
A Benchmark Suite for Evaluating Caches’
Vulnerability to Timing Attacks

Shuwen Deng, Wenjie Xiong, Jakub Szefer
{shuwen.deng,wenjie.xiong,jakub.szefer}@yale.edu

Yale University

Abstract
Based on improvements to an existing three-step model
for cache timing-based attacks, this work presents 88
Strong types of theoretical timing-based vulnerabilities
in processor caches. It also presents and implements a
new benchmark suite that can be used to test if proces-
sor cache is vulnerable to one of the attacks. In total,
there are 1094 automatically-generated test programs
which cover the 88 Strong theoretical vulnerabilities. The
benchmark suite generates the Cache Timing Vulnera-
bility Score (CTVS) which can be used to evaluate how
vulnerable a specific cache implementation is to different
attacks. A smaller CTVS means the design is more secure.
Evaluation is conducted on commodity Intel and AMD
processors and shows how the differences in processor
implementations can result in different types of attacks
that they are vulnerable to. Further, the benchmarks
and the CTVS can be used in simulation to help design-
ers of new secure processors and caches evaluate their
designs’ susceptibility to cache timing-based attacks.

CCS Concepts • Security and privacy Embed-
ded systems security; Side-channel analysis and coun-
termeasures .

Keywords security, timing attacks, caches, benchmark

ACM Reference Format:
Shuwen Deng, Wenjie Xiong, Jakub Szefer. 2020. A Bench-
mark Suite for Evaluating Caches’ Vulnerability to Timing
Attacks. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’20), March 16–20,
2020, Lausanne, Switzerland. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3373376.3378510

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned

by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378510

1 Introduction
Cache timing channels have long been used to deploy
attacks that can reconstruct sensitive data, especially
secrets such as cryptographic keys [2, 3, 35, 41]. They
usually make use of the timing difference in the memory
operations between observing a cache hit and a cache
miss to derive the victim’s secrets. Since 2018, the cache
timing-based attacks have gained new attention due to
their use in Spectre [24] and Meltdown [29] attacks.

With the long history of attacks, there are also many
defenses proposed or deployed in software, e.g., [7, 25],
and in hardware, e.g., [4, 6, 14, 21–23, 28, 30, 31, 37,
40, 43–45, 47, 49, 50, 54, 55]. However, existing defenses
can usually only prevent a subset of the attacks. For
example, RIC [21] cache has been shown to be able to
defend the Prime+Probe type of attacks [35, 36], but
is vulnerable to the Flush+Reload [53] type of attacks.
More importantly, so far most researchers have focused
on coming up with individual attacks (and defenses for
them), and there has been limited work on understanding
all possible types of attacks.

To address the need to understand and evaluate all the
different possible types of attacks, this paper presents
both a theoretical model of all possible timing-based
attacks in caches, and a benchmark suite that can test
for the theoretical vulnerabilities on real processors, or
simulations of new designs. A key part of this work is an
improved three-step model. Compared to our existing
work [11], the new three-step model additionally con-
siders: (1) differences in “local” and “remote” cores for
making the timing observations and running the victim
or the attacker code, (2) the victim and attacker running
in hyper-threading or time-slicing, (3) using both read
and write operations as memory accesses in the potential
attacks (all but one prior work only considered reads),
and (4) two types of cache line invalidation operations,
through flush instruction, or using cache coherence by
writing on “remote” core to invalidate “local” core’s
cache lines. The new three-step model shows 32 new
types of timing-based vulnerabilities not considered be-
fore, which is in addition to the new attacks found in
the original three-step model [11].

Based upon the new three-step model, we derive that
there are in total 88 Strong type of vulnerabilities, in-
cluding 32 new ones. For these vulnerabilities, we write

https://doi.org/10.1145/3373376.3378510
https://doi.org/10.1145/3373376.3378510

scripts to automatically generate a total of 1094 bench-
marks, which consider different variants for each vul-
nerability, such as using reads vs. using writes. The
benchmarks are then used to test commodity Intel and
AMD machines (workstations and servers in lab and
machines in Amazon’s EC2 cloud). The benchmarks can
also be run on simulators to evaluate new types of se-
cure processor caches. The benchmarks are further used
to generate a new Cache Timing Vulnerability Score
(CTVS), which can help evaluate how different proces-
sors are vulnerable to different attacks – differences in
the processor implementations mean that not all proces-
sors have the same vulnerabilities. Based on the CTVS,
designers can have a better understanding of the vulner-
abilities in their designs and can develop new defenses.
The defenses can, for example, be customized to vul-
nerabilities that CTVS detects on the given processor,
instead of a one-size-fits-all defense.

While the paper focuses on the 88 Strong types of vul-
nerabilities for the benchmark design, we also generated
benchmarks for all 4913 possible three-step combinations
in the three-step model. Based on the results, there are
no more effective ones that are found apart from the 88
vulnerabilities.

1.1 Contributions

The contributions of this work are as follows:

∙ Improved modeling of processors’ behavior to de-
rive a set of 88 Strong timing-based cache vulner-
abilities using the three-step model, including 32
new ones compared to our prior work [11].

∙ Development of the first automatically-generated
benchmark suite that is used to evaluate processor
caches’ vulnerability to all possible timing attacks.

∙ Evaluation of the benchmarks on Intel and AMD
processors in the lab and on Amazon’s Elastic
Compute Cloud (Amazon EC2) servers.

∙ Generation of Cache Timing Vulnerability Score for
different processors to understand which attacks
they are vulnerable to, and to be able to evaluate
and customize defenses.

∙ Validation of the three-step model using the bench-
marks, demonstrating no benchmarks beyond the
ones corresponding to the 88 Strong types of vul-
nerabilities (in addition to Weak and repeat types)
show vulnerabilities on the tested systems.

The benchmark related code used in this paper will be
released under open-source license at https://caslab.csl.
yale.edu/code/cache-security-benchmarks/.

2 Background
This section presents background on cache timing-based
attacks, the existing three-step model, and existing met-
rics used to help understand vulnerabilities of caches to
timing attacks.

2.1 Timing of Memory Operations and Caches

Processor caches are the key to helping processors main-
tain high performance when accessing data. However,
the caches are of finite size, not all data can fit in them,
and timing related to the memory operations involv-
ing caches, such as accesses resulting in cache hits and
misses, can reveal information about the addresses or
even data (for instruction caches it may be possible to
reveal information about instructions as well). In general,
two types of memory-related operations exhibit timing
variations that can be abused for timing-based side or
covert channel attacks in processor data caches. First,
memory access operations, such as loads and stores can
be fast (e.g., a cache hit) or slow (e.g., a cache miss).
Second, invalidation-related operations, such as cache
flush, can be fast (e.g., there is no dirty data in cache so
flush finishes quickly) or slow (e.g., there is dirty data
in the cache so it has to be written back, resulting in
longer timing).

2.2 Timing-Based Attacks on Processor
Caches

Researchers have proposed to use the timing differences
in memory-related operations to attack software, e.g., [1–
3, 17, 36]. Especially, the timing-based side-channel at-
tacks often focus on cryptographic applications, e.g.,
attacks on software using AES encryption or decryption
with table lookups [8]. Further, there are many timing-
based covert-channel attacks, where the sender and re-
ceiver cooperate to leak data, e.g., there are cache covert
channels focusing on the last-level cache mentioned in
study [32] and cross-core cache covert channels [33]. And
most recently, timing-based channels are used as a part
of Spectre and Meltdown transient-execution attacks,
e.g., [24, 27, 29, 39].

2.3 Previous Three-Step Model for
Timing-Based Attacks in Caches

Our prior work [11] has presented a systematic approach
to find all possible cache timing-based vulnerabilities.
The model was established based on two observations:
all existing cache timing attacks focusing on the data
are within three memory operations, and timing attacks
can be analyzed by checking the behavior of one cache
block (since all blocks are updated in the same manner
by the cache logic).

https://caslab.csl.yale.edu/code/cache-security-benchmarks/
https://caslab.csl.yale.edu/code/cache-security-benchmarks/

Table 1. The 17 possible states for a single cache block of
three-step model we previously proposed [11].

State Description

𝑉𝑢

The cache block contains a specific memory location
𝑢 brought in by the victim, which is at an address
unknown to the attacker but within the set of sensitive
memory locations 𝑥.

𝑉 𝑖𝑛𝑣
𝑢

The cache block state can be anything except 𝑢 in the
cache block. The data and its address 𝑢 are “removed”
from the cache block by the victim.

𝐴𝑎

or
𝑉𝑎

The cache block contains a specific memory location
𝑎, brought in by a memory access by the attacker, 𝐴𝑎,
or the victim, 𝑉𝑎. The address 𝑎 is within the range of
sensitive locations 𝑥 and known to the attacker.

𝐴𝑎𝑎𝑙𝑖𝑎𝑠

or
𝑉𝑎𝑎𝑙𝑖𝑎𝑠

The cache block contains a memory address 𝑎𝑎𝑙𝑖𝑎𝑠,
brought in by a memory access by the attacker, 𝐴𝑎𝑎𝑙𝑖𝑎𝑠 ,

or the victim, 𝑉𝑎𝑎𝑙𝑖𝑎𝑠 . The address 𝑎𝑎𝑙𝑖𝑎𝑠 is within the
range 𝑥 and not the same as 𝑎, but it maps to the same
cache block as 𝑎, i.e. it “aliases” to 𝑎. The address
𝑎𝑎𝑙𝑖𝑎𝑠 is known to the attacker.

