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1 Introduction

Over the past few years, there has been an explosion of interest in the Minimum
Circuit Size Problem (MCSP) and related problems. Thus the time seemed right
to provide a survey, describing the new landscape and offering a guidebook so
that one can easily reach the new frontiers of research in this area.

It turns out that this landscape is extremely unstable, with new features
arising at an alarming rate. Although this makes it a scientifically-exciting time,
it also means that this survey is doomed to be obsolete before it appears. It also
means that the survey is going to take the form of an “annotated bibliography”
with the intent to provide many pointers to the relevant literature, along with
a bit of context.

The title of this article is “The New Complexity Landscape around Circuit
Minimization” (emphasis added). This means that I will try to avoid repeating
too many of the observations that were made in an earlier survey I wrote on a
related topic [1]. Although that article was written only three years ago, several
of the open questions that were mentioned there have now been resolved (and
some of the conjectures that were mentioned have been overturned).

2 Meta-complexity, MCSP and Kolmogorov Complexity

The focus of complexity theory is to determine how hard problems are. The focus
of meta-complexity is to determine how hard it is to determine how hard problems
are. Some of the most exciting recent developments in complexity theory have
been the result of meta-complexity-theoretic investigations.

? Supported in part by NSF Grant CCF-1909216.
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The Minimum Circuit Size Problem (MCSP) is, quite simply, the problem of
determining the circuit complexity of functions. The input consists of a pair (f, i),
where f is a bit string of length N = 2n representing the truth-table of a Boolean
function, and i ∈ N, and the problem is to determine if f has a circuit of size at
most i. The study of the complexity of MCSP is therefore the canonical meta-
complexity-theoretic question. Complexity theoreticians are fond of complaining
that the problems they confront (showing that computational problems are hard
to compute) are notoriously difficult. But is this really true? Is it hard to show
that a particular function is difficult to compute? This question can be made
precise by asking about the computational complexity of MCSP. (See also [41]
for a different approach.)

A small circuit is a short description of a large truth-table f ; thus it is no
surprise that investigations of MCSP have made use of the tools and terminology
of Kolmogorov complexity. In order to discuss some of the recent developments,
it will be necessary to review some of the different notions, and to establish the
notation that will be used throughout the rest of the article.

Let U be a Turing machine. We define KU (x) to be min{|d| : U(d) = x}.
Those readers who are familiar with Kolmogorov complexity1 will notice that
the definition here is for what is sometimes called “plain” Kolmogorov com-
plexity, although the notation KU (x) is more commonly used to denote what is
called “prefix-free” Kolmogorov complexity. This is intentional. In this survey,
the distinctions between these two notions will be blurred, in order to keep the
discussion on a high level. Some of the theorems that will be mentioned below
are only known to hold for the prefix-free variant, but the reader is encouraged
to ignore these finer distinctions here, and seek the more detailed information in
the cited references. For some Turing machines U , KU (x) will not be defined for
some x, and the values of KU (x) and KU ′(x) can be very different, for different
machines U and U ′. But the beauty of Kolmogorov complexity (and the appli-
cability of of the theory it gives rise to) derives from the fact that if U and U ′

are universal Turing machines, then KU (x) and KU ′(x) differ by at most O(1).
By convention, we select one particular universal machine U and define K(x) to
be equal to KU (x).

The function K is not computable. The simplest way to obtain a computable
function that shares many of the properties of K is to simply impose a time
bound, leading to the definition Kt(x) := min{|d| : U(d) = x in time t(|x|)}
where t is a computable function. Although it is useful in many contexts, Kt(x)
does not appear to be closely connected to the circuit size of x (where x is viewed
as the truth-table of a function). Thus we will frequently refer to two additional
resource-bounded Kolmogorov complexity measures, Kt and KT.

