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ABSTRACT

This paper describes an integrated approach to predict
human leg and spine muscle forces during lifting by integration
of a predictive skeletal model with OpenSim. The two-
dimensional (2D) skeletal lifting motion is first predicted by
using an inverse dynamics optimization method. Then, the
prediction outputs, including joint angle profiles, ground
reaction forces, and center of pressure, are incorporated in
OpenSim biomechanics software to analyze muscle forces for
lifting. Therefore, the integrated approach has predictive
capability on musculoskeletal level. By using this method, we can
predict and analyze muscles forces for heavy weight lifting
motion which is difficult to simulate directly using a 3D
musculoskeletal model.

Keywords: Motion prediction, inverse dynamics
optimization, muscle force, OpenSim, lifting.

1. INTRODUCTION

Manual material handling is one of the main reasons for
workplace injuries and pains. The consequence of lifting weight
exceeding a person’s capability could lead to serious muscle
injuries [1]. But it is not feasible to determine the maximum
lifting weight and its consequences by practical experiments.
Predictive simulation based on experimental data can help us to
find out the maximum lifting weight [2] and its muscle related
consequences. However, it is complicated and time consuming
to directly simulate and analyze three-dimensional (3D) muscle
model.

For predictive modeling, there are skeletal and
musculoskeletal models in the literature. Skeletal models are
computationally efficient, but only works in joint space [3, 4]. In
contrast, musculoskeletal models can reveal more muscle
information, but it requires more computational effort [5].
Recently, there are some progress in predictive musculoskeletal
modeling, such as mixed forward and inverse method [6] and
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direct collocation method [7, 8]. These methods still require
hours of CPU time to optimize a 3D musculoskeletal model due
to its complexity.

OpenSim® uses computed-muscle-control (CMC) method,
which is a control-based forward dynamics simulation approach
[9]. This method can easily track the captured motion to compute
muscle excitation, activation, moment arm, and muscle-tendon
length. Although it is an effective approach, it tracks
experimental data and lacks predictive capability. The objective
of this study is to combine the predictive skeletal model and
OpenSim model to predict muscle forces. The integrated method
has two steps: First, the lifting motion, ground reaction forces
(GRF) and center of pressure (COP) are predicted using a
skeletal model in joint space. Secondly, the predicted data are
used as inputs for OpenSim to simulate the lifting motion and
analyze muscle forces.

2. PREDICTIVE SKELETON MODEL SIMULATION

A two-dimensional (2D) skeletal model with 10 degrees of
freedom (DOFs) is used in this study. The three global DOFs
include two translational and one rotational joints. The seven
physical joints are spine, shoulder, elbow, hip, knee, ankle, and
metatarsal joints. Anthropometric data are calculated from
GEBOD software [10] using the subject’s height and weight as
the input data. Recursive Lagrangian dynamics is used to set up
the equations of motion for the biomechanical system [11].

In this study, the 2D symmetric maximum weight lifting
motion is simulated using an inverse dynamics optimization
method [12]. The lifting problem is formulated as an
optimization problem by maximizing the box weight (W) and
considering the joint angle profiles (discretized B-spline control
points) as design variables subject to following constraints:

Joint angle limits,

" <qt)<q’ (1)
where q" and qY are the joint angle lower and upper bounds.

Joint torque limits,
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<)<’ )
where ¢ and TV are the joint torque lower and upper bounds.
Balance condition,
pzup(q,t) € FSR (3)
where pzyp is the zero-moment-point (ZMP) location, and FSR
represents the foot support region.
Feet contacting positions,
pfoot (q' t) = p};oot (4)
where Pgoo; 1s the calculated foot position and Ponoc is the
measured experimental foot position.
Initial and final hand (box) locations,
Prana (q' t) = pgox (t); t=0,T (5)
where Ppang is the calculated hand position, pg,, is the
experimental box position, and 7 is total time.

Posture constraints from experiment,
T T 3T
lq(t) — qE(t)| < & t=02.5.T (6)
where gF is the experimental joint angle, € = 0.15 rad.
The predicted lifting motion is depicted in Fig. 1. The

predicted joint angles and GRF proﬁles are shown in Flg 2.
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Fig. 1. Snapshots of the predicted lifting motion
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3. OPENSIM MODEL SIMULATION

OpenSim® is an open-source software package that can be
used to build, exchange, and analyze computer models of the
musculoskeletal system and dynamic simulations of movement
[13]. Some of the most useful features of OpenSim are scaling,
inverse kinematics, inverse dynamics, CMC analysis. In this
study we have used a leg muscle model [14] and a spine muscle
model [15] in OpenSim to predict muscle forces.

