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Abstract

The Minimum Circuit Size Problem (MCSP) has been the focus
of intense study recently; MCSP is hard for SZK under rather power-
ful reductions [4], and is provably not hard under “local” reductions
computable in TIME(n0.49) [26]. The question of whether MCSP is
NP-hard (or indeed, hard even for small subclasses of P) under some of
the more familiar notions of reducibility (such as many-one or Turing
reductions computable in polynomial time or in AC0) is closely re-
lated to many of the longstanding open questions in complexity theory
[7, 8, 19, 20, 21, 23, 26].

All prior hardness results for MCSP hold also for computing some-
what weak approximations to the circuit complexity of a function
[3, 4, 10, 19, 24, 31].1 Some of these results were proved by exploiting
a connection to a notion of time-bounded Kolmogorov complexity (KT)
and the corresponding decision problem (MKTP). More recently, a new
approach for proving improved hardness results for MKTP was devel-
oped [5, 7], but this approach establishes only hardness of extremely
good approximations of the form 1 + o(1), and these improved hardness
results are not yet known to hold for MCSP. In particular, it is known
that MKTP is hard for the complexity class DET under nonuniform
≤AC0

m reductions, implying MKTP is not in AC0[p] for any prime p
[7]. It was still open if similar circuit lower bounds hold for MCSP.
(But see [14, 22].) One possible avenue for proving a similar hardness
result for MCSP would be to improve the hardness of approximation
for MKTP beyond 1 + o(1) to ω(1), as KT-complexity and circuit size
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are polynomially-related. In this paper, we show that this approach
cannot succeed.

More specifically, we prove that PARITY does not reduce to the
problem of computing superlinear approximations to KT-complexity
or circuit size via AC0-Turing reductions that make O(1) queries. This
is significant, since approximating any set in P/poly AC0-reduces to
just one query of a much worse approximation of circuit size or KT-
complexity [28]. For weaker approximations, we also prove non-hardness
under more powerful reductions. Our non-hardness results are uncon-
ditional, in contrast to conditional results presented in [7] (for more
powerful reductions, but for much worse approximations). This high-
lights obstacles that would have to be overcome by any proof that
MKTP or MCSP is hard for NP under AC0 reductions. It may also be
a step toward confirming a conjecture of Murray and Williams, that
MCSP is not NP-complete under logtime-uniform ≤AC0

m reductions.

1 Introduction

The Minimum Circuit Size Problem (MCSP) is the problem of determining
whether a (given) Boolean function f (represented as a bitstring of length
2k for some k) has a circuit of size at most a (given) threshold θ. Although
the complexity of MCSP has been studied for more than half a century (see
[32, 24] for more on the history of the problem), recent interest in MCSP
traces back to the work of Kabanets and Cai [24], who connected the problem
to questions involving the natural proofs framework of Razborov and Rudich
[30].

Since then, there has been a flurry of research on MCSP [3, 4, 5, 6, 7, 8,
18, 19, 20, 21, 23, 26, 28], but still the exact complexity of MCSP remains
unknown. MCSP is in NP, but it remains an important open question whether
MCSP is NP-complete.

MCSP is likely not in P. There is good evidence for believing MCSP 6∈
P. If MCSP is in P, then there are no cryptographically-secure one-way
functions [24]. Furthermore, [4] shows MCSP is hard for SZK under BPP-
Turing reductions, so if MCSP ∈ P then SZK ⊆ BPP, which seems unlikely.

Showing MCSP is NP-hard would be difficult. Murray and Williams
[26] have shown that if MCSP is NP-hard under polynomial-time many-one
reductions, then EXP 6= ZPP, which is a likely separation but one that es-
capes current techniques. Results from [4, 21, 26] also give various likely (but
difficult to show) consequences for MCSP being hard under more restrictive
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forms of reduction. We note that it has been suggested that MCSP might
well be complete for NP [23]. In this regard, it may also be relevant to note
that MCSPQBF is complete for PSPACE under ZPP-Turing reductions [3].

The hardness of both MCSP and approximating MCSP have im-
portant consequences for complexity theory. We have already men-
tioned that if MCSP is NP-hard under polynomial-time reductions, then
EXP 6= ZPP [26]. In a recent development, Hirahara [18] shows that if a
certain approximation to MCSP is NP-hard, then NP 6⊆ BPP implies that
NP is difficult to compute even on average. In another recent development,
several papers ([29], [27], [25]) study a “hardness magnfication” phenomena,
whereby seemingly meager n · logω(1) n circuit lower bounds on certain pa-
rameterizations of MCSP imply much stronger results such as NP 6⊆ P/poly.2

MCSP is not hard for NP in limited settings. Murray and Williams
[26] show MCSP is not NP-hard under a certain type of “local” reductions
computable in TIME(n0.49). This is significant, since many well-known NP-
complete problems are complete under local reductions computable in even
logarithmic time. (A list of such problems is given in [26].) Also, under
cryptographic assumptions, very weak approximations to MCSP are not
NP-hard, even under P/poly reductions [7].

Many hardness results for MCSP also hold for approximate ver-
sions of MCSP. In various settings, the power of MCSP to distinguish
between functions with circuits of size θ and those requiring size θ + 1 is not
needed. Rather, in [3, 10, 4, 31, 28, 23], the reduction succeeds assuming
only that reliable answers are given to queries on instances of the form (T, θ),
where either the truth table T requires circuits of size ≥ θ = |T |.9 or T can
be computed by circuits of size ≤ |T |.01.

This is an appropriate time to call attention to one such reduction to
approximations to MCSP. Corollary 66 of [28] shows that, for every small
δ > 0, for every solution S to MCSP[nδ, n.5]3, for every set A ∈ P/poly, there
is a c > 1 and a set A′ that differs from A on at most (1/2− 1/nc)2n of the

strings of each length n, such that A′ ≤AC0

tt S via a reduction4 that makes

only one query. (That is, A′ ≤AC0

1−tt S.) Stated another way, any set in P/poly

2The hardness magnification result we have stated here is from [25].
3This promise problem is defined formally in Section 2.1.
4Although Corollary 6 of [28] does not mention the number of queries, inspection of the

proof shows that only one query is performed.
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can be “approximated” with just one query to a weak approximation of
MCSP. (Changing the solution S will yield a different set A′.)

