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ABSTRACT
In recent years, multiple public cloud FPGA providers have emerged,
increasing interest in FPGA acceleration of cryptographic, bioin-
formatic, financial, and machine learning algorithms. To help un-
derstand the security of the cloud FPGA infrastructures, this paper
focuses on a fundamental question of understanding what an adver-
sary can learn about the cloud FPGA infrastructure itself, without
attacking it or damaging it. In particular, this work explores how
unique features of FPGAs can be exploited to instantiate Phys-
ical Unclonable Functions (PUFs) that can distinguish between
otherwise-identical FPGA boards. This paper specifically introduces
the first method for identifying cloud FPGA instances by extracting
a unique and stable FPGA fingerprint based on PUFs measured from
the FPGA boards’ DRAM modules. Experiments conducted on the
AmazonWeb Services (AWS) cloud reveal the probability of renting
the same physical board more than once. Moreover, the experimen-
tal results show that hardware is not shared among f1.2xlarge,
f1.4xlarge, and f1.16xlarge instance types. As the approach
used does not violate any restrictions currently placed by Amazon,
this paper also presents a set of defense mechanisms that can be
added to existing countermeasures to mitigate users’ attempts to
fingerprint cloud FPGA infrastructures.

CCS CONCEPTS
• Security and privacy→ Hardware attacks and countermeasures;
• Hardware → Reconfigurable logic and FPGAs;
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1 INTRODUCTION
The proliferation of cloud FPGA infrastructures hasmade on-demand
access to FPGA acceleration available for several applications, in-
cluding financial modeling, cryptography, and genome data analy-
sis, among others [5]. The wide availability of FPGAs has many ben-
efits, but the potentially highly-sensitive nature of the information
processed has attracted recent research on FPGA covert-channel
attacks. Specifically, multi-tenant [16, 17] and temporal [38] covert
communication was shown to be possible in cloud FPGAs, despite
some countermeasures deployed by the cloud providers [9].

Such attacks, however, make a crucial assumption in their threat
model, namely that the adversary has some knowledge of the cloud
FPGA infrastructure itself. In other words, it is assumed that attack-
ers know that their designs are co-located with the victim logic on
the same FPGA chip (for multi-tenant attacks), or that the victim
had rented the same physical FPGA board as the attacker in the
previous time slot (for temporal attacks). Rather than focusing on
attacks, this work focuses on the assumption they make, and shows
for the first time that it is indeed possible to fingerprint the cloud
infrastructure to deduce, for example, that the same FPGA chip has
been reused in consecutive Virtual Machine (VM) allocations.

Existing cloud FPGA providers, such as Amazon Web Services
(AWS) [11], secure their infrastructures through a number of mea-
sures. The architectures are not disclosed publicly, except for the
types of FPGA chips used and the geographic location of the data
centers. Furthermore, there are limitations on the designs that can
be deployed in the cloud FPGAs. The AWS workflow, for exam-
ple, shown in Figure 1, performs a number of Design Rule Checks
(DRCs) on the Design Checkpoint (DCP) files generated by Xilinx’s
Vivado tools before the generated bitstream (called an Amazon
FPGA Image, or AFI) can be loaded onto one of the AWS FPGAs.
The checks, which include prohibiting combinatorial loops [9], are
combined with a restrictive “shell” interface that prevents access
to Xilinx eFUSE and Device DNA primitives [41], which could be
used to identify the specific FPGA hardware that a user has rented.

In spite of the efforts to hide information about the cloud FPGA
architecture, this paper shows that it is possible to get insights
into the infrastructure through the resources that are available to
unprivileged FPGA users. Specifically, this paper introduces the first
algorithm for fingerprinting cloud FPGAs through unique features
in their boards. Our approach uses Physical Unclonable Functions
(PUFs) based on the decay of Dynamic Random Access Memory
(DRAM) [43] to identify the DRAM modules attached to the cloud
FPGA boards, and, by extension, the FPGAs themselves.
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Figure 1: FPGA workflow on AWS: developers compile their cus-
tom logic (locally, or on any AWS node) and send encrypted De-
sign Checkpoints (DCPs) to Amazon. DCPs which pass Design Rule
Checks (DRCs) generate bitstream files that can be loaded onto F1
instances in the form of Amazon FPGA Images (AFIs).

