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CrossMark
Abstract
It is an open question if there are leakage-free entangling Fibonacci braiding
gates. In this article, we give a construction of a large family of leakage-free
braiding gates which are then proved to be non-entangling. We also conducted
brute-force numerical searches for braids with a word-length up to seven and
found no leakage-free entangling gates. These suggest the negative for the
conjecture. On the other hand, we provide a much simpler protocol to generate
approximately leakage-free entangling Fibonacci braiding gates than existing
algorithms in the literature.

Keywords: Fibonacci anyon, braiding gate, leakage free, entangling

1. Introduction

Fibonacci anyons are universal for quantum computing by braidings alone [7]. They are conjec-
tured to exist in fractional quantum Hall liquids at v = %2 [14], superconductor networks [12],
and Majorana networks [9]. Quantum algorithms such as Shor’s factoing algorithm written
7 Present affiliation: Department of Mathematics and Department of Physics and Astronomy, Purdue University,
West Lafayette, IN 47906
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for the quantum circuit model are not convenient for implementation using Fibonacci anyons
because explicit qubit structure is required. Moreover, the universality proof of Fibonacci
anyons only guarantees efficient approximations of two-qubit entangling gates, though this is
probably adequate for all practical purposes. It has long been an interesting open question if
there are leakage-free entangling Fibonacci braiding gates®.

In this paper, we focus on two complementary questions: proving the non-existence of
leakage-free Fibonacci entangling gates, and finding protocols to generate good approx-
imations adequate for the experimental construction of a Fibonacci quantum computer. On
the first question, we found a systematic construction of leakage-free braiding gates, which are
then proved to be non-entangling. We also set up a computer search and found no leakage-free
entangling gates either. These two results suggest that such leakage-free Fibonacci braiding
gates do not exist. On the second question, we discovered a much simpler protocol to generate
approximately leakage-free entangling Fibonacci braiding gates than algorithms in the exist-
ing literature [2, 15]. The time complexity of our approximation algorithm for a leakage-free
entangling gate is comparable to the standard Solovay—Kitaev algorithm; however, our algo-
rithm performs worse for the length of words. The gain in simplicity and geometric intuition
justifies such a sacrifice.

Leakage-free entangling gates are known to exist in several models such the Ising theory
(or its cousin SU(2),), SU(2)4 [3], and the quantum double of Rep(S3) [4], all of which are
not braiding universal. In particular, the Ising theory is currently the most promising model
that can be realized experimentally such as the Majorana Zero Mode in semiconductor-super-
conductor heterostructures (see for instance [11] and references therein). However, the more
powerful Fibonacci anyons do not seem to support leakage-free entangling gates. This sug-
gests a tension between braiding universality and the existence of leakage-free entangling
gates. See conjecture 5.1.

After recalling some basic background on Fibonacci anyons in section 2, we search for
leakage-free braiding gates in section 2 both analytically and numerically. In section 3, we
adapt the magical iteration from [15] to a more general situation in order to find approxi-
mate two-qubit leakage-free braiding gates. In the last section, we conjecture that our approx-
imation algorithm should work for more general anyons such as those in SU(2);. We also
provide a precise formulation of the tension between universality and entangling leakage-free
braiding gates for anyons.

2. Background

2.1. Fibonacci anyons

There are numerous references on topological quantum computation. See, for instance, [17]
among others. In particular, see [6] for an explicit setup, encoding, and calculations with any-
ons. An anyon system, or a unitary modular tensor category, is characterized by fusion rules,
F-matrices, R-matrices, topological twists, etc.