Levin defined Kt(x) to be min{|d|+log t : U(d) = x in time t} [33]; it has the
nice property that it can be used to define the optimal search strategy to use,
in searching for accepting computations on a nondeterministic Turing machine.
Kt(x) also corresponds to the circuit size of the function x, but not on “normal”

1 If the reader is not familiar with Kolmogorov complexity, then we recommend some
excellent books on this topic [34, 18].
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circuits. As is shown in [3], Kt(x) is roughly the same as the size of the smallest
oracle circuit that computes x, where the oracle is a complete set for EXP. (An
oracle circuit has “oracle gates” in addition to the usual AND, OR, and NOT
gates; an oracle gate for oracle A has k wires leading into it, and if those k
wires encode a bitstring y of length k where y is in A, then the gate outputs 1,
otherwise it outputs 0.)

It is clearly desirable to have a version of Kolmogorov complexity that is
more closely related to “ordinary” circuit size, instead of oracle circuit size. This
is accomplished by defining KT(x) to be min{|d| + t : U(d, i) = xi in time t}.
(More precise definitions can be found in [3, 11].)

We have now presented a number of different measures Kµ ∈ {K,Kt,Kt,KT}.
By analogy with MCSP, we can study Kµ in place of the “circuit size” measure,
and thus obtain various problems of the form MKµP = {(x, i) : Kµ(x) ≤ i},
such as MKTP, MKtP and MKtP. If t(n) = nO(1), then MKtP is in NP, and
several theorems about MKTP yield corollaries about MKtP in this case. (See,
e.g. [3]). Similarly, if t(n) = 2n

c

for some c > 0, then MKtP is in EXP, and
several theorems about MKtP yield corollaries about MKtP for t in this range
[3].

In order to highlight some of the recent developments, let us introduce some
notation that is somewhat imprecise and which is not used anywhere else, but
which will be convenient for our purposes. Let Kpoly serve as a shorthand for
Kt whenever t = nO(1), and similarly let Kexp serve as a shorthand for Kt

whenever t = 2n
c

for some c > 0. We will thus be referring to MKpolyP and
MKexpP. Doing so will enable us to avoid some confusing notation surrounding
the name MINKT , which was introduced by Ko [32] to denote the set {x, 1t, 1i :
∃d U(d) = x in at most t steps and |d| ≤ i}. That is, (x, i) ∈ MKpolyP iff
(x, 1n

c

, i) ∈ MINKT (where the time bound t(n) = nc). Hence these sets
have comparable complexity and results about MINKT can be rephrased in
terms of MKpolyP with only a small loss of accuracy. In particular, some recent
important results [20, 21] are phrased in terms of MINKT , and as such they
deal with Kpoly complexity, and they are not really very closely connected with
the KT measure; the name MINKT was devised more than a decade before KT
was formulated. The reader who is interested in the details should refer to the
original papers for the precise formulation of the theorems. However, the view
presented here is “probably approximately correct”.

Frequently, theorems about MCSP and the various MKµP problems are stated
not in terms of exactly computing the circuit size or the complexity of a string,
but in terms of approximating these values. This is usually presented in terms of
two thresholds θ1 < θ2, where the desired solution is to say yes if the complexity
of x is less than θ1, and to say no if the complexity of x is greater than θ2, and
any answer is allowed if the complexity of x lies in the “gap” between θ1 and
θ2. In the various theorems that have been proved in this setting, the choice of
thresholds θ1 and θ2 is usually important, but in this article those details will
be suppressed, and all of these approximation problems will be referred to as
GapMCSP, GapMKtP, GapMKTP, etc.
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At this point, the reader’s eyes may be starting to glaze over. It is natural to
wonder if we really need to have all of these different related notions. In particu-
lar, there does not seem to be much difference between MCSP and MKTP. Most
hardness results for MCSP actually hold for GapMCSP, and if the “gap” is large
enough, then MKTP is a solution to GapMCSP (and vice-versa). Furthermore it
has frequently been the case that a theorem about MCSP was first proved for
MKTP and then the result for MCSP was obtained as a corollary. However, there
is no efficient reduction known (in either direction) between MCSP and MKTP,
and there are some theorems that are currently known to hold only for MKTP, al-
though they are suspected to hold also for MCSP (e.g., [5, 7, 24]). Similarly, some
of the more intriguing recent developments can only be understood by paying
attention to the distinction between different notions of resource-bounded Kol-
mogorov complexity. Thus it is worth making this investment in defining the
various distinct notions.

