
From Local Explanations to Global Understanding with
Explainable AI for Trees

Scott M. Lundberg1,2, Gabriel Erion2,3, Hugh Chen2, Alex DeGrave2,3, Jordan M. Prutkin4,
Bala Nair5,6, Ronit Katz7, Jonathan Himmelfarb7, Nisha Bansal7, and Su-In Lee2,*

1Microsoft Research
2Paul G. Allen School of Computer Science and Engineering, University of Washington

3Medical Scientist Training Program, University of Washington
4Division of Cardiology, Department of Medicine, University of Washington

5Department of Anesthesiology and Pain Medicine, University of Washington
6Harborview Injury Prevention and Research Center, University of Washington

7Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington
*Corresponding: suinlee@cs.washington.edu

One sentence summary: Exact game-theoretic explanations for ensemble tree-based predictions that guarantee
desirable properties.

Abstract
Tree-based machine learning models such as random forests, decision trees, and gradient boosted trees are
popular non-linear predictive models, yet comparatively little attention has been paid to explaining their
predictions. Here, we improve the interpretability of tree-based models through three main contributions:
1) The first polynomial time algorithm to compute optimal explanations based on game theory. 2) A
new type of explanation that directly measures local feature interaction effects. 3) A new set of tools for
understanding global model structure based on combining many local explanations of each prediction. We
apply these tools to three medical machine learning problems and show how combining many high-quality
local explanations allows us to represent global structure while retaining local faithfulness to the original
model. These tools enable us to i) identify high magnitude but low frequency non-linear mortality risk
factors in the US population, ii) highlight distinct population sub-groups with shared risk characteristics,
iii) identify non-linear interaction effects among risk factors for chronic kidney disease, and iv) monitor a
machine learning model deployed in a hospital by identifying which features are degrading the model’s
performance over time. Given the popularity of tree-based machine learning models, these improvements
to their interpretability have implications across a broad set of domains.

Machine learning models based on trees are the most popular non-linear models in use today [1, 2]. Random
forests, gradient boosted trees, and other tree-based models are used in finance, medicine, biology, customer retention,
advertising, supply chain management, manufacturing, public health, and other areas to make predictions based on
sets of input features (Figure 1A left). For these applications, models often must be both accurate and interpretable,
where interpretability means that we can understand how the model uses input features to make predictions [3].
However, despite the rich history of global interpretation methods for trees, which summarize the impact of input
features on the model as a whole, much less attention has been paid to local explanations, which reveal the impact of
input features on individual predictions (i.e., for a single sample) (Figure 1A right).

Current local explanation methods include: 1) reporting the decision path, 2) using a heuristic approach that
assigns credit to each input feature [4], and 3) applying various model-agnostic approaches that require repeatedly
executing the model for each explanation [3, 5–8]. Each current method has limitations. First, simply reporting
a prediction’s decision path is unhelpful for most models, particularly those based on multiple trees. Second, the
behavior of the heuristic credit allocation has yet to be carefully analyzed; we show here that it is strongly biased to
alter the impact of features based on their tree depth. Third, since model-agnostic methods rely on post hoc modeling
of an arbitrary function, they can be slow and suffer from sampling variability.

1

We present TreeExplainer, an explanation method for trees that enables the tractable computation of optimal
local explanations, as defined by desirable properties from game theory. TreeExplainer bridges theory to practice by
building on previous model-agnostic work based on classic game-theoretic Shapley values [3, 6, 7, 9–11]. It makes
three notable improvements.

1. Exact computation of Shapley value explanations for tree-based models. Classic Shapley values can be considered
“optimal” since, within a large class of approaches, they are the only way to measure feature importance while
maintaining several natural properties from cooperative game theory [3, 11]. Unfortunately, in general these values
can only be approximated since computing them exactly is NP-hard [12], requiring a summation over all feature
subsets. Sampling-based approximations have been proposed [3, 6, 7]; however, using them to compute low variance
versions of the results in this paper for even our smallest dataset would consume years of CPU time (particularly for
interaction effects). By focusing specifically on trees, we developed an algorithm that computes local explanations
based on exact Shapley values in polynomial time. This provides local explanations with theoretical guarantees of
local accuracy and consistency [3] (Methods).

2. Extending local explanations to directly capture feature interactions. Local explanations that assign a single number
to each input feature, while very intuitive, cannot directly represent interaction effects. We provide a theoretically
grounded way to measure local interaction effects based on a generalization of Shapley values proposed in game
theory literature [13]. We show that this approach provides valuable insights into a model’s behavior.

3. Tools for interpreting global model structure based on many local explanations. The ability to efficiently and exactly
compute local explanations using Shapley values across an entire dataset enables the development of a range of
tools to interpret a model’s global behavior (Figure 1B). We show that combining many local explanations lets us
represent global structure while retaining local faithfulness [14] to the original model, which produces detailed and
accurate representations of model behavior.

Explaining predictions from tree models is particularly important in medical applications, where the patterns
a model uncovers can be more important than the model’s prediction performance [15, 16]. To demonstrate
TreeExplainer’s value, we use three medical datasets, which represent three types of loss functions: 1) Mortality, a
dataset with 14,407 individuals and 79 features based on the NHANES I Epidemiologic Followup Study [17], where
we model the risk of death over twenty years of followup. 2) Chronic kidney disease, a dataset that follows 3,939
chronic kidney disease patients from the Chronic Renal Insufficiency Cohort study over 10,745 visits, where we use
333 features to classify whether patients will progress to end-stage renal disease within 4 years. 3) Hospital procedure
duration, an electronic medical record dataset with 147,000 procedures and 2,185 features, where we predict duration
of a patient’s hospital stay for an upcoming procedure (Supplementary Methods 1).

In this paper, we discuss how the accuracy and interpretability of tree-based models make them appropri-
ate for many applications. We then describe why these models need more precise local explanations and how
we address that need with TreeExplainer. Next, we extend local explanations to capture interaction effects. Fi-
nally, we demonstrate the value of explainable AI tools that combine many local explanations from TreeExplainer
(https://github.com/suinleelab/treeexplainer-study).

Advantages of tree-based models
Tree-based models can be more accurate than neural networks in many applications. While deep learning models are
more appropriate in fields like image recognition, speech recognition, and natural language processing, tree-based
models consistently outperform standard deep models on tabular-style datasets, where features are individually
meaningful and lack strong multi-scale temporal or spatial structures [18] (Supplementary Results 1). The three
medical datasets we examine here all represent tabular-style data. Gradient boosted trees outperform both pure deep
learning and linear regression across all three datasets (Figure 2A; Supplementary Methods 2).

Tree-based models can also be more interpretable than linear models due to model-mismatch effects. It is
well-known that the bias/variance trade-off in machine learning has implications for model accuracy. Less well
appreciated is that this trade-off also affects interpretability. Simple high-bias models (such as linear models) seem
easy to understand, but they are sensitive to model mismatch, i.e., where the model’s form does not match its true
relationships in the data [19]. This mismatch can create hard-to-interpret model artifacts.

To illustrate why low-bias models can be more interpretable than high-bias ones, we compare gradient boosted
trees to linear logistic regression using the mortality dataset. We simulate a binary outcome based on a participant’s
age and body mass index (BMI), and we vary the amount of non-linearity in the simulated relationship (Figure 2B).
As expected, by increasing non-linearity, the bias of the linear model causes accuracy to decline (Figure 2C). Perhaps
unexpectedly, it also causes interpretability to decline (Figure 2D). We know that the model should depend only on
age and BMI, but even a moderate amount of non-linearity in the true relationship causes the linear model to begin
using other irrelevant features (Figure 2D), and the weight placed on these features is driven by complex cancellation

2

effects that are not readily interpretable (Supplementary Figure 1). When a linear model depends on cancellation
effects between irrelevant features, the function itself is not complicated, but the meaning of the features it depends
on become subtle: they are no longer being used primarily for their marginal effects, but rather for their interaction
effects. Thus, even when simpler high-bias models achieve high accuracy, low-bias ones may be preferable, and even
more interpretable, since they are likely to better represent the true data-generating mechanism and depend more
naturally on their input features (Supplementary Methods 3).