𝐴𝑑

or 𝑉𝑑

The cache block contains a memory address 𝑑 brought
in by a memory access by the attacker, 𝐴𝑑, or the
victim, 𝑉𝑑. The address 𝑑 is not within the range 𝑥
and known to the attacker.

𝐴𝑖𝑛𝑣

or
𝑉 𝑖𝑛𝑣

The data and its address are “removed” from the cache
block by the attacker, 𝐴𝑖𝑛𝑣 , or the victim, 𝑉 𝑖𝑛𝑣 , as a
result of cache block being invalidated.

𝐴𝑖𝑛𝑣
𝑎
or

𝑉 𝑖𝑛𝑣
𝑎

The cache block state can be anything except 𝑎. The
data and its address 𝑎 are “removed” from the cache
block by the attacker, 𝐴𝑖𝑛𝑣

𝑎 , or the victim, 𝑉 𝑖𝑛𝑣
𝑎 .

𝐴𝑖𝑛𝑣
𝑎𝑎𝑙𝑖𝑎𝑠

or
𝑉 𝑖𝑛𝑣
𝑎𝑎𝑙𝑖𝑎𝑠

The cache block state can be anything except 𝑎𝑎𝑙𝑖𝑎𝑠.
The data and its address 𝑎𝑎𝑙𝑖𝑎𝑠 are “removed” from
the cache block by the attacker, 𝐴𝑖𝑛𝑣

𝑎𝑎𝑙𝑖𝑎𝑠 , or the victim,

𝑉 𝑖𝑛𝑣
𝑎𝑎𝑙𝑖𝑎𝑠 .

𝐴𝑖𝑛𝑣
𝑑
or

𝑉 𝑖𝑛𝑣
𝑑

The cache block state can be anything except 𝑑. The
data and its address 𝑑 are “removed” from the cache
block by the attacker, 𝐴𝑖𝑛𝑣

𝑑 , or the victim, 𝑉 𝑖𝑛𝑣
𝑑 .

⋆
Any data, or no data, can be in the cache block. The
attacker has no knowledge of the memory address in
this cache block.

Following these observations, our work [11] presented
a three-step model focusing on one cache block for evalu-
ating all possible timing-based attacks. Further, a sound-
ness analysis of the three-step model was performed to
show that three steps are sufficient to model all the
timing-based attacks in caches. In the three-step model,
each step represents the state of the cache line after a
memory-related operation is performed. First, there is a
initial step that sets the cache line into a known state.
Second, there is a step that modifies the state of the
cache line. Finally, there is the last step, based on the
timing of which, the change in the state of the cache
line is observed. Each of the steps can be performed by
the attacker (A) or the victim (V). The goal of the prior
study [11] was to find which three-step combinations
can represent timing attacks from which the attacker
learns information about the unknown address accessed
by the victim. We listed 17 possible states for a cache
line, shown in Table 1. Among these states, 𝑉 represents

that the state is a result of the victim’s operation, while
𝐴 represents that the state is a result of the attacker’s
operation. 𝑥 denotes the set of virtual memory addresses
storing addresses of sensitive data, and 𝑢 denotes the
victim’s secret address within 𝑥 which is unknown to the
attacker. 𝑎, 𝑎𝑎𝑙𝑖𝑎𝑠 and 𝑑 denote known memory addresses
that map to the same cache line. 𝑑 refers to an address
outside of 𝑥, while the others are the address within 𝑥.
The attacker’s goal is to obtain 𝑢, which could be the
same as 𝑎 or 𝑎𝑎𝑙𝑖𝑎𝑠, maps to the same set as 𝑎, 𝑎𝑎𝑙𝑖𝑎𝑠

and 𝑑, or not.
Given that there are 17 states and 3 steps, there are

in total 173 = 4913 possible combinations of three steps
that can be derived. The prior analysis demonstrated
that 72 of the three-step combinations are Strong effec-
tive vulnerabilities, where the attacker can obtain the
value of the unknown address 𝑢 unambiguously with fast
or slow timing. Meanwhile, 64 patterns were shown to
be Weak effective vulnerabilities, where there are timing
differences according to different values of 𝑢, but no
single timing corresponds to a unique possible value of
𝑢. Based on the analysis, the prior work [11] showed
that 29 out of 72 vulnerabilities maped to existing cache
attacks. The other 43 types were considered new without
corresponding attacks in literature at that time.
Our prior work [11], however, was limited in how it

modeled the caches. In particular, it did not consider:
read vs. write accesses, invalidation using flush instruc-
tion vs. invalidation using cache coherence, multithread-
ing, and multicore system, and the possibility that there
are more than just one “fast” and one “slow” timing
in memory-related operation. Also, the work did not
present any code or benchmarks for realizing and testing
for the possible types of vulnerabilities.
Meanwhile, this paper improves our model of caches,

presents a set of 88 Strong vulnerability types, including
32 types not in prior work [11], implements benchmarks
for testing commodity processors, and validates the the-
oretical analysis by running all possible three-step com-
binations to show no other types of timing differences
(and thus vulnerabilities) exist.

2.4 Metrics for Vulnerabilities in Caches

A few existing papers have explored different types of
metrics to try to understand security of caches. One
study [56] leveraged mutual information to measure po-
tential cache side-channel leakage. Another work [18]
modeled cache interference using probabilistic informa-
tion flow graph. However, both of the studies [18, 56]
only examined limited attacks including Evict + Time
attack [35], Cache Collision attack [3], Bernstein’s at-
tack [2], Prime + Probe attack [35, 36], and Flush +
Reload attack [53]. In a separate work, an analytical
model was proposed in study [13] to track the fraction

of the victim’s critical items accessible in the cache to
determine leakage. In a different work, SVF [10] metric
measured information leakage by measuring the signal-
to-noise ratio in an attacker’s observations. Meanwhile,
CSV [57] metric used direct correlation, in place of phase
correlation used by SVF, to measure leakage. The ana-
lytical model [13], SVF [10], and CSV [57] all only eval-
uated Prime + Probe attack [35, 36]. Besides, another
work [26] quantified the cache side-channel leakage but
mainly focused on access-driven attacks such as Evict
+ Time Attack [35]. CacheD [42] identified cache-based
timing channels but mainly targeted access-driven at-
tacks such as Evict + Time Attack [35] and time-driven
attacks such as Bernstein’s Attack [2]. SCADET [38]
provided a side-channel detection tool targeting Prime
+ Probe attack [35, 36]. Moreover, the timing-channel
toolkit Mastik [52] was previously presented to experi-
ment with micro-architectural side-channel attacks, but
only consider three specific cache timing-based attack
types: Prime+Probe [35, 36], Flush+Reload [53] and
Flush+Flush [16].
This work is the first work to actually test for all

possible timing-based vulnerabilities in caches, not just
verify the cases concerning one or few attacks. It is
also the first that presents code which can be run on
commodity processors and which can generate the Cache
Timing Vulnerability Score (CTVS) to evaluate different
processors’ caches.

3 Modeling for Cache Timing Attacks
The goal of this work is to present the first set of bench-
marks which can be used to evaluate all the vulnerabil-
ities of processor caches to timing-based attacks. Such
attacks can be used, for example, by Spectre variants,
e.g., [24, 27, 29, 39], to extract sensitive information. For
each benchmark, if there is observable timing difference
on a particular processor, it means that the processor
may be vulnerable to the corresponding attack.

3.1 Assumptions and Threat Model

We assume that there is a victim process running on
the CPU core and performing secret-dependent memory
accesses. There is also a malicious attacker process on the
same or different CPU core, whose aim is to determine
a secret memory address or address index used by the
victim. Both attacker’s and victim’s accesses affect a
cache block in one of the L1 data caches, through which
a possible timing channel exists.
The goal of the benchmarks is to evaluate for which

types of accesses by the victim and the attacker there
is indeed a timing-based vulnerability in caches. The
presented benchmarks are not actual security exploits,
rather they implement memory-related operations that

correspond to all possible timing-based attacks. Each
benchmark outputs whether there is a statistically sig-
nificant timing difference that the attacker could observe
to extract information from the timing channel about
the secret and unknown address 𝑢 of the victim.

The current model focuses on all possible timing-based
attacks in the L1 data cache. The model includes uses
of any memory-related operations (load, store, flush)
and cache coherence protocol. The model assumes a
multi-core and possibly hyper-threading processor, with
a cache hierarchy of local and remote L1 cache, L2 cache,
and a shared L3 cache (which is possibly divided into
different cache slices).
Current benchmarks do not consider timing-based

attacks of other levels in cache hierarchy besides L1,
but it should be straightforward to extend to the other
levels. We do not consider directory-related attacks [51]
or attacks based on replacement policy [48], but it should
be possible to model these by adding more states to the
model (and still keep an only total of three steps). This
work does not cover TLB attacks [15, 19], but there is
already a theoretical model for TLBs [12], and similar
benchmarks can be developed for TLB attacks (possibly
merge with our benchmarks).
The work considers more than just “fast” and “slow”

timings. This means that the influence of structures such
as Miss Status Holding Registers (MSHRs), load and
store buffers between processor and caches, and line-fill
buffers between cache levels are accounted for. However,
benchmarks for timing attacks that are just due to these
structures could likely be developed. Our analysis is also
general for all the cases of the three-step model and we
do not differentiate if the access is from the instruction
or a prefetcher.
The flush operation in this work refers to the clflush

instruction in x86, which causes data to be flushed from
all levels of caches (including data in other cores) back
to the main memory. The timing are measured from
when each of the memory-related operations is issued
until the instruction commits in the processor pipeline.

