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Abstract

We investigate regularity of CR-mappings between real-analytic infinite type hypersurfaces in C2. We show that, under the
Fuchsian type condition, all (respectively formal or smooth) CR-diffeomorphisms between them are automatically analytic.
The Fuchsian condition appears to be in a certain sense optimal for the regularity problem.

1 Introduction

The problem of regularity of CR-maps between CR-sub-
manifolds in complex space is of fundamental importance
in the field of Several Complex Variables. Starting from the
classical work of Cartan [4], Chern and Moser [5], Pinchuk
[23], and Lewy [20], a large amount of publications is dedi-
cated to various positive results in this well-developed direc-
tion. In particular, when both the source and the target are
real-analytic, the expected regularity of smooth CR-maps
is C?, i.e., they are analytic (this property implies that the
CR-maps extend holomorphically to a neighborhood of
the source manifold). We refer the reader to the book of
Baouendi—Ebenfelt—Rothschild [2], the survey of Forstneri¢
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[9], the book of Berhano, Cordaro, and Hounie [3], and the
introduction in [14] for the set-up of the theory of CR-maps,
a historical outline of the analyticity problem, its connec-
tions with the boundary regularity of holomorphic maps/
the reflection principle, and the connections of the problem
to the theory of linear PDEs.

In the particularly well-studied case of real-analytic
hypersurfaces in C2, it has been known for some time that
CR-diffeomorphisms of finite D’Angelo type hypersurface
are automatically analytic (see, e.g., Baouendi—Jacobow-
itz—Treves [1]). (Note that in the C2-case finite D’Angelo
type is equivalent to the Hormander—Kohn bracket-gener-
ating condition and Tumanov non-minimality). In the case
of infinite type but Levi-non-flat hypersurfaces, when there
exists a complex variety X C M passing through the refer-
ence point p in the source hypersurface M, some partial
analyticity results are available. For instance, analyticity
has been established by Ebenfelt [8] for so-called 1-non-
minimal hypersurfaces (see the notion of non-minimality
order below), and by Ebenfelt—-Huang [6] for the case of
maps admitting a one-sided holomorphic extension.

On the other hand, in the recent paper [14], Kossovskiy
and Lamel discovered the existence of real-analytic hyper-
surfaces in CV, N > 2 which are C*® CR-equivalent, but are
inequivalent analytically. In particular, it follows that C*
CR-diffeomorphisms between real-analytic Levi-non-flat
hypersurfaces in C? are not analytic in general. Moreover, it
shows that the equivalence problem for non-minimal real-
analytic CR-structures is of a more intrinsic nature, as a map
realizing an equivalence does not necessarily arise from the
biholomorphic equivalence of the CR-manifolds as submani-
folds in complex space.

A natural question immediately raised by the results
in [14] is to identify an optimal class of “regular”
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real-analytic hypersurfaces, for which CR-diffeomor-
phism are still analytic. The goal of the current paper is to
address this question in the C2-case. We consider the class
of Fuchsian type hypersurfaces introduced by the authors
in [7] (this condition is described explicitly in terms of
the defining function of a hypersurface), and prove that
CR-diffeomorphisms of Fuchsian type hypersurfaces are
automatically analytic. We also show the invariance and
optimality of the Fuchsian type condition.

Another result of us concerns the problem of con-
vergence of formal CR-maps. Similarly to the analytic-
ity issue, this problem has attracted a lot of attention of
experts in complex analysis in the last few decades (see,
e.g., the survey [19] of Lamel-Mir). Theorem 1.5 estab-
lishes a convergence result for formal CR-maps in the
Fuchsian type case.

We now formulate the results below in detail. We start
with describing the precise class of hypersurfaces consid-
ered in this paper. In light of the above, we deal with germs
of Levi-non-flat real-analytic hypersurfaces M C C? consid-
ered near a point of infinite type p € M. If M is such a hyper-
surface, there is a unique germ of a complex hypersurface
(complex curve) X C M passing through p. The complex
hypersurface X consists of all infinite type points in M near
p; it is non-singular and we will also refer to it as the infinite
type locus of M. We say that (M, p) is of generic infinite type
if the canonical extension of the Levi form
L,: TYxTY — CT,M/CT M

P P F P
from M to its complexification M€ C C? x C2 _locally van-
ishes only on the complexification X¢ c C? x C2 of X. (We
refer the reader to Section 2 for details). If M is a Levi-
non-flat real-analytic hypersurface with infinite type locus
X, then M must be of generic infinite type at points p lying
outside of a proper real-analytic subset of X.

We say that local holomorphic coordinates (z, w), where
w = u + iv, near p are admissible (for M) if in these coordi-
nates, p becomes the origin and M is given by

1 _
v=su <e|z|2 + h,d(u)zkz’)

k,>2

(1.1)

=: h(z,Z,u), e==lI

(such admissible coordinates always exist under the generic
infinite type assumption, see [16]); in particular, in these
coordinates X = {w = 0}. The integer m > 1is an important
invariant of an infinite type hypersurface called the non-
minimality order, and M with such non-minimality order is
called m-non-minimal. For an even m, we can further nor-
malize € to be equal to 1, while for an odd m, € is a biholo-
morphic invariant. Note that the form (1.1) is stable under
the group of dilations
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P Az,

W= Uw,

u' = elal,
A€ C\ {0},
ueR.