There is no known many-one hardness result for MCSP, but one
is known for a related problem. MKTP, the minimum time-bounded
Kolmogorov complexity problem, is loosely the “program version” of MCSP.
It is known [7] that MKTP is hard for DET under (non-uniform) NC0 many-
one reductions; it is conjectured that the same is true for MCSP. Time-
bounded Kolmogorov complexity is polynomially-related to circuit complexity
[3], so one natural way to extend the hardness result of [7] from MKTP to
MCSP would be to stretch the very small gap given in the reduction of DET
to MKTP.

1.1 Our Contributions, and Related Prior Work

We address the following questions based on prior work:

1. Can the non-hardness result of Murray and Williams [26] be extended
to more powerful reductions? Both [26] and [8] conjecture that MCSP
is not NP-complete under uniform AC0 reductions.

2. Can the aforementioned conditional theorem of [7], establishing the
non-NP-hardness of very weak approximations to MCSP under crypto-
graphic assumptions, be improved, to show non-NP-hardness of MCSP
for stronger approximations?

3. The worst-case to average case reduction given by [18] is conditional
on the NP-hardness of a certain approximation to MCSP. Can we say
anything about the NP-hardness of this problem in, say, the context of
limited reductions?

4. Finally, can the result of [7], showing that MKTP is hard for DET under

≤AC0

m reductions, be extended, to hold for MCSP as well, by increasing
the gap?

Our results give the following replies to these questions:

1. For superlinear approximations to MCSP, one can, in fact, give much
stronger non-hardness results than [26], showing non-hardness even
under non-uniform AC0 many-one reductions and even limited types
of AC0 Turing reductions. To our knowledge, this is the first known
non-hardness result for any variant of MCSP under non-uniform AC0
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reductions. While AC0 reductions are provably less powerful than
polynomial time reductions, most natural examples of NP-complete
problems are easily seen to be complete under AC0 (and even NC0!)
reductions [11].

2. [7] shows that, if cryptographically-secure one-way functions exist, then
ε(n)-GapMCSP is not hard for NP under P/poly-Turing reductions5 for
some ε(n) = no(1). Our result gives a trade-off, where we reduce the
gap dramatically but also weaken the type of reduction. In particular,
our results imply that if one-way functions exist, then ε(n)-GapMCSP is

NP-intermediate under ≤AC0

m and ≤AC0

k−tt reductions, where ε(n) = o(n).

3. We show that the approximation to MCSP considered by [18] is actually
not NP-hard under AC0 reductions.

4. Our work rules out one natural way to extend the MKTP hardness
results to MCSP. One might have hoped that the reduction given by
[7] could be extended to a larger gap and hence apply to MCSP (since
MKTP and MCSP are polynomially related [3]). However, we show
that this is impossible.

Our main theorem is an impossibility result in the setting of ε(θ)-GapMCSP,
which is the promise version of MCSP with a multiplicative ε(θ) gap where θ
is the threshold.

Theorem 1. PARITY 6≤AC0

m ε(θ)-GapMCSP where ε(θ) = o(θ).

We note that this is not the first work to describe non-hardness of
approximation under AC0 reductions. Arora [12] is credited by [1], with
showing that no AC0 reduction f can have the property that x ∈ PARITY
implies f(x) has a very large clique, and x 6∈ PARITY implies f(x) has only
very small cliques. (In Section 3, we present a similar result for Max-3-SAT,
so that the reader can compare the techniques.) Our work differs from
that of [12] in several respects. Arora shows that AC0 reductions cannot
prove very strong hardness of approximations for a problem where strong
inapproximability results are already known. We show that AC0 reductions
cannot establish even very weak inapproximability results for MCSP. Also,
our techniques allow us to move beyond ≤AC0

m reductions, to consider AC0-
Turing reducibility.

5The problem ε-GapMCSP is defined somewhat differently in [7] than here. See Section 2.
Thus the form of ε(n) looks different here than in [7].
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All of the theorems that we state in terms of MCSP hold also for MKTP,
with identical proofs. For the sake of readability, we present the theorems
and proofs only in terms of MCSP.

2 Preliminaries

We use \ to denote set difference. For a natural number n, we let [n] denote
the set {1, . . . , n}.

2.1 Defining MCSP

For any binary string T of length 2k, we define CC(T ) to be the size of the
smallest circuit (using only NOT gates and AND and OR gates of fan-in 2)
that computes the function given by truth table T written in lexicographic
order, where, for concreteness, circuit size is defined to be the number of AND
and OR gates, although our arguments work for other reasonable notions of
circuit size.

Throughout the paper, we use various approximate notions of the mini-
mum circuit size problem, given as follows:

Definition 2 (Gap MCSP). For any function ε : N → N, we define
ε(n)-GapMCSP to be the promise problem (Y,N) where

Y := {(T, θ) | CC(T ) ≤ ε(θ)}, and

N := {(T, θ) | CC(T ) > θ},

where θ is written in binary.

Note that this definition differs in minor ways from the way that ε-GapMCSP
was defined in [7]. The definition presented here allows for finer distinctions
than the definition that was used in [7].

Our results for non-hardness under ≤AC0

T reductions are best stated in
terms of a restricted version of ε-GapMCSP, where the thresholds are fixed,
for inputs of a given size: This variant of MCSP has been studied previously in
[26, 19]; an analogous problem defined in terms of KT-complexity is denoted
RKT in [3].

Definition 3 (Parameterized Gap MCSP). For any functions `, g : N→ N
such that `(n) ≤ g(n), We define the language MCSP[`, g] to be the promise
problem (Y,N) where

Y := {T | CC(T ) ≤ `(|T |)}, and

N := {T | CC(T ) > g(|T |)}.
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2.2 Complexity classes and Reductions

We assume the reader is familiar with basic complexity classes such as P and
NP. As we work extensively with non-uniform NC0 and AC0, we refer to the
text by Vollmer [33] for background on these circuit classes. Throughout this
paper, unless otherwise explicitly mentioned, we refer to the non-uniform
versions of these circuit classes.