The Fibonacci anyon system is one of the most important and also the most elegant theories
for topological quantum computation [7, 19]. It consists of two anyon types, 1 and 7, where
1 represents the vacuum and 7 is a non-Abelian anyon®. The only nontrivial fusion rule is
T®T =1 7. For anyons a, b, c, d, (a,b,c;d) is called admissible if d is a total type of

8 We are not going to touch on any other variations of the question such as using measurements and/or ancillary
states.

? Strictly speaking, we need to distinguish anyon types versus anyons or (quasi)-particles [20]. But for Fibonacci
anyons, this difference can be safely ignored.
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Figure 1. Two splitting/fusion tree bases for V77.

a® b ® c; that is, d is an outcome of fusing a, b, and c. If (a, b, ¢; d) is admissible, then the
F-matrix F Z”c is the 1 x 1 identity matrix whenever a, b, c¢, or d is 1, and,

-1 —1
F:=F" = ( %1 z1> (1)

where ¢ = # is the golden ratio. Note that F' is a real symmetric and involutary
matrix. For R-symbols, we have R = R = 1, R]™ = ¢~ ¥, and RT™ = e'F". Denote by
R = diag(R]",RI").

2.2. Encoding of a qubit

To encode one qubit, we take three 7 particles with total type 7. The corresponding Hilbert
space VI (or Hom(7,7 ® 7 ® 7)) has dimension 2. We will describe two bases for V7"
using splitting/fusion trees.

The first (splitting/fusion tree) basis for V77 is denoted by By, and can be described as fol-
lows. We first split a 7 into a pair of anyons (x, 7), and then continue to split x into a pair (7, 7).
The splitting/fusion tree for this basis is illustrated on the lefthand side of figure 1. One can
also think of the fusion process in reverse, namely, one fuses the first two 7’s into x, and then
fuses x and the third 7 into 7. According to the fusion rules, x could be either 1 or 7. Denote
by |x),, the basis element corresponding to the splitting/fusion process mentioned above. Then
By := {|1)1,|7)L} is an orthonormal basis for VI™". We can encode a qubit C? in VI77 by the
map, [0) = [1)1,[1) = |7).

Similarly, there is a different basis Bg, shown on the righthand side of figure 1, where one
splits 7 into (7,y) followed by splitting y into (7, 7). Again, y can be either 1 or 7. Denote by
[v)& the corresponding the basis element and Bg = {|1)g, |7)r}. Both By and By are called the
computational bases for the one-qubit space V7. They are related by the matrix F:

|y>L = Z ny|x>R (2)
x=1,7

for y = 1, 7, and where it is understood that Fy; = Fyy, F1r = Fi2,F;1 = F31, and Frr = Fp.
We next describe the action of the braid group. Recall that the n-strand braid group B, has
the presentation,

B, = (01, ,0n—1 | 0i0i410; = 0i410i0i41, 0i0; = gjo;, [i—j| > 1),  (3)

where the convention is that o; corresponds to the braid diagram such that the ith strand goes
over the (i + 1)th strand, as illustrated in figure 2.

The encoding of the three T particles described above leads to a unitary representation of
the three-strand braid group,

p3: B3 — U(VI™). 4)
Denote by p4(c) (resp. p¥ (o)) the matrix of a braid o under the basis By, (resp. Bg). Then,

3
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Figure 2. Braid generator o; .

p5(o1) = p§(02) = R = diag(R]™. R"), Q)

eTorl e F o
L R
03(02)203(‘71):FRF: e_%\/ﬁ _¢—1 :

Thus, under the two bases B, Bg, the matrices of o and o, are swapped. They generate the
same group under either basis, so that there is essentially no difference between B, and Bg. As
a default convention, by computational basis, we will take to mean 5;, unless explicitly stated
otherwise. The matrices p3(c) := p% (o) are called one-qubit quantum gates.

It is well-known that the p3 (o) and p3(0,) generate a dense subgroup of U(2) up to phases
[7]. Interestingly, in the F-matrix of the Fibonacci theory lies in the image. Explicitly, it fol-
lows from the identities (RF)? = R]"I, and F? = I, that

(6)

p3(0’10’201) = RITF.

Moreover, [10] provides an asymptotically optimal algorithm which approximates an arbi-
trary unitary matrix using products of the generators p3(c;) and p3(0,) and characterizes the
exact image of B3 from the Fibonacci theory.