(1.2)

We are now able to describe the Fuchsian condition.

Definition 1.1 An infinite type hypersurface (1.1) is called
a hypersurface of Fuchsian type, if its defining function
h(z,7, u) satisfies

ord hy,(w) > m — 1; ord hys(w) > 2m — 2; ord hz3(w)
>2m—2;

ord hy(w) >22m—1+2, 4 <1<2m+1;

ord hy(w) >2m—k—1+5, k>3,1>3,7

<k+1<2m+4.
(1.3)

We point out that

e The Fuchsian condition requires vanishing of an appro-
priate part of the (2m + 4)-jet of the defining function A
at 0;

e [t is easy to see from (1.3) that for m = 1 the Fuchsian
type condition holds automatically, while for m > 1 it
fails to hold in general;

e As will be shown in Section 3, the Fuchsian type prop-
erty is holomorphically invariant.s

Remark 1.2 The property of being Fuchsian extends earlier
versions of this property given, respectively, in the work [16]
of Kossovskiy—Shafikov and the work [13] of Kossovskiy—
Lamel. In the paper [16], a Fuchsian property of generically
spherical hypersurfaces (1.1) was introduced. It is possible
to check that for a generically spherical hypersurface the two
notions of being Fuchsian coincide. In the paper [13], gen-
eral hypersurfaces (1.1) were considered, but the notion of
Fuchsian type considered there is weaker than that given in
[7] and in the present paper; it serves to guarantee the regu-
larity of infinitesimal CR-automorphisms, while the property
(1.3) guarantees regularity of arbitrary CR-maps. The prop-
erty introduced in [13] is more appropriately addressed as
weak Fuchsian type, while the property (1.3) as the (actual)
Fuchsian type.

Now our main analyticity results are as follows.

Theorem 1.3 Let M,M* C C? be real-analytic hypersur-
faces, and let M be of Fuchsian type at a point p € M. Let
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U be an open neighborhood of p in C* . Then any C* CR-
diffeomorphism H : M nU — M* is analytic.

By applying the Hanges—Treves propagation principle
[10], we are able to address the regularity at an arbitrary
infinite type point.

Theorem 1.4 Let M, M* C C? be real-analytic Levi-non-
flat hypersurfaces, and U an open neighborhood of p in C*.
Assume that U N M contains a Fuchsian type point q. Then
any C* CR-diffeomorphism H ©: M N U — M* is analytic.

We further obtain a result on the convergence of formal
power series maps between Fuchsian type hypersurfaces.

Theorem 1.5 Let M,M* C C? be real-analytic hyper-
surfaces, and let M be of Fuchsian type at a point
p € M. Then any formal invertible power series map
H: M,p) — (M*,p*), p* € M* is convergent.

Remark 1.6 As follows from the invariance of the Fuchsian
type property under formal power series transformations
(see Theorem 4.3), the target hypersurface M* is also of
Fuchsian type at the respective point p* = H(p).

Theorem 1.5 extends earlier results in this direction
obtained in [12] in the case m = 1. It also extends, in a cer-
tain sense, the result in [13] on the regularity of infinitesimal
CR-automorphisms of Fuchsian type hypersurfaces to the
case of general maps (not necessarily appearing as flows
of infinitesimal CR-automorphisms). However, as discussed
above, the Fuchsian type condition in [13] is more mild and
involves only vanishing conditions on the coefficient func-
tions Ay, k + [ < 7 (unlike the conditions in (1.3)). As argu-
ments in Section 3 show, the case of a general CR-mapping
requires considering all the coefficients &, in (1.3), as they
appear in the complete (singular) system of ODEs determin-
ing a CR-map.

2 Preliminaries
2.1 Infinite type real hypersurfaces

We recall that if M C C? is a real-analytic hypersurface,
then for any p € M there exist so-called normal coordinates
(z, w) centered at p for M. The coordinates being normal
means that (z, w) is a local holomorphic coordinate system
near p in which p = 0 and for which near 0, M is defined by
an equation of the form

v=F(zzu)

for some germ F of a holomorphic function on C* which
satisfies the normality condition

F(z,0,u) = F(0,Z,u) =0

and the reality condition F(z,Z,u) € R for (z,u) € C X R
close to O (see, e.g., [2]). Equivalently, v = F(z, z, u) defines
a real hypersurface, and in the coordinates (z, w), we have
Qo ={0,w) €U : w=u}.