Let C be a class of circuits. For any languages A and B, we write A ≤Cm B
if there is a function f computed by a circuit family {Cn} ∈ C such that
f(x) ∈ B ⇐⇒ x ∈ A. We write A ≤CT B if there is a circuit family in
C computing A with B-oracle gates. In particular, since we are primarily
concerned with C = AC0, we denote this as A ≤AC0

T B. We write A ≤AC0

tt B if
there is an AC0 circuit family computing A with B-oracle gates, where there
is no directed path from any oracle gate to another, i.e. if the reduction is
non-adaptive. If, furthermore, the non-adaptive reduction has the property
that each of the oracle circuits contains at most k oracle gates, then we write
A ≤AC0

k−tt B.
Let Y ⊆ {0, 1}? and N ⊆ {0, 1}? be disjoint. Then Π = (Y,N) is a

promise problem. A language L is a solution to a promise problem Π = (Y,N)
if Y ⊆ L and N ∩ L = ∅. For two promise problems Π1 and Π2, some type
of reducibility r (many-one, truth table, or Turing), and a circuit class C,
we say Π1 ≤Cr Π2 if there is a single family of oracle circuits {Cn} in C such
that for every solution S2 of Π2, there is a solution S1 of Π1 such that Cn
computes an r-reduction from S1 to S2.

2.3 Boolean Strings and Functions

For an x ∈ {0, 1}n and a set of indices B ⊆ [n], we let xB denote the Boolean
string obtained by flipping the ith bit of x for each i ∈ B.

A partial string (or restriction) is an element of {0, 1, ?}?. Define the size
of a partial string p to be the number of bits in which it is {0, 1}-valued.
We say a partial string p ∈ {0, 1, ?}n agrees with a binary string x ∈ {0, 1}n
if they agree on all {0, 1}-valued bits. If x ∈ {0, 1}n is a binary string and
B ⊆ [n], then x|B denotes the partial string given by replacing the jth bit of
x with ? for each j ∈ [n] \ B. We say a partial string p1 extends a partial
string p2 if p1 is equal to p2 on all bits where p2 is {0, 1}-valued.

A partial Boolean function on n variables is a function f : I → {0, 1}
where I ⊆ {0, 1}n. For a promise problem Π = (Y,N) and n ∈ N, we
let Π|n be the partial Boolean function that decides membership in Y on
instances of length n which satisfy the promise. (In particular, Π|n : I :=
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(Y ∪N) ∩ {0, 1}n → {0, 1}.)
We will make use of two well-studied complexity measures on Boolean

functions: block sensitivity and certificate complexity. We refer the reader to
a detailed survey by Hatami, Kulkarni, and Pankratov [17] for background
on these notions. For completeness, we provide the definitions of the two
measures that we need. In our context, we will use these measures on partial
Boolean functions. Let I ⊆ {0, 1}n and let f : I → {0, 1} be a partial Boolean
function. For an input x ∈ I, define the block sensitivity of f at x, denoted
bs(f, x), to be the maximum number of non-empty, disjoint sets B1, . . . , Bk
such that xBi ∈ I and f(x) 6= f(xBi) for all i. (Here, by “f(y) 6= f(z)” we
require that f is defined at both y and z.) Define the 0-block sensitivity
of f to be bs0(f) := maxx:f(x)=0 bs(f, x). For an input x ∈ I, define the
certificate complexity of f at x, denoted c(f, x), to be the size of the smallest
set B ⊆ [n] such that f(y) = f(x) for all y ∈ I that agree with x|B. Define
the 0-certificate complexity of f to be c0(f) := maxx:f(x)=0 c(f, x).

3 Prior Work

In this section, we present a result that is similar in spirit to a result reported
by Arora in an unpublished manuscript [12]. There, it was shown that
there is no AC0-computable function f with the property that x ∈ PARITY
implies f(x) has a very large clique, and x 6∈ PARITY implies f(x) has only
very small cliques. Here, in order to illustrate the techniques that were
employed in [12], we observe that no AC0 reduction can establish the known
inapproximability of Max-3-SAT [16].

Our results, like those of [12], rely on the following lemma, which says
that it is possible to apply a restriction to a family of AC0 circuits and
thereby obtain a family of NC0 circuits. This lemma is implicit in the earliest
lower bound work on AC0 [2, 13], and was stated and proved in this form in
[1].

Lemma 4 (Lemma 7 in [1]). Let Cn be a family of n-input (multi-output)
AC0 circuits. Then there exists an a > 0 such that for all n ∈ N there exists
a restriction of Cn to Ω(n1/a) input variables that transforms Cn into a
(multi-output) NC0 circuit.

Here, when we say that a restriction “transforms” a circuit into a NC0

circuit, we mean the process whereby any OR gate that has a constant 1
feeding into it (say, from the restriction) can be replaced by a constant 1,
and any AND gate that has a 0 feeding into it can be replaced by a constant
0, and this process can be repeated until no more simplification is possible.
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Proposition 5. Let 0 < ε < 1. No AC0 reduction f can have the property
that x ∈ PARITY implies f(x) ∈ 3-SAT, and x 6∈ PARITY implies f(x) has
at most an ε fraction of the clauses satisfied.

Proof. By appealing to Lemma 4, we may assume that the function f is an
NC0 reduction. (A more careful argument, explaining how this assumption
is justified, is provided in the proof of Theorem 1.) Let d be the constant,
such that each output bit of f(x) depends on at most d bits of x, and let
x ∈ PARITY have length n. Let f(x) consist of m clauses, each encoded
using c logm bits for some constant c (which we can assume since the number
of clauses is polynomially-related to the number of variables). Then since
|f(x)| = cm logm, and each output bit depends on at most d input bits,
there is some i ≤ n such that the i-th bit of x affects at most (dcm logm)/n
output bits. Flipping the i-th bit of x, to obtain a new string x′ 6∈ PARITY
can affect at most (dcm logm)/n clauses. Since f(x) ∈ 3-SAT, there is an
assignment that satisfies at least m− (dcm logm)/n clauses of f(x′). The
theorem is proved, by observing that m− (dcm logm)/n > εm for all large
m.

This discussion of prior work is also the appropriate place to mention that
a preliminary version of this article appeared in a conference proceedings [9].
Several proofs were omitted from the conference publication, due to space
limitations, and they are presented in full here.

4 Non-Hardness Under NC0 Reductions

In this section, we prove our main lemmas, showing that problems that are
NC0-reducible to ε-GapMCSP have bounded 0-block sensitivity and also have
sublinear 0-certificate complexity. Whenever we will have occasion to use
these lemmas, it will be in situations when we are able to assume that the
NC0 reduction is computing a function f satisfying the condition that there
is a bound γ(n) > 0 such that, for all n, there is a θ ≥ γ(n) such that, for
all x of length n, f(x) is of the form (T (x), θ). (In particular, the threshold
θ is the same for all inputs of length n.) We will call such an NC0 reduction
a γ-honest reduction.