2.3. Encoding of two-qubits

Let SWAP € U(C? ® C?) be the two-qubit gate mapping |i,j) to |j, i), i,j = 0, 1. Alternatively,
SWAP is the 4 x 4 permutation matrix obtained by exchanging the second and third rows of
a4 x 4 identity matrix.

Recall that a two-qubit gate U € U(C? ® C?) is called non-entangling if one of the follow-
ing conditions is satisfied (and the other condition will hold as a consequence).

1. Uis of the form A ® B or SWAP o (A ® B) for some one-qubit gates A, B € U(C?).
2. U maps product states to product states. That is, for any |x),|y) € C?, there exist
|u), |[v) € C? such that U(|x) ® [y)) = |u) ® |v).

U is called entangling otherwise. Note that the non-entangling gates form a subgroup.

All one-qubit gates together with any entangling two-qubit gate is universal. Hence any
universal gate set for one-qubit gates plus an entangling two-qubit gate is a universal gate
set for all qubits. This shows that entangling gates are essential for quantum computing,
and in this paper, we investigate whether such entangling two-qubit gates can arise from the
Fibonacci theory.

In particular, we are concerned with the encoding of two-qubits obtained from six 7 par-
ticles from the Fibonacci theory with total type trivial. Explicitly, we group the first three 7
particles to form the first qubit and group the last three to form the second qubit. We further

require the total type of each group of anyons to be trivial. The resulting Hilbert space V{ e
of six 7 particles with total type trivial has dimension five. The four in figure 3 are denoted by
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1st qubit 2nd qubit

Figure 3. The encoding of two qubits where x,y = 1, 7.

Figure 4. The non-computational basis element.

[11),|17), |71), |77) and span the computational subspace V¢. The element [NC) in figure 4 we
call the non-computational state. Thus V| ® = span{|NC)} @ V.

The computational subspace V¢ encodes two-qubits in the way described in figure 3. Note
that the basis 5, is used for the first qubit, while Bg for the second qubit. As mentioned in the
previous subsection, there is essentially no difference between the two bases. The particular
choice here is simply for notational convenience. To emphasize this encoding of two qubits,
we will write Ve = VI7T @ VI77.

By braiding, we obtain a unitary representation of the six-strand braid group,

ps: Bs — U(VI™"). )

Let P4 be the permutation matrix obtained by exchanging the first and fourth rows of a5 x 5
identity matrix. Recall that I, is the 2 x 2 identity matrix. By convention, the tensor product
A ® B is the matrix of the form (a;B).

Direct calculation shows that the matrices of the braid group generators under the basis
{|NC),|11),|17), |71), |T7)} are represented by,

pe(o1) = (RT") & (R® 1) ®)
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Figure 5. The half-twist A applied to a splitting/fusion tree.

pe(02) = (RT") & (FRF ® I) )
pe(03) = P ((R77) & R & FRF) Py, (10)
pe(04) = (R77) & (I, ® FRF) (11)
pe(os) = (R77) @ (L ®R). (12)

Note that the formula for pg (o3 ) means that when restricting to the subspace span{|NC), | 7) }
it is equal to p3(0y) = FRF. We will use this fact later in section 4.

Definition 2.1. A unitary acting on VI®6 is called leakage-free if it preserves the 4-
dimensional (4D) computational subspace V.

Equivalently, a unitary is leakage-free if its (1, 1)-entry has norm equal to 1. To perform
quantum computing, we need to have leakage-free gates to avoid information leakage. We also
allow the states to go out of the computational subspace temporarily if they are performed in
a controlled way.

In the Fibonacci two-qubit model, if a braiding gate pg (o) is leakage-free, then we say it
is entangling if the restriction of pg(c) on V¢ is entangling with respect to the decomposition
Ve =VI™m ® VI"". For example, we see from equation (8) for the first braid generator o
produces a leakage-free gate. However, it is not entangling since pg(cq)|y, = R ® L.

