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Abstract
We investigate regularity of CR-mappings between real-analytic infinite type hypersurfaces in ℂ2 . We show that, under the 
Fuchsian type condition, all (respectively formal or smooth) CR-diffeomorphisms between them are automatically analytic. 
The Fuchsian condition appears to be in a certain sense optimal for the regularity problem.

1  Introduction

The problem of regularity of CR-maps between CR-sub-
manifolds in complex space is of fundamental importance 
in the field of Several Complex Variables. Starting from the 
classical work of Cartan [4], Chern and Moser [5], Pinchuk 
[23], and Lewy [20], a large amount of publications is dedi-
cated to various positive results in this well-developed direc-
tion. In particular, when both the source and the target are 
real-analytic, the expected regularity of smooth CR-maps 
is C� , i.e., they are analytic (this property implies that the 
CR-maps extend holomorphically to a neighborhood of 
the source manifold). We refer the reader to the book of 
Baouendi–Ebenfelt–Rothschild [2], the survey of Forstnerić 

[9], the book of Berhano, Cordaro, and Hounie [3], and the 
introduction in [14] for the set-up of the theory of CR-maps, 
a historical outline of the analyticity problem, its connec-
tions with the boundary regularity of holomorphic maps/
the reflection principle, and the connections of the problem 
to the theory of linear PDEs.

In the particularly well-studied case of real-analytic 
hypersurfaces in ℂ2 , it has been known for some time that 
CR-diffeomorphisms of finite D’Angelo type hypersurface 
are automatically analytic (see, e.g., Baouendi–Jacobow-
itz–Treves [1]). (Note that in the ℂ2-case finite D’Angelo 
type is equivalent to the Hörmander–Kohn bracket-gener-
ating condition and Tumanov non-minimality). In the case 
of infinite type but Levi-non-flat hypersurfaces, when there 
exists a complex variety X ⊂ M passing through the refer-
ence point p in the source hypersurface M, some partial 
analyticity results are available. For instance, analyticity 
has been established by Ebenfelt [8] for so-called 1-non-
minimal hypersurfaces (see the notion of non-minimality 
order below), and by Ebenfelt–Huang [6] for the case of 
maps admitting a one-sided holomorphic extension.

On the other hand, in the recent paper [14], Kossovskiy 
and Lamel discovered the existence of real-analytic hyper-
surfaces in ℂN , N ≥ 2 which are C∞ CR-equivalent, but are 
inequivalent analytically. In particular, it follows that C∞ 
CR-diffeomorphisms between real-analytic Levi-non-flat 
hypersurfaces in ℂ2 are not analytic in general. Moreover, it 
shows that the equivalence problem for non-minimal real-
analytic CR-structures is of a more intrinsic nature, as a map 
realizing an equivalence does not necessarily arise from the 
biholomorphic equivalence of the CR-manifolds as submani-
folds in complex space.

A natural question immediately raised by the results 
in [14] is to identify an optimal class of “regular” 
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real-analytic hypersurfaces, for which CR-diffeomor-
phism are still analytic. The goal of the current paper is to 
address this question in the ℂ2-case. We consider the class 
of Fuchsian type hypersurfaces introduced by the authors 
in [7] (this condition is described explicitly in terms of 
the defining function of a hypersurface), and prove that 
CR-diffeomorphisms of Fuchsian type hypersurfaces are 
automatically analytic. We also show the invariance and 
optimality of the Fuchsian type condition.

Another result of us concerns the problem of con-
vergence of formal CR-maps. Similarly to the analytic-
ity issue, this problem has attracted a lot of attention of 
experts in complex analysis in the last few decades (see, 
e.g., the survey [19] of Lamel–Mir). Theorem 1.5 estab-
lishes a convergence result for formal CR-maps in the 
Fuchsian type case.

We now formulate the results below in detail. We start 
with describing the precise class of hypersurfaces consid-
ered in this paper. In light of the above, we deal with germs 
of Levi-non-flat real-analytic hypersurfaces M ⊂ ℂ

2 consid-
ered near a point of infinite type p ∈ M . If M is such a hyper-
surface, there is a unique germ of a complex hypersurface 
(complex curve) X ⊂ M passing through p. The complex 
hypersurface X consists of all infinite type points in M near 
p; it is non-singular and we will also refer to it as the infinite 
type locus of M. We say that (M, p) is of generic infinite type 
if the canonical extension of the Levi form

from M to its complexification Mℂ ⊂ ℂ
2 × ℂ2   locally van-

ishes only on the complexification Xℂ ⊂ ℂ
2 × ℂ2 of X. (We 

refer the reader to Section 2 for details). If M is a Levi-
non-flat real-analytic hypersurface with infinite type locus 
X, then M must be of generic infinite type at points p lying 
outside of a proper real-analytic subset of X.

We say that local holomorphic coordinates (z, w), where 
w = u + iv , near p are admissible (for M) if in these coordi-
nates, p becomes the origin and M is given by

(such admissible coordinates always exist under the generic 
infinite type assumption, see [16]); in particular, in these 
coordinates X = {w = 0} . The integer m ≥ 1 is an important 
invariant of an infinite type hypersurface called the non-
minimality order, and M with such non-minimality order is 
called m-non-minimal. For an even m, we can further nor-
malize � to be equal to 1, while for an odd m, � is a biholo-
morphic invariant. Note that the form (1.1) is stable under 
the group of dilations

Lp ∶ T1,0
p

× T1,0
p

⟶ ℂTpM∕ℂTℂ

p
M

(1.1)
v =

1

2
um

(
𝜖|z|2 +

∑

k,l≥2

hkl(u)z
kz̄l

)

=∶ h(z, z̄, u), 𝜖 = ±1

We are now able to describe the Fuchsian condition.

