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ABSTRACT

A recently developed linear model of eastward-propagating disturbances has two separate unstable modes:
convectively coupled Kelvin waves destabilized by the wind dependence of the surface enthalpy flux, and
slow, MJO-like modes destabilized by cloud-radiation interaction and driven eastward by surface enthalpy
fluxes. This latter mode survives the weak temperature gradient (WTG) approximation and has a time scale
dictated by the time it takes for surface fluxes to moisten tropospheric columns. Here we extend that model to
include higher-order modes and show that planetary-scale low-frequency waves with more complex structures
can also be amplified by cloud-radiation interactions. While most of these waves survive the WT'G approx-
imation, their frequencies and growth rates are seriously compromised by that approximation. Applying
instead the assumption of zonal geostrophy results in a better approximation to the full spectrum of modes.
For small cloud-radiation and surface flux feedbacks, Kelvin waves and equatorial Rossby waves are de-
stabilized, but when these feedbacks are strong enough, the frequencies do not lie close to classical equatorial
dispersion curves except in the case of higher-frequency Kelvin and Yanai waves. An eastward-propagating
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n = 1 mode, in particular, has a structure resembling the observed structure of the MJO.

1. Introduction

Intraseasonal variations of clouds, precipitation, and
winds in the equatorial atmosphere are concentrated
at low frequencies and zonal wavenumbers, as revealed
by wavenumber—frequency spectra of outgoing long-
wave radiation (OLR; Wheeler and Kiladis 1999).
Perturbations away from this smooth, red spectrum
seem to fall along the linear dispersion curves of equa-
torially trapped waves, first derived more than a half
century ago by Matsuno (1966). Yet the most prominent
such perturbation, the Madden—Julian oscillation (MJO),
does not fall along any such dispersion curve and is more
closely characterized by constant frequency. Numerical
simulations (Arnold and Randall 2015; Khairoutdinov
and Emanuel 2018, hereafter KE18; Kim et al. 2011)
suggest that the MJO is an example of self-aggregation of
convection, amplified by the interaction of radiation with
clouds and water vapor and driven eastward by variable
surface enthalpy fluxes and/or horizontal advection of
water vapor.
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Arnold and Randall (2015) analyzed simulations on
an aquaplanet with uniform sea surface temperature using
the superparameterized Community Atmosphere Model
(SP-CAM), which employs a superparameterization of
moist convection. Their MJO-like disturbance nearly
disappears when radiative cooling is horizontally ho-
mogenized, and they concluded that these disturbances
are driven eastward by the wind-induced surface heat
exchange (WISHE) mechanism. This is consistent with
earlier results from mechanism denial experiments
conducted by Kim et al. (2011), who used an atmo-
spheric general circulation model with parameterized
convection and prescribed sea surface temperature.

KE18 performed simulations using a cloud-permitting
model in an equatorially centered channel extending
to *£46° latitude, with fixed, spatially constant surface
temperature and no land. These displayed a rich spec-
trum of equatorial variability, including an MJO-like
mode that disappeared when radiation was horizontally
homogenized and whose eastward propagation ceased
when surface fluxes were homogenized. The spectra
also exhibited OLR minima aligned along the classical
Matsuno dispersion curves, including some signals near
the equatorial Rossby wave dispersion curves.

To help interpret their results, KE18 proposed a linear
model of disturbances on an equatorial beta plane that
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follows in the footsteps of earlier, similar work by
Fuchs and Raymond (2005), Bony and Emanuel (2005),
Zurovac-Jevti¢ et al. (2006), and Fuchs and Raymond
(2017). These models all suggest that the MJO is driven
by some combination of cloud-radiation interaction and
WISHE. Fuchs and Raymond (2005) concluded that the
main driver of the MJO is cloud-radiation interaction,
while WISHE is responsible for its eastward propaga-
tion. But in their updated analysis, Fuchs and Raymond
(2017) identified WISHE as the main mechanism for
driving the MJO, though cloud-radiation interactions
further destabilized the model. This is also consistent
with mechanism denial experiments conducted with an
atmospheric general circulation model with fixed, con-
stant sea surface temperature, by Shi et al. (2018).
KE18’s linear model showed an MJO-like mode desta-
bilized by cloud-radiation interaction and driven east-
ward by WISHE, and Kelvin modes driven mostly by
WISHE. Only the MJO-like mode survives a weak
temperature gradient (WTG) approximation to the full
linear equations.