Local explanations for trees
Current local explanations for tree-based models are inconsistent. To our knowledge, only two tree-specific approaches
can quantify a feature’s local importance for an individual prediction. The first is simply reporting the decision path,
which is unhelpful for ensembles of many trees. The second is an unpublished heuristic approach (proposed by Saabas
[4]), which explains a prediction by following the decision path and attributing changes in the model’s expected output
to each feature along the path (Supplementary Results 3). The Saabas method has not been well studied, and we
demonstrate here it is biased to alter the impact of features based on their distance from a tree’s root (Supplementary
Figure 4A). This bias makes Saabas values inconsistent, where increasing a model’s dependence on a feature may
actually decrease that feature’s Saabas value (Supplementary Figure 5). This is the opposite of what an effective
attribution method should do. We show this difference by examining trees representing multi-way AND functions,
for which no feature should have more credit than another. Yet Saabas values give splits near the root much less
credit than those near the leaves (Supplementary Figure 4A). Consistency is critical for an explanation method since
it makes comparisons among feature importance values meaningful.

Model-agnostic local explanation approaches are slow and variable (Supplementary Methods 4; Supplementary
Results 4). While model-agnostic local explanation approaches can explain tree models, they rely on post hoc modeling
of an arbitrary function and thus can be slow and/or suffer from sampling variability when applied to models with
many input features. To illustrate this, we generate random datasets of increasing size and then explain (over)fit
XGBoost models with 1,000 trees. This runtime of this experiment shows a linear increase in complexity as the
number of features increases; model-agnostic methods take a significant amount of time to run over these datasets,
even though we allowed for non-trivial estimate variability (Supplementary Figure 4D) and used only a moderate
number of features (Supplementary Figure 4C) (Supplementary Methods 3). While often practical for individual
explanations, model-agnostic methods can quickly become impractical for explaining entire datasets (Supplementary
Figure 4C-F).

TreeExplainer provides fast local explanations with guaranteed consistency. It bridges theory to practice by
reducing the complexity of exact Shapley value computation from exponential to polynomial time. This is important
since within the class of additive feature attribution methods, a class that we have shown contains many previous
approaches to local feature attribution [3], results from game theory imply the Shapley values are the only way to
satisfy three important properties: local accuracy, consistency, and missingness. Local accuracy (known as additivity in
game theory) states that when approximating the original model f for a specific input x, the explanation’s attribution
values should sum up to the output f(x). Consistency (known as monotonicity in game theory) states that if a model
changes so that some feature’s contribution increases or stays the same regardless of the other inputs, that input’s
attribution should not decrease. Missingness (null effects and symmetry in game theory), is a trivial property satisfied
by all previous explanation methods.

TreeExplainer enables the exact computation of Shapley values in low order polynomial time by leveraging the
internal structure of tree-based models. Shapley values require a summation of terms over all possible feature subsets,
TreeExplainer collapses this summation into a set of calculations specific to each leaf in a tree (Methods). This
represents an exponential complexity improvement over previous exact Shapley methods. To compute the impact of
a specific feature subset during the Shapley value calculation, TreeExplainer uses interventional expectations over
a user-supplied background dataset [11]. But it can also avoid the need for a user-supplied background dataset by
relying only on the path coverage information stored in the model (which is usually from the training dataset).

Efficiently and exactly computing the Shapley values guarantees that explanations are always consistent and
locally accurate, improving results over previous local explanation methods in several ways:

• Impartial feature credit assignment regardless of tree depth. In contrast to Saabas values, Shapley values allocate
credit uniformly among all features participating in multi-way AND operations (Supplementary Figures 4A-B) and
thereby avoid inconsistency problems (Supplementary Figure 5).

• No estimation variability (Supplementary Figures 4C-F). Since solutions from model-agnostic sampling methods are
approximate, TreeExplainer’s exact explanations eliminate the additional burden of checking their convergence and
accepting a certain amount of noise in the estimates (other than noise from the choice of a background dataset).

3

• Strong benchmark performance (Figure 3; Supplementary Figures 6-7). We designed 15 metrics to comprehensively
evaluate the performance of local explanation methods; we applied these metrics to ten different explanation
methods across three different model types and three datasets. Results for the chronic kidney disease dataset, shown
in Figure 3, demonstrate consistent performance improvements for TreeExplainer.

• Consistency with human intuition (Supplementary Figure 8). We evaluated how well explanation methods match
human intuition by comparing their outputs with human consensus explanations of 12 scenarios based on simple
models. Unlike the heuristic Saabas values, Shapley-value-based explanation methods agree with human intuition
in all tested scenarios (Supplementary Methods 7).

TreeExplainer also extends local explanations to measure interaction effects. Traditionally, local explanations
based on feature attribution assign a single number to each input feature. The simplicity of this natural representation
comes at the cost of conflating main and interaction effects. While interaction effects between features can be reflected
in the global patterns of many local explanations, their distinction from main effects is lost in each local explanation
(Figure 4B-G).

We propose SHAP interaction values as a richer type of local explanation. These values use the ‘Shapley interaction
index’ from game theory to capture local interaction effects. They follow from generalizations of the original Shapley
value properties [13] and allocate credit not just among each player of a game, but among all pairs of players. The
SHAP interaction values consist of a matrix of feature attributions (interaction effects on the off-diagonal and the
remaining effects on the diagonal). By enabling the separate consideration of interaction effects for individual model
predictions, TreeExplainer can uncover significant patterns that might otherwise be missed.

Local explanations as building blocks for global insights
Previous approaches to understanding a model globally focused on using simple global approximations [2], finding new
interpretable features [20], or quantifying the impact of specific internal nodes in a deep network [21–23] (Supplementary
Results 2). We present methods that combine many local explanations to provide global insight into a model’s
behavior. This lets us retain local faithfulness to the model while still capturing global patterns, resulting in richer,
more accurate representations of the model’s behavior.

Local model summarization reveals rare high-magnitude effects on mortality risk and increases feature selection
power. Combining local explanations from TreeExplainer across an entire dataset enhances traditional global
representations of feature importance by: (1) avoiding the inconsistency problems of current methods (Supplementary
Figure 5), (2) increasing the power to detect true feature dependencies in a dataset (Supplementary Figure 9), and (3)
enabling us to build SHAP summary plots, which succinctly display the magnitude, prevalence, and direction of a
feature’s effect. SHAP summary plots avoid conflating the magnitude and prevalence of an effect into a single number,
and so reveal rare high magnitude effects. Figure 4A (right) reveals the direction of effects, such as men (blue) having
a higher mortality risk than women (red); and the distribution of effect sizes, such as the long right tails of many
medical test values. These long tails mean features with a low global importance can be extremely important for
specific individuals. Interestingly, rare mortality effects always stretch to the right, which implies there are many ways
to die abnormally early when medical measurements are out-of-range, but not many ways to live abnormally longer
(Supplementary Results 5).

Local feature dependence reveals both global patterns and individual variability in mortality risk and chronic
kidney disease. SHAP dependence plots show how a feature’s value (x-axis) impacts the prediction (y-axis) of every
sample (each dot) in a dataset (Figures 4B and E). They provide richer information than traditional partial dependence
plots (Supplementary Figure 10). For the mortality model, SHAP dependence plots reproduce the standard risk
inflection point of systolic blood pressure [24], while also highlighting that the impact of blood pressure on mortality
risk differs for people of different ages (Figure 4B). These types of interaction effects show up as vertical dispersion in
SHAP dependence plots (Supplementary Results 6).