Definition 1.1  An infinite type hypersurface (1.1) is called 
a hypersurface of Fuchsian type, if its defining function 
h(z, z̄, u) satisfies

We point out that

•	 The Fuchsian condition requires vanishing of an appro-
priate part of the (2m + 4)-jet of the defining function h 
at 0;

•	 It is easy to see from (1.3) that for m = 1 the Fuchsian 
type condition holds automatically, while for m > 1 it 
fails to hold in general;

•	 As will be shown in Section 3, the Fuchsian type prop-
erty is holomorphically invariant.s

Remark 1.2  The property of being Fuchsian extends earlier 
versions of this property given, respectively, in the work [16] 
of Kossovskiy–Shafikov and the work [13] of Kossovskiy–
Lamel. In the paper [16], a Fuchsian property of generically 
spherical hypersurfaces (1.1) was introduced. It is possible 
to check that for a generically spherical hypersurface the two 
notions of being Fuchsian coincide. In the paper [13], gen-
eral hypersurfaces (1.1) were considered, but the notion of 
Fuchsian type considered there is weaker than that given in 
[7] and in the present paper; it serves to guarantee the regu-
larity of infinitesimal CR-automorphisms, while the property 
(1.3) guarantees regularity of arbitrary CR-maps. The prop-
erty introduced in [13] is more appropriately addressed as 
weak Fuchsian type, while the property (1.3) as the (actual) 
Fuchsian type.

Now our main analyticity results are as follows.

Theorem 1.3  Let M,M∗ ⊂ ℂ
2 be real-analytic hypersur-

faces, and let M be of Fuchsian type at a point p ∈ M. Let 

(1.2)

z ↦ �z,

w ↦ �w,

�1−m = �|�|2,
� ∈ ℂ ⧵ {0},

� ∈ ℝ.

(1.3)

ord h22(w) ≥ m − 1; ord h23(w) ≥ 2m − 2; ord h33(w)

≥ 2m − 2;

ord h2l(w) ≥ 2m − l + 2, 4 ≤ l ≤ 2m + 1;

ord hkl(w) ≥ 2m − k − l + 5, k ≥ 3, l ≥ 3, 7

≤ k + l ≤ 2m + 4.
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U be an open neighborhood of p in ℂ2 . Then any C∞ CR-
diffeomorphism H ∶ M ∩ U ⟶ M∗ is analytic.

By applying the Hanges–Treves propagation principle 
[10], we are able to address the regularity at an arbitrary 
infinite type point.

Theorem 1.4  Let M,M∗ ⊂ ℂ
2 be real-analytic Levi-non-

flat hypersurfaces, and U an open neighborhood of p in ℂ2. 
Assume that U ∩M contains a Fuchsian type point q. Then 
any C∞ CR-diffeomorphism H ∶ M ∩ U ⟶ M∗ is analytic.

We further obtain a result on the convergence of formal 
power series maps between Fuchsian type hypersurfaces.

Theorem  1.5  Let M,M∗ ⊂ ℂ
2 be real-analytic hyper-

surfaces, and let M be of Fuchsian type at a point 
p ∈ M . Then any formal invertible power series map 
H ∶ (M, p) ⟶ (M∗, p∗), p∗ ∈ M∗ is convergent.

Remark 1.6  As follows from the invariance of the Fuchsian 
type property under formal power series transformations 
(see Theorem 4.3), the target hypersurface M∗ is also of 
Fuchsian type at the respective point p∗ = H(p).

Theorem  1.5 extends earlier results in this direction 
obtained in [12] in the case m = 1 . It also extends, in a cer-
tain sense, the result in [13] on the regularity of infinitesimal 
CR-automorphisms of Fuchsian type hypersurfaces to the 
case of general maps (not necessarily appearing as flows 
of infinitesimal CR-automorphisms). However, as discussed 
above, the Fuchsian type condition in [13] is more mild and 
involves only vanishing conditions on the coefficient func-
tions hkl, k + l ≤ 7 (unlike the conditions in (1.3)). As argu-
ments in Section 3 show, the case of a general CR-mapping 
requires considering all the coefficients hkl in (1.3), as they 
appear in the complete (singular) system of ODEs determin-
ing a CR-map.

2 � Preliminaries

2.1 � Infinite type real hypersurfaces

We recall that if M ⊂ ℂ
2 is a real-analytic hypersurface, 

then for any p ∈ M there exist so-called normal coordinates 
(z, w) centered at p for M. The coordinates being normal 
means that (z, w) is a local holomorphic coordinate system 
near p in which p = 0 and for which near 0, M is defined by 
an equation of the form

v = F(z, z̄, u)

for some germ F of a holomorphic function on ℂ3 which 
satisfies the normality condition

and the reality condition F(z, z̄, u) ∈ ℝ for (z, u) ∈ ℂ ×ℝ 
close to 0 (see, e.g., [2]). Equivalently, v = F(z, z̄, u) defines 
a real hypersurface, and in the coordinates (z, w), we have 
Q(0,u) = {(0,w) ∈ U ∶ w = u}.

We also recall that M is of infinite type at p if there exists 
a germ of a non-trivial complex curve X ⊂ M through p. It 
turns out that in normal coordinates, such a curve X is neces-
sarily defined by w = 0 (because X = Q0 = {w = 0} ); in par-
ticular, any such X is non-singular. It also turns out that M is 
Levi-flat if and only if in normal coordinates, it is defined by 
v = 0 . Thus a Levi-non-flat real-analytic hypersurface M is 
of infinite type at p if and only if in normal coordinates (z, w) 
as above, the defining function F satisfies F(z, z̄, 0) = 0 . In 
other words, M is of infinite type if and only if it can defined 
by an equation of the form

where m ≥ 1 . It turns out that the integer m ≥ 1 is independ-
ent of both the choice of p ∈ X and also of the choice of 
normal coordinates for M at p (see [21]), and we say that M 
is m-infinite type along X (or at p).