We also recall that M is of infinite type at p if there exists
a germ of a non-trivial complex curve X C M through p. It
turns out that in normal coordinates, such a curve X is neces-
sarily defined by w = 0 (because X = Q, = {w = 0}); in par-
ticular, any such X is non-singular. It also turns out that M is
Levi-flat if and only if in normal coordinates, it is defined by
v = 0. Thus a Levi-non-flat real-analytic hypersurface M is
of infinite type at p if and only if in normal coordinates (z, w)
as above, the defining function F satisfies F(z,Z,0) = 0. In
other words, M is of infinite type if and only if it can defined
by an equation of the form

v =u"y(z,Z,u), with w(z,0,u) = w(0,Z,u)

=0and y(z,z,0) £0, @D

where m > 1. It turns out that the integer m > 1is independ-
ent of both the choice of p € X and also of the choice of
normal coordinates for M at p (see [21]), and we say that M
is m-infinite type along X (or at p).

We are going to utilize a number of different ways to
write a defining function. Throughout this paper, we use the
complex defining function ® in which M is defined by

w=0(z,7Z, W);

it is obtained from F by solving the equation

w—=w _w+w
=F(7’—>
2 SR

for w, and it agrees with the function defin-
ing the Segre varieties in those coordinates, that is,
0, = {(z,0(z,2)) : z € U*}. We are going to make exten-
sive use of the Segre varieties and refer the reader to [2] for a
discussion of their properties in the general case, and to [14]
for specific properties in the infinite type setting.

The complex defining function (in normal coordinates)
satisfies the conditions

0(z,0,7) =00, y,7) =7, O, 1,0(x,z,w)) = w.

If M is of m-infinite type at p, then O(z, y,7) = 70(z, ¥, 7)
and thus M is defined by the equation
w = wb(z,Z, W) = W+ w"0(z,Z,w), where 6 satisfies
0(z,0,7) = 0(0, y,7) = 0 and 6(z, y,0) # 0.

We also note that the external complexification M©
of M, which is the hypersurface in C?> x C? defined by
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MC = {(Z, HeUxU:Ze O } is conveniently defined
as the graph of the complex defining function ©, i.e.,

w=0(,yx,1).
We also introduce the real line

Fr'={w) eM:z=0}={0,u)eM : ue R} CM,
2.2)

and recall that

Qow ={w=u}, Ou el

for u € R. This property, as already mentioned, is actually
equivalent to the normality of the coordinates (z, w). More
precisely, for any real-analytic curve y through p one can
find normal coordinates (z, w) in which a small piece of y
corresponds to I"in (2.2).

We finally notice that a real-analytic Levi-non-flat hyper-
surface M C C? has infinite type points of two kinds, which
we will refer to as generic and exceptional infinite type
points, respectively. A generic point p € M is character-
ized by the condition that the complexified Levi form of
M only degenerates on the complexified infinite type locus
w = 7 = 0 near p. (The complexified Levi form is defined
similarly to the classical Levi form, but instead the (1, 0)
and the (0, 1) vector fields are considered on the complexi-
fication MC, see, e.g., [2]). We refer to a non-generic point
p as exceptional. We note that the set of exceptional points
is a proper real-analytic subvariety of X and that p € X is
generic if and only if the Levi determinant of M vanishes to
order m along any real curve y passing through p which is
transverse to X at p.

A generic infinite type point is characterized in normal
coordinates by requiring in addition to (2.1) the condition
v.:(0,0,0,) # 0.1f p is a generic infinite type point, we can
further simplify M to the form (1.1), or alternatively to the
exponential form

T
w=we™" P@IW  where

+ ) Q)27

k[1>2

o(2,7, W) = £27
(2.3)

(see, e.g., [16]).

2.2 Real hypersurfaces and second-order
differential equations.

There is a natural way to associate to a Levi non-degenerate
real hypersurface M C CV a system of second-order holomor-
phic PDEs with 1 dependent and N — 1independent variables
by using the Segre family of the hypersurface M. This remark-
able construction goes back to E. Cartan [4] and Segre [24]
(see also a remark by Webster [28]), and was recently revisited
in the work of Sukhov [25, 26] in the non-degenerate setting,
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and in the work of Kossovskiy, Lamel, and Shafikov in the
degenerate setting (see [13, 14, 16, 17]). For the convenience
of the reader, we recall this procedure in the case N = 2, but
refer to the above references for more details.

So assume that M C C?is a smooth real-analytic hypersur-
face passing through the origin and U = U? X U" is chosen
small enough. The second-order holomorphic ODE associated
to M is uniquely determined by the condition that for every
¢ € U, the function h(z, {) = w(z) defining the Segre variety
Q. as a graph is a solution of this ODE. To be more precise,
one can show that the Levi-non-degeneracy of M (at 0) implies
that near the origin, the Segre map { — Q. is injective and
the Segre family has the so-called transversality property: if
two distinct Segre varieties intersect at a point ¢ € U, then
their intersection at g is transverse (actually it turns out that,
again due to the Levi-non-degeneracy of M, the Segre varie-
ties passing through a point p are uniquely determined by their
tangent spaces 7,Q;). Thus, { O, } .y, is a 2-parameter family
of holomorphic curves in U with the transversality property,
depending holomorphically on €. It follows from the holomor-
phic version of the fundamental ODE theorem (see, e.g., [11])
that there exists a unique second-order holomorphic ODE
w" = ®(z, w, w') such that for each ¢ € U, w(z) = h(z, ) is
one of its solutions.