To realize the fingerprinting, a novel approach had to be de-
veloped for instantiating decay-based DRAM PUFs. These PUFs
require disabling the DRAM refresh commands to expose manufac-
turing variations [43], but the DRAM controller in cloud FPGAs is
a black-box IP module from Xilinx [4], with no ability to control
the refresh rate. As a result, direct access to decay-based DRAM
PUFs is not possible. The FPGA DRAMs, however, are not erased
when the same user loads a new design (AFI image):1 this is part
of a data-retention feature aimed at sharing data between different
AFIs [3]. For the feature to work, consecutively-loaded AFIs instan-
tiate DRAM controllers so that data is not lost. However, in our
work, one AFI does not have DRAM controllers at all. By loading
the AFIs with and without DRAM controllers instantiated, refresh
of the DRAM modules is effectively disabled: AFIs without DRAM
controllers keep DRAMs powered, but provide no refresh signals,
which results in DRAM cells decaying, as needed by the PUFs.

Through this novel approach for implementing decay-based
DRAM PUFs on cloud FPGAs, our work shows that it is possible
to fingerprint the AWS F1 infrastructure and to build a profile of
f1.2xlarge, f1.4xlarge, and f1.16xlarge instances.

Contributions
The contributions of this paper are as follows:

(1) After describing the relevant background (Section 2), we
introduce a novel experimental setup which uses DRAM
PUFs to fingerprint AWS cloud FPGAs (Section 3).

(2) We conduct the first fingerprinting experiments on cloud
FPGAs, extracting unique and stable fingerprints of sev-
eral Amazon f1.2xlarge, f1.4xlarge and f1.16xlarge
instances (Section 4). Our evaluation is the first to show
that there is no overlap between FPGAs of different instance
types. We also calculate the probability of renting the same
FPGA as a function of time, and demonstrate that DRAM
PUFs can monitor changes in the data center temperature.

(3) We propose a set of countermeasures against cloud FPGA
fingerprinting (Section 5).

We finally place our work in the context of cloud attacks and
defenses (Section 6) before concluding (Section 7). The software
1 The DRAMs are cleared when a new user is assigned to the FPGA instance.

scripts for data collection and analysis, as well as pre-compiled
Amazon FPGA Images (i.e., AFI bitstreams) will be made available
at https://caslab.csl.yale.edu/code/cloud-fpga-fingerprinting.

2 BACKGROUND
This section describes current public cloud FPGA deployments
(Section 2.1) and their typical hardware setup (Section 2.2). It also
summarizes decay-based DRAM PUFs (Section 2.3), and states the
threat model for the fingerprinting work (Section 2.4).

2.1 Cloud FPGAs
Several options are available for renting FPGAs in the cloud. Since
2015, academic researchers can access a cluster with Intel Stratix V
FPGAs in the Texas Advanced Computing Center (TACC) [37]. Intel
FPGAs are also available on Alibaba Cloud [1] and on Microsoft
Azure for machine learning applications [25]. Xilinx-based cloud
offerings have been available since 2016, when AWS announced F1
instances with Xilinx Virtex UltraScale+ FPGAs [2]. The same chips
also power Huawei [40] and Alibaba [1] cloud services. Meanwhile,
Kintex UltraScale boards are available in beta on Baidu [12] and
Tencent [36], while Nimbix is equipped with Alveo cards [26].

2.2 Typical Cloud FPGA Setup
In a typical cloud FPGA deployment, a set of FPGA boards is con-
nected to a server over PCIe. The boards contain FPGA chips, and
are placed in fixed slots in the server. Each FPGA has access to four
dedicated DRAMmodules. As the fingerprinting results of our work
show (Section 4), the four DRAM modules always appear in the
same order within a given FPGA. Moreover, for each instance type
(2x, 4x, and 16x), the same set of FPGAs is always rented together.
In other words, there is no randomization or other dynamic change
to the hardware setup: the set and order of FPGAs in a server re-
mains constant, except in cases of hardware failure, or when FPGAs
are added or removed from the data center.