The linear model developed by KE18 was solved only
for the special case of no meridional wind. Our purpose
here is to extend that analysis to higher-order modes and
to explore the extent to which they can be approximated
using the WTG formalism and/or the assumption of
geostrophy of the zonal wind.

2. Linear model

The linear model of KE18 is based on the assumption
that on the scales of interest, the vertical virtual tem-
perature profile of the tropical atmosphere is always
moist adiabatic, that the motions are hydrostatic and
that the vertical velocity vanishes at the tropopause. If
these assumptions are satisfied, and the flow is hydro-
static, the vertical structure of tropospheric disturbances
is constrained to the first baroclinic mode (Emanuel
1987; Neelin and Yu 1994), having the mathematical
form of the shallow water equations. The assumption
of a rigid lid is, however, poor, particularly for higher-
frequency disturbances (Chumakova et al. 2013; Yano
and Emanuel 1991). Replacing the rigid lid by a passive
stratosphere with a wave radiation boundary condition
imposed at its top is straightforward but algebraically
complex, and KE18 elected to use a rigid lid but emu-
late wave radiation by imposing a frequency-dependent
damping. We here use the same approximation and note
that it is likely to be reasonably well satisfied for the low-
frequency disturbances considered here. It should be
noted, however, that observations, particularly of the
faster modes such as equatorial Kelvin waves, do
not resemble first baroclinic mode structures, perhaps
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because such modes in reality leak energy into the
stratosphere fairly rapidly, changing the structure of the
disturbances in the troposphere, or because of depar-
tures from strict moist adiabatic profiles.

The nondimensional form of the KE18’s linear equa-
tions are repeated here:

u __ 9ds
=y 1
o ox O M
Jv as
=5 —— , 2
o (ay yu) )
d 0
L rw=o, 3)
ox dy
d
£=Csm—w+sm—xs—au, 4)
S Py au+tkCs, — Gwdln  (5)
Y= = ~Ds—au+tkCs, w PR

Here u, v, and w are the zonal, meridional, and vertical
perturbations velocities, s is the saturation entropy of
the troposphere, and s,, is the moist entropy vertically
averaged through the troposphere. It has been assumed
that the background surface wind is easterly in deriving
the last term in (4) and the second term on the right-
hand side of (5). Although the observed zonal mean
zonal wind in the tropics is easterly at all times of the
year, there are bands of longitude in which the mean
flow is westerly, particularly in the eastern equatorial
Indian and western Pacific Oceans, and particularly in
boreal winter. This may be one of the most consequential
differences from aquaplanet simulations, in which the
equatorial zonal flow is easterly at all longitudes.

These equations are very similar to, but not identical
to (7)-(12) of Fuchs and Raymond (2005).

The nondimensional coefficients in (1)-(5) are as
follows: 6 determines the degree of zonal geostrophy, C
is the magnitude of the cloud-radiative feedback, y and
D measure the damping effect of boundary layer en-
tropy perturbations on surface fluxes, « governs the
magnitude of the WISHE feedback, G is a normalized
gross moist stability, and d is the normalized Fickian
diffusion coefficient. The factors y and k account for the
different ways that s and s,,, have been scaled. The precise
definitions of these coefficients are given in the appendix
of KE18 together with the scales used to nondimension-
alize the equations. For Earthlike conditions, the char-
acteristic zonal scale is the radius of Earth, about 6400 km,
the characteristic meridional scale is around 750 km and a
characteristic time scale is around 4 days.

Before proceeding with a detailed analysis, we derive
a quasi-energy constraint by multiplying (1), (2), (4), and
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(5) by their respective variables, summing them, and
averaging the result over the whole spatial domain, as-
suming that the variables vanish at y = *o. We define

an averaging operator {---}:
1+C, 1
§7 0= —alus
’y D m a

91 2 1 2 2
— P+ S+
a:z{” sV 7

-

In deriving (6), the factor (1 + C)/D was introduced to
eliminate a term involving a correlation between s and
$, and use has been made of (3).