It has been long suspected that, in the Fibonacci model, there are no braids that realize
exactly leakage-free entangling gates. Our results in the next section support such a possibility.

3. Leakage-free gates

The formulas from section 2 for the gates pg(01), p6(02), ps(04), and pe(os) immediately
imply that they are leakage-free and non-entangling on V. Thus, because the non-entangling
gates form a closed subgroup, any word in the braid group generators oy, 0,04 and o5 will
also be leakage-free and non-entangling. In this section we will consider two other braids, A
and X, that also produce leakage-free, non-entangling gates.

Lemma 3.1. Ler A =0y (0’20’1)(0'30'201)(0'4030'20'1)(0'50'40'3020'1). Then

pe(A) = (RT7)* - (I © SWAP).

Proof. A is the half-twist, as illustrated on the left hand side in figure 5. Isotope A as in the
ride hand side and rewrite it as the product

A= (0'1020'1) . ((750'40'5) . (0’30’201)(0’4030’2)(0'5040'3).
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Figure 6. The pure braid X.

Recall from section 2 that pe(c10201) = (RI7)? @ (R[TF ®@ L), and pe(050405) =
(RT)* @ (I, ® R]"F). Furthermore,

,06((0'30'20'])(0’40’30’2)(0’50’40’3)) =1 (RIT(F® F)SWAP)

With (R77)? = R]7, the formula for pe(A) then follows immediately. O

Next, weexplainthetopological procedurethatledustothepurebraid® = (030201)(010203),
which yields a leakage-free gate. Start with a braid on four strands which returns the first
strand to its leftmost position. Such a braid belongs in the annular braid group, which is gener-
ated by 0%, 02, and o3 1in By [1]. Now replace the first strand by three parallel strands to obtain
a braid on six strands, which is a product of ¥, g4, and 05 in Bg. Any braid obtained in this way
preserves V. X is illustrated in figure 6, and a computation yields the following lemma, from
which it is also easy to see that 3 produces a non-entangling gate.

Lemma 3.2. Let Y = (030201)(010203). Then ps(X) = I} @ (I, @ R?).

We remark that we could instead have arrived at the pure braid X by starting with a braid
on four strands which moves the first strand to the rightmost position, and then replacing the
first strand with three parallel strands. In that case, we produce a braid on six strands that is a
product of %, 04, s, and (030201)(040302)(050403) in Bg. Recall from our proof of lemma
3.1 that (030201)(040302) (050403 ) can be written as a product of A, oy, 02, 04, and os. Thus,
while the resulting braid will also yield a leakage-free gate, it is one that we have seen already.

We summarize the above results in the following theorem.

Theorem 3.3. Any word w in o1, 02, 04,05, A\, and Y. produces a gate that is leakage-free
and non-entangling on the computational subspace V.

Remark 3.4. Topological constructions similar to used in theorem 3.3 may be used to ob-
tain braids which preserve subspaces other than V. Often, the braids turn out to be entangling
on the complement of the preserved subspace.

In particular, to find an infinite family of braids which fixes subspace spanned by [11), we
may start with a pure braid on three strands and double every strand. We may further take
products with oy, 02, 04, 05, and A, and still obtain gates which fix |11) up to a phase. Interest-
ingly, unlike the situation with the non-computational [NC), many of the gates that fix [11) up
to a phase are entangling on the complementary 4D subspace. For example, it can be shown
that pg((0203)?) fixes |11) up to a phase, does not fix [NC), and is entangling on the basis ele-
ments [NC), |17), |71) and |77).

To obtain braids that fix |17) and |71), choose a annular braid on five strands and double
the first or last. As above, many of the resulting gates are entangling on the complementary
4D subspace. For example, pg((0203)?) fixes |71) up to a phase, does not fix [NC), and is en-
tangling on the basis elements [NC), |11), |17) and |77).
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Figure 7. The braid 0,000, applied to a splitting/fusion tree.