2.3 Decay-Based DRAM PUFs
Dynamic Random-Access Memory (DRAM) is widely used in per-
sonal computers and servers due to its high storage density. Usually,
multiple DRAM chips (ranks) are combined in a DRAM module
to provide enough memory. Each DRAM chip consists of DRAM
banks, which are arrays of DRAM cells, as shown in the “DRAM
schematic” part of Figure 2. A single DRAM cell consists of a capac-
itor and a transistor, with bits of information stored as charges on
the capacitors. The gate of the access transistor in the DRAM cell
connects to the wordline (WL) in that row, while the capacitor in
the DRAM cell connects to the bitline (BL) through the transistor.
To access a certain memory address, the bitlines are first reset by
the equalizers. Then, the corresponding wordline is enabled, and
the charge on the capacitors is read through the sense amplifiers.

DRAM is a type of volatilememory, because the capacitor charge
leaks over time through different leakage paths, as shown in Fig-
ure 2. The time that a DRAM cell can retain the charge on the
capacitor and store the data value is called the retention time. After
the retention time elapses, the charge on the cell will leak, and the
bit stored in the DRAM cell may flip its value. To maintain the data
integrity of information stored, the DRAM is refreshed periodically
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Figure 2: System diagram: a virtual machine communicates with
one or more FPGAs over PCIe. Of the four DRAMmodules on each
FPGA board, one (DRAM C) is reserved by the shell. PUFs which
exploit DRAM charge leakage on the other three DRAMs (A, B, and
D) can uniquely identify the underlying hardware.

to recharge the capacitors to their original voltage levels. Moreover,
an Error-Correcting Code (ECC) can also be applied.

The variation in the retention time of different DRAM cells can
be used in Physical Unclonable Functions (PUFs) [43]. Specifically,
in a decay-based DRAM PUF, the DRAM PUF region is first set
to a known initial value (e.g., all ones) and the DRAM refresh is
disabled. After a certain decay period elapses, the DRAM PUF region
is then read. Due to DRAM charge leakage, bit flips (errors) in the
initial values will occur. The location of the bit flips depends on
variations in the fabrication process, and is considered to be unique
for each DRAM chip. Thus, the bit flips due to DRAM decay can be
used as a PUF response. DRAM PUFs have been used to identify
and authenticate DRAM chips [27, 28, 30, 31, 33, 43], or generate
keys [29, 31, 33, 43]. In this paper, we use DRAM data retention
properties to create a unique fingerprint of DRAM chips, and, by
extension, the FPGAs to which they are attached.

2.4 Threat Model
Covert- and side-channel attacks are possible in cloud FPGAs (Sec-
tion 6), but they often require that adversaries be able to uniquely
identify FPGA instances to carry out the attacks. This work pro-
vides away to uniquely fingerprint individual FPGAs, while obeying
design rules imposed by cloud FPGA providers. It is therefore as-
sumed that the fingerprinting designs do not contain any prohibited
circuits, such as combinatorial loops [9]. In addition, users only
interact with the physical interfaces through the cloud-provided IP
modules, such as the DRAM controller. Finally, attackers are not
able to decrypt the protected IP, or otherwise reverse-engineer it
to change its functionality.

3 FINGERPRINTING SETUP
This section explains the FPGA fingerprinting setup. Specifically,
it presents a novel way to create decay-based DRAM PUFs by
loading and unloading two different types of AFIs: one with and one
without a memory controller. This approach disables refresh, while
still providing power to the DRAM modules. Section 3.1 expands
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Figure 3: Steps to measure DRAM PUFs: AFI-0 is first loaded to
write all 1s to a certain area of aDRAMmodule. Then AFI-1 is loaded
to stop memory self-refresh. Finally, after a fixed amount of time,
AFI-0 is re-loaded to measure bit flips in the written addresses.

on the memory-related aspects of our experimental setup, while
Section 3.2 explains in detail how DRAM PUFs are instantiated and
used for data collection on AWS F1 instances.