For the chronic kidney disease model, a dependence plot again clearly reveals a risk inflection point for systolic
blood pressure. However, in this dataset the vertical dispersion from interaction effects appears to be partially driven
by differences in blood urea nitrogen (Figure 4E). Correctly modeling blood pressure risk while retaining interpretabilty
is vital because blood pressure control in select chronic kidney disease (CKD) populations may delay progression of
kidney disease and reduce the risk of cardiovascular events.

Local interactions reveal sex-specific life expectancy changes during aging as well as inflammation effects in chronic
kidney disease. Using SHAP interaction values, we can decompose the impact of a feature on a specific sample into
interaction effects with other features. This helps us measure global interaction strength as well as decompose SHAP
dependence plots into interaction effects at a local (i.e., per sample) level (Figures 4B-D). In the mortality dataset,
plotting the SHAP interaction value between age and sex shows a clear change in the relative risk between men and
women over a lifetime (Figure 4G). The largest difference in risk between men and women occurs at age 60; the

4

increased risk for men could be driven by their increased cardiovascular mortality relative to women near that age [25].
This pattern is not clearly captured without SHAP interaction values because being male always confers greater risk
of mortality than being female (Figure 4A).

In the chronic kidney disease model, we identify an interesting interaction (Figure 4F): high white blood cell
counts are more concerning to the model when they are accompanied by high blood urea nitrogen. This supports
the notion that inflammation may interact with high blood urea nitrogen to hasten kidney function decline [26, 27]
(Supplementary Results 7).

Local model monitoring reveals previously invisible problems with deployed machine learning models. Using
TreeExplainer to explain a model’s loss, instead of a model’s prediction, can improve our ability to monitor deployed
models. Monitoring models is challenging because of the many ways relationships between the input and model
target can change post-deployment. Detecting when such changes occur is difficult, so many bugs in machine learning
pipelines go undetected, even in core software at top tech companies [28]. We demonstrate that local model monitoring
helps debug model deployments and identify problematic features (if any) directly by decomposing the loss among the
model’s input features.

We simulated a model deployment with the hospital procedure duration dataset using the first year of data for
training and the next three years for deployment. We present three examples: one intentional error and two previously
undiscovered problems. (1) We intentionally swapped the labels of operating rooms 6 and 13 partway through the
deployment to mimic a typical feature pipeline bug. The overall loss of the model’s prediction gives no indication of
the bug (Figure 5A), whereas the SHAP monitoring plot for the room 6 feature clearly identifies the labeling error
(Figure 5B). (2) Figure 5C shows a spike in error for the general anesthesia feature shortly after the deployment
window begins. This spike corresponds to a subset of procedures affected by a previously undiscovered temporary
electronic medical record configuration problem. (3) Figure 5D shows an example of feature drift over time, not of a
processing error. During the training period and early in deployment, using the ‘atrial fibrillation’ feature lowers the
loss; however, the feature becomes gradually less useful over time and eventually degrades the model. We found this
drift was caused by significant changes in atrial fibrillation ablation procedure duration driven by technology and
staffing changes (Supplementary Figure 11). Current deployment practice monitors both the overall loss of a model
(Figure 5A) over time and potentially statistics about input features. Instead, TreeExplainer lets us directly monitor
the impact individual features have on a model’s loss (Supplementary Results 8).

Local explanation embeddings reveal population subgroups relevant to mortality risk and complementary diagnostic
indicators in chronic kidney disease. Unsupervised clustering and dimensionality reduction are widely used to discover
patterns characterizing subgroups of samples (e.g., study participants), such as disease subtypes [29, 30]. These
techniques have two drawbacks: 1) the distance metric does not account for discrepancies among units/meaning of
features (e.g., weight vs. age), and 2) an unsupervised approach cannot know which features are relevant for an
outcome of interest and so should be weighted more strongly. We address both limitations using local explanation
embeddings to embed each sample into a new “explanation space.” Running clustering in this new space will yield a
supervised clustering, where samples are grouped based on their explanations. Supervised clustering naturally accounts
for the differing units of various features, highlighting only the changes relevant to a particular outcome.

Running hierarchical supervised clustering using the mortality model results in many groups of people that share
a similar mortality risk for similar reasons (Figure 6A). This grouping of samples can reveal high level structure in
datasets that would not be revealed using standard unsupervised clustering (Supplementary Figure 12) and has various
applications, from customer segmentation, to model debugging, to disease sub-typing. Analogously, we can also run
PCA on local explanation embeddings for chronic kidney disease samples. This uncovers two primary categories of risk
factors that identify unique individuals at risk of end-stage renal disease: (1) factors based on urine measurements,
and (2) factors based on blood measurements (Figures 6B-D). This pattern is notable because it continues as we plot
more top features (Supplementary Figure 13). The separation between blood and urine features is consistent with
the fact that clinically these factors should be measured in parallel. This type of insight into the overall structure of
kidney risk is not at all apparent in a standard unsupervised embedding (Supplementary Figure 14; Supplementary
Results 9).

Discussion
The potential impact of local explanations for tree-based machine learning models is widespread. Explanations can
help satisfy transparency requirements, facilitate human/AI collaboration, and aid model development, debugging,
and monitoring.

Tree-based machine learning models are widely used in many regulated domains, such as healthcare, finance, and
public services. Improved interpretability is vital for these applications. In healthcare, the unknowing deployment of
“Clever Hans” predictors that depend on spurious correlations could lead to serious patient harm [31, 32]. In finance,
consumer protection laws require explanations for credit decisions, and no accepted standard exists for how to produce

5

these for complex tree-based models [33]. In public service applications, explainability can promote accountability and
anti-discrimination policies [34].

Improving human/AI collaboration is critical for applications where explaining machine learning model predictions
can enhance human performance. Such applications include predictive medicine, customer retention, and financial
model supervision. Local explanations enable support agents to predict why the customer they are calling is likely
to leave. They enable doctors to make more informed decisions rather than blindly trust an algorithm’s output.
With financial model supervision, local explanations help human experts understand why the model made a specific
recommendation for high-risk decisions.

Improving model development, debugging, and monitoring leads to more accurate and reliable deployments of
machine learning systems. Local explanations aid model development by revealing which features are most informative
for specific subsets of samples. They aid debugging by revealing the global patterns of how a model depends on its
input features, and so enable developers to determine when patterns are unlikely to generalize well. Finally, they
aid model monitoring by enabling the allocation of global accuracy measures among each model input, significantly
increasing the signal-to-noise ratio for detecting problematic data distribution shifts.

In this paper, we identified ways to significantly enhance the interpretability of tree-based models and to broaden
the application of local explanation methods. We develop the first polynomial-time algorithm to compute Shapley
values for trees. This algorithm solves what is in general an NP-hard problem in polynomial time for an important
class of value functions. We present a richer type of local explanation that directly captures interaction effects. We
demonstrate how using local explanation methods to explain model loss enables a more sensitive and informative
method of model monitoring. We offer many tools for model interpretation that combine local explanations, such as
dependence plots, summary plots, supervised clusterings, and explanation embeddings. We demonstrate that Shapley-
based local explanations can improve upon state-of-the-art feature selection for trees. We identify under-appreciated
interpretability problems with simple linear models. And we compile many varied explainability metrics into a unified
open source benchmark, on which TreeExplainer consistently outperforms other alternatives. Local explanations have
a distinct advantage over global ones. By focusing only on a single sample, they remain more faithful to the original
model. By designing efficient and trustworthy ways to obtain local explanations for modern tree-based models, we
take an important step toward enabling local explanations to become foundational building blocks for an ever growing
number of downstream machine learning tasks.

