
b1(Y )

2
.

We say that Y is d-simple if (Y, s) is d-simple for each torsion spinc structure s

on Y .

If (Y, s) is d-simple, then for each A ⊂ H1(Y ), (3.6) is an equality, meaning that

d(Y, s, A⊥) = dbot(Y, s) + rank(A).

In other words, the untwisted d invariants of (Y, s) are simple in the sense of [15,
Corollary 3.5]. In particular, we have

dtop(Y, s) = dbot(Y, s) + b1(Y ),

and hence

(3.19) d̃(Y, s;MA) = dtop(Y, s)−
b1(Y )

2
.

3.3. Orientation reversal. Unlike with the original d invariant for rational ho-
mology spheres, Examples 3.5 and 3.6 show that d̃(Y, s;MA) does not determine

d̃(−Y, s;MA). The only relation between these quantities occurs in the extremal
cases where A = 0 or A = H1(Y ).

Proposition 3.12. Let Y be a closed, oriented 3-manifold and let s be a torsion
spinc structure on Y . Then

(3.20) d̃(Y, s;HY ) + d̃(−Y, s;H−Y ) ≥ 0.

If the triple cup product on H1(Y ) vanishes so that HF∞(Y, s;F) is standard, then

(3.21) d̃(Y, s;F) + d̃(−Y, s;F) ≤ 0.

Proof. Behrens and Golla [1, Proposition 3.7] showed that the totally twisted d
invariant is additive under connected sums; thus,

d(Y, s;HY ) + d(−Y, s;H−Y ) = d(Y #−Y , s# s;HY#−Y ).

Note that Y #−Y is the boundary of the 4-manifold Z = (Y �B3)× [0, 1], whose
intersection form vanishes identically. Applying [1, Theorem 1.1] (see Remark 3.10
above), we deduce that

0 ≤ d(Y #−Y , s# s;HY#−Y ) + b1(Y ).

This implies (3.20).

Licensed to Brandeis Univ. Prepared on Thu Jul  2 08:14:03 EDT 2020 for download from IP 209.6.138.186.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HEEGAARD FLOER INVARIANTS IN CODIMENSION ONE 3067

For the second statement, we have d(Y, s;F) = dtop(Y, s) by definition and
d(−Y, s;F) = dtop(−Y, s) = −dbot(Y, s) by [16, Proposition 3.7]. Moreover, by
[16, Lemma 3.5], we have dtop(Y, s) ≤ dbot(Y, s) + b1(Y ). Thus

d(Y, s;F) + d(−Y, s;F) ≤ b1(Y ),

which implies (3.21). �

Motivated by Proposition 3.12, we make the following definition.

Definition 3.13. Given a closed, oriented 3-manifold Y and a torsion spinc struc-
ture s on Y , we say that (Y, s) is d-symmetric if for every summand A ⊂ H1(Y )
on which the triple cup product vanishes, we have

(3.22) d(−Y, s;MA) = −d(Y, s;MA).

We say Y is d-symmetric if (Y, s) is d-symmetric for every torsion spinc structure s

on Y .

Combining (3.18) and (3.19) with [16, Proposition 3.7], we immediately deduce
that if both (Y, s) and (−Y, s) are d-simple, then they are both d-symmetric. (We
do not know of an example where (Y, s) is d-simple while (−Y, s) is not.)

3.4. Connected sums. The behavior of twisted d-invariants under connected sums
is also potentially more complicated than in the untwisted setting. Given summands
A1 ⊂ H1(Y1) and A2 ⊂ H1(Y2), A1 ⊕ A2 is naturally a summand of H1(Y1 # Y2).
Evidently, if the triple cup product vanishes on each Ai, then it vanishes on A1⊕A2

as well. Adapting the usual proof of additivity of d invariants (see [25, Theorem
4.3], [16, Proposition 3.8], [15, Proposition 4.3]), it is straightforward to see that

(3.23) d(Y1 # Y2, s1 # s2,MA1⊕A2
) ≥ d(Y1, s1,MA1

) + d(Y2, s2,MA2
).

Proving the reverse inequality requires orientation reversal, which is not available.
However, if Y1 and Y2 are d-simple, then we have

d(Y1 # Y2, s1 # s2,MA1⊕A2
) ≤ d(Y1 # Y2, s1 # s2, (A1 ⊕ A2)

⊥)

= d(Y1 # Y2, s1 # s2, A
⊥
1 ⊕ A⊥

2 )

= d(Y1, s1, A
⊥
1 ) + d(Y2, s2, A

⊥
2 )

= d(Y1, s1,MA1
) + d(Y2, s2,MA2

),

so equality holds.

Proposition 3.14. If Y is of the form Q # n(S1 × S2), where Q is a rational
homology sphere and n ≥ 0, then Y is d-simple and therefore d-symmetric. Indeed,
if s = t# t0# · · ·# t0, where t is a spinc structure on Q and t0 is the unique torsion
spinc structure on S1 × S2, then for any subspace A ⊂ H1(Y ), we have

d̃(Y, s;MA) = d(Q, t).

Proof. Clearly, any rational homology sphere is d-simple, as is S1 × S2. Given a
subspace A ⊂ #n(S1×S2), there is a self-diffeomorphism of #n(S1×S2) such that
the pullback of A can be viewed as A1 ⊕ · · · ⊕ An, where each Ai is a subspace of
H1 of the ith S1×S2 summand. (That is, any change of basis on H1(#n(S1×S2))
can be realized geometrically by handleslides.) The result then follows. �
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3.5. Congruence condition. Given a closed, oriented 3-manifold Y and a torsion
spinc structure s, there is an invariant ρ(Y, s) ∈ Q/2Z, defined to be the congruence
class of

(3.24)
c1(t)

2 − σ(W )

4
,

where (W, t) is any spinc 4–manifold with boundary (Y, s). (Here σ(W ) denotes the
signature of W .) In this section we prove the following.