Lemma 6. Let ε(θ) = o(θ), and let Π = (Y,N) be a promise problem,

where Π ≤NC0

m ε-GapMCSP via a γ-honest reduction f computed by an NC0

circuit family Cn of depth ≤ d, where γ(n) ≥ log log n. Then there is an n0

(that depends only on ε and d) such that for all n ≥ n0, if N |n 6= ∅, then
bs0(Π|n) < s, where s is a constant that depends only on d.
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Proof. Let s = 2d+1 + 1. Since ε(n) = o(n), we can pick a constant r0 > 4s
such that ε(r) < r/(2s) for all r ≥ r0.

Pick n0 ≥ 22r0 , and let n ≥ n0.
For the sake of contradiction, suppose bs0(Π|n) ≥ s, and let x ∈ N ∩

{0, 1}n be a 0-valued instance with bs(Π|n, x) ≥ s. Then we can find disjoint
sets B1, . . . Bs ⊆ [n] such that Π|n(xBj ) = 1 for all j ∈ [s]. (That is, each
xBj is in Y .)

Let f(x) = (T, θ), and note that CC(T ) > θ ≥ γ(n) (since f is γ-honest).
Since x ∈ N and Cn is a reduction to ε-GapMCSP, we know that any circuit
that computes the function with truth table T has size at least θ. For each
j ∈ [s], let Tj be the truth table produced by Cn on input xBj . Since xBj ∈ Y ,
we know that each Tj has a circuit Dj computing Tj of size at most ε(θ).
(Here, it is important that the same threshold θ is used for all inputs of
length n, by γ-honesty.)

We aim to build a “small” circuit computing T , which would contradict
T having high complexity. Our circuit C for computing T works as follows:
on input i, output the majority of D1(i), . . . , Ds(i). The size of C is at most
s · ε(θ) + 2s (each Dj has size at most ε(θ), and computing the majority of s
bits can be done with a circuit of size 2s).

Now, we argue that this circuit correctly computes the ith bit of T for
all i. Let i be arbitrary. Recall the ith bit of T is defined to be the ith
output of Cn(x). Since Cn is a depth d circuit of fan-in 2, the ith output
of Cn depends on at most 2d input wires W ⊆ [m]. Hence, on any input y
such that y|W = x|W , we have that the ith output of Cn(y) equals the ith
output of Cn(x). In particular, if B is disjoint from W , then the ith output
of Cn(xB) equals the ith output of Cn(x). Since B1, . . . Bs are disjoint and
|W | ≤ 2d, it follows that at most 2d of the sets B1, . . . , Bs have a non-empty
intersection with W . Hence, since s = 2d+1 + 1, the majority of the sets
B1, . . . , Bs are disjoint with W , so the majority of the circuits D1, . . . , Ds

when run on input i output the ith output of Cn(x).
We thus have that CC(T ) ≤ s · ε(θ) + 2s. But θ > γ(n) ≥ log log n (since

the reduction f is γ-honest). By the choice of n0 we have ε(θ) < θ/2s (since
θ > log log n ≥ r0). Thus CC(T ) ≤ s · θ/2s + 2s = θ/2 + 2s < θ (since
θ > log log n > 4s). This contradicts CC(T ) > θ.

The reader who is interested primarily in Theorem 1 (which shows that
Gap MCSP is not NP-hard under nonuniform AC0 m-reductions) can skip
ahead to Section 5. The rest of this section develops tools that are used in
our results that deal with more powerful notions of reducibility.
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Lemma 7. Let ε(θ) = o(θ), and let Π = (Y,N) be a promise problem, where

Π ≤NC0

m ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit
family Cn of depth ≤ d, where γ(n) ≥ log log n. Let k ≥ 1. Then there is an
n0 (that depends only on ε, k and d) such that for all n ≥ n0, if N |n 6= ∅,
then c0(Π|n) ≤ n/k.

Proof. Let p = 2d, let p′ =
(

2pk+1
p

)
, and let K be a constant that is specified

later (and which depends only on k and d). Since ε(θ) = o(θ), we can pick a

constant s0 such that
(
p′

2

)
ε(s) +K < s for all s ≥ s0.

Pick n0 ≥ 22s0 , and let n ≥ n0.
For contradiction, suppose c0(Π|n) > n/k. Let x ∈ N ∩ {0, 1}n be a 0-

valued instance with c0(Π|n, x) > n/k. Then, for all S ⊆ [n] with |S| ≤ n/k,
there is an xS such that xS agrees with x|S and such that Π|n(xS) = 1.
(That is, xS ∈ Y.)

Let (T, θ) be the truth table produced by Cn on input x. Since x ∈ N
and Cn is a reduction, we know that any circuit computing T has size at
least θ.

For each S ⊆ [n] with size at most n/k, let TS be the truth table produced
by Cn on input xS . Since xS ∈ Y , we know that TS has a circuit DS of size
at most ε(θ).

We aim to build a “small” circuit computing T , which would contradict
that T has high complexity. Recall that p = 2d, and that p′ =

(
2pk+1
p

)
.

Claim 1. There exist sets S1, . . . Sp′ ⊆ [n] such that

• |Si| ≤ n
2k for all i, and

• for any set P ⊆ [n] with |P | ≤ p, we have that P ⊆ Si for some i.

Proof. (Proof of Claim) Pick sets V1, . . . , V2pk+1 ⊆ [n] of size at most n
2pk

whose union is [n]. Let V = {V1, . . . , V2pk+1}. Now let each of S1, . . . , S(2pk+1
p )

be the union of some p sets chosen from V . Each Si has size at most p n
2pk = n

2k .
Let P ⊆ [n] be an arbitrary set of size p. Since

⋃
V ∈V V = [n], every element

e of P lies within some V ∈ V. Then P is contained in the union of some p
sets from V, so P ⊆ Si for some i.

For each i 6= j ∈ [p′], let Si,j = Sj,i = Si ∪ Sj . Note that |Si,j | ≤ n/k.
Our circuit C for computing T works as follows. On input r, for each

i ∈ [p′], see if DSi,1(r) = · · · = DSi,p′ (r). If so, then output DSi,1(r). The

size of this circuit is at most
(
p′

2

)
ε(θ) +K (for some fixed constant K) since

each of the
(
p′

2

)
DSi,j circuits has size at most ε(θ) and the other “unanimity”
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condition is a Boolean function on
(
p′

2

)
variables (of in fact linear size) and

so can be computed with circuit of some size K = O(p′)2 (that depends only
on k and d).