Acknowledgements
We are grateful to Ruqian Chen, Alex Okeson, Cassianne Robinson, Vadim Khotilovich, Nao Hiranuma, Joseph
Janizek, Marco Tulio Ribeiro, Jacob Schreiber, Patrick Hall, and members of Professor Su-In Lee’s group for the
feedback and assistance they provided during the development and preparation of this research. This work was
funded by National Science Foundation [DBI-1759487, DBI-1552309, DBI-1355899, DGE-1762114, and DGE-1256082];
American Cancer Society [127332-RSG-15-097-01-TBG]; and National Institutes of Health [R35 GM 128638, and R01
NIA AG 061132].

The Chronic Renal Insufficiency Cohort (CRIC) study was conducted by the CRIC Investigators and supported
by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The data from the CRIC study
reported here were supplied by the NIDDK Central Repositories. This manuscript was not prepared in collaboration
with Investigators of the CRIC study and does not necessarily reflect the opinions or views of the CRIC study, the
NIDDK Central Repositories, or the NIDDK.

Author contributions
S.M.L. and S.I.L conceived the study. S.M.L. designed algorithms, designed visualizations, designed metrics, ran
experiments, and contributed writing. G.E. ran experiments, designed visualizations, and contributed writing. H.C.
designed algorithms, ran experiments, and contributed writing. A.D. performed dataset creation. R.K., J.H., and N.B.
did dataset selection, model vetting, and defined the chronic kidney disease prediction problem. J.P., B.N., R.K., J.H.,
and N.B. each contributed writing and helped procure and interpret datasets. S.I.L. supervised research, method
development, and contributed writing.

Code availability
Code supporting this paper is published online at https://github.com/suinleelab/treexplainer-study. A widely
used Python implementation of TreeExplainer is available at https://github.com/slundberg/shap, and portions of it
are included in the standard release of XGBoost (https://xgboost.ai), LightGBM (https://github.com/Microsoft/LightGBM),
and CatBoost (https://catboost.ai).

6

Datasets
(mortality)

(kidney)
(hospital)

SH
A

P
va

lu
es

(lo
ca

l e
xp

la
na

tio
ns

)

sa

m
pl

es

features # features

Model summarization

Feature dependence

Explanation embeddings

Model monitoring

Interaction e�ects

...

...can lead to global model insightsCombining local explanations from many samples...(b)

(a)

Model

Tree
Explainer

Mortality risk score = 4

Age = 65

BMI = 40

Blood pressure = 180

Sex = Female

“Black box” model prediction “White box” local explanation

Mortality risk score = 4

Age = 65

BMI = 40

Blood pressure = 180

Sex = Female -2

+3

+0.5

+2.5

Model

TreeExplainer

Figure 1: Local explanations based on TreeExplainer enable a wide variety of new ways to
understand global model structure. (a) A local explanation based on assigning a numeric measure of
credit to each input feature. (b) By combining many local explanations, we can represent global structure while
retaining local faithfulness to the original model. We demonstrate this by using three medical datasets to train
gradient boosted decision trees and then compute local explanations based on SHapley Additive exPlanation
(SHAP) values [3]. Computing local explanations across all samples in a dataset enables development of
many tools for understanding global model structure.

Data availability
The pre-processed mortality data is available in the repository http://github.com/suinleelab/treexplainer-study.
Privacy restrictions prevent the release of the hospital procedure related data, and the kidney disease data is only
available directly from the National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK).

7

Amount of non-linearity in the data

(b)

(d)

(c)

%
 o

f w
ei

gh
t a

ss
ig

ne
d

to
 ir

re
le

va
nt

 fe
at

ur
es

15%

10%

5%

0%
Ex

pl
an

ab
ili

ty
 lo

st
du

e
to

 b
ia

s

Lo
g

lo
ss

 d
i�

er
en

ce
fr

om
 tr

ue
 m

od
el

Ac
cu

ra
cy

 lo
st

du
e

to
 b

ia
s

Low risk

High risk

NHANES I Mortality
(C-statistic)

CRIC Kidney Disease
(area under the PR curve)

Hospital Procedure Duration
(R2 value)

Gradient Boosted Trees Linear Model Neural Network

0.821 0.813 0.816

0.890 0.871 0.872

0.674 0.595 0.629
**

**

**
*

**

(a)

20%

Figure 2: Gradient boosted tree models can be more accurate than neural networks and more
interpretable than linear models. (a) Gradient boosted tree models outperform both linear models and
neural networks on all our medical datasets, where (**) represents a bootstrap retrain P-value < 0.01, and
(*) represents a P-value of 0.03. (b-d) Linear models exhibit explanation and accuracy error in the presence
of non-linearity. (b) The data generating models we used for the simulation ranged from linear to quadratic
along the body mass index (BMI) dimension. (c) Linear logistic regression (red) outperformed gradient
boosting (blue) up to a specific amount of non-linearity. Not surprisingly, the linear model’s bias is higher
than the gradient boosting model’s, as shown by the steeper slope as we increase non-linearity. (d) As the
true function becomes more non-linear, the linear model assigns more credit (coefficient weight) to features
that were not used by the data generating model. The weight placed on these irrelevant features is driven
by complex cancellation effects and so is not readily interpretable (Supplementary Figure 1). Furthermore,
adding L1 regularization to the linear model does not solve the problem (Supplementary Figures 2 and 3).

8

Gradient Boosted Trees

Random Forest

Decision Tree

*

*

*

TreeExplainer (path dependent)
TreeExplainer (interventional)

TreeExplainer (path dependent)
TreeExplainer (interventional)

TreeExplainer (path dependent)
TreeExplainer (interventional)

Figure 3: Explanation method performance across 15 different evaluation metrics and three
classification models in the chronic kidney disease dataset. Each column represents an evaluation
metric, and each row represents an explanation method. The scores for each metric are scaled between the
minimum and maximum value, and methods are sorted by their average score. TreeExplainer outperforms
previous approaches not only by having theoretical guarantees about consistency, but also by exhibiting
improved performance across a large set of quantitative metrics that measure explanation quality (Methods).
When these experiments were repeated for two synthetic datasets, TreeExplainer remained the top-performing
method (Supplementary Figures 6 and 7). Note that, as predicted, Saabas better approximates the Shapley
values (and so becomes a better attribution method) as the number of trees increases (Methods). *Since
MAPLE models the local gradient of a function, and not the impact of hiding a feature, it tends to perform
poorly on these feature importance metrics [35].

9

Mortality model

Global feature importance Local explanation summary

(log relative risk of mortality)

(g)

Fe
m

al
e

M
al

e

(lo
g

re
la

tiv
e

ris
k

of
 m

or
ta

lit
y)

Age (years)

(e)

(lo
g

re
la

tiv
e

ris
k

of
 E

SR
D

)

Systolic blood pressure (mmHg)

SH
AP

 v
al

ue
 fo

r
sy

st
ol

ic
 b

lo
od

 p
re

ss
ur

e
w

ith
ou

t t
he

 a
ge

 in
te

ra
ct

io
n

(lo
g

re
la

tiv
e

ris
k

of
 m

or
ta

lit
y)

Systolic blood pressure (mmHg)

(b)

(lo
g

re
la

tiv
e

ris
k

of
 m

or
ta

lit
y)

Systolic blood pressure (mmHg)

Ag
e

(y
ea

rs
)

(lo
g

re
la

tiv
e

ris
k

of
 m

or
ta

lit
y)

Systolic blood pressure (mmHg)

Ag
e

(y
ea

rs
)

Kidney model

(f)

(lo
g

re
la

tiv
e

ris
k

of
 E

SR
D

)

White blood cells (lab value)

Mortality model

Mortality model

+=

(F/M)

(a)

(c) (d)

Figure 4: By combining many local explanations, we can provide rich summaries of both an
entire model and individual features. Explanations are based on a gradient boosted decision tree model
trained on the mortality dataset. (a) (left) bar-chart of the average SHAP value magnitude, and (right) a set
of beeswarm plots, where each dot corresponds to an individual person in the study. The dot’s position on the
x-axis shows the impact that feature has on the model’s prediction for that person. When multiple dots land
at the same x position, they pile up to show density. (b) SHAP dependence plot of systolic blood pressure
vs. its SHAP value in the mortality model. A clear interaction effect with age is visible, which increases
the impact of early onset high blood pressure. (c) Using SHAP interaction values to remove the interaction
effect of age from the model. (d) Plot of just the interaction effect of systolic blood pressure with age; shows
how the effect of systolic blood pressure on mortality risk varies with age. Adding the y-values of C and D
produces B. (e) A dependence plot of systolic blood pressure vs. its SHAP value in the kidney model; shows
an increase in kidney disease risk at a systolic blood pressure of 125 (which parallels the increase in mortality
risk). (f) Plot of the SHAP interaction value of ‘white blood cells’ with ‘blood urea nitrogen’; shows that
high white blood cell counts increase the negative risk conferred by high blood urea nitrogen. (g) Plot of the
SHAP interaction value of sex vs. age in the mortality model; shows how the differential risk for men and
women changes over a lifetime.

