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ABSTRACT 
This paper describes an integrated approach to predict 

human leg and spine muscle forces during lifting by integration 
of a predictive skeletal model with OpenSim. The two-
dimensional (2D) skeletal lifting motion is first predicted by 
using an inverse dynamics optimization method. Then, the 
prediction outputs, including joint angle profiles, ground 
reaction forces, and center of pressure, are incorporated in 
OpenSim biomechanics software to analyze muscle forces for 
lifting. Therefore, the integrated approach has predictive 
capability on musculoskeletal level. By using this method, we can 
predict and analyze muscles forces for heavy weight lifting 
motion which is difficult to simulate directly using a 3D 
musculoskeletal model. 
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1. INTRODUCTION 
 Manual material handling is one of the main reasons for 
workplace injuries and pains. The consequence of lifting weight 
exceeding a person’s capability could lead to serious muscle 
injuries [1]. But it is not feasible to determine the maximum 
lifting weight and its consequences by practical experiments. 
Predictive simulation based on experimental data can help us to 
find out the maximum lifting weight [2] and its muscle related 
consequences. However, it is complicated and time consuming 
to directly simulate and analyze three-dimensional (3D) muscle 
model. 

For predictive modeling, there are skeletal and 
musculoskeletal models in the literature. Skeletal models are 
computationally efficient, but only works in joint space [3, 4]. In 
contrast, musculoskeletal models can reveal more muscle 
information, but it requires more computational effort [5]. 
Recently, there are some progress in predictive musculoskeletal 
modeling, such as mixed forward and inverse method [6] and 
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direct collocation method [7, 8]. These methods still require 
hours of CPU time to optimize a 3D musculoskeletal model due 
to its complexity. 

OpenSim® uses computed-muscle-control (CMC) method, 
which is a control-based forward dynamics simulation approach 
[9]. This method can easily track the captured motion to compute 
muscle excitation, activation, moment arm, and muscle-tendon 
length. Although it is an effective approach, it tracks 
experimental data and lacks predictive capability. The objective 
of this study is to combine the predictive skeletal model and 
OpenSim model to predict muscle forces. The integrated method 
has two steps: First, the lifting motion, ground reaction forces 
(GRF) and center of pressure (COP) are predicted using a 
skeletal model in joint space. Secondly, the predicted data are 
used as inputs for OpenSim to simulate the lifting motion and 
analyze muscle forces. 
 
2. PREDICTIVE SKELETON MODEL SIMULATION 

A two-dimensional (2D) skeletal model with 10 degrees of 
freedom (DOFs) is used in this study. The three global DOFs 
include two translational and one rotational joints. The seven 
physical joints are spine, shoulder, elbow, hip, knee, ankle, and 
metatarsal joints. Anthropometric data are calculated from 
GEBOD software [10] using the subject’s height and weight as 
the input data. Recursive Lagrangian dynamics is used to set up 
the equations of motion for the biomechanical system [11].  

In this study, the 2D symmetric maximum weight lifting 
motion is simulated using an inverse dynamics optimization 
method [12]. The lifting problem is formulated as an 
optimization problem by maximizing the box weight (W) and 
considering the joint angle profiles (discretized B-spline control 
points) as design variables subject to following constraints:  

Joint angle limits, 
𝒒𝐿 ≤ 𝒒(𝑡) ≤ 𝒒𝑈    (1) 

where 𝒒𝐿 and 𝒒𝑈 are the joint angle lower and upper bounds. 
Joint torque limits,  
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𝝉𝐿 ≤ 𝝉(𝑡) ≤ 𝝉𝑈    (2) 
where 𝝉𝐿 and 𝝉𝑈 are the joint torque lower and upper bounds. 

Balance condition,  
𝑝𝑍𝑀𝑃(𝒒, 𝑡) ∈ 𝐹𝑆𝑅     (3) 

where 𝑝𝑍𝑀𝑃 is the zero-moment-point (ZMP) location, and FSR 
represents the foot support region. 

Feet contacting positions,  
𝑝𝑓𝑜𝑜𝑡(𝒒, 𝑡) = 𝑝𝑓𝑜𝑜𝑡

𝐸      (4) 
where 𝑝𝑓𝑜𝑜𝑡  is the calculated foot position and 𝑝𝑓𝑜𝑜𝑡

𝐸  is the 
measured experimental foot position. 

Initial and final hand (box) locations, 
𝑝ℎ𝑎𝑛𝑑(𝒒, 𝑡) = 𝑝𝑏𝑜𝑥

𝐸 (𝑡);           𝑡 = 0, 𝑇  (5) 
where 𝑝ℎ𝑎𝑛𝑑 is the calculated hand position, 𝑝𝑏𝑜𝑥

𝐸  is the 
experimental box position, and T is total time.  

Posture constraints from experiment,  
|𝒒(𝑡) − 𝒒𝑬(𝑡)| ≤ 𝜀;            𝑡 = 0,

𝑇
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𝑇
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,

3𝑇

4
, 𝑇  (6) 

where 𝒒𝑬 is the experimental joint angle, 𝜀 = 0.15 rad. 
The predicted lifting motion is depicted in Fig. 1. The 

predicted joint angles and GRF profiles are shown in Fig. 2. 