3.2 Improved Modeling of Real Processors

We expand the original model [11] by considering more
realistic cases for a processor’s memory-related operation.
The expanded modeling allows us to cover all possible
attacks, and uncover new vulnerabilities. For example,
some proposals [50] discuss disabling flush instruction
to prevent Flush+Reload [53] based attacks. However,
because we consider different flush operations, our bench-
marks show that using remote access to invalidate (flush)
the cache could also result in a vulnerability.

Timing Observation on Local vs. Remote Core.
Our cache attack model assumes a multi-core system
and possibly a hyper-threading system as well. We model

(a) Timing of read access on Intel Xeon E5-1620 processor (b) Timing of read access on Intel Xeon E5-2690 processor

(c) Timing of write access on Intel Xeon E5-1620 processor (d) Timing of write access on Intel Xeon E5-2690 processor

(e) Timing of flush operation on Intel Xeon E5-1620 processor(f) Timing of flush operation on Intel Xeon E5-2690 processor

Figure 1. Histograms of read, write, and flush operations’ timing (each contains 8 operations for timing measurement) under
all possible data movements considered in this work. The timing is for the timing observation step, i.e. 𝑆𝑡𝑒𝑝 3, in the tested
three-step patterns. Note, different processors have different timing, and not all different types of data movements can be
distinguished on different processors. The data is presented for Intel Xeon E5-1620 (a, c, e) and Intel Xeon E5-2690 (b, d,
f) processors. Numbers in the “{}” in the legend denote the different data movement types. {1} - {22} correspond to read
operation, {23} - {44} correspond to write operation, {45} - {66} correspond to flush operation, to access clean L1 data, clean
L2 data, clean L3 data, remote clean L1 data, remote clean L2 data, remote clean L3 data, dirty L1 data, dirty L2 data, dirty
L3 data, remote dirty L1 data, remote dirty L2 data, remote dirty L3 data, DRAM data, clean data in both L1 and remote L1,
clean data in both L1 and remote L2, clean data in both L1 and remote L3, clean data in both L2 and remote L1, clean data
in both L2 and remote L2, clean data in both L2 and remote L3, clean data in both L3 and remote L1, clean data in both L3
and remote L2, clean data in both L3 and remote L3, respectively. Numbers in the “()” in the legend show the average cycles
needed for completing that type of memory operation. The 𝑥 axis shows the access latency in cycles.

such a system using two cores: a “local” and a “remote”
core, each with L1, L2, and shared L3 caches. The target
cache block is located in the local core. Remote core
affects the target cache block on the local core by using
cache coherence protocol. E.g., perform write operations
on the remote core to invalidate the local core’s data
using cache coherence protocol. As future work, more
detailed modeling of multi-core system can be done.

For each read, write or flush operation, it may target
the data that is in the local L1 cache, L2 cache, or L3
cache slice, or that is in the remote L1 cache, L2 cache,
or L3 cache slice. The cache block can be either in a clean
or dirty state for the above 6 locations (6×2 = 12 types).
The clean data may also be in both local or remote core,
which can be in any cache hierarchy (L1, L2, or L3 cache)
for both cores (3 × 3 = 9 types). Otherwise, the data
is not in any level of the cache hierarchy, i.e., it is in
the DRAM (1 type). We consider all these 66 timings (3

operations × (12 + 9 + 1) = 66) to be different from each
other and use these 66 types of timings in our three-step
cache simulator, discussed in Section 4, to determine if
a three-step combination can be used in an attack.
Figure 1 shows the histograms of these 66 types of

timing observations for Intel Xeon E5-1620 and E5-2690
processors. Based on the histograms, we found that some
operations are differentiable from each other, while some
are not. In general, the timing is processor-specific, so we
need to consider and examine all various cache timings
and cannot just assume “fast” and “slow” timings as
was done previously [11].

Hyper-Threading vs. Time-Slicing. We consider
that the victim and the attacker on one core can ei-
ther run in time-slicing setting or run in parallel as two
hyper-threads (if there is hyper-threading support in
the processor). For the case of accesses on “local” vs.

“remote” cores, the accesses on local and remote cores
can be done in parallel.

Read (Load) Access vs. Write (Store) Access.
For operations related to memory accesses, our model
considers that they can be either read (load) access
or write (store) access. The timing of writes is not well
explored in attacks, except for one work [5]. For example,
for Flush + Reload attack, the previous attack [53] uses
the load operation in the final step to reload secret data
and observe timing. In our model, we also test store
operation in the final step to access secret data and
reveal that attacks with write in the final step are also
effective, for example.

Flush vs. Write Invalidation. In our model, we
consider that a flush operation can be achieved by a
𝑐𝑙𝑓𝑙𝑢𝑠ℎ type instruction, that flushes data from all
caches back to main memory, or that by writing the
corresponding line in the remote core it will trigger
cache coherence and result in the local cache line being
invalidated.

4 Derivation of All Vulnerabilities
In this work, we build a new cache three-step simula-
tor based on the new model discussed in Section 3.2. It
considers different memory-related operations and dif-
ferentiates among the 66 timing variations discussed in
Section 3.2 that are related to L1 cache timing-based
attack for the final timing observation step. Further, we
give categorizations of vulnerabilities to find common
features that attacks exploit.

4.1 Judging the Effectiveness of Three-Step
Combination

In order for a three-step combination to be effective
for an attack, at least the unknown victim’s address 𝑢
should be involved in one of the three steps since 𝑢 is
the unknown secret the attacker tries to learn. In this
case, the vulnerability will have 𝑉𝑢 or 𝑉 𝑖𝑛𝑣

𝑢 as one or
more of the three-steps to represent the operations on
the secret 𝑢.

Based on the 17 states shown in Table 1, for the three-
step model, the attacker tries to learn the value of 𝑢
by guessing if 𝑢 equals to: 𝑎, 𝑎𝑎𝑙𝑖𝑎𝑠 or 𝑁𝐼𝐵. 𝑎 denotes
the address that is within the set of sensitive locations
𝑥 and maps to the target cache line. 𝑎𝑎𝑙𝑖𝑎𝑠 denotes any
data address that belongs to sensitive locations 𝑥 and
also maps to the cache line but is not 𝑎. Apart from all
possible sensitive address mapping to the target cache
line, 𝑢 may not map to the target cache line the attacker
is measuring. We denote these addresses as 𝑁𝐼𝐵 (not-
in-block). Therefore, 𝑢 can be either 𝑎, 𝑎𝑎𝑙𝑖𝑎𝑠, or 𝑁𝐼𝐵.
If the attacker is able to find access time of one value
significantly different from the other two values, he or

she is able to learn the value of 𝑢 and the corresponding
three-steps is a Strong type vulnerability. Meanwhile, if
the attacker is not able to clearly distinguish whether 𝑢
is 𝑎, 𝑎𝑎𝑙𝑖𝑎𝑠, or 𝑁𝐼𝐵 based on the timing, but there are
still timing differences observed, then the corresponding
attacks belong to Weak type of vulnerabilities. Oth-
erwise, if the timing is always the same regardless of
different values of 𝑢, it will be an Ineffective three-step
combination.

4.2 New Cache Three-Step Simulator

Figure 3 shows the derivation process of vulnerabilities.
We wrote Python scripts to develop the cache three-step
simulator. The simulator takes all 4913 three-step com-
binations and 66 types of timing observations as input,
checks and outputs the three-steps that belong to Strong,
Weak vulnerabilities, or Ineffective types, respectively.
For the step that is 𝑢-related, since 𝑢 is in secure range 𝑥,
the possible candidates of 𝑢 for a cache block are 𝑎, 𝑎𝑎𝑙𝑖𝑎𝑠,
and 𝑁𝐼𝐵, so the simulator checks the timing when 𝑢
is 𝑎, 𝑎𝑎𝑙𝑖𝑎𝑠, and 𝑁𝐼𝐵, respectively. The timing variance
exists if different possible values of 𝑢 correspond to dif-
ferent timings of the 66 types. We enumerate all possible
operations (read/write for access, remote write/flush for
invalidation) for a step and consider different timings for
each operation. Therefore, each three-step pattern may
have different types of timing observations. The rules
from our prior three-step model work [11] are used to
remove repeat and redundant three-step patterns.

As shown in Figure 3, based on the much finer-grained
categorization of timing differences, we derived in total
88 Strong effective vulnerabilities and 80 Weak effective
vulnerabilities after removing repeat three-step patterns.
They are shown in Figure 2, where light-blue colored rows
(in total 32 types) are the new vulnerabilities (compared
to study [11]) which we found through running of new
cache three-step simulator (16 types of the original Strong
effective vulnerabilities [11] become Weak vulnerabilities
when considering multi-core systems). We provide new
names for the new attacks in Attack Strategy in Figure 2
while re-use existing names if the attacks were presented
before. As validated in Section 8 through the tested
processors, there are no other effective vulnerabilities
except the types we derive in Figure 2.