We can carry out the construction of this ODE concretely
by utilizing the complex defining equation w = O(z, y, 1)
introduced above. Recall that the Segre variety O, of a point
¢ = (a,b) € U is now given as the graph

w(z) = p(z.a,b). 2.4)
Differentiating (2.4) once, we obtain
w = p (z.a,b). (2.5)

The system of equations (2.4) and (2.5) can be solved, using
the implicit function theorem, for @ and b. This gives us
holomorphic functions A and B such that

a=A(z,w,w), b=B(zw,Ww).

The application of the implicit function theorem is possi-
ble since the Jacobian of the system consisting of (2.4) and
(2.5) with respect to & and b is just the Levi determinant of
M for (z,w) € M ([2]). Differentiating (2.5) once more, we
can substitute @ = A(z, w, w') and b = B(z, w, w') to obtain

W' = p (2, Az, w, W), Bz, w, W) =: @z, w,w').  (2.6)

Now (2.6) is a holomorphic second-order ODE, for which
all of the functions w(z) = h(z, {) are solutions by construc-
tion. We will denote this associated second-order ODE by
E=EM).

More generally it is possible to associate a completely
integrable PDE to any of a wide range of CR-submanifolds
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(see [25, 26]) such that the correspondence M — &E(M) has
the following fundamental properties:

(1) Every local holomorphic equivalence
F: (M,0) - (M’,0) between CR-submanifolds is an
equivalence between the corresponding PDE systems
EM), EM;

(2) The complexification of the infinitesimal automorphism
algebra hol“ (M, 0) of M at the origin coincides with the
Lie symmetry algebra of the associated PDE system
E(M) (see, e.g., [22] for the details of the concept).

In contrast to the case of a finite type real hypersurface
described above, if M C C? is of infinite type at the origin
one, cannot associate to M a regular second-order ODE or
even a more general PDE system near the origin such that
the Segre varieties are graphs of solutions. However, in [16]
and [13], Kossovskiy, Lamel, and Shafikov found an injec-
tive correspondence associating to a hypersurface M C C?
at a generic infinite type point a certain singular complex
ODE £(M) with an isolated singularity at the origin. We are
going to base our normal form construction on this construc-
tion, which is therefore extensively used in the paper (more
details are given in Section 3).

We finally point out that at exceptional infinite type
points, one can still associate a system of singular complex
ODEs to a real-analytic hypersurface M C C? (although
possibly of higher order k >2) as in the paper [15]
Kossovskiy—Lamel-Stolovitch.

2.3 Complex differential equations with an isolated
singularity

We will again just gather the facts from the classical theory
of singular (complex) differential equations, and refer the
reader to, e.g., [11, 18, 27] for any details.

A linear system £ of (holomorphic) first-order ODEs
on a domain G C C (or simply a linear system in a domain
G) is an equation of the form y'(x) = A(x)y(x), where
A : G — C™"is a matrix-valued holomorphic map on G and
yx) = (%), ..., y,(x)) is an n-tuple of (unknown) functions.
The set of solutions of £ near a point p € G is isomorphic
to C" by y — y(p). Because every germ y of a solution of £
at p € G extends analytically along any path y C G starting
at p, any solution y(x) of £ is defined in all of G as a (possibly
multi-valued) analytic function. If G is a punctured disc, cen-
tered at 0, we say that £ has an isolated singularity (at x = 0).
If A(x) has a pole at the isolated singularity x = 0, we say that
the system has a meromorphic singularity. As the solutions
of L are holomorphic in any proper sector S C G of a suf-
ficiently small radius with vertex at x = 0, it is important to
study the behavior of the solutions as x — 0. If for every sec-
torS ={x € G : |x| <d,a < argx < f}there exist constants

C > 0 and a € R such that for every solution y of £ defined
in § we have that||y(x)|| < C|x|*holds for x € S, then we say
that x = 0 is a regular singularity, otherwise we say it is an
irregular singularity.

An important condition ensuring regularity of a singular-
ity is due to L. Fuchs: We say that the singular point x = 0 is
Fuchsian if A(x) has a pole of order at most 1 at x = 0. If 0 is
a Fuchsian singularity, then x = 0 is a regular singular point.
Another important property of Fuchsian singularities is that
every formal power series solution (at x = 0) of the equation
is actually convergent. The dynamical system associated to
a Fuchsian singularity corresponds to the dynamical system
of the vector field

9 9
Z F Ay,
x— +AXy N

which is “almost” non-resonant in the sense of
Poincaré-Dulac.