3 Connections to Learning Theory

Certain connections between computational learning theory and Kolmogorov
complexity were identified soon after computational learning theory emerged as
a field. After all, the goal of computational learning theory is to find a satisfactory
(and hence succinct) explanation of a large body of observed data. For instance,
in the 1980s and 1990s there was work [42, 43] showing that it is NP-hard to find
“succinct explanations” that have size somewhat close to the optimal size, if these
“explanations” are required to be finite automata or various other restricted
formalisms. Ko studied this in a more general setting, allowing “explanations”
to be efficient programs (in the setting of time-bounded Kolmogorov complexity).

Thus Ko studied not only the problem of computing Kpoly(x) (where one can
consider x to be a completely-specified Boolean function), but also the problem
of finding the smallest description d such that U(d) agrees with a given list of
“yes instances” Y and a list of “no instances” N (that is, x can be considered as
a partial Boolean function, with many “don’t care” instances). Thus, following
[29], we can call this problem Partial-MKpolyP. In the setting that is most relevant
for computational learning theory, the partial function x is presented compactly
as separate lists Y and N , rather than as a string of length 2n over the alphabet
{0, 1, ∗}.

Ko showed in [32] that relativizing techniques would not suffice, in order to
settle the question of whether MKpolyP and Partial-MKpolyP are NP-complete.
That is, by giving the universal Turing machine U that defines Kolmogorov

complexity access to an oracle A, one obtains the problems MKpolyP
A

and

Partial-MKpolyP
A

, and these sets can either be NPA-complete or not, depending
on the choice of A.

Thus it is noteworthy that it has recently been shown that Partial-MCSP is
NP-complete under ≤P

m reductions [29]. I suspect (although I have not verified)
that the proof also establishes that Partial-MKTP is NP-complete under ≤P

m

reductions. One lesson to take from this is that KT and Kpoly complexity differ
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from each other in significant ways. There are other recent examples of related
phenomena, which will be discussed below.

There are other strong connections between MCSP and learning theory that
have come to light recently. Using MCSP as an oracle (or even using a set that
shares certain characteristics with MCSP) one can efficiently learn small circuits
that do a good job of explaining the data [12]. For certain restricted classes of
circuits, there are sets in P that one can use in place of MCSP to obtain learning
algorithms that don’t require an oracle [12]. This connection has been explored
further [37, 13].

4 Completeness, Hardness, Reducibility

The preceding section mentioned a result about a problem being NP-complete
under ≤P

m reductions. In order to discuss other results about the complexity of
MCSP and related problems it is necessary to go into more detail about different
notions of reducibility.

Let C be either a class of functions or a class of circuits. The classes that will
concern us the most are the standard complexity classes L ⊆ P ⊆ NP as well as
the circuit classes (both uniform and nonuniform):

NC0 ( AC0 ( AC0[p] ( NC1 ⊆ P/poly.

We refer the reader to the text by Vollmer [47] for background and more complete
definitions of these standard circuit complexity complexity classes, as well as for
a discussion of uniformity.

We say that A≤CmB if there is a function f ∈ C (or f computed by a circuit
family in C, respectively) such that x ∈ A iff f(x) ∈ B. We will make use of

≤L
m,≤AC0

m and ≤NC0

m reducibility. The more powerful notion of Turing reducibility
also plays an important role in this work. Here, C is a complexity class that
admits a characterization in terms of Turing machines or circuits, which can
be augmented with an “oracle” mechanism, either by providing a “query tape”
or “oracle gates”. We say that A≤CTB if there is a oracle machine in C (or
a family of oracle circuits in C) accepting A, when given oracle B. We make

use of ≤P/poly
T ,≤RP

T ,≤ZPP
T ,≤BPP

T ,≤P
T, and ≤NC1

T reducibility; instead of writing

A≤P/poly
T B or A≤ZPP

T B, we will sometimes write A ∈ PB/poly or A ∈ ZPPB .
Turing reductions that are “nonadaptive” – in the sense that the list of queries
that are posed on input x does not depend on the answers provided by the oracle
– are called truth table reductions. We make use of ≤P

tt reducibility.
Not much has changed, regarding what is known about the “hardness” of