Proposition 3.15. For any closed, oriented 3-manifold Y , any torsion spinc struc-
ture s, and any subspace A ⊂ H1(Y ) on which the triple cup product vanishes, we
have

d̃(Y, s;MA) ≡ ρ(Y, s) (mod 2Z).

The case where Y is a rational homology sphere was proven by Ozsváth and
Szabó [25, Theorem 1.2].

Proof. Suppose b1(Y ) = n and rank(A) = k. In the proof of Theorem 3.1, we induc-
tively produced a spinc cobordism (W1, t1) : (Y1, s1) → (Y, s) by successively attach-
ing n− k 2-handles along 0-framed knots. The untwisted homology HF∞(Y1, s1;F)
is standard, and the cobordism induces an isomorphism

F∞
W1,t1 : HF∞(Y1, s1;F) → HF∞(Y, s;MA).

Since c1(t1) is torsion by construction, the grading shift of F∞
W1,t1

is equal to k−n
2 .

It follows that

d(Y, s;MA) ≡ dtop(Y1, s1)−
n− k

2
(mod 2Z).

By [16, Lemma 3.5],

dtop(Y1, s1) ≡ dbot(Y1, s1) + k (mod 2Z).

Next, we find a cobordism (W2, t2) : (Y2, s2) → (Y1, s1), where Y2 is a rational
homology sphere, again obtained by successively attaching k 2-handles along 0-
framed knots. By [25, Proposition 9.3], the map

F∞
W2,t2 : HF∞(Y2, s2) → HF∞(Y1, s1)

is injective and takes HF∞(Y2, s2) ∼= Z[U,U−1] to the bottom tower in HF∞(Y1, s1).
Hence,

dbot(Y1, s1) ≡ d(Y2, s2)−
k

2
(mod 2Z).

Combining these congruences, we see that

d(Y, s;MA) ≡ d(Y2, s2) + k − n

2
(mod 2Z),

d̃(Y, s;MA) ≡ d(Y2, s2) ≡ ρ(Y2, s2) (mod 2Z).

Finally, the spinc cobordisms (W1, t1) and (W2, t2), each of which has signature 0,
give us ρ(Y, s) = ρ(Y1, s1) = ρ(Y2, s2), which concludes the proof. �
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4. Cross-sections of open 4-manifolds

4.1. Topological preliminaries. Throughout this section, we will be working
with open 4-manifolds obtained as the infinite cyclic covers of homology S1 × S3s.
For greater generality, we begin by stating the salient algebraic-topology properties
of such manifolds and then work throughout with open manifolds satisfying those
properties. (The terminology is motivated by Hughes and Ranicki [10], who have
a stronger, homotopy-theoretic notion that they call a ribbon.)

Definition 4.1. A homology ribbon is a smooth, connected, orientable, open 4-
manifold X̃ with two ends that satisfies the following properties:

(1) H3(X̃) ∼= Z.

(2) The intersection form on H2(X̃) ∼= H2
c (X̃) vanishes.

(3) For each end ε of X̃ and any field k, we have H1(X̃, ε;k) ∼= H2(X̃, ε;k) ∼= 0.

We call X̃ a homology S3 × R if (in addition to the above properties) H1(X̃) =

H2(X̃) = 0 and a rational homology S3 × R if H1(X̃;Q) = H2(X̃;Q) = 0.

Proposition 4.2. Let X be a smooth, closed, oriented 4-manifold such that H∗(X)
∼= H∗(S

1 × S3), and let p : X̃ → X denote the universal abelian cover of X, with

deck transformation group Z. Then X̃ is a homology ribbon, and p∗ : H3(X̃) →
H3(X) ∼= Z is an isomorphism.

Proof. For property (1), Milnor [19, Remark 1] shows that H3(X̃) ∼= H0(X̃) ∼= Z.

Let τ : X̃ → X̃ denote a generator of the deck transformation group. Note that
H∗(X̃) is a Z[t, t−1]–module, where t acts by τ∗. The Milnor exact sequence

(4.1) · · · → Hi(X̃)
1−t−−→ Hi(X̃)

p∗−→ Hi(X) → Hi−1(X̃) → · · ·
implies that 1− t is an isomorphism on H1(X̃) and H2(X̃) and zero on H3(X̃). It

follows that p∗ : H3(X̃) → H3(X) is an isomorphism.

For each integer m ≥ 1, let X̃
qm−−→ Xm

pm−−→ X denote the intermediate m-fold
cover of X with deck group Z/m. A standard argument shows that when m is a
prime power pk, H∗(Xm;Zp) ∼= H∗(S

1×S3;Zp), and thereforeH2(Xm;Q) = 0 since
H∗(Xm;Z) is finitely generated. In particular, the intersection form on H2(Xm;Z)

is trivial. Now, given any classes a, b ∈ H2(X̃), let Σa,Σb be closed, oriented,
embedded surface representatives that intersect transversally. For m sufficiently
large, the restriction of qm to Σa ∪Σb is a diffeomorphism onto its image, so a · b =
qm∗(a) · qm∗(b) = 0. This proves property (2).

For property (3), it is easiest to work with simplicial homology. Choose a finite

triangulation of X, and lift it to a locally finite triangulation of X̃. After possibly
replacing τ by τ−1, we may assume that τ shifts in the direction of the end ε. Then

C∗(X̃, ε;k) ∼= C∗(X̃;k)⊗k[t,t−1] k[[t, t
−1].