However, in the non-Fuchsian case we encounter very dif-
ferent behaviors, both of solutions and of mappings between
linear systems with such a singularity. A generic solution of

a non-Fuchsian system
, 1

y =—BXxy, m2x2
xm

does not have polynomial growth in sectors, and generic
formal power series solutions of such a system (as well as
formal equivalences between generic non-Fuchsian systems)
are divergent. The dynamics associated to a non-Fuchsian
singularity correspond to the dynamics of the vector field
m 0 0
X = + A(x)ya—y,
which is always resonant, in the sense of Poincaré-Dulac.
Further information on the classification of isolated sin-
gularities can be found in, e.g., [11] or [27].
Fuchsianity admits a certain extension to the non-linear

case as well, giving rise to the notion of Briot—Bouquet type
ODEgs, that is, ODE:s of the form

xy' = F(x,y), 2.7

where x lies in a neighborhood of 0 in C, y is n-dimensional
and F is holomorphic in a neighborhood of 0 in C™**!.
Briot-Bouquet ODEs are similar to linear systems of ODEs
with a Fuchsian singularity in many respects; for example,
their formal power series solutions are necessarily conver-
gent (see, e.g., [18]). Dynamics associated to a Briot—-Bou-
quet type ODE corresponds to the dynamics of the vector
field

7] 0
— 4+ F(x,y)—.
xax x y)ay
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We also note that a Briot—-Bouquet type ODE whose princi-
pal matrix F,(0, 0) has no positive integer eigenvalues has at
least one holomorphic solution (see [18]).

3 The associated ODE approach
to the mapping problem

We consider a real-analytic hypersurface with defining equa-
tion as in (1.1). The complex defining function of such a hyper-
surface is given by

k,(>2

W=+ iv‘vm<€|z|2 + ) ®kf(v‘v)zsz>. (3.1

We recall from subsection 2.1 that this means that the Segre
family S = {Q¢ )} of M
is given by

ii" " oz €.
T e@EN  where

w = 77]6 (P(Za E? ﬁ) = EZE
+ ) o FE

k22

3.2)

We will need the following fact proved in [7]:

Lemma 3.1 (see [7]). Let H(z,w) = (F(z, w), G(z, w)) be a
formal transformation vanishing at the origin, with invert-
ible Jacobian H'(0), which maps a hypersurface defined by
(1.1) or equivalently (3.2) into another such hypersurface.
Then H satisfies

F.0,0)=4, G,0,00=p, G=0Ww),

G,=0w™"), u'™=1i% Ae€C\{0}, ueR.
(3.3)

In addition, we have

G, (0,00 eR, forZ <m. (3.4)

Lemma 3.1 implies in particular that any transformation H
between hypersurfaces defined by equations of the form (1.1)
can be factored as

H = Hyoy,

for some dilation y of the form (1.2) and where H; is a

transformation of the form:
2 24+ f(zw), we w+wgyw)+w"g(z,w)

with
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1:(0,0) =0,
80(0) =0,
8(z,w) = O(zw),
g0 eR,

£ <m-—1.

3.5)

(for m = 1 the last condition is void). In fact, one can also
represent H as H = yoH,, (with a different H;). We therefore
consider the classification problem only under transforma-
tions (3.5).

We now recall that [13, 16] showed that we can associate
to a hypersurface in the form (1.1) a second-order singular
holomorphic ODE £(M) given by

!
w

w' = wmd><z, w, —>
WWl

where ®(z, w, {) is holomorphic near the origin in C3, and
satisfies ® = O(£?). This ODE is characterized by the condi-
tion that any of the functions w(z) = ©(z, &, ), for (£,n) € U,
is a solution of the ODE (3.6)). We will decompose ® as

(3.6)

O(z,w,{) = Z Dy WL

jk>0.£>2 G3.7)

or

D w, )= Y, Dyme’

k>0,1>2 3.8)

We now recall the approach used in [15] and [7]. Consid-
ering the transformation rule for second-order ODEs and
adapting it to ODEs (3.6) and maps (3.5) expanded as
fzw) = 2+ f(z, w), and Z(z, w) = w + wgo(w) + w"g(z, w),
we get (see [7, 15]):

D(z,w,{)
1

-3 [(1 + £ AW, - O+ gow) + W g)”

. O* (z +f,w+wgy(w) +w'g
(3.9)

g+ A +wgl + go +mw" g +w"g,) )
T (14 go(w) + wrlgym(l +f. +wnlf,)
+ Iy(z, w) + 1 (z, w)§ + L (z, ww"e?

+ 1 w)me:3] ,

g
where ¢ 1= < and
w

m
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J =+ +wg) +go+mw" g +w"g,)
— M W

Ly=gf.—(0+1)8..