MCSP, in the three years that have passed since my earlier survey [1]. Here is
what I wrote at that time:

Table 1 presents information about the consequences that will follow if
MCSP is NP-complete (or even if it is hard for certain subclasses of NP).
The table is incomplete (since it does not mention the influential theo-
rems of Kabanets and Cai [31] describing various consequences if MCSP
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were complete under a certain restricted type of ≤P
m reduction). It also

fails to adequately give credit to all of the papers that have contributed
to this line of work, since – for example – some of the important contri-
butions of [36] have subsequently been slightly improved [26, 8]. But one
thing should jump out at the reader from Table 1: All of the conditions
listed in Column 3 (with the exception of “FALSE”) are widely believed
to be true, although they all seem to be far beyond the reach of current
proof techniques.

Table 1. Summary of what is known about the consequences of MCSP being hard for
NP under different types of reducibility. If MCSP is hard for the class in Column 1
under the reducibility shown in Column 2, then the consequence in Column 3 follows.

class C reductions R statement S Reference

TC0 ≤n
1/3

m FALSE [36]

TC0 ≤AC0

m LTH2 6⊆ io-SIZE[2Ω(n)] and P = BPP [8, 36]

TC0 ≤AC0

m NP 6⊆ P/poly [8]

P ≤L
m PSPACE 6= P [8]

NP ≤L
m PSPACE 6= ZPP [36]

NP ≤P
tt EXP 6= ZPP [26]

It is significant that neither MCSP nor MKTP is NP-complete under ≤n1/3

m

reductions, since SAT and many other well-known problems are complete under
this very restrictive notion of reducibility – but it would be more satisfying to
know whether these problems can be complete under more widely-used reducibil-
ities such as ≤AC0

m . These sublinear-time reductions are so restrictive, that even

the PARITY problem is not ≤n1/3

m -reducible to MCSP or MKTP. In an attempt

to prove that PARITY is not ≤AC0

m -reducible to MKTP, we actually ended up
proving the opposite:

Theorem 1. [7] MKTP is hard for DET under non-uniform NC0 reductions.
This also holds for MKtP and MKP.

Here, DET is the class of problems NC1-Turing-reducible to computing the de-
terminant. It includes the well-known complexity classes L and NL. This remains
the only theorem that shows hardness of MKµP problems under any kind of ≤Cm
reductions.

As a corollary of this theorem it follows that MKTP is not in AC0[p] for any
prime p. This was mentioned as an open question in [1] (see footnote 2 of [1]).
(An alternate proof was given in [24].) It remained open whether MCSP was in
AC0[p] until a lower bound was proved in [19].

2 LTH is the linear-time analog of the polynomial hierarchy. Problems in LTH are
accepted by alternating Turing machines that make only O(1) alternations and run
for linear time.
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It is still open whether MCSP is hard for DET. The proof of the hardness
result in [7] actually carries over to a version of GapMKTP where the “gap” is
quite small. Thus one avenue for proving a hardness result for MCSP had seemed
to be to improve the hardness result of [7], so that it worked for a much larger
“gap”. This avenue was subsequently blocked, when it was shown that PARITY
is not AC0-reducible to GapMCSP (or to GapMKTP) for a moderate-sized “gap”

[9]. Thus, although it is still open whether MCSP is NP-complete under ≤AC0

m

reductions, we now know that GapMCSP is not NP-complete under this notion
of reducibility.

When a much larger “gap” is considered, it was shown in [7] that, if cryp-
tographically-secure one-way functions exist, then GapMCSP and GapMKTP
are NP-intermediate in the sense that neither problem is in P/poly, and neither
problem is complete for NP under P/poly-Turing reductions.