4.3 Categorizations of the Vulnerabilities

We first categorize different vulnerabilities as based on
internal (𝐼) or external (𝐸) interference. The types that
only involve the victim’s behavior, 𝑉 , in the states of
𝑆𝑡𝑒𝑝 2 and 𝑆𝑡𝑒𝑝 3 are internal interference vulnerabilities
(𝐼). The remaining ones are external interference (𝐸)
vulnerabilities.

In prior work [11, 56], cache vulnerabilities are catego-
rized as hit-based and miss-based vulnerabilities, based

No. Vulnerability Type Type Attack Attack
StrategyS1 S2 S3

1 Ainv Vu Va I-A [2]
Cache

Collision
2 V inv Vu Va I-A [2]
3 Ainv

a Vu Va I-A [2]
4 V inv

a Vu Va I-A [2]
5 Ainv

a Vu Aa E-A [5, 9, 11]
Flush

+ Reload
6 V inv

a Vu Aa E-A [5, 9, 11]
7 Ainv Vu Aa E-A [5, 9, 11]
8 V inv Vu Aa E-A [5, 9, 11]
9 V inv

u Aa Vu E-A new in [3] Reload
+ Time10 V inv

u Va Vu I-A new in [3]
11 Aa V inv

u Aa E-A [10]
Flush
+ Probe

12 Aa V inv
u Va I-A new in [3]

13 Va V inv
u Aa E-A new in [3]

14 Va V inv
u Va I-A new in [3]

15 Vu Ainv
a Vu E-A new in [3] Flush

+ Time16 Vu V inv
a Vu I-A new in [3]

17 Ainv V inv
u Aa E-A new

18 Ainv V inv
u Va I-A new

19 V inv V inv
u Aa E-A new

20 V inv V inv
u Va I-A new

Cache
Coherence

Flush
+ Reload

21 Ainv
a V inv

u Aa E-SA new
22 Ainv

a V inv
u Va I-SA new

23 V inv
a V inv

u Aa E-SA new
24 V inv

a V inv
u Va I-SA new

25 Ainv
d V inv

u Ad E-S new
26 Ainv

d V inv
u Vd I-S new

27 V inv
d V inv

u Ad E-S new
28 V inv

d V inv
u Vd I-S new

Cache
Coherence
Prime
+ Probe

29 V inv
u Ainv

a Vu E-SA new
30 V inv

u V inv
a Vu I-SA new

31 V inv
u Ainv

d Vu E-S new
32 V inv

u V inv
d Vu I-S new

Cache
Coherence

Evict
+ Time

33 Vu Va Vu I-SA [1]
Bernstein’s
Attack

34 Vu Vd Vu I-S [1]
35 Vd Vu Vd I-S [1]
36 Va Vu Va I-SA [1]
37 Vd Vu Ad E-S new in [3] Evict

+ Probe38 Va Vu Aa E-SA new in [3]
39 Ad Vu Vd I-S new in [3] Prime

+ Time40 Aa Vu Va I-SA new in [3]
41 Vu Ad Vu E-S [7] Evict

+ Time42 Vu Aa Vu E-SA [7]
43 Ad Vu Ad E-S [6–8] Prime

+ Probe44 Aa Vu Aa E-SA [6–8]
(a) Timing vulnerabilities with Step3 as memory access operation.

No. Vulnerability Type Type Attack Attack
StrategyS1 S2 S3

45 Ainv Vu V inv
a I-A new in [3] Cache

Collision Inv.46 V inv Vu V inv
a I-A new in [3]

47 Ainv
a Vu V inv

a I-A [4]
Flush +
Flush

48 V inv
a Vu V inv

a I-A [4]
49 Ainv

a Vu Ainv
a E-A [4]

50 V inv
a Vu Ainv

a E-A [4]
51 Ainv Vu Ainv

a E-A new in [3] Flush +
Reload Inv.52 V inv Vu Ainv

a E-A new in [3]
53 V inv

u Aa V inv
u E-A new in [3] Reload +

Time Inv.54 V inv
u Va V inv

u I-A new in [3]
55 Aa V inv

u Ainv
a E-A new in [3]

Flush +
Probe Inv.

56 Aa V inv
u V inv

a I-A new in [3]
57 Va V inv

u Ainv
a E-A new in [3]

58 Va V inv
u V inv

a I-A new in [3]
59 Vu Ainv

a V inv
u E-A new in [3] Flush +

Time Inv.60 Vu V inv
a V inv

u I-A new in [3]
61 Ainv V inv

u Ainv
a E-A new

62 Ainv V inv
u V inv

a I-A new
63 V inv V inv

u Ainv
a E-A new

64 V inv V inv
u V inv

a I-A new

Cache
Coherence
Flush +

Reload Inv.
65 Ainv

a V inv
u Ainv

a E-SA new
66 Ainv

a V inv
u V inv

a I-SA new
67 V inv

a V inv
u Ainv

a E-SA new
68 V inv

a V inv
u V inv

a I-SA new
69 Ainv

d V inv
u Ainv

d E-S new
70 Ainv

d V inv
u V inv

d I-S new
71 V inv

d V inv
u Ainv

d E-S new
72 V inv

d V inv
u V inv

d I-S new

Cache
Coherence
Prime +
Probe Inv.

73 V inv
u Ainv

a V inv
u E-SA new

74 V inv
u V inv

a V inv
u I-SA new

75 V inv
u Ainv

d V inv
u E-S new

76 V inv
u V inv

d V inv
u I-S new

Cache
Coherence
Evict +
Time Inv.

77 Vu Va V inv
u I-SA new in [3] Bernstein’s

Inv.
Attack

78 Vu Vd V inv
u I-S new in [3]

79 Vd Vu V inv
d I-S new in [3]

80 Va Vu V inv
a I-SA new in [3]

81 Vd Vu Ainv
d E-S new in [3] Evict +

Probe Inv.82 Va Vu Ainv
a E-SA new in [3]

83 Ad Vu V inv
d I-S new in [3] Prime +

Time Inv.84 Aa Vu V inv
a I-SA new in [3]

85 Vu Ad V inv
u E-S new in [3] Evict +

Time Inv.86 Vu Aa V inv
u E-SA new in [3]

87 Ad Vu Ainv
d E-S new in [3] Prime +

Probe Inv.88 Aa Vu Ainv
a E-SA new in [3]

(b) Timing vulnerabilities with Step3 as invalidation operation.

Figure 2. The table shows all the L1 cache timing-based vulnerabilities. The No. column assigns each type of vulnerability a
number. The Vulnerability Type column shows the three steps that define each vulnerability. The Type column proposes the
categorization the vulnerability belongs to. “𝐸” and “𝐼” are for internal and external interference types, respectively. “𝑆”,
“𝐴” and “𝑆𝐴” are set-based, address-based types and the types that are both set-based and address-based, respectively. The
Attack column shows if a vulnerability has been previously presented in the literature. The Attack Strategy column gives a
common name for each set of vulnerabilities that would be exploited in an attack in a similar manner. Inv. means invalidation.
Light-blue colored rows are the vulnerabilities which are first presented in this work.

on the cache behaviors the attackers want to observe
(cache misses or hits). This definition does not fit our
model since there are different types of timings for L1
data hits and misses in the real machines. For example,

attacks can derive information using timing difference
from two types of cache misses.

Therefore, we further categorize the vulnerabilities as
address-based (𝐴) if they are able to derive the cache line
address of 𝑢 by observing cache hit of 𝑢 and obtaining

Figure 3. The derivation process of all the Strong and Weak
types of L1 cache timing-based vulnerabilities.

different timing compared with other candidate data. Set-
based (𝑆) vulnerabilities are the ones that can know the
mapped set of 𝑢 by conflicting and generating eviction
between 𝑢 and candidate data addresses. The third type
are the ones that potentially derive information from set
or address (𝑆𝐴) depending on timing differences derived
for all the candidates of 𝑢. For example, 𝑆𝐴 type #33
vulnerability 𝑉𝑢 ⇝ 𝑉𝑎 ⇝ 𝑉𝑢 can be set-based if 𝑎 and 𝑢
are not the same but map to the same cache set, which
differs in timing between {2}{8}{24}{30}, a local L2
hit, and {1}{7}{23}{29}, a local L1 hit. Or it can be
address-based if 𝑎 maps to 𝑢 and 𝑆𝑡𝑒𝑝 1 (𝑉𝑢) and 𝑆𝑡𝑒𝑝 2
(𝑉𝑎) are accessed by different operations (read or write),
which have different timing between reads of L1 clean
data and dirty data, {1} and {7}, or writes of L1 clean
data and dirty data, {23} and {29}.

5 Benchmark Implementation
For each vulnerability, there are three steps, where each
can be: read or write access for a memory access op-
eration, or flush or write in the remote core for an
invalidation-related operation. Thus, there are in total
of 23 = 8 cases considering different types of operations.
Further, if the vulnerabilities have both the victim and
the attacker running in one core, these two parties can
run either time-slicing or multi-threading. Based on that,
one case may be doubled for running in two settings.
So for one vulnerability type, there are corresponding
8 - 16 cases depending on the specific vulnerability. In
total, there are 1094 benchmarks for all 88 Strong type
vulnerabilities. We wrote C programs to automatically
generate the binaries for each of the 1094 benchmarks.