3.1 Accessing DRAM from the FPGA
The cl_dram_dma example in the AWS development kit [11] ex-
plains how to access the DRAM from the FPGA. The physical pinout
and timing parameters of the DDR4 DRAM chips are hidden in the
sh_ddr module, which only provides a 512-bit AXI4 interface to
user logic. It also implements memory initialization, error correc-
tion, and self-refresh of DRAM cells. As shown in Figure 2, although
there are four DRAM modules, one (DRAM C) is reserved by the
FPGA “shell”. It is always initialized (and refreshed) regardless of
whether custom user logic has instantiated a DRAM controller to
use the memory. The remaining DRAMs (A, B, and D) are instanti-
ated within the custom logic [4]. Each instantiation also uses the
sh_ddr module, which is encrypted and prevents users from modi-
fying its functionality: self-refresh of DRAM cells is always enabled
whenever the DRAM controller is instantiated. Nevertheless, Sec-
tion 3.2 presents a novel approach through a method that disables
self-refresh, thus allowing DRAM cells to decay.

It should be noted that two key modifications are made to the de-
fault cl_dram_dma logic. First of all, the memory scrubber module
mem_scrb (which erases DRAMs when the AFI is loaded) is disabled
through the macro NO_CL_TST_SCRUBBER. This is necessary to en-
sure that the decay-based DRAM PUF fingerprints are not zeroed
out before they are read. And, second, the error correction logic is
also turned off by setting the ECC parameter of the ddr4_core_ddr4
module to OFF. This ensures that the PUF response remains usable
by keeping decay-based errors intact, instead of being corrected by
ECC. The ability to turn off ECC is discussed further in Section 5.

3.2 Collecting DRAM PUF Fingerprints
Figure 3 depicts the data collection process of the decay-based
DRAM PUFs. As Figure 3 shows, there are three steps in the mea-
surement process, which use two separate AFIs:

(1) The first step is to write all 1s to a fixed area within a DRAM
chip. It uses AFI-0, which is based on the AWS example de-
sign cl_dram_dma, with modifications to the memory scrub-
ber and ECC, as explained above.

(2) The second step is to wait for DRAM cells to decay by us-
ing AFI-1. This step loads an FPGA image which stops self-
refresh of DRAMs A, B, and D for the chosen decay period,
idling the FPGA. The cl_hello_world design is used for
this purpose, as it does not instantiate memory controllers.



Figure 4: Number of bit flips in the four DRAMs of an FPGA board
for different decay periods. DRAM C is reserved by the FPGA shell
and cannot be used for PUFs. The other three DRAM error counts
follow a similar pattern, but the absolute magnitudes vary.

(3) The final step of reading returns to AFI-0, and simply reads
back the DRAM data to generate the PUF fingerprints from
DRAMs A, B, and D.

4 EVALUATION
This section expands on the experimental setup (Section 4.1), and
provides an example of the DRAM PUF response (Section 4.2). It
then details the metric used for fingerprinting FPGA instances
(Section 4.3), and calculates the probability of re-renting the same
FPGA (Section 4.4). Finally, it explains that there is no overlap
in the different instance types (Section 4.5), and finishes with an
investigation of the background data center conditions (Section 4.6).

4.1 Data Collection on AWS
Experiments are performed on Amazon EC2 F1 spot instances [10],
in the North Virginia us-east-1 region. Spot instances are similar
to on-demand ones, but can be terminated at a moment’s notice.
As a result, they are cheaper: an on-demand f1.16xlarge instance
costs $13.20 per hour, while the same spot instance only $3.96 [6].

The VMs used on the cloud servers, also called Amazon Machine
Images (AMIs) [8], run CentOS 7.6.1810, and access the Xilinx Virtex
UltraScale+ FPGAs in the f1 instances. A series of spot instances,
launched with the same AMIs, are requested in order and are termi-
nated after collecting DRAM PUFs responses on all FPGA slots of
each instance. The interval between terminating one instance and
requesting the next one is five minutes. However, due to variations
in how long initialization of the FPGAs takes, there are some small
differences in the collection time of the DRAM PUFs in practice. On
multi-FPGA (4x and 16x) instances, the measurements on different
FPGA slots are done in sequence, minimizing contention errors or
delays due to the shared PCIe bus.