The strongest hardness results that are known for the MKµP problems in NP
remain the results of [4], where it was shown that MCSP, MKTP, and MKpolyP
are all hard for SZK under ≤BPP

T reductions. SZK is the class of problems that
have statistical zero knowledge interactive proofs; SZK contains most of the
problems that are assumed to be intractable, in order to build public-key cryp-
tosystems. Thus it is widely assumed that MCSP and related problems lie outside
of P/poly, and cryptographers hope that it requires nearly exponential-sized cir-
cuits. SZK also contains the Graph Isomorphism problem, which is ≤RP

T -reducible
to MCSP and MKTP. In [5], Graph Isomorphism (and several other problems)
were shown to be ≤ZPP

T reducible to MKTP; it remains unknown if this also holds
for MCSP. In fact, there is no interesting example of a problem A that is not
known to be in NP∩ coNP that has been shown to be ≤ZPP

T reducible to MCSP.
We close this section with a discussion of a very powerful notion of re-

ducibility: SNP reductions. (Informally A is SNP reducible to B means that
A is (NP ∩ coNP)-reducible to B.) Hitchcock and Pavan have shown, under the
very plausible assumption that NP ∩ coNP contains problems that require large
circuits, that if MCSP is NP-complete (under the usual ≤P

m reductdions), then
it is also complete under SNP reductions whose queries avoid asking about very
small circuit sizes; they are able to use this as a tool to derive additional inter-
esting consequences from the assumption that MCSP is NP-complete [26]. It is
interesting to note that, back in the early 1990’s, Ko explicitly considered the
possibility that computing MKpolyP might be NP-complete under SNP reduc-
tions [32].

4.1 Completeness in EXP and Other Classes

There are problems “similar” to MCSP that reside in many complexity classes.
We can define MCSPA to be MCSP for oracle circuits with A-oracle gates. That
is, MCSPA = {(f, i) : f has an A-oracle circuit of size at most i}. When A is
complete for EXP, then MCSPA is thought of as being quite similar to MKtP.

Both of these problems, along with MKexpP, are complete for EXP under ≤P/poly
T

and ≤NP
T reductions [3].
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It is still open whether either of MKtP or MCSPA is in P, and it had been
open if MKtP is in P for “small” exponential functions t such as t(n) = 2n/2.
But there is recent progress:

Theorem 2. [21] MKexpP is complete for EXP under ≤P
T reductions.

This seems to go a long way toward addressing Open Question 3.6 in [1].
As a corollary, MKexpP is not in P. In fact, a much stronger result holds.

Let t be any superpolynomial function. Then the set of Kt-random strings {x :
Kt(x) < |x|} is immune to P (meaning: it has no infinite subset in P) [21]. The
proof does not seem to carry over to Kt complexity, highlighting a significant
difference between Kt and Kexp.

Although it remains open whether MKtP ∈ P, Hirahara does show that MKtP
is not in P-uniform ACC0, and in fact the set of Kt-random strings is immune
to P-uniform ACC0. Furthermore, improved immunity results for the Kt-random
strings are in some sense possible if and only if better algorithms for CircuitSAT
can be devised for larger classes of circuits [21].

Oliveira has defined a randomized version of Kt complexity, which is conjec-
tured to be nearly the same as Kt, but for which he is able to prove unconditional
intractability results [38].

MCSPQBF was known to be complete for PSPACE under ≤ZPP
T reductions [3].

In more recent work, for various subclasses C of PSPACE, when A is a suitable
complete problem for C, then MCSPA has been shown to be complete for C under
≤BPP

T reductions [30]. Crucially, the techniques used by [30] (and, indeed, by any

of the authors who had proved hardness results for MCSPA previously for various
A) failed to work for any A in the polynomial hierarchy. We will return to this
issue in the following section.