Since k[[t, t−1] is as flat as a k[t, t−1]–module, we have

H∗(X̃, ε;k) ∼= H∗(X̃;k)⊗k[t,t−1] k[[t, t
−1].

Note that H∗(X̃;k) is finitely generated as a k[t, t−1]–module. Since 1 − t acts as

an isomorphism on Hj(X̃;k) for j = 1, 2, we have

Hj(X̃;k) ∼=
n⊕

l=1

k[t, t−1]/(pl),
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where each pl is a nonzero, monic polynomial. Since pl is invertible in k[[t, t−1], we
deduce that

Hj(X̃;k)⊗k[t,t−1] k[[t, t
−1] = 0,

as required. �

For the rest of this section, unless otherwise specified, X̃ will denote an arbitrary
homology ribbon without the requirement that it is the cover of a homology S1×S3.

A cross-section of X̃ is a connected, smoothly embedded, oriented 3-manifold Y
representing a generator of H3(X̃). To find such a cross-section, one can proceed as
in Example 3 of the introduction to [10], which treats the case of a manifold with a

single end. Using a proper exhaustion of X̃, one finds a smooth proper map f : X̃ →
R with the ends going to ±∞. (The choice of a generator of H3(X̃) ∼= H1

c (X̃)
determines which end goes to +∞.) Then there is a component of the preimage of
a regular value that is a cross-section. Denote the closures of the components of
X̃�Y by LY and RY so that Y = ∂LY = −∂RY as an oriented manifold. Note that
reversing the orientation of Y (and hence the class in H3(X̃) that Y represents)
interchanges the roles of LY and RY : L−Y = RY and R−Y = LY .

If disjoint cross-sections Y1 and Y2 represent the same homology class, we say
that Y2 is to the right of Y1, denoted Y1 ≺ Y2, if Y2 ⊂ RY1

. This notion depends
on which homology class Y1 and Y2 represent; if Y1 ≺ Y2, then −Y2 ≺ −Y1. In
what follows, whenever we write Y1 ≺ Y2, we implicitly assume that Y1 and Y2

represent the same homology class. If Y1 ≺ Y2, let W (Y1, Y2) be the closure of

X̃ � (LY1
∪RY2

); this is an oriented cobordism from Y1 to Y2.

Fix a torsion spinc structure s on X̃. By abuse of notation, the restriction of s
to any cross-section Y or any cobordism W (Y1, Y2) will also be denoted by s. If X̃
is in fact the Z–cover of X, a rational homology S1 × S3, then let sX denote the
pullback of the unique spinc structure on X.

We begin with a few basic facts concerning the algebraic topology of cross-
sections. First, note that the Mayer–Vietoris sequence for X̃ = LY ∪RY shows that
H3(LY ) ∼= H3(RY ) ∼= Z. Next, consider the long exact sequence on cohomology
(both ordinary and compactly supported) for the pair (LY , Y ):
(4.2)

H0
c (LY ) ��

��

H0(Y ) ��

=

��

H1
c (LY , Y ) ��

��

H1
c (LY )

jcY ��

κL

��

H1(Y )
δcY ��

=

��

H2
c (LY , Y )

��
H0(LY )

∼= �� H0(Y )
0 �� H1(LY , Y ) �� H1(LY )

jY �� H1(Y )
δY �� H2(LY , Y )

Note that H0
c (LY ) = 0 since LY is noncompact. By Poincaré duality, H1

c (LY , Y ) ∼=
H3(LY ) ∼= Z. By looking at the same diagram with coefficients in Z/p for each
prime p, we deduce that the coboundary H0(Y ) → H1

c (LY , Y ) is an isomorphism,
the map jcY is injective, and the quotient H1(Y )/H1

c (LY ) ∼= im(δcY ) is torsion-free.
(That is, H1

c (LY ) is a direct summand of H1(Y ).) In particular, H1
c (LY ) is a

finitely generated, free abelian group; let bc1(LY ) denote its rank. Moreover, the
map κL : H1

c (LY ) → H1(LY ) is injective. (Analogous statements hold with RY in
place of LY .)

Next, consider the Mayer–Vietoris sequences (in both ordinary and compactly

supported cohomology) for the decomposition X̃ = LY ∪Y RY , and the natural
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maps between them:

(4.3) H0(Y ) ��

=

��

H1
c (X̃) ��

κX

��

H1
c (LY )⊕H1

c (RY ) ��
� �

κL⊕κR

��

H1(Y )

=

��

�� H2
c (X̃)

��
H0(Y ) �� H1(X̃) �� H1(LY )⊕H1(RY ) �� H1(Y ) �� H2(X̃)

(The construction of the upper sequence is most readily carried out if one uses the
simplicial version of cohomology with compact supports, as described in [7, §3.3];
we remark that exactness uses the fact that Y is compact.) Just as before, we
deduce that the map H1

c (LY ) ⊕H1
c (RY ) → H1(Y ) is injective, meaning that the

images of H1
c (LY ) and H1

c (RY ) in H1(Y ) intersect trivially. However, this map
need not be surjective, as in the following example.

Example 4.3. Suppose X is a homology S1 × S3 obtained as the mapping torus
of a self-diffeomorphism of some 3-manifold Y . Then X̃ ∼= Y × R. If we consider
Y = Y ×{0} as a cross-section of X̃, it is easy to check thatH∗

c (LY ) ∼= H∗
c (RY ) ∼= 0.