10

Sample index (ordered by time)

SH
A

P
lo

ss
 v

al
ue

 o
f

at
ria

l �
br

ill
at

io
n

SH
A

P
lo

ss
 v

al
ue

 o
f

ge
ne

ra
l a

ne
st

he
si

a
SH

A
P

lo
ss

 v
al

ue
 o

f
in

 ro
om

 #
6

Sm
oo

th
ed

m
od

el
 s

qu
ar

ed
 e

rr
or

First year of data
used for training

-

(a)

(b)

(c)

(d)

True FalseFeature values

2012 2013 2014 2015 2016

Figure 5: Monitoring plots reveal problems that would otherwise be invisible in a retrospective
hospital machine learning model deployment. (a) The squared error of a hospital duration model
averaged over the nearest 1,000 samples. The increase in error after training occurs because the test error
is (as expected) higher than the training error. (b) The SHAP value of the model loss for the feature that
indicates whether the procedure happens in room 6. A significant change occurs when we intentionally swap
the labels of rooms 6 and 13, which is invisible in the overall model loss. (c) The SHAP value of the model
loss for the general anesthesia feature; the spike one-third of the way into the data results from previously
unrecognized transient data corruption at a hospital. (d) The SHAP value of the model loss for the atrial
fibrillation feature. The plot’s upward trend shows feature drift over time (P-value 5.4× 10−19).

11

Liver/b
one problems 25-40 years old

 Underw
eight w

omen 25-35 years old

Men with
 liv

er/b
one problems 40-50 years old

Early-onset h
igh BP

High BP 40-50 years old

High BP 50-60 years old

High BP + in�ammatio
n 65-75 years old

Underw
eight 6

5-75 years old

Total log hazard ratio

Age

Sex

Systolic blood pressure

White blood cells

BMI

Sedimentation rate

Serum albumin

Alkaline phosphatase

Cholesterol

Physical activity

In�ammatio
n 25-35 years old

High

Low

Fe
at

ur
e

SH
A

P
va

lu
es

(n
or

m
al

iz
ed

 p
er

 ro
w

)

SHAP value of blood creatinine (determines eGFR)

= + + 331
other features

Log odds of end-stage renal disease within 4 years SHAP value of urine protein/creatinine ratio

(B) (C) (D)

(A)

Figure 6: Local explanation embeddings support both supervised clustering and interpretable
dimensionality reduction. (A) A clustering of mortality study individuals by their local explanation
embedding. Columns are patients, and rows are features’ normalized SHAP values. Sorting by a hierarchical
clustering reveals population subgroups that have distinct mortality risk factors. (B-D) A local explanation
embedding of kidney study visits projected onto two principal components. Local feature attribution values
can be viewed as an embedding of the samples into a space where each dimension corresponds to a feature
and all axes have the units of the model’s output. The embedding colored by: (B) the predicted log odds of
a participant developing end-stage renal disease within 4 years of that visit, (C) the SHAP value of blood
creatinine, and (D) the SHAP value of the urine protein/creatinine ratio. Many other features also align
with these top two principal components (Supplementary Figure 13), and an equivalent unsupervised PCA
embedding is far less interpretable (Supplementary Figure 14)

12

Methods

Institutional review board statement
The chronic kidney disease data was obtained from the Chronic Renal Insufficiency Cohort study. University
Washington Human Subjects Division determined that our study does not involve human subjects because we do not
have access to identifiable information (IRB ID: STUDY00006766).

The anonymous hospital procedure data used for this study was retrieved from three institutional electronic medical
record and data warehouse systems after receiving approval from the Institutional Review Board (UW Approval no.
46889).

Shapley values
Here we review the uniqueness guarantees of Shapley values from game theory as they apply to local explanations of
predictions from machine learning models [9]. As applied here, Shapley values are computed by introducing each
feature, one at a time, into a conditional expectation function of the model’s output, fx(S) = E[f(X) | do(XS = xS)],
and attributing the change produced at each step to the feature that was introduced; then averaging this process over
all possible feature orderings (Supplementary Figure 15). Note that S is the set of features we are conditioning on,
and we follow the causal do-notation formulation suggested in [11], which improves on the motivation of the original
SHAP feature perturbation formulation [3]. An equivalent formulation is the randomized baseline method discussed in
[10]. Shapley values represent the only possible method in the broad class of additive feature attribution methods [3]
that will simultaneously satisfy three important properties: local accuracy, consistency, and missingness.

Local accuracy (known as additivity in game theory) states that when approximating the original model f for a
specific input x, the explanation’s attribution values should sum up to the output f(x):

Property 1 (Local accuracy / Additivity).

f(x) = φ0(f) +

M∑
i=1

φi(f, x) (1)

The sum of feature attributions φi(f, x) matches the original model output f(x), where φ0(f) = E[f(z)] = fx(∅).

Consistency (known as monotonicity in game theory) states that if a model changes so that some feature’s
contribution increases or stays the same regardless of the other inputs, that input’s attribution should not decrease:

Property 2 (Consistency / Monotonicity). For any two models f and f ′, if

f ′x(S)− f ′x(S \ i) ≥ fx(S)− fx(S \ i) (2)

for all subsets of features S ∈ F , then φi(f
′, x) ≥ φi(f, x).

Missingness (similar to null effects in game theory) requires features with no effect on the set function fx to have
no assigned impact. All local previous methods we are aware of satisfy missingness.

Property 3 (Missingness). If
fx(S ∪ i) = fx(S) (3)

for all subsets of features S ∈ F , then φi(f, x) = 0.

The only way to simultaneously satisfy these properties is to use the classic Shapley values:

Theorem 1. Only one possible feature attribution method based on fx satisfies Properties 1, 2 and 3:

φi(f, x) =
∑
R∈R

1

M !

[
fx(PR

i ∪ i)− fx(PR
i)

]
(4)

where R is the set of all feature orderings, PR
i is the set of all features that come before feature i in ordering R, and

M is the number of input features for the model.

The equivalent of Theorem 1 has been previously presented in [3] and follows from cooperative game theory results
[36], where the values φi are known as the Shapley values [9]. Shapley values are defined independent of the set
function used to measure the importance of a set of features. Since here we are using fx, a conditional expectation
function of the model’s output, we are computing the more specific SHapley Additive exPlanation (SHAP) values [3,
11]. For more properties of these values see Supplementary Methods 5

13

TreeExplainer with path dependent feature perturbation
We describe the algorithms behind TreeExplainer in three stages. First, we describe an easy to understand (but
slow) version of the Tree SHAP algorithm using path dependent feature perturbation (Algorithm 1), then we present
the complex polynomial time version of Tree SHAP using path dependence, and finally we describe the Tree SHAP
algorithm using interventional (marginal) feature perturbation (where fx(S) exactly equals E[f(X) | do(XS = xS)]).
While solving for the Shapley values is in general NP-hard [12], these algorithms show that by restricting our attention
to trees we can find exact solutions in low-order polynomial runtime.