We are going to utilize a number of different ways to 
write a defining function. Throughout this paper, we use the 
complex defining function Θ in which M is defined by

it is obtained from F by solving the equation

for w ,  and it agrees with the function defin-
ing the Segre varieties in those coordinates, that is, 
QZ = {(z,Θ(z, Z̄)) ∶ z ∈ Uz} . We are going to make exten-
sive use of the Segre varieties and refer the reader to [2] for a 
discussion of their properties in the general case, and to [14] 
for specific properties in the infinite type setting.

The complex defining function (in normal coordinates) 
satisfies the conditions

If M is of m-infinite type at p, then Θ(z,� , �) = ��(z,� , �) 
a n d  t h u s  M  i s  d e f i n e d  by  t h e  e qu a t i o n 
w = w̄𝜃(z, z̄, w̄) = w̄ + w̄m𝜃(z, z̄, w̄) ,  where 𝜃  satisf ies 
𝜃(z, 0, 𝜏) = 𝜃(0,𝜒 , 𝜏) = 0 and 𝜃(z,𝜒 , 0) ≠ 0.

We also note that the external complexification Mℂ 
of M, which is the hypersurface in ℂ2 × ℂ2  defined by 

F(z, 0, u) = F(0, z̄, u) = 0

(2.1)
v = um𝜓(z, z̄, u), with 𝜓(z, 0, u) = 𝜓(0, z̄, u)

= 0 and 𝜓(z, z̄, 0) ≢ 0,

w = Θ(z, z̄, w̄);

w − w̄

2i
= F

(
z, z̄,

w + w̄

2

)

Θ(z, 0, 𝜏) = Θ(0,𝜒 , 𝜏) = 𝜏, Θ(z,𝜒 , Θ̄(𝜒 , z,w)) = w.
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Mℂ =
{
(Z, 𝜁) ∈ U × Ū ∶ Z ∈ Q𝜁

}
 , is conveniently defined 

as the graph of the complex defining function Θ , i.e.,

We also introduce the real line

and recall that

for u ∈ ℝ . This property, as already mentioned, is actually 
equivalent to the normality of the coordinates (z, w). More 
precisely, for any real-analytic curve � through p one can 
find normal coordinates (z, w) in which a small piece of � 
corresponds to Γ in (2.2).

We finally notice that a real-analytic Levi-non-flat hyper-
surface M ⊂ ℂ

2 has infinite type points of two kinds, which 
we will refer to as generic and exceptional infinite type 
points, respectively. A generic point p ∈ M is character-
ized by the condition that the complexified Levi form of 
M only degenerates on the complexified infinite type locus 
w = � = 0 near p. (The complexified Levi form is defined 
similarly to the classical Levi form, but instead the (1, 0) 
and the (0, 1) vector fields are considered on the complexi-
fication Mℂ , see, e.g., [2]). We refer to a non-generic point 
p as exceptional. We note that the set of exceptional points 
is a proper real-analytic subvariety of X and that p ∈ X is 
generic if and only if the Levi determinant of M vanishes to 
order m along any real curve � passing through p which is 
transverse to X at p.

A generic infinite type point is characterized in normal 
coordinates by requiring in addition to (2.1) the condition 
𝜓zz̄(0, 0, 0, ) ≠ 0. If p is a generic infinite type point, we can 
further simplify M to the form (1.1), or alternatively to the 
exponential form

(see, e.g., [16]).

2.2 � Real hypersurfaces and second‑order 
differential equations.

There is a natural way to associate to a Levi non-degenerate 
real hypersurface M ⊂ ℂ

N a system of second-order holomor-
phic PDEs with 1 dependent and N − 1 independent variables 
by using the Segre family of the hypersurface M. This remark-
able construction goes back to E. Cartan [4] and Segre [24] 
(see also a remark by Webster [28]), and was recently revisited 
in the work of Sukhov [25, 26] in the non-degenerate setting, 

w = Θ(z,� , �).

(2.2)
Γ = {(z,w) ∈ M ∶ z = 0} = {(0, u) ∈ M ∶ u ∈ ℝ} ⊂ M,

Q(0,u) = {w = u}, (0, u) ∈ Γ

(2.3)
w = w̄eiw̄

m−1𝜑(z,z̄,w̄), where 𝜑(z, z̄, w̄) = ±zz̄

+
∑

k,l≥2

𝜑kl(w̄)z
kz̄l

and in the work of Kossovskiy, Lamel, and Shafikov in the 
degenerate setting (see [13, 14, 16, 17]). For the convenience 
of the reader, we recall this procedure in the case N = 2 , but 
refer to the above references for more details.

So assume that M ⊂ ℂ
2 is a smooth real-analytic hypersur-

face passing through the origin and U = Uz × Uw is chosen 
small enough. The second-order holomorphic ODE associated 
to M is uniquely determined by the condition that for every 
� ∈ U , the function h(z, �) = w(z) defining the Segre variety 
Q� as a graph is a solution of this ODE. To be more precise, 
one can show that the Levi-non-degeneracy of M (at 0) implies 
that near the origin, the Segre map � ↦ Q� is injective and 
the Segre family has the so-called transversality property: if 
two distinct Segre varieties intersect at a point q ∈ U , then 
their intersection at q is transverse (actually it turns out that, 
again due to the Levi-non-degeneracy of M, the Segre varie-
ties passing through a point p are uniquely determined by their 
tangent spaces TpQ� ). Thus, {Q�}�∈U is a 2-parameter family 
of holomorphic curves in U with the transversality property, 
depending holomorphically on 𝜁 . It follows from the holomor-
phic version of the fundamental ODE theorem (see, e.g., [11]) 
that there exists a unique second-order holomorphic ODE 
w�� = Φ(z,w,w�) such that for each � ∈ U , w(z) = h(z, 𝜁 ) is 
one of its solutions.