In particular, the coboundary H1(Y ) → H2(X̃) in (4.3) is an isomorphism.

In the case where X̃ is a rational homology S3 ×R, the situation simplifies con-
siderably, so that we can use ordinary rather than compactly supported cohomology
throughout.

Lemma 4.4. If X̃ was a rational homology S3 × R, then:

(1) The maps κL : H1
c (LY ) → H1(LY ) and κR : H1

c (RY ) → H1(RY ) are iso-
morphisms, so jY and jcY are identified.

(2) We have H1(Y ) ∼= H1(LY )⊕H1(RY ) ∼= H1
c (LY )⊕H1

c (RY ).
(3) The sequence

0 ��H1(LY )
jY ��H1(Y )

δY ��H2(LY , Y ) ��0

is short exact and splits, and H2(LY , Y ) ∼= H1(RY ).

Proof. If X̃ is a rational homology S3×R, then H1(X̃) = 0, and H2(X̃) and H2
c (X̃)

are both torsion groups. It follows that the maps H1(LY )⊕H1(RY ) → H1(Y ) and
H1

c (LY )⊕H1
c (RY ) → H1(Y ) in (4.3) are both isomorphisms, so κL⊕κR is as well.

Moreover, by the exact sequence for (X̃, RY ) and excision, H1(RY ) ∼= H2(X̃, RY ) ∼=
H2(LY , Y ). The restriction map H1(RY ) → H1(Y ) provides a splitting for the
short exact sequence. �

Returning to the general case, it is useful to consider one more version of the
Mayer–Vietoris sequence, which again is most easily proved using simplicial coho-
mology as in [22, §25]. If ε denotes the left end of X corresponding to LY , we have
an exact sequence

(4.4) H1(X̃, ε) → H1
c (LY )⊕H1(RY ) → H1(Y ) → H2(X̃, ε).

In particular, if we take coefficients in Q and apply property (3) from Definition
4.1 together with universal coefficients, we see that

(4.5) H1(Y ;Q) ∼= H1
c (LY ;Q)⊕H1(RY ;Q).

Finally, we recall the locally finite homology groups of a (noncompact) polyhe-

dral space Z, H lf
∗ (Z). These can be defined in greatest generality using an inverse
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limit; see Laitinen [14, §2]. When Z has a locally finite triangulation, it is easiest

to use the simplicial version: the chain group C lf
i (Z) consists of possibly infinite

sums of i-simplices, and the differential is defined in the usual way. The universal
coefficient theorem [14, Proposition 2.8] relating locally finite homology and com-
pactly supported cohomology takes a slightly unusual form: for any principal ideal
domain R, there is an exact sequence

(4.6) 0 → Ext(Hn+1
c (Z), R) → H lf

n (Z;R) → Hom(Hn
c (Z), R) → 0.

Additionally, if Z is an n-dimensional manifold, then there is a Poincaré duality

isomorphism H lf
k (Z) ∼= Hn−k(Z) [14, Theorem 3.1].

4.2. Correction terms. We will be considering Heegaard Floer homology with
coefficients in the module

(4.7) LY := MH1
c (LY ) = F[H1(Y )/H1

c (LY )] = F[im(δcY )].

The key observation is the following.

Proposition 4.5. Let X̃ be a homology ribbon and let s be a torsion spinc structure
on X̃. For any cross-section Y , the restriction of the triple cup product form on
H1(Y ) to the image of H1

c (LY ) vanishes identically. Therefore,

HF∞(Y, s;LY ) ∼= Λ∗(H1
c (LY ))⊗ F[U,U−1]

as a Λ∗(H1(Y )/(H1
c (LY )

⊥))⊗F[U,U−1]–module. Moreover, we may naturally iden-

tify H1(Y )/(H1
c (LY ))

⊥ with H lf
1 (LY )/Tors. Analogous statements hold with RY

in place of LY .

Proof. First, note that there is a fundamental class [LY , Y ] ∈ H lf
4 (LY , Y ) which

maps to the fundamental class [Y ] ∈ H3(Y ) under the boundary map. (If we are
given a locally finite triangulation of LY with Y as a subcomplex, the fundamental
class is given as the sum of all the 4-simplices, with signs determined by the ori-

entation, and the boundary map H lf
4 (LY , Y ) → H3(Y ) is just the usual simplicial

boundary.) We then argue just as we would if LY were a compact manifold: For
any α1, α2, α3 ∈ H1

c (LY ), we have

〈i∗(α1) ∪ i∗(α2) ∪ i∗(α3), [Y ]〉 = 〈i∗(α1 ∪ α2 ∪ α3), [Y ]〉
= 〈α1 ∪ α2 ∪ α3, i∗([Y ])〉
= 〈α1 ∪ α2 ∪ α3, i∗(∂([LY , Y ]))〉
= 0.

The second and third lines make use of the pairing between H3
c (LY ) and H lf

3 (LY )
given in (4.6) (taking R = Z). The same exact sequence also yields the identification

H1(Y )/(H1
c (LY ))

⊥ ∼= H lf
1 (LY )/Tors .

Finally, the statement about HF∞ follows directly from Theorem 3.1. �

Proposition 4.5 allows us to consider the twisted correction term d(Y, s;LY ) and

the shifted version d̃(Y, s;LY ). By definition, we have

(4.8) d̃(Y, s;LY ) = d(Y, s;LY ) +
b1(Y )− 2bc1(LY )

2
.
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Observe that when X̃ is a homology S3 × R, Lemma 4.4 implies that bc1(LY ) =
b1(LY ) and χ(LY ) = b1(Y )− 2b1(LY ), and hence

(4.9) d̃(Y, s;LY ) = d(Y, s;LY ) +
χ(LY )

2
.