5.1 Judging A Three-Step Combination

For a specific benchmark that implements one case of
the three-step combinations, following the idea of the
cache three-step simulator in Section 4, if the step is 𝑉𝑢,
the benchmarks separately test the timing when 𝑉𝑢 is
𝑉𝑎, 𝑉𝑎𝑎𝑙𝑖𝑎𝑠 , or 𝑉𝑁𝐼𝐵 . If the step is 𝑉 𝑖𝑛𝑣

𝑢 , the benchmarks
separately test the timing when 𝑉 𝑖𝑛𝑣

𝑢 is 𝑉 𝑖𝑛𝑣
𝑎 , 𝑉 𝑖𝑛𝑣

𝑎𝑎𝑙𝑖𝑎𝑠 ,

or 𝑉 𝑖𝑛𝑣
𝑁𝐼𝐵 . The timing of the last step in the three-step

pattern is measured. For each of the cases, there is
𝑅𝑈𝑁 𝑁𝑈𝑀 number of trials, and Welch’s t-test [46]

is used to distinguish the distributions of the measured
timings. We consider two distributions to be significantly
different from each other if the probability of observing
the data given that they come from the same distribution
is less than 0.05%.
For an effective vulnerability, one of the three candi-

dates of 𝑉𝑢 (or 𝑉 𝑖𝑛𝑣
𝑢) should generate timing distribution

that is statistically different from the other two candi-
dates, which we use to extract information from the
runs. This is for the Strong vulnerability types which
are 88 types in total. The 80 Weak vulnerability types
are not currently considered in the benchmarks but can
be straightforward to add if needed. At end of each
benchmark run, the benchmark outputs if there was
significant timing difference – “vulnerability is found”,
or not – “vulnerability not found”.

5.2 Timing Measurement and Noise
Minimization

We use rdtsc instruction in our benchmarks to do tim-
ing measurements, which is the most effective method
compared with hardware performance counters, which
may be limited [16] or lacking-determinism [9], or us-
ing a “counting” thread. AMD’s rdtsc instruction is
not as accurate as Intel machine’s, but there are many
works [19, 20] showing that it is also able to be used for
cache timing-based attacks.

Noise and variation in the timing measurements could
further result in false negatives (if the time measurement
was not accurate enough to distinguish different timings
of accesses) or false positives (if timing changes resulted
in timing measurement differences even though there
is no timing difference). We isolate cores to reduce the
software noise to minimize the false positives. To reduce
the false negatives from the noise, instead of measuring
just one cache block, we arbitrarily chose 8 cache blocks
from different cache sets to do operation on. Further, the
measurements are all repeated 𝑅𝑈𝑁 𝑁𝑈𝑀 times and
collect statistical data. The fence instructions are added
between each memory-related instruction to enforce an
ordering constraint for the attacks.

To reduce the variation of the timing among different
cache sets and further minimize the false negatives, the
timing measurement of the last step is repeated for each
test if the last step is 𝑢-related step. Specifically, right
after the third step’s timing measurement, we trigger
and measure the timing of this step again, which is
guaranteed to result in an L1 cache hit timing or timing
to invalidate the data that is not in the caches, depending
on the concrete memory operations. We then compare
the timing of the third step with the repeated third step.
This eliminates any variations in timing among different
cache sets.

Figure 4. The pesudo code of #42 vulnerability 𝑉𝑢 ⇝
𝐴𝑎 ⇝ 𝑉𝑢 for read (𝑉𝑢), write (𝐴𝑎), and write (𝑉𝑢) case
running hyper-threading.

5.3 Benchmark Code Example

Figure 4 shows an example pseudo code of #42 vul-
nerability 𝑉𝑢 ⇝ 𝐴𝑎 ⇝ 𝑉𝑢’s benchmark for read (𝑉𝑢),
write (𝐴𝑎), and write (𝑉𝑢) access of the three steps and
running in hyper-threading setting.

First, we define probability bound of Welch’s t-test
(line 1) and initialize a shared array (line 2-3) used by
mutexes to control the sequence of the three-step accesses.
Then, the data (stored in the array) that will be accessed
by the victim and the attacker is loaded into the L1 cache
(line 4), and consequently possibly brought into L2 and
L3 caches. We use fork() (line 6 and line 19) to create
sub-process, one for the victim and one for the attacker in
this example. Each remote and local victim and attacker
will have one sub-process throughout the whole test.
Each sub-process is assigned to a hardware thread (line
8-9, line 21-22). When running hyper-threading, two
local or two remote sub-processes are run in different
hardware threads of one CPU, if applicable. If running
time-slicing, sub-processes are assigned to one hardware
thread. Within each sub-process, the test will be run
for a certain predefined 𝑅𝑈𝑁 𝑁𝑈𝑀 (line 10 and line
23) times so the timing statistics can be done based on
a large number of runs. We set 𝑅𝑈𝑁 𝑁𝑈𝑀 at 600 to
minimize noise and maintain a suitable test set number
for Welch’s t-test to measure distributions.
As discussed in Section 4.1, for all the effective vul-

nerabilities, there will be at least one 𝑉𝑢 step (or 𝑉 𝑖𝑛𝑣
𝑢).

Within each test, the three candidate values (i.e., 𝑉𝑎,
𝑉𝑎𝑎𝑙𝑖𝑎𝑠 , or 𝑉𝑁𝐼𝐵) will be tested for the 𝑉𝑢 or 𝑉 𝑖𝑛𝑣

𝑢 (line
11 and line 24). The “dummy operation” branch is used
to avoid making the third branch to be the last branch,
which we found experimentally has an abnormal stable
longer timing measurement result.
Figure 4 shows a test performing 𝑆𝑡𝑒𝑝 1 (𝑉𝑢, line

25-31), 𝑆𝑡𝑒𝑝 2 (𝐴𝑎, line 14-17) and 𝑆𝑡𝑒𝑝 3 (𝑉𝑢, line 32-
44). Last step 𝑆𝑡𝑒𝑝 3 is performed twice and results are
stored (line 41-43). The first access of 𝑆𝑡𝑒𝑝 3 is done to
measure if the attacker can observe timing differences
when running different values of 𝑢. The second access of
the third step will always be a hit (fast timing, and is
used to obtain baseline “fast” timing for that cache set,
as we observed different cache sets can have different
timing). In this case, we can collect results of difference
between the first access timing and the second access
timing for each candidate of 𝑢 to limit the possibilities
that timing difference is due to different cache sets but
not different values of 𝑢.
In the end, Welch’s t-test is first applied to each sta-

tistical distribution of candidate values for 𝑉𝑢 (or 𝑉 𝑖𝑛𝑣
𝑢)

to see whether the attacker can observe different timing
when 𝑉𝑢 refers to different addresses (line 47-49). If the
three-step patterns have 𝑢-related step as the last step
(implemented by u last step in line 50), to remove the
noise in the timing among different cache sets, the second
access timing is considered. Welch’s t-test is applied to
test the difference of the first and the second access of
the last step 𝑆𝑡𝑒𝑝 3. Only if one candidate’s distribution
has significant timing difference compared with the other

Table 2. Configurations of the experimental machines,
which all have 64B L1 cache line size. (1) denotes the num-
ber of hardware threads sharing one L1 cache; (2) denotes
the number of hardware threads per socket; (3) denotes the
number of sockets.

Model

Name

L1-D

Cache

L1-I

Cache

L2

Cache

L3

Cache (1) (2) (3)

Intel

Xeon

E5-1620

32KB,

8-way

32KB,

8-way

256KB,

8-way

10MB,

20-

way

2 8 1

Intel

Xeon

E5-2667

32KB,

8-way

32KB,

8-way

256KB,

8-way

15MB,

20-

way

2 12 2

Intel

Xeon

E5-2690

32KB,

8-way

32KB,

8-way

256KB,

8-way

20MB,

20-

way

2 16 1

Intel

Core

i5-4570

32KB,

8-way

32KB,

8-way

256KB,

8-way

6MB,

12-

way

1 4 1

Intel

Xeon

E5-2686

32KB,

8-way

32KB,

8-way

1MB,

16-way

33MB,

11-

way

1 4 1

Intel

Xeon

P-8175

32KB,

8-way

32KB,

8-way

256KB,

8-way

45MB,

20-

way

2 8 1

AMD

FX-8150
16KB,

4-way

64KB,

2-way

2MB,

16-way

8MB,

64-

way

1 8 1

AMD

EPYC

7571

32KB,

8-way

64KB,

4-way

512KB 8MB 2 4 1

two, the cache sets’ noise is shown to be not the reason
of timing difference and the corresponding vulnerability
is judged to be effective (line 51-53).

6 Evaluation and Security Discussion
The experimental results reported for Intel processors
were performed on Intel Core i5-4570, Xeon E5-2690,
E5-2667, E5-1620, P-8175 and E5-2686 CPUs. The AMD
tests were on AMD EPYC 7571 and AMD FX-8150. P-
8175, E5-2686 and AMD EPYC 7571 instance are from
Amazon EC2. Table 2 shows the processor configura-
tions.

6.1 Vulnerability Evaluation on Commodity
CPUs

We evaluated 88 Strong effective vulnerabilities shown
in Figure 2. Figure 5 lists the experimental results when
testing the 9 types of processor configurations upon 88
effective vulnerabilities. For each type of processors, a
dot showing up in the figure means that the machine is
vulnerable to this vulnerability. Apart from the 9 types
of tested processors, Figure 5 has a row showing if the
vulnerability is found in at least one tested processor, i.e.,
or result, and another row showing if the vulnerability
is found in all tested processors, i.e., and result.