Now, we argue that C on input r correctly computes the rth bit of T .
Let r ∈ [m] be arbitrary. For convenience, given any input y ∈ {0, 1}n let
Crn(y) denote the rth output of Cn(x). Recall the rth bit of T is defined
to be Crn(x). We must show two things. First, that there exists an i such
that DSi,1(r) = · · · = DSi,p′ (r) and second, that if for some i we have that
DSi,1(r) = · · · = DSi,p′ (r), then DSi,1(r) = Crn(x).

Since Cn has depth d, the rth output of Cn can depend on at most 2d

input wires W ⊆ [m]. Hence, on any input y such that y|W = x|W , we
have that Crn(y) = Crn(x). Since p = 2d, by the claim, there exists some Si?

such that W ⊆ Si? . Therefore, for all j we have that xSi?,j |W = x|W , so

DSi?,j (r)
def
= Crn(xSi?,j ) = Crn(x).

This implies both things we must show. First, we know that DSi?,1(r) =
· · · = DSi?,p′ (r) since they each equal Crn(x). Second, if for some i, we have
that DSi,1(r) = · · · = DSi,p′ (r), then we also have that DSi,1(r) = DSi,i? (r) =
Crn(x).

Thus we have that T can be computed by a circuit of size at most(
p′

2

)
ε(θ) +K, which is less than θ, since θ ≥ log log n ≥ s0. This contradicts

that CC(T ) > θ.

Next, we note that one can improve the bounds given by Lemma 7
assuming a larger gap.

Lemma 8. Let ε(θ) < θα, and let Π = (Y,N) be a promise problem, where

Π ≤NC0

m ε-GapMCSP via a γ-honest reduction f computed by an NC0 circuit
family Cn of depth ≤ d, where γ(n) ≥ nβ. Then for all δ such that δ0 =
β(1− α)/2d+1 > δ > 0 there is an n0 such that for all n ≥ n0, if N |n 6= ∅,
then c0(Π|n) ≤ n1−δ.

Proof. Let p = 2d. Suppose for contradiction that for some δ > 0 with
δ < δ0 = β(1−α)/2p we have c0(Π|n) > n1−δ infinitely often. We can follow
the same argument (and notation) as above, except we have to be more careful
since n/c0(Π|n) is no longer a constant, and hence p′ =

(
2pn/c0(Π|n)+1

p

)
≤(

2pnδ+1
p

)
= O(npδ) is no longer constant. Since the unanimity condition can

be implemented by a circuit of size linear in
(
p′

2

)
, we can construct a circuit

computing truth table T of size

ε(θ) · c1p
′2 = ε(θ) · c1

(
2pnδ + 1

p

)2

≤ c2ε(θ)n
2pδ

12



infinitely often for some positive constants c1, c2. By γ-honesty, we have
θ ≥ γ(n) ≥ nβ . This implies that we can construct a circuit computing T of
size

c2ε(θ)n
2pδ ≤ c2ε(θ)(θ

1/β)2pδ < c2θ
αθ2pδ/β < θ

infinitely often. This is a contradiction since T is a truth table with circuit
complexity ≥ θ.

Next, we present a variant of Lemma 8, but restricted to the parameterized
version of MCSP. This variant is useful in extending our non-hardness results
to ≤AC0

T reductions that make no(1) queries.

Lemma 9. Let Π = (Y,N) be a promise problem. If Π ≤NC0

m MCSP[`, g]
with `(m) = o(g(m)/mδ) for some δ > 0, then c0(Π|n) ≤ nε for some ε < 1
for all but finitely many n where N |n 6= ∅, where ε depends only on the depth
of the NC0 circuit family and δ.

Proof. Suppose for contradiction that for all ε < 1 we have c0(Π|n) > nε

infinitely often. Once again, we follow the same argument (and notation) as
above. We can construct a circuit computing truth table T of size

`(m)·c1p
′2 ≤ `(m)·c1

(
2pn/c0(Π|n) + 1

p

)2

≤ `(m)c1

(
2pn1−ε + 1

p

)2

≤ c2`(m)n2p(1−ε),

infinitely often for some positive constants c1, c2. (Here, m denotes the length
of the truth table T .) Note that since c0(Π|n) > nε, we know Π|n depends
on ≥ nε input bits. Since the circuit has depth at most d and gates of fan-in
2, we must have m ≥ nε/2d. This implies that we can construct a circuit
computing T of size

c2`(m)(nε)
2p(1−ε)

ε ≤ c3`(m)m
2p(1−ε)

ε ,

infinitely often for some positive constant c3. Setting ε = 2p
2p+δ , we have

that T can be computed by a circuit of size ≤ c3`(m) ·mδ infinitely often,
which is a contradiction since T is a truth table with circuit complexity
≥ g(m) = ω(`(m) ·mδ).

5 Non-Hardness Under Many-One AC0 Reductions

In this section, we use the tools of the preceding section to show that the
problem of approximating circuit size is not hard for any class containing
PARITY under ≤AC0

m reductions. We recall Theorem 1:

13



Theorem 1. PARITY 6≤AC0

m ε-GapMCSP where ε(n) = o(n).

Proof. Suppose not. Then there is a family of AC0 circuits Cn that many-one
reduces PARITY to ε-GapMCSP. By Lemma 4, there is an a such that we
can transform each Cn into an NC0 circuit Dm on m = Ω(n1/a) variables,
computing a reduction f from either PARITY or ¬PARITY (depending on
the parity of the restriction) to ε-GapMCSP. For each input x of length
n, f(x) is of the form (T (x), θ(x)). Since there are only O(log n) output
gates in the θ(x) field, and each output gate depends on only O(1) input
variables, all of the output gates for θ(x) can be fixed by setting only O(log n)
input variables. Furthermore, we claim that there is some setting of these
O(log n) input variables, such that the resulting value of θ is greater than

log n/ log log n. If this were not the case, then the ≤AC0

m reduction of PARITY
(or ¬PARITY) on m = Ω(n1/a) variables to ε-GapMCSP has the property
that θ(x) is always less than log n/ log log n. But, as in the proof of Theorem
1.3 of [26], instances of MCSP where θ is O(log n/ log log n) can be solved
with a DNF circuit of polynomial size. Thus this would give rise to AC0

circuits for PARITY, contradicting the well-known circuit lower bounds of
[2, 13].