Our choice of coefficients in LY (as opposed to the analogous construction using
the cohomology of RY ) is justified by the following lemma.

Lemma 4.6. Let X̃ be a homology ribbon. Suppose Y1, Y2 are disjoint, homologous
cross-sections of X̃ with Y1 ≺ Y2, and let W = W (Y1, Y2) be the cobordism between
them. Then LY1

(W ) ∼= LY2
.

Proof. According to (4.7), we are trying to show that

F[im(δcY1
)]⊗F[H1(Y1)] F[K(W )] ∼= F[im(δcY2

)].

We prove this by constructing an exact sequence

H1(Y1) → im(δcY1
)⊕K(W ) → im(δcY2

) → 0

as follows.
First, by property (2) in Definition 4.1, the intersection form on H2(W ) vanishes

identically. Therefore, the map jW : H2(W,∂W ) → H2(W ) vanishes identically,
meaning that K(W ) = H2(W,∂W ).

Consider the following commutative diagram, whose rows and columns are exact:

H1(Y1 ∪ Y2, Y2)
� � ��

=

��

H1(Y1 ∪ Y2) �� ��

γ

��

H1(Y2)
0 ��

δcY2

��

H2(Y1 ∪ Y2, Y2)

=

��
H1(Y1 ∪ Y2, Y2)

f �� H2
c (LY2

, Y1 ∪ Y2)
g ��

��

H2
c (LY2

, Y2)
h ��

��

H2(Y1 ∪ Y2, Y2)

H2
c (LY2

)
= �� H2

c (LY2
)

We easily deduce that im(δcY2
) ⊂ im(g) and that g−1(im(δcY2

)) = im(γ); thus, the
middle row gives rise to an exact sequence

H1(Y1 ∪ Y2, Y2)
f �� im(γ)

g �� im(δcY2
) �� 0.

Of course, H1(Y1 ∪ Y2, Y2) ∼= H1(Y1).
Next, the Mayer–Vietoris sequence for the decomposition

(LY2
, Y1 ∪ Y2)=(LY1

, Y1) ∪ (W,∂W )

shows that

H2
c (LY2

, Y1 ∪ Y2) ∼= H2
c (LY1

, Y1)⊕H2(W,∂W ).

Under this identification, it is easy to see that the image of γ is identified with
im(δcY1

)⊕H2(W,∂W ), as required. �

Proposition 4.7. Let X̃ be a homology ribbon and let s be a torsion spinc structure
on X. Suppose Y1, Y2 are disjoint, homologous cross-sections of X̃ with Y1 ≺ Y2.
Then

(4.10) d̃(Y1, s;LY1
) ≤ d̃(Y2, s;LY2

).
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Table 1. Summary of handle additions in the proof of Proposition
4.7. The convention is that Δb1(Y ) = b1(Y2) − b1(Y1), etc. It is
easy to see that Δb1(Y )− 2Δbc1(LY ) = χ(W ) and that Δb1(Y ) =
Δbc1(LY ) + Δbc1(RY ).

Handle type Δb1(Y ) Δbc1(LY ) Δbc1(RY ) χ(W ) F∞
W,s

1 +1 +1 0 −1 injective

2, [K] torsion +1 0 +1 +1 isomorphism

2, [K] nontorsion −1 −1 0 +1 surjective

3 −1 0 −1 −1 isomorphism

Proof. It suffices to assume that the cobordism W = W (Y1, Y2) is given by a single-
handle attachment. To be precise, let L′

Y1
denote the union of LY1

with the closure
of a product neighborhood of Y , and assume that

LY2
= L′

Y1
∪ k-handle,

where k ∈ {1, 2, 3}. When k = 2, because the intersection form on X̃ vanishes, LY2

cannot be obtained by attaching a 2-handle to a rationally null-homologous curve
with nonzero framing.

The proof proceeds as follows. By Lemma 4.6, the cobordism W induces maps

F ◦
W,s : HF◦(Y1, s;LY1

) → HF◦(Y2, s;LY2
).

Since c1(s) is torsion, the grading shift of F ◦
W,s is equal to −χ(W )

2 . Note that

χ(W ) = 1 when k = 2 and −1 otherwise.
We will show in each case that F∞

W,s descends to an isomorphism

QHF∞(Y1, s;LY1
) → QHF∞(Y2, s;LY2

).

Thus, by the usual argument,

(4.11) d(Y1, s;LY1
) ≤ d(Y2, s;LY2

) +
χ(W )

2
.

At the same time, we will see in each case that

(4.12) χ(W ) = (b1(Y2)− 2bc1(LY2
))− (b1(Y1)− 2bc1(LY1

)) ,

from which (4.10) follows.
We now consider the different values for k. A summary can be found in Table 1.

(1) If LY2
∼= L′

Y1
∪1-handle, then Y2

∼= Y1#S1×S2, so b1(Y2) = b1(Y1)+1. By
looking at the exact sequence on cohomology for the pair (LY2

, LY1
), we see

that H1
c (LY2

) ∼= H1
c (LY1

) ⊕ Z, where a generator of the Z factor maps to
the Poincaré dual of [{pt} × S2] in H1(Y2). Hence, bc1(LY2

) = bc1(LY1
) + 1,

so (4.12) holds.
As in [28, §4.3], we have

HF∞(Y2, s2;LY2
) ∼= HF∞(Y1, s1;LY1

)[ 12 ]⊕HF∞(Y1, s1;LY1
)[− 1

2 ],

where the action of the generator of H1(S
1×S2) takes the first summand to

the second, and the map F∞
W,s is given by the inclusion of the first summand.
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α0

β0

z0

a b

Figure 2. Standard Heegaard diagram (T 2, α0, β0, z0) for S
1 × S2.