Figure 5 shows that 88 effective vulnerabilities are
mostly found in all the tested CPUs. Since our new
cache three-step simulator considers the ideal case where
66 types of timing observations all have unique results,
it outputs all the possible vulnerability types. For com-
modity processors, a subset of them is shown to be
effective. This is due to the actual cache implementation
and timing measurement methods, making some of the
timing of the 66 types not differentiable, as is shown
in histograms of Figure 1. Figure 5 also demonstrates
that different machines are vulnerable to different types
of attacks. The and result of 9 types of processor con-
figuration experiments have relatively small percentage
of vulnerabilities to which machines are all vulnerable.
We further list the statistical results as CTVS for each
machine in Section 7.

6.2 Analysis of Vulnerabilities Found

Figure 6 shows the results of benchmarks for all the
cases of the 88 vulnerability types. Machines not sup-
porting hyper-threading have much fewer effective cases.
Similar to Figure 5, the dot means the related processor
is vulnerable to the specific case. The gray vertical lines
are used to group all the cases per vulnerability (there
are thus 88 vertical bars and groupings). We further col-
lect the data in Figure 6 and group them with different
𝑆𝑡𝑒𝑝 3 types as the timing observation steps in Table 3
to compare effects of different operations on processor
cache timing attacks.

Local read and local write of timing observa-
tion step. Previous attacks normally used read access
to implement the side-channel attacks, as analyzed in
Section 3.2. However, write access is shown in Figure 6
and Table 3 to be an effective method to implement
attacks as well. It has generally smaller rate compared
with read access to trigger effective vulnerabilities of
different cases, especially for tested machine Intel Xeon
E5-1620 and E5-2690. For the 44 types of vulnerabilities
(#1 - #44) that have access operation as timing obser-
vation step, Figure 6 demonstrates that there are 38 out
of 44 vulnerabilities to which at least one machine is
vulnerable when using read as the timing observation
step. While using write access as the timing observation
step, 34 out of 44 vulnerabilities are vulnerable to at
least one machine.

Invalidation using cache coherence or flush for
timing observation step. According to Table 3, the
percentage of vulnerabilities to which the machine is
vulnerable mainly depends on processor types when
comparing different invalidation-related operation as the
timing observation step. Among the tested processors,
Intel Xeon E5-2667 running inter-chip, AMD FX-8150
and AMD EPYC are more vulnerable to remote write

Figure 5. Evaluation of 88 Strong types of vulnerabilities on different machines. A dot means the corresponding processor is
vulnerable to the vulnerability type. Intel Xeon E5-2667 in our lab has two sockets. Therefore, the local and remote core can be
both in one socket, i.e., run on-chip; or local and remote core can be in different sockets, i.e., run inter-chip.

(a) #1 - #44 vulnerability testing results on different machines.

(b) #45 - #88 vulnerability testing results on different machines.

Figure 6. Evaluation of 88 Strong types of vulnerabilities for all the cases. A dot means the corresponding processor is
vulnerable to the vulnerability case. For each vulnerability, a fixed number of cases (see Section 5) are tested according to the
vulnerability type. And there are in total 1094 cases for 88 Strong types of vulnerabilities.

as the timing observation step. Intel Xeon E5-1620, E5-
2667 running on-chip, E5-2690, E5-2686, P-8175, and
Core i5-4570 are more vulnerable to flush observation
step. Overall, for the 44 types of vulnerabilities (#45
- #88) that have invalidation for timing observation,
remote write and flush operations both have 38 out
of 44 vulnerabilities to which at least one machine is
vulnerable.

Running time-slicing or hyper-threading. Be-
sides different kinds of operations, we also collect results
in Table 4 for running time-slicing and hyper-threading
when the victim and the attacker run on the same core
(either local or remote core). There are also vulnerabili-
ties for which the victim and the attacker run on different
cores, or vulnerabilities only having victim steps. Based
on the results, running time-slicing is more vulnerable
compared with running hyper-threading for Intel pro-
cessors. While AMD processor EPYC 7571 shows that
running hyper-threading is more vulnerable. Further-
more, hyper-threading provides more choices for the

attacker to exploit the corresponding vulnerability in
different ways.

7 Take-Aways and Need for Cache
Timing Vulnerability Benchmarks

Table 5 shows the Cache Timing Vulnerability Score
(CTVS) which represents the percentage of the vulnera-
bilities that are effective for the machine. The number
on the right of “/” is the total cases of vulnerabilities for
the corresponding categorization; the number on the left
of “/” is the number of types to which the corresponding
processor is vulnerable. For CTVS number, smaller is
better. For all the 88 Strong type vulnerabilities, AMD
FX-8150 has relatively better CTVS compared with In-
tel machines. Xeon E5-1620 and P-8175 are the most
vulnerable ones among Intel processors. Otherwise, the
Xeon family and AMD EPYC 7571 are generally similar.

CTVS numbers vary by different machines and
type of vulnerabilities. In Table 5, CTVS numbers

Table 3. Percentage of vulnerability cases that are effective
for different types of timing observation steps for different
machine configurations. The number on the right of “/” is
the total cases of vulnerabilities for the corresponding catego-
rization; the number on the left of “/” is the number of cases
to which the corresponding processor is vulnerable. Machines
labeled * do not support hyper-threading in hardware.

Model Name
Local

Read

Local

Write

Remote

Write to

Inv.

Flush

to Inv.

Intel Xeon

E5-1620
137/277 118/277 127/277 129/263

Intel Xeon

E5-2667 on-chip
121/277 117/277 80/277 119/263

Intel Xeon

E5-2667

inter-chip

127/277 111/277 124/277 72/263

Intel Xeon

E5-2690
128/277 101/277 77/277 107/263

Intel Core

i5-4570*
82/277 66/277 57/277 63/263

Intel Xeon

E5-2686*
87/277 74/277 69/277 80/263

Intel Xeon

P-8175
124/277 120/277 75/277 105/263

AMD FX-8150* 68/277 65/277 89/277 65/263

AMD EPYC

7571
125/277 125/277 124/277 114/263

in all CPUs 49/277 34/277 10/277 30/263

at least one CPU 175/277 150/277 162/277 162/263

for in all CPUs are small, demonstrating that only a
few attacks can be effective in all the processors. These
numbers are expected to be even smaller if more proces-
sors are tested. CTVS numbers for at lest one CPU are
large, confirming that nearly all of the vulnerabilities
derived by the new three-step model are found in real
processors.

𝐴 type vulnerabilities generally have higher effective
rates than 𝑆 type vulnerabilities. This is because that
𝑆 type vulnerabilities normally differentiate timing be-
tween L1 cache and L2 cache accesses, i.e., accessing
or invalidating L1 or L2 data, which are shown in the
histograms in Figure 1 to be much smaller compared
with the difference between L1 cache hit and DRAM hit,
for example. Especially, the timing difference between
remote write to invalidate dirty L1 data and L2 data is
almost non-differentiable, resulting in that related vul-
nerabilities (especially #25 - #28) are found to be not
effective in all tested processors (shown in Figure 5). 𝐴
type vulnerabilities generally rely on timing differences
between L1 cache hit and DRAM hit, or L1 cache hit and
remote L1 cache hit; histograms in Figure 1 demonstrate
that these access types have large timing differences,
making these vulnerabilities much more effective. 𝑆𝐴
type vulnerabilities generally leverage the timing differ-
ences between clean L1 data invalidation and dirty L1

Table 4. Percentage of vulnerability cases that are effective
for the victim (Vic.) and the attacker (Att.) running the same
core (time-slicing or hyper-threading), running different cores
or within the victim for different machine configurations. The
number on the right of “/” is the total cases of vulnerabilities
for the corresponding categorization; the number on the left
of “/” is the number of cases to which the corresponding
processor is vulnerable. Machines labeled * do not support
hyper-threading.

Model Name

Vic., Att. Same Core
Vic., Att.

on Different
Cores

Within
VictimTime-

Slicing

Hyper-

Threading

Intel Xeon

E5-1620
181/390 174/390 51/90 105/224

Intel Xeon

E5-2667 on-chip
156/390 146/390 52/90 83/224

Intel Xeon

E5-2667

inter-chip

151/390 146/390 49/90 88/224

Intel Xeon

E5-2690
144/390 138/390 46/90 85/224

Intel Core

i5-4570*
143/390 0/390 46/90 79/224

Intel Xeon

E5-2686*
166/390 0/390 50/90 94/224

Intel Xeon

P-8175
148/390 143/390 38/90 95/224

AMD FX-8150* 155/390 0/390 43/90 89/224

AMD EPYC

7571
159/390 171/390 55/90 103/224

in all CPUs 67/390 0/390 18/90 38/224

at least one

CPU
223/390 217/390 61/90 148/224

data invalidation or between local access of remote clean
L1 data and remote dirty L1 data; histograms in Figure 1
again show large timing differences for these, and related
vulnerabilities are found to be very effective by CTVS.
Meanwhile, for 𝐼 and 𝐸 type vulnerabilities, they do not
have an explicit distinction of CTVS numbers for the
tested processors.

Use CTVS to build custom defenses. CTVS has
shown that different processors are vulnerable to different
attacks. Consequently, customized software or hardware
defenses can be deployed for each processor based on the
CTVS score, rather than defending vulnerabilities not
present in the specific processor’s caches. For software
defenses, the access patterns from the benchmarks could
be used as a reference for scanning software to find if
it has similar patterns, e.g., to find malicious software
that has such attack patterns.

