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Abstract. Ker-I Ko was among the first people to recognize the impor-
tance of resource-bounded Kolmogorov complexity as a tool for better
understanding the structure of complexity classes. In this brief infor-
mal reminiscence, I review the milieu of the early 1980’s that caused an
up-welling of interest in resource-bounded Kolmogorov complexity, and
then I discuss some more recent work that sheds additional light on the
questions related to Kolmogorov complexity that Ko grappled with in
the 1980’s and 1990’s.
In particular, I include a detailed discussion of Ko’s work on the question
of whether it is NP-hard to determine the time-bounded Kolmogorov
complexity of a given string. This problem is closely connected with
the Minimum Circuit Size Problem (MCSP), which is central to several
contemporary investigations in computational complexity theory.
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1 Introduction: A Brief History of Time-Bounded
Kolmogorov Complexity

In the beginning, there was Kolmogorov complexity, which provided a satisfy-
ing and mathematically precise definition of what it means for something to be
“random”, and gave a useful measure of the amount of information contained in
a bitstring.1 But the fact that the Kolmogorov complexity function is not com-
putable does limit its application in several areas, and this provided some of the
original motivation for the study of resource-bounded Kolmogorov complexity.

A version of time-bounded Kolmogorov complexity appears already in Kol-
mogorov’s original 1965 paper [41]. However, for the purposes of the story being
told here, the first significant development came with the work of Kolmogorov’s
doctoral student Leonid Levin.2 Levin’s fundamental work on NP-completeness

? Supported in part by NSF Grants CCF-1514164 and CCF-1909216.
1 If the reader is not familiar with Kolmogorov complexity, then we recommend some

excellent books on this topic [44, 25].
2 Levin was Kolmogorov’s student, but he did not receive his Ph.D. until after he

emigrated to the US, and Albert Meyer was his advisor at MIT. The circumstances
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[42] has, as its second theorem, a result that can easily be proved3 by making
use of a notion of time-bounded Kolmogorov complexity called Kt, which Levin
developed in the early 1970’s, but whose formal definition did not appear in
a published article until 1984 [43]. Adleman acknowledges communication with
Levin in a 1979 MIT technical report [1] that discusses a very similar notion,
which he called “potential”.4 Since Kt will be discussed at greater length later
on, let us give the definition here:

Definition 1. For any Turing machine M and strings x and y, KtM (x|y) is the
minimum, over all “descriptions” d such that M(d, y) = x in t steps, of the sum
|d|+ log t. (If no such d exists, then KtM (x|y) is undefined.) KtM (x) is defined
to be KtM (x|λ), where λ is the empty string.

If M is chosen to be a universal Turing machine, then KtM (x|y) is always defined.
As is usual when discussing Kolmogorov complexity we select one such universal
machine U , and define Kt(x|y) to be equal to KtU (x|y). Kt has the appealing
property that it can be used to design optimal search algorithms for finding
witnesses for problems in NP. For instance, P = NP iff every φ ∈ SAT has some
assignment v such that Kt(v|φ) = O(log |φ|) [42, 1]. See [44] for a discussion.

Li and Vitányi [44], in their discussion of the origins of time-bounded Kol-
mogorov complexity, highlight not only the work of Adleman and Levin discussed
above, but also a 1977 paper by Daley [24], where time-bounded Kolmogorov
complexity is studied in the context of inductive inference. Indeed, in Ko’s first
paper that deals with K-complexity [37], Daley’s work [24] is one of the four
papers that Ko mentions as containing prior work on resource-bounded Kol-
mogorov complexity. (The others are [42], and the papers of Hartmanis and of
Sipser that are discussed below.) But I think that this is only part of the story.

Adleman’s work [1] remains even today an unpublished MIT technical report,
which did not circulate widely. Levin’s work [42] was still not particularly well-
known in the early 1980’s, and the published paper contains very little detail.
Daley’s work [24] was part of the inductive inference research community, which

around Levin being denied his Ph.D. in Moscow are described in the excellent article
by Trakhtenbrot [59].