Although it is easy to find braids that fix [11), |17) and |71), we do not know of any gate
which fixes |77) up to a phase, except for pg(A).

3.1. Systematic computer search

To help find leakage-free entangling gates, we performed a computer search by enumerating
elements of the braid group and computing their corresponding matrices in the representa-
tion given in section 2. Then we checked whether it was leakage-free, and whether it was
entangling.

We enumerated the elements of the braid group Bg by taking words consisting of the gen-
erators and their inverses. We excluded trivial cases of a generator appearing adjacent to its
inverse. Our search enumerated all words up to length seven. Note that a braid word of length
n involves multiplying 5 x 5 matrices, and that there are 107 braid words of length seven on
six strands before simplification. In our limited search, no leakage-free entangling gates were
found.

It is possible to enlarge the scope of the search by optimizing braid words and utilizing
larger computing units. However, the increase in braid word length is very limited due to the
exponential growth rate of the number of words with respect to word length.

4. Approximate leakage-free entangling braiding gates

In this section, we provide a simple procedure which approximates certain leakage-free entan-
gling gates with braidings to arbitrary precision.

4.1. Braiding gates preserving span{|NC), |t7)}

For the 6-anyon encoding of two qubits as shown in figures 3 and 4, we consider braiding
gates that preserve the subspace V := span{|NC), |77)}. Let V* = span{|11), |17), |71)}.

First, consider the braid o,0,010,, which is represented as in figure 7 where the equality is
obtained by isotopy of braids. Then direct computation shows that with respect to the decom-
position V & V1,

pe(02010102) = p3(o7) @ diag(L, 1, (RT7)?). (13)
Similarly,

ps(04050504) = p3(o7) © diag(1, (R77)%, 1). (14)
It can also be verified that pg(o3) preserves the decomposition V @ V<, where

pe(03) = p3(02) ® diag(R]™, RT", R77). (15)
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Hence, through braidings from the 6-anyon encoding of two qubits, we can obtain all of the
group of gates generated by {p3(0?), p3(02)} on V. We do not know if this group contains all
the possible braiding gates on V. However, proposition 4.1 below implies that { p3(0%), p3(02) }
is already a universal gate set on V.

In particular, recall the well-known result that { p3(c1), p3(02)} generates a dense subgroup
of SU(2) up to phases [7]. We prove a stronger result in the following proposition.

Proposition 4.1. Let p3(01) = p5(01), p3(02) = p5(02) be the one-qubit gates given in
equations (5) and (6). Then {p3(0?), p3(03)} generate a dense subgroup of SU(2) up to global
phases.

Proof. Let U;, U, € SU(2). By the classification of subgroups of SU(2), if U and U, have
infinite order and they do not commute up to phases, then {U;, U, } generate a dense subgroup
of SU(2). Take Uy = p3(0}03), Us = p3(0308). Then it is straightforward to check U; and U,
do not commute.

To show that they have infinite order, we show that their eigenvalues are not mth roots of
unity for any integer m, or equivalently that their real parts are not the cosine of a rational mul-
tiple of 7. Normalizing determinants to equal 1, the real part of the eigenvalues of et ps3(0?o3)
and e p3(020%) are given (respectively) by:

245  3+45
5 and 5 .

Neither real part given above is the value of cosine at a rational multiple of 7 by theorem
2.3 of [18]. Hence both of the two eigenvalues are of infinite order. O

In section 4.3, we will combine the fact that {p3(c?), p3(02)} is a universal gate set on
V together with some techniques developed in section 4.2 to provide a simple scheme to
approximate certain two-qubit leakage-free, entangling gates using braidings.