For growing modes, the right-hand side of (6) must be
positive. The first term on the right of (6) is the WISHE
effect and can only produce growth (for background
easterlies, for which @ > 0) when the zonal velocity
perturbation is negatively correlated with s, s,,,, or both.
The second term on the right is the positive feedback
from clouds interacting with longwave radiation, which
requires both k and C to be positive. The sign of the third
term is not a priori obvious, although moisture anomalies,
as represented by s, are generally positively correlated
with vertical velocity, so that term will usually be nega-
tive, but it is not always negative in what follows. The last
two terms are damping terms and are negative definite.

Thus, growth of disturbances in this model requires
WISHE and/or cloud-radiation feedback, unless a mode
can arise in which vertical velocity is negatively corre-
lated with midtropospheric moisture.

Next, we eliminate all the variables in (1)—(5) in favor
of the meridional velocity v and we look for normal-
mode solutions of the form

v=Real[V(y)e**], @)

where V(y) is a complex function, k is the zonal
wavenumber (k = 1,2, 3...) and o is a complex growth
rate. This yields an ordinary differential equation
for V(y):

d*v

. o .
cra3d—yz - azyd—y + {zka3 —a,— 5(01‘7 + ika, + k2a3)

—alyz}V=0, (8)

where

a,=D(1+ C) + (x + o)(yo + dk* — kC),
aZEa(y0'+dk2—KC+1+C),
ay,=yo +dk’ —kC+G(1+C). )
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{p}= rmrﬁp dxdy.

0

The result is

1+C 2y 1+C B )
SO} =G ws, b = xis?)

As can be verified by substitution, (8) has solutions have
the form

V,=H,5)e™, (10)
where the complex exponential coefficient b is given by

—a,* \/a? +4ca.a
po_2 \/ @2 193 (1)

4oa ’

3

and H, are Hermite polynomials whose first four
terms are

H,=1,
H =y,

1
H2=§y2+c1,

1
H, =§y3 +c,y. (12)
Note that the solutions (10) form a complete set; any
arbitrary initial perturbation can be described as a sum
over these modes. The constants that appear in (12) are

0'03

‘= (2bo — ik)a, + a, + %(ala + ika, + k?a,)’

20a

3 . (13)

“2~ (6bo — ik)a, + 2a, + %(alcr + ika, + K?a,)

The coefficients in (8) must also satisfy the dispersion
relation

1
sa, —ika, + %(ulo' + ika, + k2a3)

2
1
* <n +§)1/a% +40a,a,=0,

in whichn =0, 1, 2, 3. .., corresponding to the order of
the Hermite polynomials in (12). The choice of sign in

(14)
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the square root in (14) must match that of (11). To satisfy
the boundary conditions at y = *oo the real part of b
must be positive; any roots of (14) that do not satisfy this
condition are discarded.

When (14) is expanded, it becomes apparent that it is
an eighth-order polynomial equation for the complex
growth rate o. Fuchs and Raymond (2005) also derived
an eighth-order dispersion relation. Owing to the alge-
braic complexity of the equation, it is solved using the
“solve” function of MATLAB and rigorously checked
against direct solutions in certain limiting cases.! In
practice, for each combination of parameters and each
zonal wavenumber k& we have examined, there are at
most two roots that exhibit positive growth and that
satisfy the boundary conditions at y = *oo. If there are
two roots, we show only the most rapidly growing in
most of what follows.

The set (1)—(5) also admits solutions for which v = 0
and these were derived and discussed by KE18. The
dispersion relation is cubic in this case. Note that these
solutions obey exact zonal geostrophy, according to
(2). Following convention, we also refer to this as the
n = —1 mode.

The parameter 8 that appears in (2) is typically large
[O(~30)], which suggests that modes of reasonably low
[O(~1)] nondimensional frequency may exhibit approx-
imate zonal geostrophy. If we take the limit as § — o in
(14), the dispersion relation becomes quartic and it is
less taxing to write out an explicit polynomial equation
for the complex growth rate. That dispersion relation is
solved using a polynomial root solver, and as before,
roots are discarded that fail to obey the boundary con-
ditions at y = *o. These geostrophic solutions can then
be compared to solutions of the complete set.