In related work, it was shown [7] that the question of whether MKTPA is hard
for DET under a type of uniform AC0 reductions is equivalent to the question
of whether DSPACE(n) contains any sets that require exponential-size A-oracle
circuits. Furthermore, this happens if and only if PARITY reduces to MKTPA.
Note that this condition is more likely to be true if A is easy, than if A is complex;
it is false if A is complete for PSPACE, and it is probably true if A = ∅. Thus,
although MKTPQBF is almost certainly more complex than MKTP (the former
is PSPACE-complete, and the latter is in NP), a reasonably-large subclass of P
probably reduces to MKTP via these uniform AC0 reductions, whereas hardly
anything AC0-reduces to MKTPQBF. The explanation for this is that a uniform
AC0 reduction cannot formulate any useful queries to a complex oracle, whereas
it (probably) can do so for a simpler oracle.

4.2 NP-Hardness

Recall from the previous section that there were no NP-hardness results known
for any problem of the form MCSPA where A is in the polynomial hierarchy.

This is still true; however, there is some progress to report. Hirahara has
shown that computing the “conditional” complexity Kpoly(x|y) relative to SAT
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(i.e., given (x, y), finding the length of the shortest description d such that

USAT(d, y) = x in time nc) is NP-hard under ≤P
tt reductions [21].

It might be more satisfying to remove the SAT oracle, and have a hardness
result for computing Kpoly(x|y) – but Hirahara shows that this can’t be shown
to be hard for NP (or even hard for ZPP) under ≤P

tt reductions without first
separating EXP from ZPP.

In a similar vein, if one were to show that MCSP or MKTP (or MCSPA or
MKTPA for any set A ∈ EXP) is hard for NP under ≤P

tt reductions, then one
will have shown that ZPP 6= EXP [21].

A different kind of NP-hardness result for conditional Kolmogorov complexity
was proved recently by Ilango [28]. In [3], conditional KT complexity KT(x|y)
was studied by making the string y available to the universal Turing machine
U as an “oracle”. Thus it makes sense to consider a “conditional complexity”
version of MCSP by giving a string y available to a circuit via oracle gates. This
problem was formalized and shown to be NP-complete under ≤ZPP

T reductions
[28].

Many of the functions that we compute daily produce more than one bit of
output. Thus it makes sense to study the circuit size that is required in order
to compute such functions. This problem is called Multi-MCSP in [29], where
it is shown to be NP-complete under ≤RP

T reductions. It will be interesting to
see how the complexity of this problem varies, as the number of output bits of
the functions under consideration shrinks toward one (at which point it becomes
MCSP).

It has been known since the 1970’s that computing the size of the smallest
DNF expression for a given truth-table is NP-complete. (A simple proof, and
a discussion of the history can be found in [6].) However, it remains unknown
what the complexity is of finding the smallest depth-three circuit for a given
truth table. (Some very weak intractability results for minimizing constant-depth
circuits can be found in [6], giving subexponential reductions from the problem
of factoring Blum integers.) The first real progress on this front was reported
in [23], giving an NP-completeness result (under ≤P

m reductions) for a class of
depth three circuits (with MOD gates on the bottom level). Ilango proved that
computing the size of the smallest depth-d formula for a truth-table lies outside
of AC0[p] for any prime p [28], and he has now followed that up with a proof
that computing the size of the smallest depth-d formula is NP-complete under
≤RP

T reductions [27]. Note that a constant-depth circuit can be transformed into
a formula with only a polynomial blow-up; thus in many situations we are able
to ignore the distinction between circuits and formulas in the constant-depth
realm. However, the techniques employed in [27, 28] are quite sensitive to small
perturbations in the size, and hence the distinction between circuits and formulae
is important here. Still, this is dramatic progress on a front where progress has
been very slow.
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5 Average Case Complexity, One-Way Functions

Cai and Kabanets gave birth to the modern study of MCSP in 2000 [31], in
a paper that was motivated in part by the study of Natural Proofs [44], and
which called attention to the fact that if MCSP is easy, then there are no
cryptographically-secure one-way functions. In the succeeding decades, there has
been speculation about whether the converse implication also holds. That is, can
one base cryptography on assumptions about the complexity of MCSP?