We can carry out the construction of this ODE concretely 
by utilizing the complex defining equation w = Θ(z,� , �) 
introduced above. Recall that the Segre variety Q� of a point 
� = (a, b) ∈ U is now given as the graph

Differentiating (2.4) once, we obtain

The system of equations (2.4) and (2.5) can be solved, using 
the implicit function theorem, for ā and b̄ . This gives us 
holomorphic functions A and B such that

The application of the implicit function theorem is possi-
ble since the Jacobian of the system consisting of (2.4) and 
(2.5) with respect to ā and b̄ is just the Levi determinant of 
M for (z,w) ∈ M ([2]). Differentiating (2.5) once more, we 
can substitute ā = A(z,w,w�) and b̄ = B(z,w,w�) to obtain

Now (2.6) is a holomorphic second-order ODE, for which 
all of the functions w(z) = h(z, �) are solutions by construc-
tion. We will denote this associated second-order ODE by 
E = E(M).

More generally it is possible to associate a completely 
integrable PDE to any of a wide range of CR-submanifolds 

(2.4)w(z) = 𝜌(z, ā, b̄).

(2.5)w� = 𝜌z(z, ā, b̄).

ā = A(z,w,w�), b̄ = B(z,w,w�).

(2.6)w�� = �zz(z,A(z,w,w
�),B(z,w,w�)) =∶ Φ(z,w,w�).
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(see [25, 26]) such that the correspondence M → E(M) has 
the following fundamental properties: 

(1)	 E ve r y  l o c a l  h o l o m o r p h i c  e q u i va l e n c e 
F ∶ (M, 0) → (M�, 0) between CR-submanifolds is an 
equivalence between the corresponding PDE systems 
E(M), E(M�);

(2)	 The complexification of the infinitesimal automorphism 
algebra ����(M, 0) of M at the origin coincides with the 
Lie symmetry algebra of the associated PDE system 
E(M) (see, e.g., [22] for the details of the concept).

In contrast to the case of a finite type real hypersurface 
described above, if M ⊂ ℂ

2 is of infinite type at the origin 
one, cannot associate to M a regular second-order ODE or 
even a more general PDE system near the origin such that 
the Segre varieties are graphs of solutions. However, in [16] 
and [13], Kossovskiy, Lamel, and Shafikov found an injec-
tive correspondence associating to a hypersurface M ⊂ ℂ

2 
at a generic infinite type point a certain singular complex 
ODE E(M) with an isolated singularity at the origin. We are 
going to base our normal form construction on this construc-
tion, which is therefore extensively used in the paper (more 
details are given in Section 3).

We finally point out that at exceptional infinite type 
points, one can still associate a system of singular complex 
ODEs to a real-analytic hypersurface M ⊂ ℂ

2 (although 
possibly of higher order k ≥ 2 ) as in the paper [15] 
Kossovskiy–Lamel–Stolovitch.

2.3 � Complex differential equations with an isolated 
singularity

We will again just gather the facts from the classical theory 
of singular (complex) differential equations, and refer the 
reader to, e.g., [11, 18, 27] for any details.

A linear system L of (holomorphic) first-order ODEs 
on a domain G ⊂ ℂ (or simply a linear system in a domain 
G) is an equation of the form y�(x) = A(x)y(x) , where 
A ∶ G → ℂ

n×n is a matrix-valued holomorphic map on G and 
y(x) = (y1(x), ..., yn(x)) is an n-tuple of (unknown) functions. 
The set of solutions of L near a point p ∈ G is isomorphic 
to ℂn by y ↦ y(p) . Because every germ y of a solution of L 
at p ∈ G extends analytically along any path 𝛾 ⊂ G starting 
at p, any solution y(x) of L is defined in all of G as a (possibly 
multi-valued) analytic function. If G is a punctured disc, cen-
tered at 0, we say that L has an isolated singularity (at x = 0 ). 
If A(x) has a pole at the isolated singularity x = 0 , we say that 
the system has a meromorphic singularity. As the solutions 
of L are holomorphic in any proper sector S ⊂ G of a suf-
ficiently small radius with vertex at x = 0 , it is important to 
study the behavior of the solutions as x → 0 . If for every sec-
tor S = {x ∈ G ∶ |x| < 𝛿, 𝛼 < arg x < 𝛽} there exist constants 

C > 0 and a ∈ ℝ such that for every solution y of L defined 
in S we have that ||y(x)|| ≤ C|x|a holds for x ∈ S , then we say 
that x = 0 is a regular singularity, otherwise we say it is an 
irregular singularity.

An important condition ensuring regularity of a singular-
ity is due to L. Fuchs: We say that the singular point x = 0 is 
Fuchsian if A(x) has a pole of order at most 1 at x = 0 . If 0 is 
a Fuchsian singularity, then x = 0 is a regular singular point. 
Another important property of Fuchsian singularities is that 
every formal power series solution (at x = 0 ) of the equation 
is actually convergent. The dynamical system associated to 
a Fuchsian singularity corresponds to the dynamical system 
of the vector field

which is “almost”   non-resonant in the sense of 
Poincaré-Dulac.