Summarizing up to this point: The circuits Dm with O(log n) additional
variables set (fixing the value of θ) yields a family on m′ = m−O(log n) =
Ω(n1/(a+1)) variables, where each circuit Dm′ reduces either PARITY or
¬PARITY to ε-GapMCSP, where furthermore this reduction satisfies the
hypotheses of Lemmas 6 and 7.

But then the conclusions of Lemmas 6 and 7 contradict the fact that
both PARITY and ¬PARITY on m′ variables have 0-certificate complexity
and 0-block-sensitivity m′.

6 Non-Hardness Under Limited Turing AC0 Re-
ductions

With some work, we can extend our non-hardness results beyond many-one
reductions to some limited Turing reductions.

In our proofs that deal with AC0-Turing reductions, we will need to
replace some oracle gates with “equivalent” hardware — where this hardware
will provide answers that are consistent with some solution to the promise
problem ε-GapMCSP, but might not be consistent with the particular solution
that is provided as an oracle. In order to ensure that this doesn’t cause any
problems, we introduce the notion of a “sturdy” AC0-Turing reduction:
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Definition 10. Let Π1 = (Y1, N1) and Π2 = (Y2, N2) be promise problems.

A family {Cn} of AC0-oracle circuits is a sturdy ≤AC0

T reduction from Π1

to Π2 if, for every pair of solutions S, S′ to Π2, every oracle gate G in Cn,
and every x ∈ Y1 ∪N1, there is a solution S′′ such that CSn (x) = CS

′′
n (x) =

CSn [G → S′](x), where the notation CSn [G → S′] refers to the circuit Cn
with oracle S, but where the oracle gate G answers queries according to the
solution S′ instead of S.

Lemma 11. Let Π be any promise problem. If Π ≤AC0

tt ε(n)-GapMCSP via a

reduction of depth d, then Π ≤AC0

tt ε(n)-GapMCSP via a sturdy reduction of

depth 5d with the same number of oracle gates. If Π ≤AC0

T ε(n)-GapMCSP via

a reduction of depth d, then Π ≤AC0

T ε(n)-GapMCSP via a sturdy reduction
of depth 5d with the same number of oracle gates.

Proof. Briefly: We modify Cn, so that each oracle query is checked against
queries that were asked “earlier” in the computation, and the computation
uses only the oracle answer from the first time a query was asked. Since
each query is given an answer that is consistent with some solution, the new
circuit gives the same answers as a new solution (which we denote as S′′).
Since Cn is a reduction, we get the same answer when using S or S′′.

In more detail: Label the oracle gates G1, . . . , Gk of Cn in topological
order so that there is no directed path from Gi to Gj for all i > j (and for a
truth-table reduction, any ordering suffices). Let qi denote the query asked
by Gi. Let C ′n be the circuit where we replace any wire that leaves Gi by a
wire connected to the following subfunction:

Gi(x) ∧ ∀j < i(qi 6= qj)
or

∃j < i(qi = qj ∧ ∀k < j(qk 6= qj) ∧Gj(qj))

The reader can verify that this additional circuitry can be implemented in
depth five, and thus C ′n has depth at most 5d. Furthermore, this hardware
does not add any oracle gates or directed paths between oracle gates, so the
number of oracle gates used is unchanged and truth-table reductions remain
truth-table reductions.

Now let S and S′ be any two solutions to ε(n)-GapMCSP. Consider
any input x of length n that satisfies the promise of Π = (Y,N). (That is,
x ∈ Y ∪ N .) Thus CSn (x) = CS

′
n (x). Now consider the operation of C ′n(x)

where some oracle gate Gi answers queries according to S′, rather than S.
By construction, the behavior of this computation C ′Sn [Gi → S′] is the same
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as that of CS
′′

n (x), where

S′′(q(x)) :=

{
S(q(x)) if q(x) 6= qi(x), or if qi(x) = qj(x) for some j < i,

S′(q(x)) otherwise.

S′′ is also a solution to ε-GapMCSP, since it agrees with either S or S′ on
each query, and both S and S′ agree on all queries that satisfy the promise.
Thus C ′Sn [Gi → S′](x) = CS

′′
n (x) = CS

′
n (x) = CSn (x), since Cn is a reduction.

Also, C ′S
′′

n (x) = CS
′′

n (x) and C ′Sn(x) = CSn (x), since each oracle gate of C ′n
answers each query the same way that Cn does, if the same oracle is provided
to each gate. Thus, we have that C ′Sn(x) = C ′S

′′

n (x) = C ′Sn [Gi → S′](x). This
establishes that C ′n is computing a sturdy reduction.

Theorem 12. Let k ≥ 1, and let ε(n) = o(n). Then PARITY 6≤AC0

k−tt

ε-GapMCSP.

Proof. We show that, for all k ≥ 1, if PARITY ≤AC0

k−tt ε-GapMCSP, then

PARITY ≤AC0

(k−1)−tt ε-GapMCSP. This suffices, since a 0-truth-table reduction

is simply an AC0 circuit computing PARITY, which cannot exist.
Given the oracle circuit family Cn, (where by Lemma 11 we may assume

that the ≤AC0

k−tt reduction is sturdy), let Dn be the subcircuit consisting
of those gates that are on a path from an input variable to any oracle
gate. Dn is simply an AC0 circuit on n variables, and thus by Lemma
4, there is an a such that we can transform each Dn into an NC0 circuit
Em(n) on m(n) = Ω(n1/a) variables. Replacing Dn by Em(n) in Cn yields
a k-tt reduction Fm(n) from PARITY or ¬PARITY on m(n) variables to
ε-GapMCSP. (If Fm(n) is a reduction from ¬PARITY, then modify Fm(n) by
negating the output gate, so that each Fm(n) is a reduction from PARITY
on m(n) variables to ε-GapMCSP.) Note that we can obtain a family of
polynomial-size circuits on n variables by starting with Fm(n2a) (which has
more than n input variables) and setting some of the variables to 0. Thus,
without any loss of generality, we may assume that our circuit family Cn has
the property that the subcircuit Dn consisting of the gates on a path from
an input gate to an oracle gate consists of NC0 circuitry.

For each n, select the first oracle gate G1 (in some order). Consider the
circuit family Bn consisting of all of the gates that are on a path from any
input to G1. Note that Bn is an NC0 circuit family computing some function
f , where f(x) is of the form (T (x), θ(x)). If it is possible to set some of
the input variables of Bn so that the output gates for θ(x) take on a value
θ ≥ log n/ log log n, do so. Note that this leaves m = n−O(log n) variables
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unset. (If it is not possible to do so, then (as in the proof of Theorem 1), G1

can be replaced in Cn by a polynomial-sized DNF circuit, thereby yielding a
(sturdy) (k − 1)-tt reduction, as desired.) Call C ′m and B′m the circuits that
result by restricting the O(log n) input variables of Cn and Bn, respectively.