3 This result also appears as Exercise 13.20 in what was probably the most popular
complexity theory textbook for the early 1980’s [33], which credits Levin for that
result, but not for what is now called the Cook-Levin theorem.

4 In [1], in addition to Levin, Adleman also credits Meyer and McCreight [46] with
developing similar ideas. I have been unable to detect any close similarity, although
the final paragraph of [46] states “Our results are closely related to more general
definitions of randomness proposed by Kolmogorov, Martin-Löf, and Chaitin” [and
here the relevant literature is cited, before continuing] “A detailed discussion must
be postponed because of space limitations” [and here Meyer and McCreight include
a citation to a letter from the vice-president of Academic Press (which presumably
communicated the space limitations to the authors).] Indeed, Meyer and McCreight
were interested in when a decidable (and therefore very non-random) set can be said
to “look random” and thereby deserve to be called pseudorandom. We will return
to this topic later in the paper.
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was then and remains today rather distinct from the complexity theory com-
munity. Thus I would also emphasize the impact that the 1980 STOC paper by
Paul, Seiferas, and Simon [52] had, in bringing the tools and techniques of Kol-
mogorov complexity to the STOC/FOCS community in the context of proving
lower bounds. At the following FOCS conference, Gary Peterson introduced a
notion of resource-bounded Kolmogorov complexity [54]. Peterson’s article has a
very interesting and readable introduction, highlighting the many ways in which
different notions of succinctness had arisen in various other work on complexity
theory. Peterson’s FOCS’80 paper also introduces a theme that echoes in more
recent work, showing how various open problems in complexity theory can be re-
stated in terms of the relationships among different notions of resource-bounded
Kolmogorov complexity. However, the precise model of resource-bounded Kol-
mogorov complexity that is introduced in [54] is rather abstruse, and it seems
that there has been no further work using that model in the following four
decades.

Perhaps it was in part due to those very deficiencies, that researchers were
inspired to find a better approach. At the 1983 STOC, Sipser introduced a notion
of polynomial-time “distinguishing” Kolmogorov complexity, in the same paper
in which he showed that BPP lies in the polynomial hierarchy [58]. At FOCS
that same year, Hartmanis introduced what he termed “Generalized Kolmogorov
Complexity”, in part as a tool to investigate the question of whether all NP-
complete sets are isomorphic. Both Sipser and Hartmanis cited Ko’s work, which
would eventually appear as [37], as presenting yet another approach to studying
resource-bounded Kolmogorov complexity.

Ko’s motivation for developing a different approach to resource-bounded Kol-
mogorov complexity arose primarily because of the groundbreaking work of Yao
[62] and Blum and Micali [18], which gave a new approach to the study of pseu-
dorandom generators. Ko sought to find a relationship between the new notion
of pseudorandomness and the classical notions of Martin-Löf randomness for in-
finite sequences. Other notions of “pseudorandomness” had been proposed by
Meyer and McCreight [46] and by Wilbur [61], and Ko succeeded in finding the
relationships among these notions, and in presenting new definitions that pro-
vided a complexity-theoretic analog of Martin-Löf randomness. (This analog is
more successful in the context of space-bounded Kolmogorov complexity, than
for time.)

One of the people who had a significant impact on the development on
resource-bounded Kolmogorov complexity at this time was Ron Book. Book
took an active interest in mentoring young complexity theoreticians, and he or-
ganized some informal workshops in Santa Barbara in the mid-to-late 1980’s.
That was where I first met Ker-I Ko. Some of the others who participated were
José Balcázar, Richard Beigel, Lane Hemaspaandra, Jack Lutz, Uwe Schöning,
Jacobo Torán, Jie Wang, and Osamu Watanabe. Resource-bounded Kolmogorov
complexity was a frequent topic of discussion at these gatherings. Four mem-
bers of that group (Ko, Orponen, Schöning, and Watanabe) incorporated time-
bounded Kolmogorov complexity into their work investigating the question of
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what it means for certain instances of a computational problem to be hard,
whereas other instances can be easy [40]; I first learned about this work at
Book’s 1986 Santa Barbara workshop, shortly before the paper was presented at
the first Structure in Complexity Theory conference (which was the forerunner
to the Computational Complexity Conference (CCC)). A partial list of other
work on resource-bounded Kolmogorov complexity whose origin can be traced
in one way or another to Book’s series of workshops includes [2, 13, 16, 20, 26,
28], as well as the volume edited by Osamu Watanabe [60].