However, in the non-Fuchsian case we encounter very dif-
ferent behaviors, both of solutions and of mappings between 
linear systems with such a singularity. A generic solution of 
a non-Fuchsian system

does not have polynomial growth in sectors, and generic 
formal power series solutions of such a system (as well as 
formal equivalences between generic non-Fuchsian systems) 
are divergent. The dynamics associated to a non-Fuchsian 
singularity correspond to the dynamics of the vector field

which is always resonant, in the sense of Poincaré-Dulac.
Further information on the classification of isolated sin-

gularities can be found in, e.g., [11] or [27].
Fuchsianity admits a certain extension to the non-linear 

case as well, giving rise to the notion of Briot–Bouquet type 
ODEs, that is, ODEs of the form

where x lies in a neighborhood of 0 in ℂ , y is n-dimensional 
and F is holomorphic in a neighborhood of 0 in ℂn+1 . 
Briot–Bouquet ODEs are similar to linear systems of ODEs 
with a Fuchsian singularity in many respects; for example, 
their formal power series solutions are necessarily conver-
gent (see, e.g., [18]). Dynamics associated to a Briot–Bou-
quet type ODE corresponds to the dynamics of the vector 
field

x
�

�x
+ A(x)y

�

�y
,

y� =
1

xm
B(x)y, m ≥ 2

xm
�

�x
+ A(x)y

�

�y
,

(2.7)xy� = F(x, y),

x
�

�x
+ F(x, y)

�

�y
.
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We also note that a Briot–Bouquet type ODE whose princi-
pal matrix Fy(0, 0) has no positive integer eigenvalues has at 
least one holomorphic solution (see [18]).

3 � The associated ODE approach 
to the mapping problem

We consider a real-analytic hypersurface with defining equa-
tion as in (1.1). The complex defining function of such a hyper-
surface is given by

We recall from subsection 2.1 that this means that the Segre 
family S = {Q(�,�)} of M

is given by

We will need the following fact proved in [7]:

Lemma 3.1  (see [7]). Let H(z,w) =
(
F(z,w),G(z,w)

)
 be a 

formal transformation vanishing at the origin, with invert-
ible Jacobian H�(0), which maps a hypersurface defined by 
(1.1) or equivalently (3.2) into another such hypersurface. 
Then H satisfies

In addition, we have

Lemma 3.1 implies in particular that any transformation H 
between hypersurfaces defined by equations of the form (1.1) 
can be factored as

for some dilation � of the form (1.2) and where H0 is a 
transformation of the form:

with

(3.1)w = w̄ + iw̄m

(
𝜖|z|2 +

∑

k,�≥2

Θk�(w̄)z
kz̄�

)
.

(3.2)
w = 𝜂̄ei𝜂̄

m−1𝜑(z,𝜉,𝜂̄), where 𝜑(z, 𝜉, 𝜂̄) = 𝜖z𝜉

+
∑

k,�≥2

𝜑k�(𝜂̄)z
k𝜉�

(3.3)

Fz(0, 0) = �, Gw(0, 0) = �, G = O(w),

Gz = O(wm+1), �1−m = |�|2, � ∈ ℂ ⧵ {0}, � ∈ ℝ.

(3.4)Gw� (0, 0) ∈ ℝ, for � ≤ m.

H = H0◦� ,

z ↦ z + f (z,w), w ↦ w + wg0(w) + wmg(z,w)

(for m = 1 the last condition is void). In fact, one can also 
represent H as H = �◦H0 (with a different H0 ). We therefore 
consider the classification problem only under transforma-
tions (3.5).

We now recall that [13, 16] showed that we can associate 
to a hypersurface in the form (1.1) a second-order singular 
holomorphic ODE E(M) given by

where Φ(z,w, �) is holomorphic near the origin in ℂ3 , and 
satisfies Φ = O(�2) . This ODE is characterized by the condi-
tion that any of the functions w(z) = Θ(z, �, �) , for (𝜉, 𝜂) ∈ Ū , 
is a solution of the ODE (3.6)). We will decompose Φ as

or

We now recall the approach used in [15] and [7]. Consid-
ering the transformation rule for second-order ODEs and 
adapting it to ODEs (3.6) and maps (3.5) expanded as 
f̃ (z,w) = z + f (z,w) , and g̃(z,w) = w + wg0(w) + wmg(z,w) , 
we get (see [7, 15]):

where � ∶=
w�

wm
 and

(3.5)

fz(0, 0) = 0,

g0(0) = 0,

g(z,w) = O(zw),

g
(�)

0
(0) ∈ ℝ,

� ≤ m − 1.

(3.6)w�� = wmΦ

(
z,w,

w�

wm

)
,

(3.7)Φ(z,w, �) =
∑

j,k≥0,�≥2

Φjk�z
kwj��

(3.8)Φ(z,w, �) =
∑

k≥0,l≥2

Φkl(w)z
k� l.

(3.9)

Φ(z,w, �)

=
1

J

[(
1 + fz + wmfw ⋅ �)3(1 + g0(w) + wm−1g

)m

⋅Φ∗
(
z + f ,w + wg0(w) + wmg

,
gz + �(1 + wg�

0
+ g0 + mwm−1g + wmgw)

(1 + g0(w) + wm−1g)m(1 + fz + wm� fw)

)

+ I0(z,w) + I1(z,w)� + I2(z,w)w
m�2

+ I3(z,w)w
2m�3

]
,



Complex Analysis and its Synergies (2020) 6:17	

1 3

Page 7 of 11  17

Importantly, (3.9) is an identity in the free variables z,w, � , 
where the latter triple runs a suitable open neighborhood of 
the origin in ℂ3.

We recall then that, by collecting in (3.9) terms with 
zkwj� l, l = 0, 1 , we obtain a system of PDEs of the kind:

for some germs of holomorphic functions U, V at the origin. 
Given a choice of (respectively holomorphic or formal) data

the Cauchy–Kowalevskaya theorem guarantees the existence 
of a unique (respectively holomorphic or formal) solution to 
(3.11) with this data.