I, = (1 + wg(') + 8o+ mw’”_]g + ngw)fz - w8
=201 +£)mw" g, +w"g,,) + 2w g fos

L =w"g [, — (1 +f)(wgl + 2g} +m(m — Hw" g
+2mw™ g +whg, ) — 2fw(me_18z +w"g.,)
+2(1 + wg) + go + mw" g + w"g ...,

Iy = (1 +wg) + g + mw" ' g+ w"g )f,.,
— [, (wgl + 28 + m(m — Dw" g + 2mw" g,

+ WG )
(3.10)
Importantly, (3.9) is an identity in the free variables z, w, {,
where the latter triple runs a suitable open neighborhood of
the origin in C3.
We recall then that, by collecting in (3.9) terms with
Zw/i¢l, 1 =0, 1, we obtain a system of PDEs of the kind:

fzz = U(Zv w, gO7 g(,)vf» g’fp gz’fw’ gw’fzw’ gzw)a

@3.11)
gZZ = V(Z’ w, g()’ g(’)’f’ g’f;’ gzsfw’ gw3_fzw9 gzw)

for some germs of holomorphic functions U, V at the origin.
Given a choice of (respectively holomorphic or formal) data

FO,w) = fo(w),
£00,w) = fi(w),
g(0,w) =0,
£1(0,w) = g, (w),

the Cauchy—Kowalevskaya theorem guarantees the existence
of a unique (respectively holomorphic or formal) solution to
(3.11) with this data.

The associated functions f(z,w)=z+f(zw),
8(z,w) = w + wgy(w) + g(z, w) transform £* to the (up to
the initial data unique) £. The initial conditions also imply
that (f, g) is of the form required in (3.5). To determine
then the Cauchy data

Y(w) := (fo(W),f1(W)’go(W)’81(W)),

we collect in (3.9) terms with Z*w/¢!, j =0, 1, [ = 2, 3. This
gives us a system of singular second-order ODEs:

(3.12)

m+1 11

w8y = Tl(w’govgth?fl’Wgz)vwmg’pWmf(;vwmfll)’
w2l = Ty (W, 80 &1:fof1s WEG WL Wl WD),
w?" (;, =Ts(w, 80a81’f0’f1’Wg’anm8’pWmf(;swmf{)’
Wszl// = Ty(w, 80’81sf0’f1’Wg(/)’ng,mef(;,Wmfl/)

(3.13)

(we again refer to [7, 15] for details).

Our Fuchsian type condition is obtained by requiring
that, roughly speaking, the arising system of ODEs (3.13)
is Fuchsian (Briot-Bouquet). This is explained in the next
section.

4 Fuchsian type ODEs and regularity
of formal mappings

4.1 The normal form problem for Fuchsian type
hypersurfaces

First, we translate the Fuchsian type condition for hypersur-
faces (1.1) described in the Introduction onto the language
of associated ODEs. For the functions ®, ®*, we make use
of the expansion (3.8). We now introduce

Definition 4.1 An ODE &, defined by (3.6), is called Fuch-
sian (or a Fuchsian type ODE), if @ satisfies the conditions:

ord @y, (w) > m — 1; ord ®y3(w) > 2m — 2; ord @, (w)
>m—1; ord ®3(w) >2m —2;

ord ®y(w) >2m—1+2, 4 <1 <2m+1; ord ®p,(w)
>2m—k, 2<k<2m+1;

ord ®,w)>2m—k—-14+3, k>1,1>3,5<k+1

<2m+2.
4.1

We make use of the following:

Proposition 4.2 (See [7]). For a Fuchsian type hypersurface
M c C? its associated ODE EWM) is of Fuchsian type as
well.

We next prove the invariance of the Fuchsian type
condition.

Theorem 4.3 The property of being Fuchsian for a hyper-
surface (1.1) does not depend on the choice of (formal or
holomophic) coordinates of the kind (1.1).

Proof In view of Definition 4.1, we can switch to associated
ODE:s and it is enough to prove the invariance of the Fuch-
sianity for them. As discussed above, we can restrict to trans-
formations (3.5). Let us consider then the transformation
rule (3.9) (with a fixed transformation within it), when the
source ODE (with the defining function ®*) is of Fuchsian
type. We then claim the following: for all the coefficient
functions ®;;, k> 0, [ > 2involved in the Fuchsianity con-
ditions (4.1), with the exception of the coefficients functions
D, (I)Zz’ k > 2, the Fuchsian conditions (4.1) are satisfied.
Indeed, we fix any (k, /) relevant to (4.1), and from the trans-
formation rule (3.9) we can see that the target coefficient
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function @y, is a sum of three groups of terms: (i) terms @ y
with @ + f > k + [ which are multiplied by a power series in
w with order at 0 at least k + [ — a — f; (ii) terms @ P with
a+ f <k+1; (iii) terms arising from the expressions
I_,-, 0 <j < 3(relevant for [ = 2, 3 only). In view of the linear-
ity of the Fuchsianity conditions in &, /, it is not difficult to
see that terms of the first kind all have order at O at least as
the one required for the Fuchsianity. Terms of the second
kind already all have order bigger than the one required for
Fuchsianity. Finally, terms of the third kind automatically
provide order at least 2m sufficient for the Fuchsianity,
except for the case / = 2. For k = 0, 1 and [ = 2 though even
the automatically provided order m suffices, and this proves
the claim.