4.2 DRAM PUF Example on Cloud FPGAs
As discussed in Sections 2 and 3, the location of bit flips which
occur after disabling the memory scrubber, error correction, and
self-refresh is related to the manufacturing process and can fin-
gerprint the DRAM modules attached to the FPGAs. It can thus
serve as a proxy for fingerprinting the cloud FPGA instances, under
the reasonable assumption that the same DRAM chips are always

Figure 5: Bitmap of an example DRAM PUF response on an AWS
FPGA, where each pixel denotes the number of bit flips per four bits
in the DRAM PUF response.

Figure 6: Distribution of Jaccard indices for each pair of DRAM
PUF responses on f1.2xlarge instances.

permanently and physically connected to the same FPGA board.
Figure 4 shows the number of bit flips (error counts) for the four
DRAMs on an FPGA board after waiting for different decay periods.
Due to the influence of memory access on DRAM PUFs, all data
points in Figure 4 are independent. The waiting time between mea-
surements is two minutes, and the size of the PUF is 512 kB. Decay
on DRAM C cannot be measured, as it is reserved by the shell, but
the other three DRAMs follow a similar pattern: the longer the wait,
the more pronounced the decay. However, the absolute magnitude
varies due to manufacturing variations. The decay period is chosen
as 120 seconds in the following experiments.

Figure 5 shows an example DRAM PUF response, with each
pixel in the 1024 × 1024 grid representing four bits in the 512 kB
PUF response. There is sufficient randomness in the response to
distinguish between otherwise-identical DRAMs.

4.3 Fingerprinting Metric
To quantify how similar or different DRAM PUF responses are, we
use the Jaccard index [21]. Let F1 and F2 denote the set of bit flips
in two DRAM PUF responses. Then, the Jaccard index for the two
DRAM PUF responses is defined as:

J (F1, F2) =
|F1 ∩ F2 |

|F1 ∪ F2 |
(1)

As shown by Xiong et al. [43], the intra-device Jaccard index J of
PUF responses from the same DRAM chip is close to one, whereas
the inter-device Jaccard index J from different DRAMs is close to
zero. This remains true for the data collected in our work, where



Table 1: Number and type of FPGA instances rented, along with
the number of unique sets of FPGAs found and the approximate
experimental cost using spot instances.

F1 Type
Number of

FPGAs
Unique
FPGAs

Approx.
Cost ($)

2xlarge 60 × 1 10 × 1 3.47
4xlarge 60 × 2 6 × 2 8.91

16xlarge 60 × 8 8 × 8 83.16

Figure 7: Probability of renting re-allocated FPGA boards for all
three instance types and different waiting periods. Although the
figure only shows slot 0, the probability for all slots is identical, as
FPGA ordering does not change within instances.

sixty f1.2xlarge instances are launched in series. Due to the AWS
allocation process, these instances may or may not use different
FPGA boards. As shown in Figure 6, the distribution of the Jaccard
indices for each pair of PUF responses has a peak close to 0, and
the rest are between 0.5 and 1 as expected. Therefore, DRAM PUF
responses which have a Jaccard index of less (resp. more) than 0.5
are assumed to come from different (resp. the same) FPGA boards.

4.4 Identifying Repeated Instances
This section identifies the number of unique FPGAs when renting
f1.2xlarge, f1.4xlarge, f1.16xlarge instances sixty times each.
As these instance types contain 1, 2, and 8 FPGA boards respectively,
DRAM PUF fingerprints are measured on a total of 60+ 120+ 480 =
660 FPGAs. Table 1 summarizes the number of unique FPGAs seen
on AWS, as indicated by the Jaccard indices of their DRAM PUFs.
The results indicate that only 10, 6, and 8 unique FPGA sets have
been allocated for each instance type.