The  assoc ia ted  funct ions  f̃ (z,w) = z + f (z,w) , 
g̃(z,w) = w + wg0(w) + g(z,w) transform E∗ to the (up to 
the initial data unique) E . The initial conditions also imply 
that (f̃ , g̃) is of the form required in (3.5). To determine 
then the Cauchy data

we collect in (3.9) terms with zkwj� l, j = 0, 1, l = 2, 3 . This 
gives us a system of singular second-order ODEs:

(we again refer to [7, 15] for details).

(3.10)

J = (1 + fz)(1 + wg�
0
+ g0 + mwm−1g + wmgw)

− wmfwgz,

I0 = gzfzz − (1 + fz)gzz,

I1 =
(
1 + wg�

0
+ g0 + mwm−1g + wmgw

)
fzz − wmfwgzz

− 2(1 + fz)(mw
m−1gz + wmgzw) + 2wmgzfzw,

I2 = wmgzfww − (1 + fz)(wg
��
0
+ 2g�

0
+ m(m − 1)wm−2g

+ 2mwm−1gw + wmgww) − 2fw(mw
m−1gz + wmgzw)

+ 2(1 + wg�
0
+ g0 + mwm−1g + wmgw)fzw,

I3 = (1 + wg�
0
+ g0 + mwm−1g + wmgw)fww

− fw(wg
��
0
+ 2g�

0
+ m(m − 1)wm−2g + 2mwm−1gw

+ wmgww).

(3.11)
fzz = U(z,w, g0, g

�
0
, f , g, fz, gz, fw, gw, fzw, gzw),

gzz = V(z,w, g0, g
�
0
, f , g, fz, gz, fw, gw, fzw, gzw)

f (0,w) = f0(w),

fz(0,w) = f1(w),

g(0,w) = 0,

g1(0,w) = g1(w),

(3.12)Y(w) ∶=
(
f0(w), f1(w), g0(w), g1(w)

)
,

(3.13)

wm+1g��
0
= T1(w, g0, g1, f0, f1,wg

�
0
,wmg�

1
,wmf �

0
,wmf �

1
),

w2mg��
1
= T2(w, g0, g1, f0, f1,wg

�
0
,wmg�

1
,wmf �

0
,wmf �

1
),

w2mf ��
0
= T3(w, g0, g1, f0, f1,wg

�
0
,wmg�

1
,wmf �

0
,wmf �

1
),

w2mf ��
1
= T4(w, g0, g1, f0, f1,wg

�
0
,wmg�

1
,wmf �

0
,wmf �

1
)

Our Fuchsian type condition is obtained by requiring 
that, roughly speaking, the arising system of ODEs (3.13) 
is Fuchsian (Briot–Bouquet). This is explained in the next 
section.

4 � Fuchsian type ODEs and regularity 
of formal mappings

4.1 � The normal form problem for Fuchsian type 
hypersurfaces

First, we translate the Fuchsian type condition for hypersur-
faces (1.1) described in the Introduction onto the language 
of associated ODEs. For the functions Φ,Φ∗ , we make use 
of the expansion (3.8). We now introduce

Definition 4.1  An ODE E , defined by (3.6), is called Fuch-
sian (or a Fuchsian type ODE), if Φ satisfies the conditions:

We make use of the following:

Proposition 4.2  (See [7]). For a Fuchsian type hypersurface 
M ⊂ ℂ

2, its associated ODE E(M) is of Fuchsian type as 
well.

We next prove the invariance of the Fuchsian type 
condition.

Theorem 4.3  The property of being Fuchsian for a hyper-
surface (1.1) does not depend on the choice of (formal or 
holomophic) coordinates of the kind (1.1).

Proof  In view of Definition 4.1, we can switch to associated 
ODEs and it is enough to prove the invariance of the Fuch-
sianity for them. As discussed above, we can restrict to trans-
formations (3.5). Let us consider then the transformation 
rule (3.9) (with a fixed transformation within it), when the 
source ODE (with the defining function Φ∗ ) is of Fuchsian 
type. We then claim the following: for all the coefficient 
functions Φkl, k ≥ 0, l ≥ 2 involved in the Fuchsianity con-
ditions (4.1), with the exception of the coefficients functions 
Φk2,Φ

∗
k2
, k ≥ 2 , the Fuchsian conditions (4.1) are satisfied. 

Indeed, we fix any (k, l) relevant to (4.1), and from the trans-
formation rule (3.9) we can see that the target coefficient 

(4.1)

ord Φ02(w) ≥ m − 1; ord Φ03(w) ≥ 2m − 2; ord Φ12(w)

≥ m − 1; ord Φ13(w) ≥ 2m − 2;

ord Φ0l(w) ≥ 2m − l + 2, 4 ≤ l ≤ 2m + 1; ord Φk2(w)

≥ 2m − k, 2 ≤ k ≤ 2m + 1;

ord Φkl(w) ≥ 2m − k − l + 3, k ≥ 1, l ≥ 3, 5 ≤ k + l

≤ 2m + 2.
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function Φkl is a sum of three groups of terms: (i) terms Φ∗
��

 
with � + � ≥ k + l which are multiplied by a power series in 
w with order at 0 at least k + l − � − � ; (ii) terms Φ∗

��
 with 

𝛼 + 𝛽 < k + l ; (iii) terms arising from the expressions 
Ij, 0 ≤ j ≤ 3 (relevant for l = 2, 3 only). In view of the linear-
ity of the Fuchsianity conditions in k, l, it is not difficult to 
see that terms of the first kind all have order at 0 at least as 
the one required for the Fuchsianity. Terms of the second 
kind already all have order bigger than the one required for 
Fuchsianity. Finally, terms of the third kind automatically 
provide order at least 2m sufficient for the Fuchsianity, 
except for the case l = 2 . For k = 0, 1 and l = 2 though even 
the automatically provided order m suffices, and this proves 
the claim.