It remains to deal with terms &, with
k>2,2<k<2m+ 1. We note, however, that the ODEs
under consideration have a real structure, which is why (in
view of the reality condition) we have

ord Ay (w) = ord hy(w) 4.2)

for all k, [. This, in view of the transfer relations between ®
and A, gives, in particular:

OI‘d ¢k2(W) = Ord hk+2,2(W) = OI'd hz,k+2(w)
= ord @y, ,,(W) > 2m —k

(the last inequality follows from the Fuchsianity condition
for @ ,,, being already proved). This finally proves the
theorem.

O

We now proceed with the proof of Theorem 1.5. We
follow the scheme in Section 3, and obtain a system of
singular ODEs of the kind (3.13) for the Cauchy data Y(w),
as in(3.12), assuming the source ODE (with the defining
function ®*) is of Fuchsian type. For the purposes of this
section, we prefer to write down the obtained system in
the form

Wm+l "

gy = S(w, Y(w),wY'(w)), w2nx"

=T (w, Y(w), wY'(w)), (.3)

where
X(w) 1= (g W), fow),fi(w),  Y(w) 1= (gop(w), X(W)),

and S, T are holomorphic near the origin.
For the functions 7, S we will use the expansion

Tw,Y,7)= ) T, ,omy"7?,

S “4.4)

where a, f are multiindices, and similarly for S. We now
shall prove the following key:

@ Springer

Proposition 4.4 Under the Fuchsian type condition, the coef-
ficient functions T, s(w), S, (W) satisfy

ordT, ; > 2m—1—|a| — ||,

ordS, ;> m— | - |B]. lal + 6] > 0. (45)

Proof For the proof, we make use of (4.1) (applied for
the source defining function ®*), and then study care-
fully the contribution of terms @ into the basic identity
(3.9). Let us fix for the moment some positive value of
|a| + |f|. Then it is straightforward to check, by consider-
ing (3.9), that 7, ; as above can arise only from @7, with
k+1<la| + || +4, while S, ; as above can arise only
from @7, with k + [ < |a| + |#| + 2. (And in the latter cases
a respective @Zl is a factor for Y*(wY’)?). Now it is not dif-

ficult to verify that (4.1) implies (4.4). O

Corollary 4.5 For the (0, 0) coefficient functions in (4.3) we
have

ord Sy 2 m; ord Tyy > 2m— 1.

(4.6)

As a consequence, for the target ODE defining function ®
we have

Dy, =0, 0<j<m—2
Dy = Pp3 =P@y;3=0, 0<j<2m—3;

o . R ) 4.7
Po 12 = P 125 Posm—23 = Ppopass

_ * . — *
D@1 om-22 = P 5008 Prom—23 = Pl opas

Proof As follows from the definition of S, 4, T, ; and the
Fuchsianity, all terms in the first equation in (4.3) have order
at least m in w with possibly the exception of terms arising
from S, while all terms in the second equation in (4.3)
have order at least 2m — 1 in w with possibly the exception
of terms arising from 7y, ;. This proves (4.6). To prove (4.7),
we note that the (m — 1)-jet of S, ; and the (2m — 2)-jet of
To o respectively, are formed from differences between coef-
ficients ®@,; and @Zﬂ aparent in (4.7), and this proves (4.7).

O

We shall now prove that any solution of the system of sin-
gular ODE:s (4.3). In view of the discussion in Section 3, this
would imply the convergence of the formal map between the
given ODE:s (3.6) and the given real hypersurfaces, and hence
the assertion of Theorem 1.5.

Let H(w) be such a formal solution of (4.3). We decompose
1t as

Hw) = P(w) + Z(w), 4.8)

where P(w) is a polynomial without constant term of degree
< 2m — 1, while where Z(w) is a formal series of the kind
Ow*™). The substitution (4.8) (for a fixed (P(w)) turns (4.3)
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into a similar system of ODEs for the unknown function
Z(w). We shall now prove

Lemma 4.6 The transformed system (in the same way as the
initial system) satisfies
ord Sy, > m— 1,

ord S;g > m—1,

ord Ty, > 2m -2,

ord Tyy > 2m —2

(4.9)

(the tilde here stands for coefficients of the transformed
system).

Proof The proof of the lemma is obtained by putting
together the expansion (4.4), the conditions (4.4), and the
fact that P(w) is vanishing at the origin. O

Now, based on Lemma 4.6, we perform the substitution

Z 1=w?U, (4.10)

which turns the “tilde” system into a new system of four
meromorphic ODEs for the unknown function U, which,
according to (4.8), has a formal solution U(w) vanishing at
the origin. It is straightforward to check then, by combining
(4.10) and (4.9), that the new system can be written in the
form

w?U' = Rw, U,wU"), 4.11)

where R is a holomorphic function defined near the origin.
Performing finally in the standard fashion the substitution

V i=wlU'

and introducing the extended vector function U := (U, V),
we obtain a first-order ODE

wU' = Q(w,U), 4.12)

where Q is a holomorphic near the origin function. The ODE
(4.12) is a Briot—-Bouquet type ODE (see Section 2), and
hence its formal solutions are convergent, as required.