(2) If LY2
is obtained by attaching a 2-handle to L′

Y1
along a curve K ⊂ Y1,

there are two possibilities.
If K represents a torsion class in H1(Y ), then the 2-handle must be at-

tached along the rational longitude of K; otherwise, there would be a closed
surface in X̃ with nontrivial self-intersection, which violates our assump-
tions. Thus, Y2 is obtained by 0-surgery on K, and b1(Y2) = b1(Y1) + 1.
Moreover, the inclusion LY1

→ LY2
induces an isomorphism H1

c (LY2
) →

H1
c (LY1

). By Proposition 2.4 (and its extension to the rationally null-
homologous case in Remark 2.5), F∞

W,s is an isomorphism that respects the
H1 actions.

If K represents a nontorsion class in H1(Y1), then b1(Y2) = b1(Y1) −
1. Equation (4.5) implies there is a class α ∈ H1

c (LY1
;Q) such that

〈α|Y1
, [K]〉 = 1, and therefore [K] is also nontorsion in H lf

1 (LY1
). The

restriction map H1
c (LY2

) → H1
c (LY1

) is injective, with image equal to the
set of elements that evaluate to 0 on [K], so bc1(LY2

) = bc1(LY1
) − 1. Just

as in the untwisted case (see [25, Proposition 9.3]), F∞
W,s descends to an

isomorphism

HF∞(Y1, s;LY1
)/([K] ·HF∞(Y1, s;LY1

))
∼=−→ HF∞(Y2, s;LY2

),

which respects the H1 actions.
(3) Suppose LY2

is obtained by attaching a 3-handle to L′
Y1

along an embed-
ded, nonseparating sphere S ⊂ Y2, which necessarily represents a primitive
homology class. Then Y1

∼= Y2 # S1 × S2, so b1(Y2) = b1(Y1) − 1, and
H1

c (LY2
) ∼= H1

c (LY1
). As seen in Section 2.1, we have LY2

∼= LY1
/(1− t) ∼=

LY1
(W ), where t is the class in H1(Y1) Poincaré dual to [S].
By [28, Lemma 4.11], we may represent Y1 by a split Heegaard diagram

(Σ′,α′,β′, z′) = (Σ,α,β, z) # (T 2, α0, β0, z0),

where (Σ,α,β, z) represents Y2, (T
2, α0, β0, z0) is a standard diagram for

S1 × S2 as shown in Figure 2, and the connected sum is taken in the re-
gions containing the basepoints. The curves α0, β0 meet in two points a, b.
For any x ∈ Tα ∩ Tβ, there is a pair of holomorphic bigons φ±

x ∈
π2(x × {a},x × {b}). We may choose the additive assignment such that
for each x, the disks φ+

x and φ−
x contribute 1 and t, respectively, in the dif-

ferential. Just as in Ozsváth and Szabó’s proof of the Künneth formula for
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connected sums [27, Theorem 6.2], with respect to a sufficiently stretched
complex structure, CF∞(Σ′,α′,β′, z′;LY1

) is then isomorphic to the map-
ping cone

CF∞(Σ,α,β, z;LY2
)[t±1]

1−t−−→ CF∞(Σ,α,β, z;LY2
)[t±1],

where the two copies correspond to a and b respectively. The map F∞
W,s is

given on the chain level by setting t = 1 and projecting onto the second
factor. It follows that

F∞
W,s : HF∞(Y1, s;LY1

) → HF∞(Y2, s;LY2
)

is an isomorphism.

In each of the three cases, it is easy to see that the induced maps on QHF∞ are
isomorphisms and that (4.12) holds, as required. �

Proposition 4.8. If X̃ is a homology S3 ×R, then d̃(Y, s;LY ) is an even integer.

Proof. By Proposition 3.15, we know that d̃(Y, s;LY ) ≡ ρ(Y, s) (mod 2Z), where
ρ(Y, s) is defined by equation (3.24). Since the spinc structure s is a spin structure,
we may take the manifold W in (3.24) to be a spin manifold, and so the term
c1(t)

2 = 0. As in the proof of [37, Theorem 3.4], the signature of W is the same as
the signature of the open manifold

W∞ = W ∪Y RY .

The vanishing of the homology of X̃ together with property (3) from Definition
4.1 implies that the intersection form on the spin manifold W∞ is unimodular, and
hence van der Blij’s theorem [20, §5] says that its signature is divisible by 8. �
Remark 4.9. By turning the cobordism W around, it is also easy to see how the
quantity bc1(RY ) behaves: we see that bc1(RY2

) − bc1(RY1
) equals 0 in the case of a

1-handle addition or a 2-handle addition along a nontorsion curve, 1 in the case of a
2-handle addition along a torsion curve, and −1 in the case of a 3-handle addition.
In particular, we see from Table 1 that the quantity

b1(Y )− bc1(LY )− bc1(RY )

is independent of the choice of cross-section Y . The Mayer–Vietoris sequence (top
row of (4.3)) shows that this quantity equals the rank of the coboundary map

H1(Y ) → H2
c (X̃).

4.3. Invariants for homology S1 × S3s. We are now finally able to prove the
main theorem from the introduction, which we restate as follows.