I t  remains  to  dea l  wi th  te r ms  Φk2  wi th 
k ≥ 2, 2 ≤ k ≤ 2m + 1 . We note, however, that the ODEs 
under consideration have a real structure, which is why (in 
view of the reality condition) we have

for all k, l. This, in view of the transfer relations between Φ 
and h, gives, in particular:

(the last inequality follows from the Fuchsianity condition 
for Φ0,k+2 being already proved). This finally proves the 
theorem.

	�  ◻

We now proceed with the proof of Theorem 1.5. We 
follow the scheme in Section 3, and obtain a system of 
singular ODEs of the kind (3.13) for the Cauchy data Y(w), 
as in(3.12), assuming the source ODE (with the defining 
function Φ∗ ) is of Fuchsian type. For the purposes of this 
section, we prefer to write down the obtained system in 
the form

where

and S, T are holomorphic near the origin.
For the functions T, S we will use the expansion

where �, � are multiindices, and similarly for S. We now 
shall prove the following key:

(4.2)ord hkl(w) = ord hlk(w)

ord Φk2(w) = ord hk+2,2(w) = ord h2,k+2(w)

= ord Φ0,k+2(w) ≥ 2m − k

(4.3)
wm+1g��

0
= S

(
w,Y(w),wY �(w)

)
, w2mX��

= T
(
w,Y(w),wY �(w)

)
,

X(w) ∶= (g1(w), f0(w), f1(w)), Y(w) ∶= (g0(w),X(w)),

(4.4)T(w,Y , Ỹ) =
∑

𝛼,𝛽≥0

T𝛼,𝛽(w)Y
𝛼Ỹ𝛽 ,

Proposition 4.4  Under the Fuchsian type condition, the coef-
ficient functions T�,�(w), S�,�(w) satisfy

Proof  For the proof, we make use of (4.1) (applied for 
the source defining function Φ∗ ), and then study care-
fully the contribution of terms Φ∗

kl
 into the basic identity 

(3.9). Let us fix for the moment some positive value of 
|�| + |�| . Then it is straightforward to check, by consider-
ing (3.9), that T�,� as above can arise only from Φ∗

kl
 with 

k + l ≤ |�| + |�| + 4, while S�,� as above can arise only 
from Φ∗

kl
 with k + l ≤ |�| + |�| + 2 . (And in the latter cases 

a respective Φ∗
kl

 is a factor for Y�(wY �)� ). Now it is not dif-
ficult to verify that (4.1) implies (4.4). 	�  ◻

Corollary 4.5  For the (0, 0) coefficient functions in (4.3) we 
have

As a consequence, for the target ODE defining function Φ 
we have

Proof  As follows from the definition of S�,� , T�,� and the 
Fuchsianity, all terms in the first equation in (4.3) have order 
at least m in w with possibly the exception of terms arising 
from S0,0 , while all terms in the second equation in (4.3) 
have order at least 2m − 1 in w with possibly the exception 
of terms arising from T0,0 . This proves (4.6). To prove (4.7), 
we note that the (m − 1)-jet of S0,0 and the (2m − 2)-jet of 
T0,0, respectively, are formed from differences between coef-
ficients Φkjl and Φ∗

kjl
 aparent in (4.7), and this proves (4.7). 	

� ◻

We shall now prove that any solution of the system of sin-
gular ODEs (4.3). In view of the discussion in Section 3, this 
would imply the convergence of the formal map between the 
given ODEs (3.6) and the given real hypersurfaces, and hence 
the assertion of Theorem 1.5.

Let H(w) be such a formal solution of (4.3). We decompose 
it as

where P(w) is a polynomial without constant term of degree 
≤ 2m − 1 , while where Z(w) is a formal series of the kind 
O(w2m) . The substitution (4.8) (for a fixed (P(w)) turns (4.3) 

(4.5)
ordT𝛼,𝛽 ≥ 2m − 1 − |𝛼| − |𝛽|,
ord S𝛼,𝛽 ≥ m − |𝛼| − |𝛽|, |𝛼| + |𝛽| > 0.

(4.6)ord S0,0 ≥ m; ord T0,0 ≥ 2m − 1.

(4.7)

Φ0j2 = 0, 0 ≤ j ≤ m − 2;

Φ1j2 = Φ0j3 = Φ1j3 = 0, 0 ≤ j ≤ 2m − 3;

Φ0,m−1,2 = Φ∗
0,m−1,2

; Φ0,2m−2,3 = Φ∗
0,2m−2,3

;

Φ1,2m−2,2 = Φ∗
1,2m−2,2

; Φ1,2m−2,3 = Φ∗
1,2m−2,3

.

(4.8)H(w) = P(w) + Z(w),
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into a similar system of ODEs for the unknown function 
Z(w). We shall now prove

Lemma 4.6  The transformed system (in the same way as the 
initial system) satisfies

(the tilde here stands for coefficients of the transformed 
system).

Proof  The proof of the lemma is obtained by putting 
together the expansion (4.4), the conditions (4.4), and the 
fact that P(w) is vanishing at the origin. 	�  ◻

Now, based on Lemma 4.6, we perform the substitution

which turns the “tilde” system into a new system of four 
meromorphic ODEs for the unknown function U, which, 
according to (4.8), has a formal solution U(w) vanishing at 
the origin. It is straightforward to check then, by combining 
(4.10) and (4.9), that the new system can be written in the 
form

where R is a holomorphic function defined near the origin. 
Performing finally in the standard fashion the substitution

and introducing the extended vector function � ∶= (U,V) , 
we obtain a first-order ODE

where Q is a holomorphic near the origin function. The ODE 
(4.12) is a Briot–Bouquet type ODE (see Section 2), and 
hence its formal solutions are convergent, as required.