Understand limits of existing defenses using
three-step model. Further, CTVS and our three-step
model have shown new attack types which are unknown
before, and thus, not considered by defenses based on
monitoring performance counters, e.g., study [34]. This

Table 5. Cache Timing Vulnerability Score (CTVS) for
each of the tested processors. The number on the right of
“/” is the total cases of vulnerabilities for the corresponding
categorization; the number on the left of “/” is the number
of types to which the corresponding processor is vulnerable.
Smaller is better. “𝐼” and “𝐸” are internal and external
interference vulnerabilities, respectively. “𝑆” and “𝐴” are set-
based and address-based vulnerabilities, respectively. “𝑆𝐴”
are the ones that are both set-based and address-based.

Model

Name
CTVS

Score

𝐼-𝐴

Vul.

𝐼-𝑆

Vul.

𝐼-

𝑆𝐴

Vul.

𝐸-𝐴

Vul.

𝐸-𝑆

Vul.

𝐸-

𝑆𝐴

Vul.

Intel

Xeon

E5-1620
73/88 20/20

6/12
12/12 20/20

5/12
10/12

Intel

Xeon

E5-2667

on-chip

66/88 20/20
3/12

11/12 20/20
3/12 9/12

Intel

Xeon

E5-2667

inter-

chip

64/88 19/20
2/12

12/12 20/20
3/12 8/12

Intel

Xeon

E5-2690
62/88 20/20

1/12
10/12 20/20

2/12 9/12

Intel

Core

i5-4570
61/88 20/20

1/12
10/12 20/20

1/12 9/12

Intel

Xeon

E5-2686
66/88 20/20

2/12
11/12 20/20

3/12
10/12

Intel

Xeon

P-8175
73/88 20/20

5/12
12/12 20/20

5/12
11/12

AMD

FX-8150 50/88 18/20
1/12 7/12

18/20
0/12 6/12

AMD

EPYC

7571
62/88 20/20

2/12
10/12 20/20

1/12 9/12

in all

CPUs 47/88 17/20
0/12 6/12

18/20
0/12 6/12

at least

one

CPU
79/88 20/20

9/12
12/12 20/20

7/12
11/12

points to the requirement of using new or different perfor-
mance counter types in works that use active monitoring,
for example.

Understand micro-architecture using CTVS. The
vulnerability score can also be used to help understand
the implementation of different processors especially
the micro-architectures. For example, according to Fig-
ure 5, vulnerability #78 𝑉𝑢 ⇝ 𝑉𝑑 ⇝ 𝑉 𝑖𝑛𝑣

𝑢 and #79
𝑉𝑑 ⇝ 𝑉𝑢 ⇝ 𝑉 𝑖𝑛𝑣

𝑑 fully show up on Intel E5-1620 while
do not show up on Intel E5-2690. As shown in Figure 1,
flushing clean L1 data (L1cl) to DRAM and flushing
clean L2 data (L2cl) to DRAM have large timing dif-
ferences for Intel E5-1620 (1036 vs. 985 average cycles
shown in Figure 1(e)), but are non-differentiable for Intel

E5-2690 (872 vs. 879 average cycles shown in Figure 1(f)).
With the smaller difference, it is not possible to distin-
guish the timing with high confidence and corresponding
vulnerabilities are highly likely unexploitable on this
processor.

Diving deeper, the reason for the timing variation may
due to the different clock speed of Intel E5-1620 and
Intel E5-2690 (3.6GHz vs. 2.9GHz), where faster clock
speed will make long memory-related operations more
differentiable, even if the absolute timing differences are
the same. Besides that, Intel E5-1620 does not support
Flex Memory Access, which improves memory access effi-
ciency. Intel E5-2690 supports it, making two operations
less differentiable on timing.

8 Validation of the Three-Step Model
To validate if there are any other vulnerabilities that are
left out apart from all the effective vulnerabilities we
derived from our cache three-step simulator, we empiri-
cally ran benchmarks for all the 173 = 4913 three-step
combinations for 9 processor configurations.
We discovered a number of three-steps, besides the

Strong, Weak and repeat types, returned by the bench-
marks to have timing variations but consider all of them
as false positives. The false positives that show up in
every processor we tested all have the second or the third
step to be 𝐴𝑖𝑛𝑣, 𝑉 𝑖𝑛𝑣 or ⋆. The corresponding types can-
not be any effective vulnerabilities because these three
types of states will make the attacker lose track of useful
information due to whole cache flush (𝐴𝑖𝑛𝑣, 𝑉 𝑖𝑛𝑣) or
zero-knowledge state inference (⋆) if they are in 𝑆𝑡𝑒𝑝 2
or 𝑆𝑡𝑒𝑝 3. Reason of three-steps with the second or the
third step as 𝐴𝑖𝑛𝑣, 𝑉 𝑖𝑛𝑣 to seem to be effective in the re-
sult of running the benchmarks is that whole cache flush
currently cannot be implemented under user-level privi-
lege. We use approximate method to implement these
states in the benchmark by invalidating every address
that is related to the attacks. An approximate method
is also used for ⋆ to simulate the zero-knowledge state.
Therefore, the timings of 𝐴𝑖𝑛𝑣, 𝑉 𝑖𝑛𝑣 and ⋆ have extra
noise leading to the false positives.
Overall, we found that there are no effective vulner-

abilities that are not covered by the vulnerabilities we
derived. Detailed analysis is not shown due to space
limits of the paper.

9 Conclusion
This work presented a new three-step model and the first
benchmark suite for evaluating all 88 possible Strong
cache timing-based attack types in processors. The model
allowed us to find 32 new timing attack types. Further,
we implemented scripts to auto-generate the 1094 bench-
mark tests from our three-step model’s 88 theoretical

attack types for testing different combinations and types
of instructions that can lead to attacks on real processors.
The benchmarks were run on a number of commodity
processors to gave each machine the Cache Timing Vul-
nerability Score (CTVS) to measure the degree of the
machine’s robustness against cache timing-based vulner-
abilities. The three-step model, benchmarks, and the
CTVS can be used to measure existing systems and help
design future secure caches and other defense mecha-
nisms.

Acknowledgments
We would like to thank the anonymous reviewers for
their valuable feedback. This work was supported by
NSF grants 1651945 and 1813797, and through SRC
award number 2844.001.

References
[1] Onur Acıiçmez and Çetin Kaya Koç. 2006. Trace-Driven

Cache Attacks on AES (short paper). In International Confer-
ence on Information and Communications Security. 112–121.

[2] Daniel J Bernstein. 2005. Cache-Timing Attacks on AES.
(2005).

[3] Joseph Bonneau and Ilya Mironov. 2006. Cache-Collision

Timing Attacks against AES. In International Workshop
on Cryptographic Hardware and Embedded Systems (CHES).
201–215.

[4] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo
Zhang, Srinivas Devadas, et al. 2019. MI6: Secure enclaves in
a speculative out-of-order processor. In International Sympo-

sium on Microarchitecture (MICRO). 42–56.

[5] Common Vulnerabilities and Exposures 2018. Speculative
Store Bypass Bug CVE, 2018. CVE 2018-3639. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639

[6] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. 2016.

Sanctum: Minimal Hardware Extensions for Strong Software

Isolation. In USENIX Security Symposium (USENIX). 857–
874.

[7] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per

Larsen, and Michael Franz. 2015. Thwarting Cache Side-
Channel Attacks Through Dynamic Software Diversity. In
Network and Distributed System Security Symposium (NDSS).

8–11.
[8] Joan Daemen and Vincent Rijmen. 1999. AES Proposal:

Rijndael. (1999).
[9] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Poly-

chronakis, and Fabian Monrose. 2019. SoK: The Challenges,

Pitfalls, and Perils of Using Hardware Performance Counters
for Security. In Symposium on Security and Privacy (S&P).

[10] John Demme, Robert Martin, Adam Waksman, and Simha

Sethumadhavan. 2012. Side-Channel Vulnerability Factor: A
Metric for Measuring Information Leakage. In International

Symposium on Computer Architecture (ISCA). 106–117.

[11] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Analysis
of Secure Caches Using a Three-Step Model for Timing-Based

Attacks. Journal of Hardware and Systems Security 3, 4

(December 2019), 397–425.
[12] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Secure

TLBs. In International Symposium on Computer Architecture
(ISCA).

[13] Leonid Domnitser, Nael Abu-Ghazaleh, and Dmitry Pono-
marev. 2010. A Predictive Model for Cache-Based Side Chan-

nels in Multicore and Multithreaded Microprocessors. In In-

ternational Conference on Mathematical Methods, Models,
and Architectures for Computer Network Security. 70–85.

[14] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. 2012. Non-Monopolizable

Caches: Low-Complexity Mitigation of Cache Side Channel

Attacks. Transactions on Architecture and Code Optimization
(TACO) 8, 4 (2012), 35.

[15] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.

2018. Translation Leak-aside Buffer: Defeating Cache Side-
channel Protections with TLB Attacks. In USENIX Security

Symposium (USENIX). 955–972.

[16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. 2016. Flush+ Flush: a Fast and Stealthy Cache At-

tack. In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment. 279–299.
[17] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011.

Cache Games–Bringing Access-Based Cache Attacks on AES
to Practice. In Symposium on Security and Privacy (S&P).

490–505.