To derive a consistent WT'G approximation to (1)—(5)
we first develop a vorticity equation by cross differen-
tiating (1)-(2):

9 <1 v au) (au 8v>
(=) =yt ) v
at\6dx Jy ax dy
We then set s = 0 in (4) and (5), so that the WTG
equations consist of (6) together with

(15)

ML =0, (16)
ox dy
1+C)s, =w+au, 17)

! The reader interested in exploring the parameter space of this
model may download a MATLAB script to do so (from ftp:/
texmex.mit.edu/pub/emanuel/scripts/equapak.zip).
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(18)
We look for solutions in the limit § — o satisfying the
boundary condition that the perturbations vanish as
y — oo Repeating the derivation as before, the dis-
persion relation is linear in this case and we write explicit
relations for growth rates and phases speeds:

n?a? + Gk?

= —dk:— (1 +
yo,=kC—dk”—(1+C) PR (19)
and
__vo,_—na(1+C)(1-G)
Y T T ik (20)
When n = —1 these relationships are identical to those

derived by KE18 and the disturbances propagate east-
ward. All the other modes (in terms of n) propagate
westward. These solutions satisfy the boundary condi-
tions in y but note that £k = 0 does not satisfy the
boundary conditions and is thus excluded. Nor are there
viable solutions that satisfy the boundary conditions
forn = 0.

One curious feature of the solution is that the dis-
persion relationships for » = —1 and n = 1 are identical
except that the propagation directions are opposite.

From (20), propagation requires WISHE (a # 0),
while (19) shows that wave growth is impeded by
WISHE. There are no solutions for e < 0 (westerly
mean surface wind) that satisfy the boundary conditions.

For all the WTG modes, growth is only possible when
both k and the cloud-radiation feedback parameter C
are sufficiently large, depending on the values of n and k.
The definition of k from the appendix of KE18 is

—, eay

where ¢, is the precipitation efficiency, H is a scale
height of the troposphere, 5 is the mean-state dry entropy,
s* is the saturation entropy of the troposphere, and s, is
the tropospheric mean value of the moist entropy. Along a
moist adiabat, Hds;/dz = L,q*/T, where L, is the latent
heat of vaporization, g* is a characteristic value of the sat-
uration specific humidity, and 7 is a representative tem-
perature. Likewise, s* —5,, = L,q*(1 —.7%)/T, where
7 is a characteristic value of relative humidity in the free
troposphere. Thus, we have

€

~ P
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FIG. 1. Solutions for the frequency as a function of zonal-
wavenumber and meridional mode number in the classical limit
of vanishing forcing and dissipation, and taking G = 0 and 6 = 30
The colors indicate the meridional mode as indicated in the
legend.

3. Solutions

We first present solutions of the full dispersion rela-
tionship in (14), subject to the condition that the real
part of b given by (11) is positive so that the solutions are
well behaved at y = *o. As a partial test of the solver,
we first examine the case of vanishing forcing and dis-
sipation:a« = C = y = D = d =0, and we also take G =0
to reduce (1)-(5) to the classical Matsuno problem.
Here, in our case, the solution is a function of the single
nondimensional parameter 6, which we take to be 30. In
this case, the real part of the growth rates vanishes and
all the modes are neutral. Figure 1 shows the frequency

20 Full eigenvalue spectrum
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as a function of zonal wavenumber for the first four
meridional modes plus the special solution for the v = 0
mode, which by convention we label the n = —1 so-
lution. Clearly the classical solutions are recovered in
this case.