The Tree SHAP algorithm using path feature dependence does not exactly compute E[f(X) | do(XS = xS)], but
instead approximates it using Algorithm 1, which uses the coverage information from the model about which training
samples went down which paths in a tree. This is convenient since it means we don’t need to supply a background
dataset in order to explain the model (Algorithm 1 also directly parallels the traversal used by the classic “gain” style
of feature importance).

Given that fx is defined using Algorithm 1, Tree SHAP path dependent then exactly computes Equation 4. Letting
T be the number of trees, D the maximum depth of any tree, and L the number of leaves, Tree SHAP path dependent
has worst case complexity of O(TLD2). This represents an exponential complexity improvement over previous exact
Shapley methods, which would have a complexity of O(TLM2M), where M is the number of input features.

If we ignore computational complexity then we can compute the SHAP values for a tree by computing fx(S) and
then directly using Equation 4. Algorithm 1 computes fx(S) where tree contains the information of the tree. v is a
vector of node values; for internal nodes, we assign the value internal. The vectors a and b represent the left and right
node indexes for each internal node. The vector t contains the thresholds for each internal node, and d is a vector of
indexes of the features used for splitting in internal nodes. The vector r represents the cover of each node (i.e., how
many data samples fall in that sub-tree).

Algorithm 1 estimates E[f(X) | do(XS = xS)] by recursively following the decision path for x if the split feature is
in S, and taking the weighted average of both branches if the split feature is not in S. The computational complexity
of Algorithm 1 is proportional to the number of leaves in the tree, which when used on all T trees in an ensemble and
plugged into Equation 4 leads to a complexity of O(TLM2M) for computing the SHAP values of all M features.

Algorithm 1 Estimating E[f(X) | do(XS = xS)]

1: procedure EXPVALUE(x, S, tree = {v, a, b, t, r, d})
2: procedure G(j) . Define the G procedure which we will call on line 10
3: if vj 6= internal then . Check if node j is a leaf
4: return vj . Return the leaf’s value
5: else
6: if dj ∈ S then . Check if we are conditioning on this feature
7: return G(aj) if xdj

≤ tj else G(bj) . Use the child on the decision path
8: else
9: return [G(aj)·raj + G(bj)·rbj]/rj . Weight children by their coverage

10: return G(1) . Start at the root node

Now we calculate the same values as above, but in polynomial time instead of exponential time. Specifically,
we propose an algorithm that runs in O(TLD2) time and O(D2 +M) memory, where for balanced trees the depth
becomes D = logL. Recall T is the number of trees, L is the maximum number of leaves in any tree, and M is the
number of features.

The intuition of the polynomial time algorithm is to recursively keep track of what proportion of all possible
subsets flow down into each of the leaves of the tree. This is similar to running Algorithm 1 simultaneously for all
2M subsets S in Equation 4. Note that a single subset S can land in multiple leaves. It may seem reasonable to
simply keep track of how many subsets (weighted by the cover splitting of Algorithm 1 on line 9) pass down each
branch of the tree. However, this combines subsets of different sizes and so prevents the proper weighting of these
subsets, since the weights in Equation 4 depend on |S|. To address this we keep track of each possible subset size
during the recursion, not just single a count of all subsets. The EXTEND method in Algorithm 2 grows all these
subset sizes according to a given fraction of ones and zeros, while the UNWIND method reverses this process and is
commutative with EXTEND. The EXTEND method is used as we descend the tree. The UNWIND method is used to
undo previous extensions when we split on the same feature twice, and to undo each extension of the path inside a
leaf to compute weights for each feature in the path. Note that EXTEND keeps track of not just the proportion of
subsets during the recursion, but also the weight applied to those subsets by Equation 4. Since the weight applied to
a subset in Equation 4 is different when it includes the feature i, we need to UNWIND each feature separately once

14

we land in a leaf, so as to compute the correct weight of that leaf for the SHAP values of each feature. The ability to
UNWIND only in the leaves depends on the commutative nature of UNWIND and EXTEND.

Algorithm 2 Tree SHAP with path dependent feature perturbation
1: procedure TREESHAP_PATH(x, tree = {v, a, b, t, r, d})
2: φ = array of len(x) zeros
3: procedure RECURSE(j, m, pz, po, pi)
4: m = EXTEND(m, pz, po, pi) . Extend subset path with a fraction of zeros and ones
5: if vj 6= internal then . Check if we are at a leaf node
6: for i← 2 to len(m) do . Calculate the contributions from every feature in our path
7: w = sum(UNWIND(m, i).w) . Undo the weight extension for this feature
8: φmi

= φmi
+ w(mi.o−mi.z)vj . Contribution from subsets matching this leaf

9: else
10: h, c = (aj , bj) if xdj ≤ tj else (bj , aj) . Determine hot and cold children
11: iz = io = 1
12: k = FINDFIRST(m.d, dj)
13: if k 6= nothing then . Undo previous extension if we have already seen this feature
14: iz, io = (mk.z,mk.o)
15: m = UNWIND(m, k)

16: RECURSE(h, m, izrh/rj , io, dj) . Send both zero and one weights to the hot child
17: RECURSE(c, m, izrc/rj , 0, dj) . Send just zero weights to the cold child
18: procedure EXTEND(m, pz, po, pi)
19: l,m = len(m), copy(m)
20: ml+1.(d, z, o, w) = (pi, pz, po, (1 if l = 0 else 0)) . Init subsets of size l
21: for i← l to 1 do . Grow subsets using pz and po
22: mi+1.w = mi+1.w + po ·mi.w · (i/l) . Subsets that grow by one
23: mi.w = pz ·mi.w · (l − i)/l . Subsets that stay the same size
24: return m . Return the new extended subset path
25: procedure UNWIND(m, i) . The inverse of the ith call to EXTEND(m, ...)
26: l, n,m = len(m),ml.w, copy(m1...l−1)
27: for j ← l − 1 to 1 do . Shrink subsets using mi.z and mi.o
28: if mi.o 6= 0 then
29: t = mj .w
30: mj .w = n · l/(j ·mi.o)
31: n = t−mj .w ·mi.z · (l − j)/l
32: else
33: mj .w = (mj .w · l)/(mi.z(l − j))
34: for j ← i to l − 1 do
35: mj .(d, z, o) = mj+1.(d, z, o)

36: return m
37: RECURSE(1, [], 1, 1, 0) . Start at first node with all zero and one extensions
38: return φ

In Algorithm 2, m is the path of unique features we have split on so far, and contains four attributes: i) d, the
feature index, ii) z, the fraction of “zero” paths (where this feature is not in the set S) that flow through this branch, iii)
o, the fraction of “one” paths (where this feature is in the set S) that flow through this branch, and iv) w, which is used
to hold the proportion of sets of a given cardinality that are present weighted by their Shapley weight (Equation 4).
Note that the weighting captured by w does not need to account for features not yet seen on the decision path so the
effective size of M in Equation 4 is growing as we descend the tree. We use the dot notation to access member values,
and for the whole vector m.d represents a vector of all the feature indexes. The values pz, po, and pi represent the
fraction of zeros and ones that are going to extend the subsets, and the index of the feature used to make the last
split. We use the same notation as in Algorithm 1 for the tree and input vector x. The child followed by the tree
when given the input x is called the “hot” child. Note that the correctness of Algorithm 2 (as implemented in the

15

open source code) has been validated by comparing its results to the brute force approach based on Algorithm 1 for
thousands of random models and datasets where M < 15.