This completes the proof of Theorem 1.5. 	�  ◻

5 � Regularity of smooth mappings 
between Fuchsian type hypersurfaces

In this section we shall prove Theorem 1.3. Compared to 
the proof of Theorem 1.5, we need an additional argu-
ment, which is the following regularity result for Fuchsian 
(Briot–Bouquet) systems of meromorphic ODEs.

(4.9)

ord S̃01 ≥ m − 1,

ord S̃10 ≥ m − 1,

ord T̃01 ≥ 2m − 2,

ord T̃10 ≥ 2m − 2

(4.10)Z ∶= w2mU,

(4.11)w2U� = R(w,U,wU�),

V ∶= wU�

(4.12)w�� = Q(w,��),

Proposition 5.1  Consider a first-order real ODE

with y being n-dimensional, n ≥ 1, and F analytic. Assume 
it has a solution y(x) which is C∞ on [0, a]. Then y(x) is 
analytic everywhere on [0, a].

Remark 5.2  A singular ODE (5.1) belongs to the classical 
class of Briot–Bouquet type ODEs discussed in Section 2. 
Their formal solutions at the singular point x = 0 are con-
vergent, which, however does not say anything about the 
regularity of smooth solutions, which is why Proposition 5.1 
requires a separate proof.

Proof of Proposition 5.1  The analyticity of y(x) everywhere 
outside x = 0 follows from the analyticity of the given ODE, 
which is why we consider only the analyticity at the singu-
larity x = 0 . First, consider the Taylor series ŷ(x) of y(x). 
Since, again, (5.1) is a Briot–Bouquet ODE, ŷ(x) is conver-
gent. Hence, taking y − ŷ(x) as a new unknown function, we 
get an ODE again of the kind (5.1) which has now a flat at 
x = 0 solution on [0, a]. We assume, by contradiction, that 
this solution is not identical zero near x = 0 . Substituting 
the flat solution into the new ODE (5.1) and equalizing the 
Taylor series in both sides, we conclude that F(x, 0) = 0 . 
Hence we conclude that the (again analytic) right hand side 
expands as

where A(x) is an analytic at the origin matrix, and dots stand 
for terms of degree at least 2 in y.

Second, let us use the notation |y(t)| for the Euclidean 
norm, and ||y|| for the sup norm of y on [0, a]. Since y is flat 
at 0, we may shrink the interval to make ‖y‖ small. Using the 
analyticity of F, we then have the bound

where C is a constant depending on ‖y‖.
Third, we make a simple observation that |y| cannot van-

ish for x > 0 . Indeed, any solution with y(x0) = 0, x0 ≠ 0 
would need to be identical zero by uniqueness near x0 , and 
hence identical zero by the analyticity of the ODE.

Fourth, we do the following: we “resolve the singularity” 
of (5.1) by making the substitution

Now the ODE (5.1) reads as

We denote the new solution by y(t) and still have

(5.1)xy� = F(x, y), x ∈ [0, a],

F(x, y) = A(x)y +⋯ ,

(5.2)|F(x, y(x))| ≤ C|y(x)|,

x ∶= et, t ∈ (−∞, ln a].

(5.3)
dy

dt
= F(et, y) =∶ F̃(t, y).
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Now we need to obtain certain bounds. Taking the limit in 
the triangle inequality, we have

In view of this and the inequality (5.4),

and by integrating over [t, ln a] we obtain

Simplifying (5.5) and applying exp, we finally get for the 
initial function y(x):

(C̃ is some other constant, which is non-zero since |y(a)| is 
non-zero!). But (5.6) is a contradiction with the fact that y(x) 
is flat near 0, and this proves the desired analyticity state-
ment. 	�  ◻

Remark 5.3  The assertion of Proposition 5.1 holds also for 
a complex Briot–Bouquet ODE, i.e., when y(x) is complex-
valued and F is complex analytic (one just has to split the 
real and imaginary parts, and this immediately gives an 
already real ODE (5.1) for the vector function formed from 
the real and imaginary parts of y).

We are now in the position to prove Theorem 1.3.

Proof of Theorem  1.3  We come back to the proof of 
Theorem  1.3. Note that a hypersurface (1.1) neces-
sarily contains (the germ at the origin of) the real line 
L = {z = 0, Im w = 0} . This means, in particular, that for 
the given map H(z, w), the vector functions H(0,w),Hz(0,w) 
are well defined on L and are holomorphic in its open neigh-
borhood. Arguing now identically to the above proof of The-
orem 1.5, we reduce the analyticity problem for the given 
CR-map to the analyticity of C∞ smooth solutions of an ODE 
identical to (4.12). The only difference is that, instead of 
substituting a formal power series map into the basic iden-
tity (3.9), we substitute into (3.9) a holomorphic map in 
a domain Ω , containing 0 in its closure and coming from 
the analyticity of the map in a neighborhood of the Levi-
non-degenerate part of M. In view of the above, the Cauchy 
data (3.12) of the map H is C∞ on the real line, and so is a 
solution of (4.12) under discussion. We then apply Proposi-
tion 5.1 (together with Remark 5.3) and conclude that the 
desired solution of (4.12) is analytic, and so is the Cauchy 

(5.4)|F̃(t, y(t))| ≤ C|y(t)|.

d

dt
|y(t)| ≤

||||
dy

dt

||||
.

d

dt
ln |y(t)| = 1

|y(t)|
d

dt
|y(t)| ≤ 1

|y(t)|
||||
dy

dt

||||
≤ C,

(5.5)ln |y(ln a)| − ln |y(t)| ≤ C(ln a − t).

(5.6)|y(x)| ≥ C̃ ⋅ xC

data (3.12) and hence the map H. This completely proves the 
theorem. 	�  ◻
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