We now aim to find a restriction of the inputs and a solution to ε-GapMCSP
such that the output of G1 is constant. Define Π = (Y,N) to be the promise
problem where for all x we put x ∈ Y if and only if CC(T (x)) ≤ ε(θ) and
x ∈ N if and only if CC(T (x)) > θ where B′m(x) = (T (x), θ). Observe that
B′m is a log n-honest NC0 reduction of Π to ε-GapMCSP.

There are two cases, depending on whether N = ∅ or not. If N = ∅, then
S′ = {(T, θ) : CC(T ) ≤ ε(θ)} is a solution to ε-GapMCSP such that every
query to G1 is answered affirmatively. By the sturdiness of the reduction, G1

can be replaced by a constant 1, transforming C ′m into a (k− 1)-tt reduction.
If N 6= ∅, then by Lemma 7, for all large m c0(Π|m) ≤ m/(k + 1). That

is, there is a way to set some r ≤ m/(k + 1) input variables, obtaining
restriction ρ, and thereby obtain a circuit B′′m−r = B′m|ρ on m− r variables,
such that for any string z of length m − r, CC(Tm−r(z)) > ε(θ) where
B′′m−r(z) = (Tm−r(z), θ). That is, every query to G1 is answered negatively
in C ′m|ρ, and hence G1 can be replaced by a constant 0, transforming C ′m|ρ
into a (k − 1)-tt reduction from PARITY to ε-GapMCSP on m − r = Ω(n)
variables in this case.

In both cases, we obtain a (k−1)-tt reduction from PARITY to ε-GapMCSP,
as desired.

With a larger gap, we can rule out nonadaptive reductions that use no(1)

queries.

Theorem 13. Let ε(n) < nα for some 1 > α > 0. Then for any circuit

family {Cn} computing an ≤AC0

tt reduction of PARITY to ε-GapMCSP, there
is a δ > 0 such that, for all large n, Cn makes at least nδ queries.

Proof. Let {Cn} be a circuit family computing an ≤AC0

tt reduction of PARITY
to ε-GapMCSP. By Lemma 11 we may assume that each Cn is sturdy. As
in the proof of the preceding theorem, we assume without loss of generality
that Cn has the property that the subcircuit Dn consisting of those gates
that lie on paths from input gates to oracle gates consists of NC0 circuitry of
depth d. (We will assume without loss of generality that, if the gates in Dn

are removed from Cn, the depth of the circuit that remains is also at most d.
Otherwise, let d be the maximum of these two constants.)

We will show that, for all large n, Cn contains at least nδ oracle gates
G1, G2, . . . , Gt, where δ is chosen to be less than (1− α)/12d2d+1. For the
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sake of a contradiction, assume that t < nδ.
Here is a high-level overview of the rest of the proof: As in the proof

of the preceding theorem, we construct a sequence of restrictions (one for
each oracle gate), so that when the input bits of Cn are set according to
the restrictions, each oracle gate either has a very small threshold θ, or
else it can be replaced by a constant. In this way, we transform Cn into a
circuit on m ≥ n/2 input bits where each oracle gate Gi has a threshold

θi < n1/3d/ log n. Replacing each such oracle gate by a DNF of size 2O(n1/3d)

(as in the proof of the preceding theorem) results in an AC0 circuit of depth
at most d + 1 computing PARITY, in contradiction to the lower bound of
[15]. Details follow.

Our argument proceeds in t stages, where oracle gate Gi is considered in
stage i. At the start of stage i we have a partial restriction ρi−1 that has at
most (i− 1)n1−2δ bits set. Here is a detailed description of stage i:

Consider the circuit family Bn consisting of all of the gates that are
on a path from any input to Gi. Note that Bn is an NC0 circuit family
computing some function fi, where fi(x) is of the form (Ti(x), θi(x)). If for
all x that agree with ρi−1, θi(x) < n1/(3d)/ log(n), then stage i is done; set
ρi = ρi−1 and go on to the next stage. Otherwise, there is a way to set an
additional O(log n) additional variables, thereby extending ρi−1 to obtain
a new restriction ρ′i, so that for all x which agree with ρ′i, θi(x) takes on a
constant value θi ≥ n1/(3d)/ log n ≥ n1/(4d).

We now aim to find a restriction of the inputs and a solution to ε-GapMCSP
such that the output of Gi is constant. Define Πi = (Yi, Ni) to be the
promise problem where for all x that agree with ρ′i we put x ∈ Yi if and
only if CC(Ti(x)) ≤ ε(θi) and x ∈ Ni if and only if CC(Ti(x)) > θi where
Bn(x) = (Ti(x), θi). Observe that Bn is a n1/(4d)-honest NC0 reduction of Πi

to ε-GapMCSP.
There are two cases, depending on whether Ni = ∅ or not. If Ni = ∅,

then S = {(T, θ) : CC(T ) ≤ θ} is a solution to ε-GapMCSP such that every
query to Gi is answered affirmatively. By the sturdiness of the reduction,
the output of Gi can be replaced by the constant 1, and we let ρi = ρ′i.

If Ni 6= ∅, then by Lemma 8, for all large n, c0(Πi|ρ′i) ≤ n1−3δ. (The

conditions of Lemma 8 are satisfied, since (1/4d)(1−α)/2d+1 > 3δ.) That is,
there is a way to set at most n1−3δ additional variables, thereby extending
ρ′i to obtain a new restriction ρi, such that for any string x of length n that
agrees with ρi, CC(Ti(x)) > ε(θi). Therefore, S = {(T, θ) : CC(T ) ≤ ε(θ)} is
a solution to ε-GapMCSP such that every query to Gi is answered negatively.
Hence, by the sturdiness of the reduction, gate Gi can be replaced by a
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constant 0.
This completes stage i. Note that, in obtaining ρi from ρi−1 we set an

additional O(log n) + n1−3δ < n1−2δ variables.
Since t < nδ, we have that ρt has m ≥ n − tn1−2δ > n − nδn1−2δ =

n− n1−δ > n/2 unset variables. Let C ′′m be the circuit Cn|ρt . Each oracle
gate in C ′′m has the property that the threshold that is computed is always
no more than n1/3d. Since the reduction is sturdy, the circuit still behaves
correctly if each oracle gate is replaced by a circuit that computes MCSP
exactly, and (as in the proof of Theorem 1.3 of [26]), instances of MCSP where

θ is bounded by n1/3d/ log n can be computed by a DNF of size 2O(n1/3d).
Replacing each oracle gate by such a DNF yields a circuit of depth at most
d+1, of size 2O(n1/3d), computing PARITY, thereby violating the lower bound
established in [15].