Given that we observed the same FPGA multiple times, Figure 7
plots the probability of getting the same FPGA board in the North
Virginia region, as a function of the amount of time between re-
quests for two instances. As DRAM PUFs are collected in sequence,
the intervals between two adjacent measurements are nearly iden-
tical. For a given time period t , all n pairs of measurements that are
(approximately) t minutes apart are used to calculate the probability
p/n of renting a re-allocated FPGA, where p denotes the number of
pairs (out of n) for which Jaccard indices are bigger than 0.5. As n
varies for different interval times, n = 59 for the first data point of
Figure 7, and reduces by 1 for each data point to 10, 27, and 47 for
2x, 4x, and 16x instances respectively.

Although the probability appears random and hard to predict, it
is non-zero for all instance types most of the time, and often close
to 25% to 30% for 2x and 4x instances. As a result, temporal covert

Figure 8: Fingerprinting FPGAs on f1.16xlarge instances with 8
FPGA slots: out of 11 spot instances, only 6 different sets of FPGAs
are allocated. In the remaining instances, only 2 additional setswere
identified (Table 1).

channels [38] indeed seem possible: the attacker and the victim end
up on the same FPGA in consecutive time slots after about four
tries on average. For 16x instances, the probability is around 10%,
requiring about ten tries to get the same instance.

Figure 8, in particular, shows the results of renting 16x instances
eleven consecutive times. As can be seen in the figure, one set of
FPGAs is repeated four times, two are repeated two times, while
three are allocated once. Moreover, the same eight FPGAs are re-
allocated at once: in other words, by identifying that, e.g., DRAM D
on slot 0 has stayed the same in INST-0 and INST-1, an adversary
is able to deduce that all eight FPGAs have stayed the same.

4.5 (No) Overlap in Instance Types
We also investigate whether FPGAs are reused between 2x, 4x, and
16x instances, which contain 1, 2, and 8 FPGA boards respectively.
However, the Jaccard index between PUFs from different instance
types is close to 0, indicating that FPGAs are not shared among
them. This lack of overlap can frustrate adversarial attempts at
being co-located with a victim circuit on a nearby FPGA on the
same server rack. In other words, although attackers can identify
which FPGA they have rented, they cannot deduce the physical
proximity to each other. That said, by monitoring the background
conditions of the data center (Section 4.6), an adversary might still
get some information about whether two FPGAs are nearby.

4.6 Monitoring Temperature Changes
We finally also investigate whether one can infer patterns about the
environmental conditions of the data center in which we performed
measurements. To that end, we measure how the DRAM decay
varies in a span of approximately three days. As Figure 9 reveals,
the PUF behaves differently throughout the measurement period.
As DRAM decay varies with temperature [42], these variations can
give insights into the workloads and operating conditions of the
servers. For example, there may be a decrease in activity at certain
times in the day, allowing the data center to cool, and the DRAM
PUF to result in fewer errors. An attacker might use these insights
to reason about data center capacity, and launch attacks on server
availability [15, 19, 20].



Figure 9: DRAM decay measured in the course of three days can
reveal information about the data center environmental conditions.
The experiment was done on a spot f1.2xlarge instance.

5 DEFENSE STRATEGIES
In this section, we propose several countermeasures to prevent the
adversaries from being able to fingerprint cloud FPGAs.

First of all, DRAM PUFs are possible because AWS currently
retains DRAM data even if the FPGA has been cleared, or an image
without a memory controller is loaded. In other words, although
“DRAMData retention is not supported for CL designswith less than
4 DDRs enabled” [9], the DRAM data is not erased. Consequently,
clearing or refreshing the DRAM in either of these two cases would
prevent our fingerprinting approach. At the same time, it would still
allow the intended use-case of the data retention feature, namely
sharing data between consecutively-loaded AFIs.

Second, we disabled ECC to reliably identify the locations of
bit flips and measure the response of the DRAM PUF. Disabling
ECC could be banned, but at a cost of energy usage for designs that
don’t need it. Moreover, ECC is not guaranteed to entirely prevent
our fingerprints. For example, researchers have shown that attacks
using DRAM are possible even with error correction enabled [13].