4.2. Iteration to diagonal gates

Let D € U(2) be any diagonal gate and write it as D = ydiag(e %, el%) for — < § < wand
~ € U(1). The phase y will not play a role below, so we also write D = D(0). Let Uy € U(2)
be any one-qubit gate. Consider the sequence { Uy}, defined inductively by the formula:

U1 = U -DO) - U - D(0) - Uy - D(0) 2. (16)
Obviously, Uy does not depend on the phase ~. For § = 0, then U; = Uj for all k.
Lemma 4.2. If -5 <0< 7, 0+#0, and |(Up)12| < 1, then the sequence {U,} defined in

equation (16) converges to a diagonal gate.

Proof. It suffices to consider the case Uy € SU(2) since by equation (16), if Uy has a global
phase, then UH | has the same global phase.
Let A = 610, 6= |(U())12| < 1,and

ax —bg
Ui = <bk a ) . (17)
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We first show that there exists € = €(6,d) < 1 such that |bsy 1| < €|bi], which implies that
{lbil} converges to 0. By direct calculation,

| 1| = |bily,

where
e = (1= [Be) (1= A+ 2%) + |27 (18)
= A+ X=2)(1 = [B]?) + 1] (19)
= [(2 —2cos(8))(1 — | [*) — 11. (20)

It is clear that y, < 1. Hence |byi1| < |bk] <. In turn, setting e:= max{|1—
2cos(0)],[(2 — 2 cos(8))(1 — §%) — 1]}, we have y; < €. By our assumption on 6, both of the
two expressions in max{-, -} are strictly less than one, and hence € < 1.

That |bgy1| < €|bi| implies the statement in the lemma. Intuitively, when k gets large, Uy
is close to a diagonal gate, and hence approximately commutes with D(#). By equation (16),
Uj+1 would be approximately equal to U. The following is a more elementary argument.
Again by direct calculations,

arr = ar(1— [be* (A = 1)%). 1)
Hence,

i —ar] = lag| - A= 17 |bi]* < e (22)
for some constant ¢ > 0, which implies that the sequence {a;} converges. [

A few remarks are in order.

Remark 4.3. For § = %, by equation (18), we have y; = |b|* and hence |biy1| = |by|*.
In this case, the sequence {b;} converges to 0 exponentially faster than it does for a general
6 as in the proof of lemma 4.2. The formula in equation (16) for § = g was used in [16] as
a scheme to approximate certain diagonal gates. To be precise, the formula in [16] does not
have the ‘D=2’ factor as in equation (16). This does not change the fact that the off-diagonal
entries of U converges to zero. However, without the ‘D2’ factor, the {U,} sequence does not
converge to a diagonal gate, but rather fluctuates among several diagonal gates which differ by
some powers of D from each other.

Remark 4.4. 1In [2, 15], a formula different from that in equation (16) was provided to
give rise to a sequence {U;} which converges at an even higher rate: |(Us11)12] = |(Ui)12]>
for 6 = Z. However, their formula does not apply here. This is because D(%) = p(o1)* up
to phases, and as will be seen in section 4.3, we will give a scheme to approximate two-qubit
entangling gates with braids that preserve the subspace V := span{|NC), |77)}. However, the
braids that preserve the subspace V do not seem to realize the gate p(cq)® on V, but only
p(o1)? instead.

Remark 4.5. There is a geometric interpretation of the formula in equation (16). If we think
of a one-qubit gate U € SU(2) as a rotation in R?, then D() is a rotation around the z-axis

by the angle 6. A unitary U has an axis in the xy-plane if and only if its (1,2)-entry has norm

10
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one. Then by lemma 4.2, as long as ¢ has absolute value strictly between 0 and 5 and the axis
of Uy is not in the xy-plane, then each iteration in equation (16) brings the axis of Uy closer to
the z-axis. In the limit U, becomes a rotation around the z-axis.

4.3. Approximation of two-qubit leakage-free entangling braiding gates

We provide a scheme to approximate certain two-qubit leakage-free entangling gates with
braidings. Of course, since the Fibonacci model is universal, one can in principle approxi-
mate arbitrary n-qubit gates using (for instance) the Solovay—Kitaev algorithm. See [5] for a
review of the Solovay—Kitaev algorithm. However, the procedure we give is more explicit and
simpler.