Theorem 4.10. Let X be an oriented homology S1 × S3, let X̃ be its infinite
cyclic cover, and let sX be the spinc structure on X̃ pulled back from X. Then for
any cross-section Y of X̃, the shifted correction term d̃(Y, sX ;LY ) depends only on

the homology class of Y in H3(X̃) or equivalently on its image y ∈ H3(X). We

denote this number by d̃(X, y); it is an invariant of X under orientation-preserving
diffeomorphisms that preserve the choice of homology class.

Proof. Fix a generator for H3(X̃). Let τ be a generator of the deck transformation
group such that for any two cross-sections Y, Y ′ representing the fixed generator,
τ−n(Y ) ≺ Y ′ ≺ τn(Y ) for all n sufficiently large. For any n ∈ Z, note that

d̃(τn(Y ), sX ;Lτn(Y )) = d̃(Y, sX ;LY ),
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since the spinc structure sX on X̃ is τ -invariant and the deck transformation τn

takes LY to Lτn(Y ). Thus, by Proposition 4.7, we have

d̃(Y, sX ;LY ) ≤ d̃(Y ′, s;LY ′) ≤ d̃(Y, sX ;LY ),

and hence equality holds. �

Next, we prove the symmetries stated in Proposition 1.2. It is more convenient
to work in the more general setting of open manifolds. Given a homology ribbon
X̃ equipped with a spinc structure s and any cross-section Y of X̃, define

(4.13) d̃(X̃, Y ) = d̃(Y, s;LY ).

(For convenience, we suppress the spinc structure s from the notation.) When X̃

is the Z cover of a homology S1 × S3 X and s = sX , then by definition d̃(X̃, Y ) =

d̃(X, y).
There are two possible orientation changes to consider.

• If we leave the orientation on X̃ fixed but change the orientation of Y ,
the roles of LY and RY are interchanged: L−Y = RY and R−Y = LY .
According to our definition, we have

(4.14) d̃(X̃,−Y ) = d̃(−Y, s;RY ),

where RY = F[H1(Y )/H1(RY )].

• If we reverse both the orientations of both X̃ and Y , then the roles of LY

and RY do not change, since ∂(−LY ) = −Y . Thus, we may write

(4.15) d̃(−X̃,−Y ) = d̃(−Y, s;LY ).

Combining this argument with the previous one, we deduce that

(4.16) d̃(−X̃, Y ) = d̃(Y, s;RY ).

Proof of Proposition 1.2. Suppose that Y is a cross-section of a homology ribbon
X̃. If Y is a rational homology sphere, then d̃(X,Y ) = d(Y, s). By inspecting
equations (4.13) through (4.16), it is immediate that

(4.17) d̃(X̃, Y ) = d̃(−X̃, Y ) = −d̃(X̃,−Y ) = −d̃(−X̃,−Y ).

Likewise, when Y is merely d-symmetric, we obtain

(4.18) d̃(−X̃,−Y ) = −d̃(X̃, Y ) and d̃(−X̃, Y ) = −d̃(X̃,−Y ).

These translate to (1.1) and (1.2), respectively.

Finally, if X is the mapping torus of a diffeomorphism φ : Y → Y and X̃ is its
universal cover, then X̃ ∼= Y × R. As seen in Example 4.3, we have H1

c (LY ) =
H1

c (RY ) = 0, and therefore the coefficient modules LY and RY are both simply
HY . Equations (4.13) through (4.16) yield (1.3). �

The following proposition is an immediate consequence of Proposition 4.7 and
equation (4.18).

Proposition 4.11. Let X̃ be a homology ribbon and let s be a torsion spinc struc-
ture on X̃. Suppose Y1 ≺ Y2 are disjoint cross-sections of X̃ and that (Y1, s) and

(Y2, s) are both d-symmetric. Then d̃(X̃, Y1) = d̃(X̃, Y2). Moreover, if Y ′ is any
other cross-section with Y1 ≺ Y ′ ≺ Y2, then

d̃(−X̃,−Y ′) = −d̃(X̃, Y ′) = −d̃(X̃, Y1).
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This result is useful for obstructing the presence of d-symmetric cross-sections
(e.g., rational homology spheres) in the ends of exotic R4s, as in the following
example.

Example 4.12. Let K denote the positive, untwisted Whitehead double of the
right-handed trefoil, let Y = S3

0(K), and let W be obtained by attaching a 0-
framed 2-handle to D4 along K, so that ∂W = Y . Let Z denote the complement of
a topological slice disk for K, with π1(Z) = Z. We may choose a smooth structure
on Z0 = Z � {pt}; then Z0 is an open, smooth 4-manifold with ∂Z0 = Y . Then

R = W ∪Y −Z0 is an exotic R4, and X̃ = (W � B4) ∪Y −Z0 is an exotic S3 × R

with one end smoothly modeled on S3 × (−∞, 0]. Since b1(LY ) = 0, we have

LY = F[H1(Y )]. As seen in Example 3.6, d̃(X̃, Y ) = 0 and d̃(−X̃,−Y ) = 2. If
the generator of H3(Z0) were represented by any d-symmetric manifold, this would
contradict Proposition 4.11.

Remark 4.13. The existence of an exotic R4 not containing a homology sphere ar-
bitrarily far out in its end seems to be 4-manifold folklore; compare [12, Remark
1, p. 96]. The proof depends on Donaldson’s diagonalization theorem. Bob Gompf
pointed out to us that the extension of Donaldson’s theorem to nonsimply con-
nected manifolds [4] can be used to show that there is no rational homology sphere
arbitrarily far out in the end.