First, it should be observed that, in some sense, MCSP is very easy “on
average”. For instance the hardness results that we have (such as reducing SZK
to MCSP) show that the “hard instances” of MCSP are the ones where we want
to distinguish between n-ary functions that require circuits of size 2n/n2 (the
“NO” instances) and those that have circuits of size at most 2n/3 (the “YES”
instances). However, an algorithm that simply says “no” on all inputs will give
the correct answer more than 99% of the time.

Thus Hirahara and Santhanam [24] chose to study a different notion of heuris-
tics for MCSP, where algorithms must always give an answer in {Yes, No, I don’t
know}, where the algorithm never gives an incorrect answer, and the algorithm is
said to perform well “on average” if it only seldom answers “I don’t know”. They
were able to show unconditionally that MCSP is hard on average in this sense for
AC0[p] for any prime p, and to show that certain well-studied hypotheses imply
that MCSP is hard on average.

More recently, Santhanam [45] has formulated a conjecture (which would
involve too big of a digression to describe more carefully here), which – if true
– would imply that a version of MCSP is hard on average in this sense if and
only if cryptographically-secure one-way functions exist. That is, Santhanam’s
conjecture provides a framework for believing that one can base cryptography
on the average-case complexity of MCSP.

But how does the average-case complexity of MCSP depend on its worst-case
complexity? Hirahara [20] showed that GapMCSP has no solution in BPP if and
only if a version of MCSP is hard on average. A related result stated in terms of
Kpoly appears in the same paper. These results attracted considerable attention,
because prior work had indicated that such worst-case-to-average-case reductions
would be impossible to prove using black-box techniques. Additional work has
given further evidence that the techniques of [20] are inherently non-black-box
[25].

6 Complexity Classes and Noncomputable Complexity
Measures

The title of this section is the same as the title of Section 4 of the survey that
I wrote three years ago [1]. In that section, I described the work that had been
done, studying the classes of sets that are reducible to the (non-computable) set
of Kolmogorov-random strings RK , and to MKP, including the reasons why it
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seemed reasonable to conjecture that BPP and NEXP could be characterized in
terms of different types of reductions to the Kolmogorov-random strings.

I won’t repeat that discussion here, because both of those conjectures have
been disproved (barring some extremely unlikely complexity class collapses).
Taken together, the papers [25], [22], and [21] give a much better understanding
of the classes of languages reducible to the Kolmogorov-random strings.

Previously, it was known that PSPACE ⊆ PRK , and NEXP ⊆ NPRK . Hirahara

[21] has now shown NEXP ⊆ EXPNP ⊆ PRK .
This same paper also gives a surprising answer to Open Question 4.6 of [1],

in showing that Quasipolynomial-time nonadaptive reductions to RK suffice to
capture NP (and also some other classes in the polynomial hierarchy).

7 Magnification

Some of the most important and exciting developments relating to MCSP and
related problems deal with the emerging study of “hardness magnification”. This
is the phenomenon whereby seemingly very modest lower bounds can be “am-
plified” or “magnified” and thereby be shown to imply superpolynomial lower
bounds. I was involved in some of the early work in this direction [10] (which
did not involve MCSP), but much stronger work has subsequently appeared.

It is important to note, in this regard, that lower bounds have been proved
for MCSP that essentially match the strongest lower bounds that we have for any
problems in NP [17]. There is now a significant body of work, showing that slight
improvements to those bounds, or other seemingly-attainable lower bounds for
GapMKtP or GapMCSP or related problems, would yield dramatic complexity
class separations [16, 15, 14, 13, 46, 40, 39, 35].

This would be a good place to survey this work, except that an excellent
survey already appears in [13]. Igor Carboni Oliveira has also written some
notes entitled “Advances in Hardness Magnification” related to a talk he gave
at the Simons Institute in December, 2019, available on his home page. These
notes and [13] describe in detail the reasons that this approach seems to avoid
the Natural Proofs barrier identified in the work of Razborov and Rudich [44].
But they also describe some potential obstacles that need to be overcome, before
this approach can truly be used to separate complexity classes.
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