Complexity analysis: Algorithm 2 reduces the computational complexity of exact SHAP value computation
from exponential to low order polynomial for trees and sums of trees (since the SHAP values of a sum of two functions
is the sum of the original functions’ SHAP values). The loops on lines 6, 12, 21, 27, and 34 are all bounded by the
length of the subset path m, which is bounded by D, the maximum depth of a tree. This means the complexity of
UNWIND and EXTEND is bounded by O(D). Each call to RECURSE incurs either O(D) complexity for internal
nodes, or O(D2) for leaf nodes, since UNWIND is nested inside a loop bounded by D. This leads to a complexity of
O(LD2) for the whole tree because the work done at the leaves dominates the complexity of the internal nodes. For
an entire ensemble of T trees this bound becomes O(TLD2). If we assume the trees are balanced then D = logL and
the bound becomes O(TL log2 L). �

TreeExplainer with interventional feature perturbation
TreeExplainer with interventional feature perturbation (exactly Equation 4) can be computed with worst case
complexity of O(TLDN), where N is the number of background samples used for the conditional expectations.

The Tree SHAP algorithms provide fast exact solutions for trees and sums of trees (because of the linearity of
Shapley values [9]), but there are times when it is helpful to explain not the direct output of the trees, but also a
non-linear transform of the tree’s output. A compelling example of this is explaining a model’s loss function, which
is very useful for model monitoring and debugging. Unfortunately, there is no simple way to adjust the Shapley
values of a function to exactly account for a non-linear transformation of the model output. Instead, we combine
a previously proposed compositional approximation (Deep SHAP) [3] with ideas from Tree SHAP to create a fast
method specific to trees. The compositional approach requires iterating over each background sample from the dataset
used to compute the expectation, and hence we design Algorithm 3 to loop over background samples individually.

Interventional Tree SHAP (by the laws of causality) enforces an independence between the conditional set S
and the set of remaining features (xS⊥xS̄). Utilizing this independence, Shapley values with respect to R individual
background samples can be averaged together to get the attributions for the full distribution. Accordingly, Algorithm 3
is performed by traversing hybrid paths made up of a single foreground and background sample in a tree. At each
internal node, RECURSE traverses down the tree, maintaining local state to keep track of the set of upstream features
and whether the feature split on was from the foreground or background sample. Then, at each leaf, two contributions
are computed – one positive and one negative. Each leaf’s positive and negative contribution depends on the feature
being explained. However, calculating the Shapley values by iterating over all features at each leaf would result in
a quadratic time algorithm. Instead, RECURSE passes these contributions up to the parent node and determines
whether to assign the positive or negative contribution to the feature that was split upon based on the directions the
foreground and background samples traversed. Then the internal node aggregates the two positive contributions into
a single positive contribution and two negative contributions into a single negative contribution and passes it up to its
parent node.

Note that both the positive and negative contribution at each leaf is a function of two variables: 1) U : the
number of features that matched the foreground sample along the path and 2) V : the total number of unique features
encountered along the path. This means that for different leaves, a different total number of features V will be
considered. This allows the algorithm to consider only O(L) terms, rather than an exponential number of terms.
Despite having different U ’s at each leaf, interventional Tree SHAP exactly computes the traditional Shapley value
formula (which considers a fixed total number of features ≥ V for any given path) because the terms in the summation
group together nicely.

Complexity Analysis: If we assume CALCWEIGHT takes constant time (which it will if the factorial function
is implemented based on lookup tables), then Algorithm 3 performs a constant amount of computation at each node.
This implies the complexity for a single foreground and background sample is O(L), since the number of nodes in a
tree is of the same order as the number of leaves. Repeating this algorithm for each tree and for each background
sample gives us O(TRL). �

Note that for the experiments in this paper we used R = 200 background samples to produce low variance
estimates.

Benchmark evaluation metrics
We used 15 evaluation metrics to measure the performance of different explanation methods. These metrics were
chosen to capture practical runtime considerations, desirable properties such as local accuracy and consistency, and a
range of different ways to measure feature importance. We considered multiple previous approaches and based these
metrics off what we considered the best aspects of prior evaluations [3, 37–39]. Importantly, we have included two
different ways to hide features from the model. One based on mean masking, and one based on random interventional

16

Algorithm 3 Tree SHAP with interventional feature perturbation
1: procedure TREESHAP_INT(x, refset, tree = {v, a, b, t, r, d})
2: φ = array of len(x) zeros
3: procedure CALCWEIGHT(U , V) . Shapley value weight for a set size and number of features
4: return U !(V−U−1)!

V !

5: procedure RECURSE(j, U , V , xlist, clist)
6: if vj 6= internal then . Calculate possible contributions at leaf
7: pos = neg = 0
8: if U == 0 then return (pos, neg)
9: if U 6= 0 then pos = calcweight(V,U − 1) ∗ vj

10: if U 6= V then neg = −calcweight(V,U) ∗ vj
11: return (pos, neg)
12: k = None . Represents the next node
13: if (xdj

> tj) and (cdj
> tj) then k = bj . Both x and c go right

14: if !(xdj
> tj) and !(cdj

> tj) then k = aj . Both x and c go left
15: if xlistdj > 0 then . Feature was previously x
16: if xdj

> tj then k = bj
17: else k = aj

18: if clistdj > 0 then . Feature was previously c
19: if cdj

> tj then k = bj
20: else k = aj

21: if k 6= None then . Recurse down a single path if next node is set
22: return RECURSE(k, U , V , xlist, clist)
23: if (xdj

> tj) and !(cdj
> tj) then . Recurse x right and c left

24: xlistdj
= xlistdj

+ 1
25: (posx,negx) = RECURSE(bj , U + 1, V + 1, xlist, clist)
26: xlistdj = xlistdj − 1
27: clistdj = clistdj + 1
28: (posc,negc) = RECURSE(aj , U , V + 1, xlist, clist)
29: clistdj

= clistdj
− 1

30: if !(xdj > tj) and (cdj > tj) then . Recurse x left and c right
31: xlistdj = xlistdj + 1
32: (posx,negx) = RECURSE(aj , U + 1, V + 1, xlist, clist)
33: xlistdj

= xlistdj
− 1

34: clistdj
= clistdj

+ 1
35: (posc,negc) = RECURSE(bj , U , V + 1, xlist, clist)
36: clistdj = clistdj − 1

37: φdj
= φdj

+ posx+ negc . Save contributions for dj
38: return (posx+ posc, negx+ negc) . Pass up both contributions
39: for c in refset do
40: RECURSE(0, 0, 0, array of len(x) zeros, array of len(x) zeros)
41: return φ/len(refset)

17

feature sampling. After extensive consideration, we did not include metrics based on retraining the original model
since, while informative, these can produce misleading results in certain situations where retrained models can swap
dependence among correlated input features.

All metrics used to compute comprehensive evaluations of the Shapley value estimation methods we consider
are described in Supplementary Methods 6. Results are shown in Figure 3, Supplementary Figures 6 and 7.
Python implementations of these metrics are available online https://github.com/suinleelab/treeexplainer-study.
Performance plots for all benchmark results are also available in Supplementary Data 1.

SHAP interaction values
Here we describe the richer explanation model we proposed to capture local interaction effects; it is based on the
Shapley interaction index from game theory. The Shapley interaction index is a more recent concept than the classic
Shapley values, and follows from generalizations of the original Shapley value properties [13]. It can allocate credit
not just among each player of a game, but among all pairs of players. While standard feature attribution results in
a vector of values, one for each feature, attributions based on the Shapley interaction index result in a matrix of
feature attributions. The interaction effects on the off-diagonal and the remaining effects are on the diagonal. If we
use the same definition of fx that we used to get SHAP values, but with the Shapley interaction index, we get SHAP
interaction values [13], defined as:

Φi,j(f, x) =
∑

S⊆M\{i,j}

|S|!(M − |S| − 2)!