3.1 Computed muscle control algorithm

CMC tool is a graphical user interface (GUI) to control the
input and output of the algorithm. The Fig. 3 shows the required
inputs and outputs for the CMC tool [13]. The input data has
three parts: CMC setup, experiment, and OpenSim model. The
output data also has three parts: muscle and model states, forces,
and controls (muscle excitation).

CMC actuators
CMC control constraints CMC setup  |==+
=" | Output controls
MC task
Computed
Muscle = | Output forces
Expenmem —
Externa\ load
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| OpenSim model |—b| Scaling I—b

Fig. 3. Inputs and outputs of CMC tool

CMC algorithm computes muscle excitation levels that will
drive the generalized coordinates such as joint angles of a
dynamic musculoskeletal model towards a desired kinematic
trajectory in the presence of applied external forces. The overall
flow chart of CMC is depicted in Fig. 4 and illustrated below [9].
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Fig. 4. Computed muscle control (CMC) flow chart

The first step of CMC is to compute desired accelerations
(i{'}‘-’les (t + AT)) based on Proportion-Derivative (PD) control.
The time interval AT should be short enough to allow adequate
control, but long enough to allow muscle forces to change. AT is
typically chosen as 0.01 second.

From the desired accelerations q‘;’l“ (t + AT), the desired
torque (79%%) can be found from equations of motion using
inverse dynamics. Static optimization distributes net joint torque
into muscle-tendon forces at the time 7 + AT. The next step is to
compute the muscle excitations based on the calculated muscle-
tendon forces and state variables using root-finding algorithm.
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The final step of CMC algorithm is to use computed control
(muscle excitations) to conduct a standard forward dynamic
simulation. Muscle excitations, which we obtained from the
muscle-tendon forces, will be used in forward dynamics to drive
the simulation model using one-step numerical integration.

4. RESULTS AND DISCUSSION

By inputting the simulation data (joint angle, GRF, COP
profiles) into OpenSim musculoskeletal model, we can get the
same exact motion of 2D simulation. Then in OpenSim, we can
analyze the change of joint and muscle information, e.g., active
fiber force, passive fiber force, tendon force, fiber length, and
tendon length for the same motion.

After transferring the kinematics and external force data
from predictive model to OpenSim, the motion in OpenSim is
presented in Fig. 5.

Fig. 5. Snapshots of lifting motion in OpenSim

Comparing Fig. 5 with Fig. 1, it is shown that the motions
are similar. Next step is to analyze the muscle forces during
lifting.
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Fig. 6. Leg muscle forces during lifting

©2019 by ASME



Glutei muscles take significant amount of load during
lifting. Knee joint extension is almost completed at around 60%
of the lifting time. As a result, the load is carried out mainly by
hip and spine muscles after that. Glutei muscles help to hold the
body and give extra force at the end of lifting (Fig. 6a). The
change of force in glutei muscles is between 3100 N to 3400 N.
There is no significant change in hamstring muscle force during
this lifting motion (Fig. 6b). At the initial stage of motion, rectus
femoris muscles become activated and support the leg joint
during lifting (Fig. 6¢). Like rectus femoris, vasti muscles are
activated initially and generate significant initial force until the
knees are extended. These muscles generate about 1600 N force
initially (Fig. 6d).

During the lifting motion, there is no significant change in
the muscle force of latissimus dorsi (Fig. 7a). It changes between
415N to 430 N. On the other hand, internal oblique muscles give
a huge amount of support during motion. The change of muscle
force in internal oblique is between 800 N to 1200 N (Fig. 7b).
Internal oblique muscles start to support the weight when the
elbow starts to flex.
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Fig. 7. Spine muscle forces during lifting

5. CONCLUSION

In this paper, we presented an integrated approach to analyze
muscle forces of a 3D musculoskeletal model in OpenSim using
a 2D skeletal predictive model. The important leg and spine
muscle forces during lifting were demonstrated in OpenSim.

It has been shown that during the maximum weight lifting
motion, glutei and vasti muscles from leg and internal oblique

muscles from spine generated significant amount of forces. By
using our 2D skeletal predictive model and interfacing it with the
3D musculoskeletal model, we can predict and analyze muscle
forces for heavy weight lifting motion which is difficult to
simulate directly using a 3D musculoskeletal model.

One limitation of our model is that the 2D predictive model
contains only sagittal plane data of 3D musculoskeletal model
which gives only flexion, extension, dorsiflexion and
plantarflexion movements. Frontal and transverse plane
movements like abduction, adduction or internal rotation and its
effect on muscle forces cannot be analyzed.

Our future work is to upgrade the 2D skeletal predictive
model to 3D model so that we can predict and analyze muscle
forces for all kind of movements using the proposed method. In
addition, rigorous experimental validation of the predicted
muscle forces will be conducted using electromyography (EMG)
Sensors.
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