[18] Zecheng He and Ruby B Lee. 2017. How Secure is Your Cache
against Side-Channel Attacks?. In International Symposium

on Microarchitecture (MICRO). 341–353.

[19] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practi-
cal Timing Side Channel Attacks Against Kernel Space ASLR.

In Symposium on Security and Privacy (S&P). 191–205.

[20] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2016.
Cross Processor Cache Attacks. In Asia Conference on Com-

puter and Communications Security (AsiaCCS). 353–364.
[21] Mehmet Kayaalp, Khaled N Khasawneh, Hodjat Asghari Es-

feden, Jesse Elwell, Nael Abu-Ghazaleh, Dmitry Ponomarev,

and Aamer Jaleel. 2017. RIC: Relaxed Inclusion Caches for
Mitigating LLC Side-Channel attacks. In Design Automation

Conference (DAC). 1–6.

[22] Georgios Keramidas, Alexandros Antonopoulos, Dimitrios N
Serpanos, and Stefanos Kaxiras. 2008. Non Deterministic

Caches: A Simple and Effective Defense against Side Channel

Attacks. Design Automation for Embedded Systems 12, 3
(2008), 221–230.

[23] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srini-

vas Devadas, and Joel Emer. 2018. DAWG: A Defense Against
Cache Timing Attacks in Speculative Execution Processors.
In International Symposium on Microarchitecture (MICRO).
974–987.

[24] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel

Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, et al. 2019. Spectre attacks:

Exploiting Speculative Execution. In Symposium on Security
and Privacy (S&P). 1–19.

[25] Jingfei Kong, Onur Aciiçmez, Jean-Pierre Seifert, and Huiyang

Zhou. 2009. Hardware-Software Integrated Approaches to

Defend against Software Cache-Based Side Channel Attacks.
In International Symposium on High Performance Computer

Architecture (HPCA). 393–404.
[26] Boris Köpf, Laurent Mauborgne, and Mart́ın Ochoa. 2012.

Automatic Quantification of Cache Side-Channels. In Interna-

tional Conference on Computer Aided Verification. 564–580.
[27] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh,

Chengyu Song, and Nael Abu-Ghazaleh. 2018. Spectre Re-

turns! Speculation Attacks using the Return Stack Buffer. In
USENIX Workshop on Offensive Technologies (WOOT).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3639

[28] Ruby B Lee, Peter Kwan, John P McGregor, Jeffrey Dwoskin,
and Zhenghong Wang. 2005. Architecture for Protecting Criti-

cal Secrets in Microprocessors. In ACM SIGARCH Computer

Architecture News, Vol. 33. IEEE Computer Society, 2–13.
[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas

Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Man-
gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike

Hamburg. 2018. Meltdown: Reading Kernel Memory from

User Space. In USENIX Security Symposium (USENIX).
[30] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos

Rozas, Gernot Heiser, and Ruby B Lee. 2016. CATalyst:

Defeating Last-Level Cache Side Channel Attacks in Cloud
Computing. In International Symposium on High Perfor-

mance Computer Architecture (HPCA). 406–418.

[31] Fangfei Liu and Ruby B Lee. 2014. Random Fill Cache Ar-
chitecture. In International Symposium on Microarchitecture

(MICRO). 203–215.

[32] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. 2015. Last-Level Cache Side-Channel Attacks

are Practical. In Symposium on Security and Privacy (S&P).
IEEE, 605–622.

[33] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. 2015. C5: Cross-Cores Cache Covert
Channel. In International Conference on Detection of Intru-

sions and Malware, and Vulnerability Assessment. 46–64.

[34] Junai Nomani and Jakub Szefer. 2015. Predicting Program
Phases and Defending Against Side-Channel Attacks using

Hardware Performance Counters. In International Workshop
on Hardware and Architectural Support for Security and Pri-
vacy (HASP).

[35] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache
Attacks and Countermeasures: the Case of AES. In Cryptog-

raphers’ Track at the RSA Conference. 1–20.

[36] Colin Percival. 2005. Cache Missing for Fun and Profit.
[37] Moinuddin K Qureshi. 2018. CEASER: Mitigating Conflict-

Based Cache Attacks via Encrypted-Address and Remapping.

In International Symposium on Microarchitecture (MICRO).
775–787.

[38] Majid Sabbagh, Yunsi Fei, Thomas Wahl, and A Adam Ding.

2018. SCADET: A Side-Channel Attack Detection Tool
for Tracking Prime-Probe. In International Conference on
Computer-Aided Design (ICCAD). 1–8.

[39] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters,
and Daniel Gruss. 2019. NetSpectre: Read Arbitrary Mem-
ory over Network. In European Symposium on Research in
Computer Security (ESORICS). 279–299.

[40] Jakub Szefer. 2013. Architectures for secure cloud computing

servers. Ph.D. Dissertation.
[41] Jakub Szefer. 2018. Survey of Microarchitectural Side and

Covert Channels, Attacks, and Defenses. Journal of Hardware
and Systems Security (13 September 2018).

[42] Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Ding-

hao Wu. 2017. CacheD: Identifying Cache-Based Timing

Channels in Production Software. In USENIX Security Sym-
posium (USENIX). 235–252.

[43] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C
Myers, and G Edward Suh. 2016. SecDCP: Secure Dynamic

Cache Partitioning for Efficient Timing Channel Protection.
In Design Automation Conference (DAC). 1–6.

[44] Zhenghong Wang and Ruby B Lee. 2007. New Cache Designs

for Thwarting Software Cache-Based Side Channel Attacks.
In ACM SIGARCH Computer Architecture News, Vol. 35.

ACM, 494–505.
[45] Zhenghong Wang and Ruby B Lee. 2008. A Novel Cache

Architecture with Enhanced Performance and Security. In

International Symposium on Microarchitecture (MICRO). 83–

93.
[46] Bernard L Welch. 1947. The Generalization of Student’s

Problem When Several Different Population Variances are

Involved. Biometrika 34, 1/2 (1947), 28–35.
[47] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael

Schwarz, Daniel Gruss, and Stefan Mangard. 2019. Scatter-
Cache: Thwarting Cache Attacks via Cache Set Randomiza-

tion. In USENIX Security Symposium (USENIX).

[48] Wenjie Xiong and Jakub Szefer. 2020. Leaking Information
Through Cache LRU States. In International Symposium on

High-Performance Computer Architecture (HPCA).

[49] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher Fletcher, and Josep Torrellas. 2018. InvisiS-

pec: Making Speculative Execution Invisible in the Cache
Hierarchy. In International Symposium on Microarchitecture
(MICRO). 428–441.

[50] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep
Torrellas. 2017. Secure Hierarchy-Aware Cache Replacement
Policy (SHARP): Defending Against Cache-Based Side Chan-

nel Attacks. In International Symposium on Computer Ar-
chitecture (ISCA). 347–360.

[51] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christo-

pher Fletcher, Roy Campbell, and Josep Torrellas. 2019. At-
tack Directories, Not Caches: Side Channel Attacks in a Non-

inclusive World. In USENIX Security Symposium (USENIX).
0.

[52] Yuval Yarom. 2016. Mastik: A micro-architectural side-
channel toolkit. 16 (2016). https://cs.adelaide.edu.au/∼yval/
Mastik/Mastik.pdf

[53] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD:

A High Resolution, Low Noise, L3 Cache Side-Channel Attack..
In USENIX Security Symposium (USENIX). 719–732.

[54] Danfeng Zhang, Aslan Askarov, and Andrew C Myers. 2012.
Language-Based Control and Mitigation of Timing Channels.
ACM SIGPLAN Notices 47, 6 (2012), 99–110.

[55] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew CMy-

ers. 2015. A Hardware Design Language for Timing-Sensitive
Information-Flow Security. In ACM SIGARCH Computer

Architecture News, Vol. 43. ACM, 503–516.

[56] Tianwei Zhang and Ruby B Lee. 2014. New Models of Cache
Architectures Characterizing Information Leakage from Cache
Side Channels. In Annual Computer Security Applications

Conference (ACSAC). 96–105.
[57] Tianwei Zhang, Fangfei Liu, Si Chen, and Ruby B Lee. 2013.

Side Channel Vulnerability Metrics: the Promise and the
Pitfalls. In International Workshop on Hardware and Ar-

chitectural Support for Security and Privacy (HASP). ACM,
2.

https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
https://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Timing of Memory Operations and Caches
	2.2 Timing-Based Attacks on Processor Caches
	2.3 Previous Three-Step Model for Timing-Based Attacks in Caches
	2.4 Metrics for Vulnerabilities in Caches

	3 Modeling for Cache Timing Attacks
	3.1 Assumptions and Threat Model
	3.2 Improved Modeling of Real Processors

	4 Derivation of All Vulnerabilities
	4.1 Judging the Effectiveness of Three-Step Combination
	4.2 New Cache Three-Step Simulator
	4.3 Categorizations of the Vulnerabilities

	5 Benchmark Implementation
	5.1 Judging A Three-Step Combination
	5.2 Timing Measurement and Noise Minimization
	5.3 Benchmark Code Example

	6 Evaluation and Security Discussion
	6.1 Vulnerability Evaluation on Commodity CPUs
	6.2 Analysis of Vulnerabilities Found

	7 Take-Aways and Need for Cache Timing Vulnerability Benchmarks
	8 Validation of the Three-Step Model
	9 Conclusion
	References