Research in resource-bounded Kolmogorov complexity has continued at a
brisk pace in the succeeding years. This article will not attempt to survey – or
even briefly mention – all of this work. Instead, our goal in this section is to
sketch the developments that influenced Ker-I Ko’s work on resource-bounded
Kolmogorov complexity. Ko’s research focus shifted toward other topics after
the early 1990’s, and thus later work such as [5, 15, 22, 23] does not pertain to
this discussion.

But there is one more paper that Ko wrote that deals with resource-bounded
Kolmogorov complexity [38], which constitutes an important milestone in a line
of research that is very much an active research topic today. In the next section,
we place Ko’s 1990 COLT paper [38] in context, and discuss how it connects to
the current frontier in computational complexity theory.

2 Time-Bounded Kolmogorov Complexity and
NP-Completeness

Ko was not the first to see that there is a strong connection between resource-
bounded Kolmogorov complexity and one of the central tasks of computational
learning theory: namely, to find a succinct explanation that correctly describes
observed phenomena. But he does appear to have been the first to obtain the-
orems that explain the obstacles that have thus far prevented a classification
of the complexity of this problem, where “succinct explanation” is interpreted
operationally in terms of an efficient algorithm with a short description. There
had been earlier work [55, 56] showing that it is NP-hard to find “succinct expla-
nations” that have size at all close to the optimal size, if these “explanations”
are required to be finite automata or various other restricted formalisms. But for
general formalisms such as programs or circuits, this remains an open problem.5

Ko approached this problem by defining a complexity measure called LT for
partially-specified Boolean functions (which now are more commonly referred
to as “promise problems”). Given a list of “yes instances” Y and a list of “no
instances” N , LT(Y,N, t) is the length of the shortest description d such that
U(d, x) = 1 in at most t steps for all x ∈ Y , and U(d, x) = 0 in at most t steps
for all x ∈ N , where U is some fixed universal Turing machine (in the tradition

5 During the review and revision phase of preparing this paper, I was given a paper that
settles this question! Ilango, Loff, and Oliveira have now shown that the “circuit”
version of this problem (which they call Partial-MCSP) is NP-complete [35]. For
additional discussion of this result and how it contrasts with Ko’s work [38], see [4].
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of Kolmogorov complexity). Given any oracle A, one can define a relativized
measure LTA, merely by giving the machine U access to A; for any A, the set
MinLTA ::= {(Y,N, 0s, 0t) : LTA(Y,N, t) ≤ s} is in NPA. Ko showed that there
are oracles A relative to which MinLTA is not NPA-complete under polynomial-
time Turing reductions. In other words, the question of whether this version of
the canonical learning theory problem is NP-complete cannot be answered via
relativizing techniques.

Ko proves his results about MinLT by first proving the analogous results
about a problem he calls MinKT ::= {(x, 0s, 0t) : ∃d |d| ≤ s ∧ U(d) = x in at
most t steps}. Note that MinKT is essentially MinLT restricted to the case where
Y ∪N is equal to the set of all strings of length n (in which case this information
can be represented by a string x of length 2n). Quoting from [39]: “Indeed, there
seems to be a simple transformation of the proofs of the results about MinKT
to the proofs of analogous results about MinLT. This observation supports our
viewpoint of treating the problem MinKT as a simpler version of MinLT, and
suggests an interesting link between program-size complexity and learning in the
polynomial-time setting.” One can see that Ko had been working for quite some
time on the question of whether it is NP-hard to determine the time-bounded
Kolmogorov complexity of a given string (i.e, the question of whether MinKT is
NP-complete), because this question also appears in [37], where it is credited to
some 1985 personal communication from Hartmanis.