Example 4.14. The three-torus T 3 embeds in R4, so it occurs as a cross-section
of S3 × R. By Lemma 4.4, we have H1(T 3) = H1(LT 3) ⊕H1(RT 3) = H1

c (LT 3) ⊕
H1

c (RT 3). Because the triple cup product vanishes on each summand, one sum-
mand must have rank 1 and the other rank 2; by varying the orientations, we
may interchange them. Because S3 ≺ T 3 ≺ S3, we deduce in either case that
d̃(T 3, s;LT 3) = 0. As we saw in Example 3.7, this means that for any subspace

A ⊂ H1(T 3) of rank 1 or 2, we have d̃(T 3, s;MA) = 0.
On the other hand, letX be a homology S1×S3 obtained as the mapping torus of

a self-diffeomorphism of Y = T 3. (Such manifolds play a key role in the construction
of the Cappell–Shaneson homotopy spheres [2,3].) Then H1

c (LT 3) = H1
c (RT 3) = 0.

From Example 3.7, we deduce that d̃(X, y) = d̃(−X,−y) = 2. Hence, X does not
admit any d-symmetric cross-section. (Of course, because any cross-section of X
admits a degree 1 map to T 3 and therefore has nonvanishing triple cup product,
cross-sections of the form Q# n(S1 × S2) are automatically excluded.)

5. Applications to knotted spheres

In this section, we use the invariants defined above to study Seifert surfaces for
2-knots in S4. Given a smoothly embedded, oriented 2-sphere Σ in S4, a Seifert
surface is a smoothly embedded, compact, connected, oriented 3-manifold with
boundary Σ. Let X(Σ) denote the surgered manifold S4 � nbd(Σ) ∪ (D3 × S1),
which is a homology S1 × S3. Any Seifert surface of Σ can be capped off to be
a cross-section of X(Σ). (In a slight abuse of notation, if Y � B3 occurs as a
Seifert surface of Σ, we will sometimes say that Σ has Y as a Seifert surface.) The
homology class y of a capped-off Seifert surface Y in H3(X) is determined by the

orientation of Σ; therefore, we define d̃(Σ) = d̃(X(Σ), y), which is an invariant of
the smooth isotopy class of Σ.
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Let Σr denote Σ with reversed orientation, and let Σ̄ denote the image of Σ
under a reflection of S4. If Y ⊂ X(Σ) is a capped-off Seifert surface for Σ, then

d̃(Σr) = d̃(X(Σ),−y),

d̃(Σ̄) = d̃(−X(Σ), y),

d̃(Σ̄r) = d̃(−X(Σ),−y).

The four numbers d̃(Σ), d̃(Σr), d̃(Σ̄), and d̃(Σ̄r) may a priori all be different. We say
that Σ is invertible, positive amphicheiral, or negative amphicheiral if Σ is smoothly
isotopic to Σr, Σ̄, or Σ̄r, respectively; the d̃ invariant can thus be used to obstruct
such symmetries. Moreover, the symmetries from Proposition 1.2 each translate to
a symmetry of the 2-knot invariants. For instance, if Σ has a Seifert surface Y that
is d-symmetric, then

(5.1) d̃(Σ) = −d̃(Σ̄r) and d̃(Σr) = −d̃(Σ̄).

In particular, if Σ is a ribbon knot (i.e., bounds an immersed 3-ball with ribbon
singularities), a theorem of Yanagawa [39] states that Σ has a Seifert surface dif-
feomorphic to #n(S1 × S2)�B3 for some n; it follows that

d̃(Σ) = d̃(Σr) = d̃(Σ̄) = d̃(Σ̄r) = 0.

Likewise, if Σ is a fibered 2-knot with capped-off fiber Y , then

d̃(Σ) = d̃(Σ̄) = d̃(Y, sX ;HY ) and d̃(Σr) = d̃(Σ̄r) = d̃(−Y, sX ;HY ).

Example 5.1. If Σ is the 5-twist-spin of the right-handed trefoil, then Σ has the
Poincaré homology sphere as a fiber [32, p. 306]. Hence, d̃(Σ) = d(Σ̄) = 2 and

d̃(Σr) = d(Σ̄r) = −2. We deduce that Σ is neither reversible (which was also proven
by Gordon [6]) nor negative amphicheiral.

Example 5.2. Let Σ be the 6-twist-spin of the right-handed trefoil K and let Y
be the fiber which is the 6-fold cyclic branched cover of K. As explained in [32, p.
307], Y can be obtained by (0, 0) surgery on the positive Whitehead link or, equiv-
alently, by (0, 0,−1) surgery on the Borromean rings. (Hence, Y has an alternate
description as the circle bundle of Euler number −1 over the torus.) Likewise,
−Y can be obtained by (0, 0, 1) surgery on the Borromean rings. Let s denote the
unique torsion spinc structure on Y . Ozsváth and Szabó [25, Lemma 8.7] proved

that d(−Y, s;H−Y ) = −1, and therefore d̃(Σr) = −2. A very similar computation
(following the proofs of [25, Lemmas 8.6 and 8.7]) shows that d(Y, s;HY ) = 1, so

d̃(Σ) = 0. By (1.2), it follows that Σ does not have any Seifert surface that is
d-symmetric, such as any manifold of the form Q# n(S1 × S2).

Remark 5.3. Just as with classical knots, the degree of the Alexander polynomial
Δ(Σ) provides a lower bound on b1 of any Seifert surface for Σ. In particular, if
Σ admits a Seifert surface that is a rational homology sphere, then Δ(Σ) = 1. It
would thus be interesting to find a 2-knot Σ with Δ(Σ) = 1 that fails to satisfy
(5.1) and therefore does not admit a rational homology sphere Seifert surface. (We
do not know of any other such obstruction.)
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[25] Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms
for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR1957829
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