We next jump to values of the parameters that
more nearly reflect actual conditions in the tropics.
Specifically, we takea = 1.5,y =1,k =2,G=0.1,C =
08, D =15, x =15,d = 0.02, and 6 = 30. Figure 2a
shows the dispersion relationship in this case, with only
growing modes displayed and with the diameter of the
dots proportional to the growth rates. Figure 2b simply
zooms in on the lower-frequency modes. The size of the
largest dot corresponds to a (nondimensional) growth rate
0f 0.96, for the n = 1 mode and for a westward-propagating
zonal wavenumber of 2. The higher-frequency modes,
with relatively modest growth rates, correspond fairly well
with the Kelvin, mixed Rossby—gravity waves, and some
eastward-propagating inertia—gravity waves seen in
the Matsuno neutral solutions. These higher-frequency
modes vanish when WISHE is absent (e = 0) and may
therefore be presumed to be destabilized by the WISHE
mechanism, as in Emanuel (1993). But the more rapidly
growing low-frequency modes occupy a narrow range of
frequencies and do not correspond in any simple way to
the classical neutral modes. For example, the group
velocity of the low-frequency v = 0 (n = —1) mode (blue
dots) is westward, and there are low-frequency east-
ward-propagating modes for n > 0. All of these low-
frequency modes are destabilized by the cloud radiation
term, as represented by the parameter C; when this is set
to zero (not shown) only the high-frequency WISHE
modes remain. Thus the low-frequency modes in Fig. 2
are cloud-radiation modes in which the feedback is
strong enough to drive the frequencies well away from

Low frequency only

145 MAX(real(o)} = 0.96 : ::o‘
12+ g =
n=3
1l
>
o
508"
3
o
o
L 06- .0
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0.4
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0.2
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s 6 4 -2 0 2 4 6 8

Zonal Wavenumber

FIG. 2. (left) Solutions of the dispersion relation fora = 1.5,y =1,k =2,G=0.1,C=08,D =15,y = 1.5,
d = 0.02, and 6 = 30. In this case, the diameters of the circles are proportional to the growth rates, with the largest
circle corresponding to a growth rate of 0.96. (right) As in the left panel, but zooming in on the lower frequencies.



F1G. 3. Eigenfunction of the n = 1, k = 3 mode corresponding
to the parameters used to construct Fig. 2. The colors show the
vertical velocity, the arrows show the low-level perturbation hori-
zontal winds, and the black contours show the distribution of sat-
uration entropy s*. Given typical Earthlike parameters, for an
(arbitrary) peak zonal wind perturbation of Sms™ !, the peak me-
ridional wind is about 0.5ms™ !, the peak vertical wind is about
0.5cms” ! and the peak temperature perturbation is about 0.15 K.

the classical Matsuno solutions. Although they are am-
plified by radiative effects, their frequencies are strongly
affected by WISHE.

This non-Matsuno character is evident also in the
eigenfunctions. For example, Fig. 3 shows the spatial
distribution of low-level perturbation wind, vertical ve-
locity, and saturation entropy (our proxy for tempera-
ture) for the n = 1, k = 3 mode corresponding to the
parameters used in Fig. 2. This mode has a nondimen-
sional growth rate of about 0.7. Cyclonic gyres are found
poleward and westward of the region of ascent, and
the saturation entropy has maxima within the gyres
and also along the equator just ahead of the region of
maximum ascent. The convective mass flux (not shown
here) strongly resembles the vertical velocity pattern. The
n = 1 mode somewhat more closely resembles the struc-
ture of the observed MJO than does the v = 0 mode and
has about the right (dimensional) eastward translation
speed (roughly 7ms ™' for typical values of the parameters,
comparable to observed phase speeds of around 5ms™ ",
especially when the Doppler shift by the mean flow is ac-
counted for). Compare the structure shown in Fig. 3 with
the 200-hPa winds and MSU temperatures regressed onto
low-frequency filtered OLR from Hendon and Liebmann
(1994, their Fig. 2a reproduced here as Fig. 4), bearing in
mind that winds at 200 hPa tend to be opposite to the winds
in the lower troposphere that are shown in Fig. 3.

Figure 5, in the same format as Fig. 3, shows the structure
of the most rapidly growing mode, withn = 1 and k = —2.
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FIG. 4. Latitude-lag map of 200-hPa winds (vectors), Microwave
Sounding Unit channel-2 temperature (MSUT; contours), and
OLR (shaded) regressed onto OLR at 0°N, 125°E. All data are
windowed according to significant activity at the equator and
bandpass filtered to eastward wavenumbers 1-3 with 35-95-day
periods. The regressed fields are shown for a one-standard-
deviation fluctuation of the reference time series. Maximum vec-
tors are 2.7ms”'. Contour interval for MSUT is 5.0 X 107>K.
Shading levels for OLR are 0.5, 1.75, 3.0, and 4.25 K. Figure after
and caption from Hendon and Liebmann (1994).