Before going into details, let us describe briefly some characteristics of our procedure.
First of all, it is designed specially for the six-strand two-qubit model in the Fibonacci theory
as defined in section 2.3. Secondly, it does not (at least not directly) approximate an arbitrary
two-qubit gate. Rather, it takes certain six-strand braids as input and outputs a leakage-free
diagonal two-qubit gate. It is not known to us whether there is an efficient way to determine
the input braids so that the procedure with that input will produce a given two-qubit gate.
Instead, we choose certain braids as input and prove that the resulting two-qubit is entangling,
which together with the one-qubit gates forms a universal gate set. Lastly, the procedure only
consists of iterative applications of the formula in equation (16). Furthermore, given a precise
€ > 0, the number of iterations needed to output the gate with error € is upper bounded by
O(log(1)). This can be obtained from the proof of lemma 4.2 that the sequence { Uy} in equa-
tion (16) converges exponentially fast. However, the length of the braid words in the output

s O(poly(1)) which is an easy calculation. In comparison, the Solovay—Kitaev algorithm
produces the output both in time and space complexity O(poly(log(é))).

We use the braiding gates from G := {p¢(02010102), pe(03)) for the approximation. Recall
that V = span{|NC) |77)}, Vi = span{|11) [17),|71)}, and that gates in G all preserve V.
Choose any gate Uy and a diagonal gate D in G such that D := D\V and Up := U0|V satisfy
the conditions in lemma 4.2. We then obtain a sequence of gates {Uk} by the formula in equa-
tion (16) starting from f]o and D. Note that f]k = f]o on V= for all k's. By lemma 4.2, {f]k}
converges to some U such that Uly is a diagonal gate and U|y. = (70|VL is also a diagonal
gate. Hence U is a leakage-free diagonal gate. In  general it is straightforward to check whether
U is entangling for each particular choice of D and Uy since U agrees with Uy on VL. If
U = diag(A_1, Mo, A1, A2, A3) under the basis {|NC), [11), |17), |71), |77)}, then U is entan-
gling if and only if A3 # A\ Mg .

Theorem 4.6. Let D = ps(02010102)3, Uy = p6(03). Then the limit of the sequence {f]k}
defined by equation (16) exists and its limit U is a leakage-free entangling two-qubit gate.

Proof. With respect to the decomposition V & V+, we have

i es 0 0

- e” s 0 3mi

D= i D 0 e 0 (23)
0 e’ 0

1
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Tri

i e 0
. et
UO_(—i\/(ﬁj —Cm(b_])@ 8 el

We have normalized the above two matrices such that their restriction on V are in SU(2). The
angle of Dy is = 2 < 7 and the (1,2)-entry of Uy (that is, the (1,5)-entry of Up) has
absolute value \/F ~ 0.786 < 1. Hence the conditions in lemma 4.2 are satisfied. U is en-
tangling if and only if Uss # e%e%/e$ —eT0. We prove below that f]5,5 # ef.

Denote by D = Dl|y, Ui = Uily, U = Uly, where U = diag( Uss, f]5,5 ) is the limit
of {Ui}. We use notations from the proof of lemma 4.2. We have 6 = %’T, A =e¢lf,
5 = |bo| = /¢~ 1, ag = —e~ T ¢! By direct calculations, e =|(2 —2cos(d))(1 — 6%)—
1| ~ 0.472.