If we consider the parameterized version of MCSP, rather than ε-GapMCSP,
we obtain non-hardness even under ≤AC0

T reductions.

Theorem 14. Let `(m) = o(g(m)/mδ) for some 1 > δ > 0. Then for any

circuit family {Cn} computing an ≤AC0

T reduction of PARITY to MCSP[`, g],
there is an ε > 0 such that, for all large n, Cn makes at least nε queries.

Proof. Define the oracle depth of a gate G to be the largest number of oracle
gates on any directed path ending with G.

Let {Cn} be a circuit family computing an ≤AC0

T reduction of PARITY
to MCSP[`, g]. As above, we may assume that each Cn is sturdy, and that
the subcircuit Dn consisting of those gates at oracle depth 1 consists of NC0

circuitry of depth at most d. Let k be the maximum oracle depth of any
gate in {Cn}.

Here is a high-level overview of the rest of the proof: Similar to the proof
of the preceding theorem, we construct a sequence of t restrictions ρ1, . . . , ρt,
so that in Cn|ρi the first i gates G1, . . . , Gi can be replaced a constant. In
this way, we transform Cn into a circuit on n′ ≥ n/2 input bits of oracle
depth k − 1.

We will first show that there is a value ε > 0 (specified later) such that if
Cn does not have at least nε gates at oracle depth 1, then Cn can be replaced
by an ≤AC0

T reduction of oracle depth k − 1, by eliminating all of the oracle
gates G1, . . . , Gt at oracle depth 1.

Our argument proceeds in t stages, where oracle gate Gi is considered in
stage i. At the start of stage i we have a partial restriction ρi−1 that has at
most (i− 1)n1−2ε bits set. Here is a detailed description of stage i:
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Consider the circuit family Bn consisting of all of the gates that are on a
path from any input to Gi. Note that Bn is an NC0 circuit family computing
some function fi(x) = Ti(x). Let m = |Ti(x)|. Also, although Bn sits inside
of Cn (which is computing PARITY), the function fi might not have any
obvious connection to PARITY. By the end of the next paragraph, we will
have identified some relevant properties of fi.

We now aim to find a restriction of the inputs and a solution to MCSP[`, g]
for which the output of Gi is constant. Define Πi = (Yi, Ni) to be the promise
problem where for all x that agree with ρi−1 we put x ∈ Yi if and only if
CC(Ti(x)) ≤ `(m) and x ∈ Ni if and only if CC(Ti(x)) > g(m). Observe
that by construction of Πi, Bn is an NC0 reduction of Πi to ε-GapMCSP.

There are two cases, depending on whether N = ∅ or not. If N = ∅,
then S = {T : CC(T ) ≤ g(|T |)} is a solution to MCSP[`, g] such that every
query to Gi is answered affirmatively. By the sturdiness of the reduction,
the output of Gi can be replaced by the constant 1, and we let ρi = ρi−1.

If N 6= ∅, then, by Lemma 9, for all large n, c0(Πi|ρi−1) ≤ nε
′

for some
ε′ < 1 that depends only on d and δ. That is, there is a way to set at most
nε
′

additional variables, thereby extending ρi−1 to obtain a new restriction ρi,
such that for any string x of length n that agrees with ρi, CC(Ti(x)) > `(m).
Thus, S = {T : CC(T ) ≤ `(m)} is a solution to MCSP[`, g] such that every
query to Gi is answered negatively. Therefore, by the sturdiness of the
reduction, gate Gi can be replaced by a constant 0.

This completes stage i. Note that, in obtaining ρi from ρi−1 we set an
additional nε

′
variables.

It is now time to set the constant ε to be 1− (ε′/2).
Since t < nε, we have that ρt has r ≥ n − tnε

′
= n − n1−(ε′/2)nε

′
=

n− n1−(ε′/2) > n/2 unset variables.
A minor complication arises when we want to repeat this argument

inductively to reduce the oracle depth to k − 2 and so on. Namely, the
constant ε′ depends on the depth d of the NC0 circuitry that feeds into the
oracle gates at the bottom level of Cn. Cn|ρt has oracle depth k − 1, as
desired, but it now has AC0 circuitry feeding into the lowest level of oracle
gates, and when we appeal to Lemma 4 to apply a random restriction to
convert that AC0 circuitry to NC0 circuitry, the depth of the NC0 circuitry
increases to a depth that we can denote d2.

However, this problem is resolved by observing that the choice of ε′ in
Lemma 9 is monotone in the depth d. Thus, if we carry out the argument
above, but pick ε′ using the parameter d2 instead of d when we appeal to
Lemma 9, and then repeat the argument to reduce the oracle depth to k− 2,
the parameters still work out. If we let d3 be the depth of the NC0 circuitry
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that results by starting with Cn with depth-d NC0 circuitry at the bottom,
eliminating lowest level of oracle gates and applying a random restriction to
obtain a circuit family of oracle depth k − 1 with NC0 circuitry of depth d2

at the bottom, and then repeating the process to obtain a circuit family of
oracle depth k − 2 with NC0 circuitry of depth d3 at the bottom, then the
argument above is sufficient to obtain a circuit family of depth k − 3, etc.

Thus, there is a choice of ε′ that suffices to convert an arbitrary ≤AC0

T

reduction of oracle depth k (with fewer than nε oracle gates) to an AC0

circuit computing parity on nΩ(1) input bits, thereby obtaining the desired
contradiction.

7 Open Questions

There remain several open questions. The true complexity of MCSP remains
a mystery. We have made progress in understanding the hardness of an
approximation to MCSP, but how far can Theorem 1 be extended? Can we
prove non-hardness under general truth-table and Turing reductions? Can we
reduce the gap in the theorem to some constant factor approximations? Does
the impossibility result hold when AC0 is replaced with, say, AC0[2] many-one

reductions? Is MCSP hard for DET under ≤AC0

m reductions? (Recall that the
related problem MKTP is hard for DET under such reductions [7].)
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