This mode, traveling westward with a phase speed of
around 5ms™ !, also has trailing cyclonic vortices but
they are more elongated and the whole mode is more
confined close to the equator (compare the meridional
scales of the two figures).

The effect on the dispersion curves of various ap-
proximations to the full linear equations is shown in
Fig. 6. The left side of the figure compares the full dis-
persion solutions (Fig. 2) to the approximate solutions in
the limit 8 — o while the right side makes the additional
WTG approximation. In both cases, the approximate
solutions are shown by open circles while filled circles
show the full solution. The approximation of zonal ge-
ostrophy (6 — ) introduces relatively little distortion
to the low-frequency dispersion solutions, but the WTG
approximation does not work well for most of the modes
displayed here. The eigenfunctions of the geostrophic
solutions (not shown here) also closely resemble those
of the full solutions.

The reader is invited to further explore the param-
eter space of these solutions and approximation to the
solutions using software provided by the author (see
footnote 1).

4. Discussion and summary

Numerical experiments using full-physics global and
near-global models suggest that cloud-radiation inter-
actions (Arnold and Randall 2015; KE18; Kim et al.
2011) and WISHE (Shi et al. 2018) are essential to low-
frequency equatorial modes such as the MJO. When
radiative heating and/or surface wind is horizontally
homogenized in these models, the low-frequency modes
largely or completely disappear. This suggests that we might
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FIG. 5. As in Fig. 3, but showing the structure of a westward-
propagating mode, with n = 1 and k = —2. Given typical Earthlike
parameters, for an (arbitrary) peak zonal wind perturbation of
5ms” !, the peak meridional wind is about 1.5ms™ !, the peak
vertical wind is about 1 cms ™!, and the peak temperature pertur-
bation is about 0.25 K.

think of these low-frequency modes as manifestations of
self-aggregation of moist convection on a sphere.

The present work extends the linear theory developed
by KE18 to higher-order modes for which the meridional
velocity does not vanish. The higher-frequency modes are
destabilized by WISHE, but the low-frequency distur-
bances are driven by cloud-radiation interactions and are
weakly damped by WISHE, though WISHE is essential
to their propagation. For realistic values of the nondi-
mensional parameters in the linear model, the cloud-
radiation interaction drives the dispersion characteristics
of the low-frequency modes well away from the neutral
modes first derived by Matsuno (1966) so that it becomes

Full and geostrophic eigenvalue spectra
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problematic if not meaningless to identify them with
the neutral modes. In particular, some of the n = 1
eastward-propagating modes have structures that
resemble that of the observed MJO (cf. Figs. 3 and 4).

An important limitation of this and indeed most
linear models is the imposition of a rigid lid at the
tropopause. As shown by Yano and Emanuel (1991),
allowing upward wave propagation into the strato-
sphere damps modes more or less in proportion to
their frequency. Here we emulated this effect with
Fickian diffusion, which is far from satisfactory.
Future work will attempt to match the tropospheric
system developed here with a passive stratosphere
and explore the effect of upward wave radiation on
the growth rates, phase speeds and structure of so-
lutions to the model. In particular, we expect that the
solutions will exhibit vertical phase tilts that may
prove to be more consistent with observations than
are the rigid-lid solutions.

The cloud-radiation interaction has been repre-
sented here as proportional to the perturbation col-
umn moist entropy, a gross oversimplification of
reality where the radiative effects of clouds are sen-
sitive to the optical properties of the clouds as well as
ensemble measures of cloud cover. If cloud-radiation
interactions are indeed important for low-frequency
variability of equatorially trapped disturbances, then
the fidelity with which such variability can be simu-
lated in global models must be sensitive to the model
representation of clouds, including especially the
thickness, lateral extent, and optical properties of
high cirrus associated with deep convection. This
may prove central to improving the simulation of low-
frequency tropical modes in weather and climate
models.

Full and WTG eigenvalue spectra
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FIG. 6. As in Fig. 2, but also showing (left) the geostrophic approximation to the full solutions and (right) the
solutions obtained using geostrophic and WTG approximations. The approximate solutions are shown by the

open circles.
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