Furthermore, introducing randomness at different layers of ab-
straction can raise the bar for the adversaries. Currently, our work
can identify all eight FPGAs in an f1.16xlarge instance by mea-
suring the PUF behavior on a single DRAM module (e.g., DRAM D)
on one FPGA. However, software can randomize the order of FPGAs
within an instance as they appear to the user, or the way the DRAM
modules are presented to the FPGA. Moreover, DRAM address
scrambling in the memory controller can prevent the DRAM PUF
from operating. However, other types of PUFs, such as those using
ring oscillators (ROs), may still be effective in fingerprinting. Al-
though AWS prohibits traditional RO designs, alternative ROs have
been proposed which could be deployed on cloud FPGAs [16, 32].

Finally, Amazon’s practice of not sharing hardware between dif-
ferent instance types (e.g., f1.2xlarge and f1.16xlarge instances)
is a good way to make finding co-located FPGAs on the same server
rack more challenging. For similar reasons, it would be useful to
enable remote access to FPGAs over RDMA-like protocols [24],
or by dynamically attaching FPGAs to a given VM instance, as is
currently possible with GPUs on AWS [7].

Although these approaches make power-based attacks harder,
they cannot eliminate temporal thermal channels (e.g., [38]). As

such attacks only exploit temperature effects, a mandatory cool-
down period before re-assigning FPGAs can prevent covert chan-
nels, even if adversaries successfully fingerprint the devices.

6 RELATEDWORK
Recent research on cloud FPGAs has shown that they are susceptible
to covert-channel attacks between different designs that are simul-
taneously deployed (multi-tenant attacks) or that are consecutively
instantiated (temporal attacks) on the same FPGA board. In the for-
mer category, co-located routing resources (“long wires”) have been
shown to leak information about their state to nearby (but indepen-
dent) long wires in Amazon and Huawei FPGAs [16]. Similarly, a
high-bandwidth covert channel can be established between logic
that is physically isolated onto separate dies of the same FPGA chip
(Super Logic Regions or SLRs) on the same cloud platforms [17].
In the latter category, Tian and Szefer have demonstrated a tem-
poral thermal covert channel on Microsoft Catapult servers [38].
These three attacks depend on ring oscillators as receivers, but as
Amazon prohibits combinatorial loops [9], alternative designs can
be used that bypass such checks [16, 32]. In general, detecting ring
oscillators and time-to-digital converters can protect against many
types of remote FPGA attacks [23], but not the DRAM PUF finger-
printing approach we introduced in this paper. PUFs [44] and other
designs [14] can also be used for the protection of Intellectual Prop-
erty (IP) cores. However, to the best of our knowledge, PUFs have
not been used for fingerprinting of cloud FPGAs in the past, despite
the fact that they enable several types of applications [18, 39]. It
should be noted that besides the decay-based PUF [27–30, 33, 43]
used in this paper, the latency [22, 34] and startup values [35] of
DRAM can also be used due to their unique characteristics. How-
ever, they cannot be deployed on cloud servers due to limitations
with the APIs provided by the shell.

7 CONCLUSION
This paper focused on how to deduce aspects of the cloud FPGA in-
frastructure itself, without attacking it or damaging it. It introduced
a novel algorithm for fingerprinting cloud FPGAs through decay-
based DRAM PUFs. These PUFs made use of unintentional proper-
ties of the cross-AFI data sharing feature to bypass restrictions on
the refresh parameters of the memory controller. The PUFs created
resulted in unique and stable fingerprints of FPGAs on all three
FPGA instance types currently available on AWS (f1.2xlarge,
f1.4xlarge, and f1.16xlarge). Although we identified repeated
FPGA allocations in our experiments within each instance type, we
found no evidence of overlaps between different instance types even
when requesting FPGAs a few minutes apart. Finally, we discussed
defense mechanisms to protect against cloud FPGA fingerprinting.
Overall, our work highlights a need for even tighter controls of
the underlying hardware resources to prevent identification of the
physical infrastructure as well as related attacks.
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