This completes the proof of Theorem 1.5. O

5 Regularity of smooth mappings
between Fuchsian type hypersurfaces

In this section we shall prove Theorem 1.3. Compared to
the proof of Theorem 1.5, we need an additional argu-
ment, which is the following regularity result for Fuchsian
(Briot—Bouquet) systems of meromorphic ODEs.

Proposition 5.1 Consider a first-order real ODE

xy' = F(x,y), x€[0,al, 5.1)

with y being n-dimensional, n > 1, and F analytic. Assume
it has a solution y(x) which is C* on [0, a]. Then y(x) is
analytic everywhere on [0, a].

Remark 5.2 A singular ODE (5.1) belongs to the classical
class of Briot—-Bouquet type ODEs discussed in Section 2.
Their formal solutions at the singular point x = 0 are con-
vergent, which, however does not say anything about the
regularity of smooth solutions, which is why Proposition 5.1
requires a separate proof.

Proof of Proposition 5.1 The analyticity of y(x) everywhere
outside x = 0 follows from the analyticity of the given ODE,
which is why we consider only the analyticity at the singu-
larity x = 0. First, consider the Taylor series y(x) of y(x).
Since, again, (5.1) is a Briot—-Bouquet ODE, y(x) is conver-
gent. Hence, taking y — $(x) as a new unknown function, we
get an ODE again of the kind (5.1) which has now a flar at
x = 0 solution on [0, a]. We assume, by contradiction, that
this solution is not identical zero near x = 0. Substituting
the flat solution into the new ODE (5.1) and equalizing the
Taylor series in both sides, we conclude that F(x,0) = 0.
Hence we conclude that the (again analytic) right hand side
expands as

F(x,y) =AX)y + -,

where A(x) is an analytic at the origin matrix, and dots stand
for terms of degree at least 2 in y.

Second, let us use the notation ly(z)| for the Euclidean
norm, and llyll for the sup norm of y on [0, a]. Since y is flat
at 0, we may shrink the interval to make ||y|| small. Using the
analyticity of F, we then have the bound

|F(x, y(x))| < Cly@)l, (5.2)

where C is a constant depending on ||y||.

Third, we make a simple observation that |yl cannot van-
ish for x > 0. Indeed, any solution with y(x;) =0, x, # 0
would need to be identical zero by uniqueness near x,,, and
hence identical zero by the analyticity of the ODE.

Fourth, we do the following: we “resolve the singularity”
of (5.1) by making the substitution

x:=é,

t € (—o0,Inal.
Now the ODE (5.1) reads as

d i
D Ry =: Et,y).

r (5.3)

We denote the new solution by y(¢) and still have
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|Ft,y(0))| < Cly@)]. (5.4)

Now we need to obtain certain bounds. Taking the limit in
the triangle inequality, we have

d dy

— )| < |—=|.

LA ’dt’

In view of this and the inequality (5.4),

d 1 d 1 |dy
Snbol = —= 2ol < = Tl <
dr [yl dt Iy | dt

and by integrating over [¢, In a] we obtain

In|y(na)| —In|y(®)| < C(lna - ). (5.5)

Simplifying (5.5) and applying exp, we finally get for the
initial function y(x):

ly@)] > C-x© (5.6)

(C is some other constant, which is non-zero since ly(a)l is
non-zero!). But (5.6) is a contradiction with the fact that y(x)
is flat near O, and this proves the desired analyticity state-
ment. O

Remark 5.3 The assertion of Proposition 5.1 holds also for
a complex Briot—-Bouquet ODE, i.e., when y(x) is complex-
valued and F is complex analytic (one just has to split the
real and imaginary parts, and this immediately gives an
already real ODE (5.1) for the vector function formed from
the real and imaginary parts of y).

We are now in the position to prove Theorem 1.3.

Proof of Theorem 1.3 We come back to the proof of
Theorem 1.3. Note that a hypersurface (1.1) neces-
sarily contains (the germ at the origin of) the real line
L ={z=0, Imw = 0}. This means, in particular, that for
the given map H(z, w), the vector functions H(0, w), H,(0, w)
are well defined on L and are holomorphic in its open neigh-
borhood. Arguing now identically to the above proof of The-
orem 1.5, we reduce the analyticity problem for the given
CR-map to the analyticity of C*° smooth solutions of an ODE
identical to (4.12). The only difference is that, instead of
substituting a formal power series map into the basic iden-
tity (3.9), we substitute into (3.9) a holomorphic map in
a domain €, containing O in its closure and coming from
the analyticity of the map in a neighborhood of the Levi-
non-degenerate part of M. In view of the above, the Cauchy
data (3.12) of the map H is C* on the real line, and so is a
solution of (4.12) under discussion. We then apply Proposi-
tion 5.1 (together with Remark 5.3) and conclude that the
desired solution of (4.12) is analytic, and so is the Cauchy
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data (3.12) and hence the map H. This completely proves the
theorem. O
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