)

<
3

i

=

0
0 |. 24)
B

(e

By equation (22),
a1 — ax] < 1= AP Jbo|*e*. (25)
Hence,
1
i1 = ao] < U= APJbol 7= < LL. (26)

Noting that the limit of {@} is precisely Us s, we have

|Us.s —ao| < 1.1. 27)

On the other hand, |e® — @G| > 1.6 again by direct calculations. We conclude that

Uss # ef. O

5. Conjectures and conclusion

5.1. SU(2), anyons

As a modular tensor category, the Fibonacci theory Fib is a sub category of the anyon the-
ory SU(2); whose anyon types are given by {0, 1,2,3}. Explicitly, the correspondence is
1+ 0, T+ 2. Moreover, {0,3} forms the semion theory S and SU(2); = FibX S. Also
note that semion S is an Abelian theory and 1 =2 ® 3 = 2 X 3. Then an important observa-
tion is as follows. In the encoding of one- and two-qubit models (section 2.3), if we replace all
the anyons of type 7 (i.e. type 2) by anyons of type 1, then the braiding gates remain the same
up to (irrelevant) global phases which are contributed by the semion theory. This means that
for anyons of type 1, all the results discussed in the paper still hold.

Now for the sequence of anyon theories SU(2)y, for k > 2 with anyon types {0,1,--- ,k},
exactly the same models of one and two qubits (and more generally n-qubits) as in section 2
can be defined with type 1 anyons. It is known that the type 1 anyon in SU(2)y is braiding
universal if and only if k = 3 or k > 5 [8]. We believe that the results presented in this paper
still hold for k > 5. For instance, {p3(0?), p3(03)} generates a dense subgroup of SU(2). Also,
the method for approximating entangling leakage-free two-qubit gates in earlier sections also
applies.

12
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Figure 8. Two qudits.

5.2. Conjectures

Let C be an anyon theory, namely, a unitary modular tensor category, and a, b, ¢ € C be anyon
types. Assume c is a total type of (b,b). Consider the embedding V,‘,‘@" ® V,f@" C Vf®2" for
some n > 1. See figure 8. We treat each V,f@" as a qudit space. We call an anyon type a to have
the property of entangling leakage-free if for some n > 1 and anyon types b, c, there exists a
braid ¢ € By, such that the representation of o on me preserves, and is entangling on, the
subspace V,§‘®" ® V,‘,‘®".

By the results in this paper, we believe that the Fibonacci anyon (or the type 1 anyon'® in
SU(2)3) does not have the property of entangling leakage-free. On the other hand, the type
1 anyon in SU(2) does have the property of entangling leakage-free for k =2 and k = 4 [3,
20]. Moreover, the anyon of type D with quantum dimension three in the quantum double of
Rep(S3) also has the property of entangling leakage-free. See [4]. All the examples known to
have the property of entangling leakage-free are not braiding universal. Thus there seems to
be a tension between braiding universality and the property of entangling leakage-free, which
motivates the following conjecture.

Conjecture 5.1. An anyon type has the property of entangling leakage-free if and only if
the braid group representations of B, associated with it have finite images for all n > 1.

The anyon of type 1 of SU(2)s has finite images for B; and By, but infinite images for all
B,,n>5[8].
By the property F conjecture [13], we can also formulate the above as:

Conjecture 5.2. An anyon type has the property of entangling leakage-free if and only if
its quantum dimension is the square root of an integer.

5.3. Conclusion

In this short note, we tried to address the question whether there exist leakage-free entangling
two-qubit gates by braiding Fibonacci anyons. We constructed a large class of leakage-free
braiding gates and then proved that all of them are actually non-entangling. We also performed
brute-force search for braid words of length less than or equal to seven and did not find any
leakage-free entangling gates. This suggests that leakage-free entangling braiding gates may
not exist. On the other hand, we provide a protocol specifically designed for the six-strand

10Spin 1/2 in physics parlance.
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two-qubit model to approximate certain leakage-free entangling gates. The protocol is simple
in that it only consists of choosing some intial braids and iteratively applying certain explicit
formula. By combining numerical calculations and theoretical work on other anyon models,
we speculate that there is a tension between braiding universality and the existence of leakage-
free entangling gates. Specifically, we conjecture that there exist leakage-free entangling gates
if and only if the theory is not braiding universal.
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