Ko’s question about the difficulty of computing time-bounded Kolmogorov
complexity was also considered by Levin in the early 1970’s, as related by Trakht-
enbrot6 [59]; see also the discussion in [12]. More precisely, Levin was especially
interested in what is now called the Minimum Circuit Size Problem MCSP ::=
{(x, s)|x is a string of length 2k representing the truth-table of a k-ary Boolean
function that is computed by a circuit of size at most s}. A small circuit for a
Boolean function f can be viewed as a short description of f , and thus it was
recognized that MCSP was similar in spirit to questions about time-bounded
Kolmogorov complexity, although there are no theorems dating to this period
that make the connection explicit. Trakhtenbrot [59] describes how MCSP had
been the focus of much attention in the Soviet Union as early as the late 1950’s;
Levin had hoped to include a theorem about the complexity of MCSP (or of time-
bounded Kolmogorov complexity) in [42], but these questions remain unresolved
even today.

The modern study of the computational complexity of MCSP can really be
said to have started with the STOC 2000 paper by Kabanets and Cai [36]. They
were the first to show that MCSP must be intractable if cryptographically-secure
one-way functions are to exist, and they were the first to initiate an investigation
of the consequences that would follow if MCSP were NP-complete under various
types of reducibilities.

A tighter connection between MCSP and resource-bounded Kolmogorov com-
plexity was established in [6]. Prior to [6] most studies of time-bounded Kol-
mogorov complexity either concentrated on Levin’s measure Kt, or else on a

6 In particular, this is the problem that Trakhtenbrot calls “Task 5” in [59].
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measure (similar to what Ko studied) that we can denote Kt for some time
bound t (typically where t(n) = nO(1)), where Kt(x) is the length of the shortest
d such that U(d) = x in at most t(|x|) steps. Although both of these definitions
are very useful in various contexts, there are some drawbacks to each. Computing
Kt(x) does not seem to lie in NP (and in fact it is shown in [6] that computing
Kt is complete for EXP under P/poly reductions). The value of Kt(x) can vary
quite a lot, depending on the choice of universal Turing machine U ; the usual
way of coping with this is to observe that Kt(x), as defined using some machine
U1 is bounded above by Kt′(x) as defined using a different machine U2, for some
time bound t′ that is not too much larger than t. Both definitions yield measures
that have no clear connection to circuit complexity.

The solution presented in [6] is to modify Levin’s Kt measure, to obtain a
new measure called KT, as follows. First, note that Levin’s Kt measure remains
essentially unchanged if Definition 1 is replaced by

Definition 2. Let x = x1x2 . . . xn be a string of length n. Kt(x) is the minimum,
over all “descriptions” d such that U(d, i) = xi in t steps, of the sum |d|+ log t.

In other words, the description d still describes the string x, but the way that
U obtains x from d is to compute U(d, i) for each i ∈ {1, . . . n}. The main thing
that is gained from this modification, is that now the runtime of U can be much
less than |x|. This gives us the flexibility to replace “log t” in the definition of
Kt, with “t”, to obtain the definition of KT:

Definition 3. Let x = x1x2 . . . xn be a string of length n. KT(x) is the min-
imum, over all “descriptions” d such that U(d, i) = xi in t steps, of the sum
|d|+ t. (A more formal and complete definition can be found in [6].)