 
Fig. 1. Snapshots of the predicted lifting motion 

 

 
Fig. 2. Predicted joint angles and GRF for the maximum 

weight lifting 
 

3. OPENSIM MODEL SIMULATION 
OpenSim® is an open-source software package that can be 

used to build, exchange, and analyze computer models of the 
musculoskeletal system and dynamic simulations of movement 
[13]. Some of the most useful features of OpenSim are scaling, 
inverse kinematics, inverse dynamics, CMC analysis. In this 
study we have used a leg muscle model [14] and a spine muscle 
model [15] in OpenSim to predict muscle forces. 

 
3.1 Computed muscle control algorithm 

CMC tool is a graphical user interface (GUI) to control the 
input and output of the algorithm. The Fig. 3 shows the required 
inputs and outputs for the CMC tool [13]. The input data has 
three parts: CMC setup, experiment, and OpenSim model. The 
output data also has three parts: muscle and model states, forces, 
and controls (muscle excitation). 

 

 
 

Fig. 3. Inputs and outputs of CMC tool 
 

CMC algorithm computes muscle excitation levels that will 
drive the generalized coordinates such as joint angles of a 
dynamic musculoskeletal model towards a desired kinematic 
trajectory in the presence of applied external forces. The overall 
flow chart of CMC is depicted in Fig. 4 and illustrated below [9]. 
 

 
Fig. 4. Computed muscle control (CMC) flow chart 

 
The first step of CMC is to compute desired accelerations 

(𝑞̈𝑗
𝑑𝑒𝑠(𝑡 + ∆𝑇)) based on Proportion-Derivative (PD) control. 

The time interval ∆𝑇 should be short enough to allow adequate 
control, but long enough to allow muscle forces to change. ∆𝑇 is 
typically chosen as 0.01 second. 

From the desired accelerations 𝑞̈𝑗
𝑑𝑒𝑠(𝑡 + ∆𝑇), the desired 

torque (𝝉des) can be found from equations of motion using 
inverse dynamics. Static optimization distributes net joint torque 
into muscle-tendon forces at the time t + ∆𝑇.  The next step is to 
compute the muscle excitations based on the calculated muscle-
tendon forces and state variables using root-finding algorithm. 
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The final step of CMC algorithm is to use computed control 
(muscle excitations) to conduct a standard forward dynamic 
simulation. Muscle excitations, which we obtained from the 
muscle-tendon forces, will be used in forward dynamics to drive 
the simulation model using one-step numerical integration. 

 
4. RESULTS AND DISCUSSION 

By inputting the simulation data (joint angle, GRF, COP 
profiles) into OpenSim musculoskeletal model, we can get the 
same exact motion of 2D simulation. Then in OpenSim, we can 
analyze the change of joint and muscle information, e.g., active 
fiber force, passive fiber force, tendon force, fiber length, and 
tendon length for the same motion. 

After transferring the kinematics and external force data 
from predictive model to OpenSim, the motion in OpenSim is 
presented in Fig. 5.  
 

 
Fig. 5. Snapshots of lifting motion in OpenSim 

 
Comparing Fig. 5 with Fig. 1, it is shown that the motions 

are similar. Next step is to analyze the muscle forces during 
lifting. 
 

 
 

 
 

 
Fig. 6. Leg muscle forces during lifting 
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Glutei muscles take significant amount of load during 
lifting. Knee joint extension is almost completed at around 60% 
of the lifting time. As a result, the load is carried out mainly by 
hip and spine muscles after that. Glutei muscles help to hold the 
body and give extra force at the end of lifting (Fig. 6a). The 
change of force in glutei muscles is between 3100 N to 3400 N. 
There is no significant change in hamstring muscle force during 
this lifting motion (Fig. 6b). At the initial stage of motion, rectus 
femoris muscles become activated and support the leg joint 
during lifting (Fig. 6c). Like rectus femoris, vasti muscles are 
activated initially and generate significant initial force until the 
knees are extended. These muscles generate about 1600 N force 
initially (Fig. 6d). 

During the lifting motion, there is no significant change in 
the muscle force of latissimus dorsi (Fig. 7a). It changes between 
415 N to 430 N. On the other hand, internal oblique muscles give 
a huge amount of support during motion. The change of muscle 
force in internal oblique is between 800 N to 1200 N (Fig. 7b). 
Internal oblique muscles start to support the weight when the 
elbow starts to flex. 

 

 
Fig. 7. Spine muscle forces during lifting 

 
 

5. CONCLUSION 
In this paper, we presented an integrated approach to analyze 

muscle forces of a 3D musculoskeletal model in OpenSim using 
a 2D skeletal predictive model. The important leg and spine 
muscle forces during lifting were demonstrated in OpenSim. 

It has been shown that during the maximum weight lifting 
motion, glutei and vasti muscles from leg and internal oblique 

muscles from spine generated significant amount of forces. By 
using our 2D skeletal predictive model and interfacing it with the 
3D musculoskeletal model, we can predict and analyze muscle 
forces for heavy weight lifting motion which is difficult to 
simulate directly using a 3D musculoskeletal model. 

One limitation of our model is that the 2D predictive model 
contains only sagittal plane data of 3D musculoskeletal model 
which gives only flexion, extension, dorsiflexion and 
plantarflexion movements. Frontal and transverse plane 
movements like abduction, adduction or internal rotation and its 
effect on muscle forces cannot be analyzed. 

Our future work is to upgrade the 2D skeletal predictive 
model to 3D model so that we can predict and analyze muscle 
forces for all kind of movements using the proposed method. In 
addition, rigorous experimental validation of the predicted 
muscle forces will be conducted using electromyography (EMG) 
sensors. 
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