2(M − 1)!
∇ij(f, x, S), (5)

when i 6= j, and

∇ij(f, x, S) = fx(S ∪ {i, j})− fx(S ∪ {i})− fx(S ∪ {j}) + fx(S) (6)
= fx(S ∪ {i, j})− fx(S ∪ {j})− [fx(S ∪ {i})− fx(S)]. (7)

whereM is the set of allM input features. In Equation 5 the SHAP interaction value between feature i and feature j is
split equally between each feature so Φi,j(f, x) = Φj,i(f, x) and the total interaction effect is Φi,j(f, x)+Φj,i(f, x). The
remaining effects for a prediction can then be defined as the difference between the SHAP value and the off-diagonal
SHAP interaction values for a feature:

Φi,i(f, x) = φi(f, x)−
∑
j 6=i

Φi,j(f, x) (8)

We then set Φ0,0(f, x) = fx(∅) so Φ(f, x) sums to the output of the model:

M∑
i=0

M∑
j=0

Φi,j(f, x) = f(x) (9)

While SHAP interaction values could be computed directly from Equation 5, we can leverage Algorithms 2 or 3 to
drastically reduce their computational cost for tree models. As highlighted in Equation 7, SHAP interaction values
can be interpreted as the difference between the SHAP values for feature i when feature j is present and the SHAP
values for feature i when feature j is absent. This allows us to use Algorithm 2 twice, once while ignoring feature j as
fixed to present, and once with feature j absent. This leads to a run time of O(TMLD2) when using Algorithms 2
and O(TMLDN) for Algorithm 3, since we repeat the process for each feature.

SHAP interaction values have properties similar to SHAP values [13], and allow the separate consideration of
interaction effects for individual model predictions. This separation can uncover important interactions captured
by tree ensembles. While previous work has used global measures of feature interactions [40, 41], to the best of our
knowledge SHAP interaction values represent the first local approach to feature interactions beyond simply listing
decision paths.

18

References
1. Kaggle. The State of ML and Data Science 2017 2017. https://www.kaggle.com/surveys/2017.

2. Friedman, J., Hastie, T. & Tibshirani, R. The elements of statistical learning (Springer series in statistics
Springer, Berlin, 2001).

3. Lundberg, S. M. & Lee, S.-I. in Advances in Neural Information Processing Systems 30 4768–4777
(2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-
predictions.pdf.

4. Saabas, A. treeinterpreter Python package https://github.com/andosa/treeinterpreter.

5. Ribeiro, M. T., Singh, S. & Guestrin, C. Why should i trust you?: Explaining the predictions of any
classifier in Proceedings of the 22nd ACM SIGKDD (2016), 1135–1144.

6. Datta, A., Sen, S. & Zick, Y. Algorithmic transparency via quantitative input influence: Theory and
experiments with learning systems in Security and Privacy (SP), 2016 IEEE Symposium on (2016),
598–617.

7. Štrumbelj, E. & Kononenko, I. Explaining prediction models and individual predictions with feature
contributions. Knowledge and information systems 41, 647–665 (2014).

8. Baehrens, D. et al. How to explain individual classification decisions. Journal of Machine Learning
Research 11, 1803–1831 (2010).

9. Shapley, L. S. A value for n-person games. Contributions to the Theory of Games 2, 307–317 (1953).

10. Sundararajan, M. & Najmi, A. The many Shapley values for model explanation. arXiv preprint
arXiv:1908.08474 (2019).

11. Janzing, D., Minorics, L. & Blöbaum, P. Feature relevance quantification in explainable AI: A causality
problem. arXiv preprint arXiv:1910.13413 (2019).

12. Matsui, Y. & Matsui, T. NP-completeness for calculating power indices of weighted majority games.
Theoretical Computer Science 263, 305–310 (2001).

13. Fujimoto, K., Kojadinovic, I. & Marichal, J.-L. Axiomatic characterizations of probabilistic and cardinal-
probabilistic interaction indices. Games and Economic Behavior 55, 72–99 (2006).

14. Ribeiro, M. T., Singh, S. & Guestrin, C. Anchors: High-precision model-agnostic explanations in AAAI
Conference on Artificial Intelligence (2018).

15. Shortliffe, E. H. & Sepúlveda, M. J. Clinical Decision Support in the Era of Artificial Intelligence. Jama
320, 2199–2200 (2018).

16. Lundberg, S. M. et al. Explainable machine learning predictions to help anesthesiologists prevent
hypoxemia during surgery. Nature Biomedical Engineering 2, 749–760 (2018).

17. Cox, C. S. et al. Plan and operation of the NHANES I Epidemiologic Followup Study, 1992 (1997).

18. Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system in Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), 785–794.

19. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging.
Neuroimage 87, 96–110 (2014).

20. Kim, B. et al. Interpretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). arXiv preprint arXiv:1711.11279 (2017).

21. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding neural networks through
deep visualization. arXiv preprint arXiv:1506.06579 (2015).

22. Bau, D., Zhou, B., Khosla, A., Oliva, A. & Torralba, A. Network dissection: Quantifying interpretability
of deep visual representations in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017), 6541–6549.

23. Leino, K., Sen, S., Datta, A., Fredrikson, M. & Li, L. Influence-directed explanations for deep convolutional
networks in 2018 IEEE International Test Conference (ITC) (2018), 1–8.

19

24. Group, S. R. A randomized trial of intensive versus standard blood-pressure control. New England
Journal of Medicine 373, 2103–2116 (2015).

25. Mozaffarian, D. et al. Heart disease and stroke statistics—2016 update: a report from the American
Heart Association. Circulation, CIR–0000000000000350 (2015).

26. Bowe, B., Xie, Y., Xian, H., Li, T. & Al-Aly, Z. Association between monocyte count and risk of incident
CKD and progression to ESRD. Clinical Journal of the American Society of Nephrology 12, 603–613
(2017).

27. Fan, F., Jia, J., Li, J., Huo, Y. & Zhang, Y. White blood cell count predicts the odds of kidney function
decline in a Chinese community-based population. BMC nephrology 18, 190 (2017).

28. Zinkevich, M. Rules of Machine Learning: Best Practices for ML Engineering 2017.

29. Van Rooden, S. M. et al. The identification of Parkinson’s disease subtypes using cluster analysis: a
systematic review. Movement disorders 25, 969–978 (2010).

30. Sørlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data
sets. Proceedings of the national academy of sciences 100, 8418–8423 (2003).

31. Lapuschkin, S. et al. Unmasking Clever Hans predictors and assessing what machines really learn. Nature
communications 10, 1096 (2019).

32. Pfungst, O. Clever Hans:(the horse of Mr. Von Osten.) a contribution to experimental animal and
human psychology (Holt, Rinehart and Winston, 1911).

33. IIF. IIF Machine Learning Recommendations for Policymakers https://www.iif.com/Publications/
ID/3574/Machine-Learning-Recommendations-for-Policymakers. 2019.

34. Deeks, A. The Judicial Demand for Explainable Artificial Intelligence (2019).

35. Plumb, G., Molitor, D. & Talwalkar, A. S. Model agnostic supervised local explanations in Advances in
Neural Information Processing Systems (2018), 2515–2524.

36. Young, H. P. Monotonic solutions of cooperative games. International Journal of Game Theory 14,
65–72 (1985).

37. Ancona, M., Ceolini, E., Oztireli, C. & Gross, M. Towards better understanding of gradient-based attri-
bution methods for Deep Neural Networks in 6th International Conference on Learning Representations
(ICLR 2018) (2018).

38. Hooker, S., Erhan, D., Kindermans, P.-J. & Kim, B. Evaluating feature importance estimates. arXiv
preprint arXiv:1806.10758 (2018).

39. Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not Just a Black Box: Learning Important
Features Through Propagating Activation Differences. arXiv preprint arXiv:1605.01713 (2016).

40. Lunetta, K. L., Hayward, L. B., Segal, J. & Van Eerdewegh, P. Screening large-scale association study
data: exploiting interactions using random forests. BMC genetics 5, 32 (2004).

41. Jiang, R., Tang, W., Wu, X. & Fu, W. A random forest approach to the detection of epistatic interactions
in case-control studies. BMC bioinformatics 10, S65 (2009).

20