When x is a bit string of length 2k representing a k-ary Boolean function
f , the circuit size of f is polynomially-related to KT(x) [6]. Thus it has been
productive to study MCSP (the problem of computing the circuit size function)
in tandem with MKTP (the problem of computing the KT function) [6, 7, 9–11,
31, 45, 49, 57]. This has led to improved hardness results for MCSP (and MKTP)
[6, 7, 9, 31, 57] and some non-hardness results [9–11]. (The non-hardness results
of [47] for MCSP apply equally well to MKTP, and should also be listed here.)
We now know that MCSP and MKTP are hard for a complexity class known
as SZK under BPP-Turing reductions [7], and they cannot be shown to be NP-
complete under polynomial-time many-one reductions without first proving that
EXP 6= ZPP [47]. These hardness results also hold for Ko’s languages MinKT and
MinLT.

Somewhat surprisingly, some hardness proofs currently work only for MKTP
and the corresponding hardness conditions for MCSP are either not known to
hold [8, 9] or seem to require different techniques [27].

Some researchers have begun to suspect that MCSP may be hard for NP
under sufficiently powerful notions of reducibility, such as P/poly reductions. In-
terestingly, Ko explicitly considered the possibility that MinKT is NP-complete
under a powerful notion of reducibility known as SNP reducibility. (Informally,
“A is SNP reducible to B” means that A is (NP ∩ coNP)-reducible to B.) More
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recently, Hitchcock and Pavan have shown that this indeed holds under a plau-
sible hypothesis [32]. Interestingly, Ilango has shown that a variant of MCSP is
NP-complete under (very restrictive) AC0 reductions [34]. Hirahara has shown
that, if a certain version of time-bounded Kolmogorov complexity is NP-hard to
compute, then this implies strong worst-case-to-average-case reductions in NP
[30].

One especially intriguing recent development involves what has been termed
“hardness magnification”. This refers to the phenomenon wherein a seemingly
very modest and achievable lower bound can be “magnified” to yield truly dra-
matic lower bounds which would solve longstanding open questions about the
relationships among complexity classes. The problems MCSP,MKTP, and even
MKtP (the problem of computing Kt complexity) figure prominently in this line
of work [50, 49, 45]. In particular, it is shown in [49] that if one were able to show
a certain lower bound for MKtP that is known to hold for the apparently much
easier problem of computing the inner product mod 2, then it would follow that
EXP 6⊆ NC1.

3 Conclusions

Ker-I Ko has left us. But he has left us a rich legacy. This brief article has touched
on only a small part of his scientific accomplishments, and how they continue to
affect the scientific landscape. Even within the very limited focus of this paper,
much has been left out. For instance, the connection between resource-bounded
Kolmogorov complexity and learning theory could itself be the subject of a much
longer article; as a sample of more recent work in this line, let us mention [48].
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44. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and
Its Applications, 4th Edition. Texts in Computer Science, Springer (2019).
https://doi.org/10.1007/978-3-030-11298-1

45. McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC). pp. 1215–1225 (2019). https://doi.org/10.1145/3313276.3316396

46. Meyer, A., McCreight, E.: Computationally complex and pseudo-random zero-one
valued functions. In: Theory of Machines and Computations, pp. 19–42. Elsevier
(1971)

47. Murray, C., Williams, R.: On the (non) NP-hardness of comput-
ing circuit complexity. Theory of Computing 13(4), 1–22 (2017).
https://doi.org/10.4086/toc.2017.v013a004

48. Oliveira, I., Santhanam, R.: Conspiracies between learning algorithms, circuit lower
bounds and pseudorandomness. In: 32nd Conference on Computational Complex-
ity, CCC. LIPIcs, vol. 79, pp. 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.18

49. Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-
the-art lower bounds. In: 34th Computational Complexity Conference (CCC).
LIPIcs, vol. 137, pp. 27:1–27:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2019). https://doi.org/10.4230/LIPIcs.CCC.2019.27

50. Oliveira, I.C., Santhanam, R.: Hardness magnification for natural problems. In:
59th IEEE Annual Symposium on Foundations of Computer Science (FOCS). pp.
65–76 (2018). https://doi.org/10.1109/FOCS.2018.00016
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