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Abstract. Moser derived a normal form for the family of four-dimensional, quadratic, symplectic maps in 1994.
This six-parameter family generalizes Hénon’s ubiquitous 2d map and provides a local approximation
for the dynamics of more general 4D maps. We show that the bounded dynamics of Moser’s family is
organized by a codimension-three bifurcation that creates four fixed points—a bifurcation analogous
to a doubled, saddle-center—which we call a quadfurcation. In some sectors of parameter space a
quadfurcation creates four fixed points from none, and in others it is the collision of a pair of fixed
points that re-emerge as two or possibly four. In the simplest case the dynamics is similar to the cross
product of a pair of Hénon maps, but more typically the stability of the created fixed points does
not have this simple form. Up to two of the fixed points can be doubly-elliptic and be surrounded
by bubbles of invariant two-tori; these dominate the set of bounded orbits. The quadfurcation can
also create one or two complex-unstable (Krein) fixed points. Special cases of the quadfurcation
correspond to a pair of weakly coupled Hénon maps near their saddle-center bifurcations.
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1. Introduction. Multi-dimensional Hamiltonian systems model dynamics on scales rang-
ing from zettameters, for the dynamics of stars in galaxies [1, 2], to nanometers, in atoms and
molecules [3, 4]. Hamiltonian flows generate symplectic maps on Poincaré sections [5, §9.14],
and numerical algorithms for these flows can be symplectic [6, 7]. Symplectic maps also arise
directly in discrete-time models of such phenomena as molecular vibrations [8, 9], stability
of particle storage rings [10, 11], heating of particles in plasmas [12], microwave ionization of
hydrogen [13] and chaos in celestial mechanics [14].

A map f : R2n → R2n is canonically symplectic for coordinates x ∈ Rn and momenta
y ∈ Rn if its Jacobian matrix, Df(x, y), satisfies

(1.1) DfTJDf = J, J =

(
0 −I
I 0

)
,

where J is the Poisson matrix. In particular this implies that the map is volume preserving:
det(Df) = 1.

Perhaps the most famous symplectic map is the area-preserving map introduced by Hénon
in 1969 as an elemental model to inform his studies of celestial mechanics [15]. This map is
also the simplest nonlinear symplectic map, since it contains a single quadratic term, and
yet—as Hénon showed—every quadratic area-preserving map can be reduced to his form [16].
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Quadratic maps are useful because they model the dynamics of smooth maps in the
neighborhood of a fixed point or of a flow near a periodic orbit. For example, quadratic
terms in the power series give a local description of the dynamics near an accelerator mode
of Chirikov’s standard map [17]. More generally, any symplectic diffeomorphism can be C∞

approximated by a polynomial map on a compact set [18].
Higher-dimensional analogues of Hénon’s map were proposed in [19], and similar maps

were used to study the stickiness of regions near an elliptic fixed point [20], the resonant
formation of periodic orbits and invariant circles [21, 22, 23, 24], bifurcations due to twist
singularities [25], and the dynamics near a homoclinic orbit to a saddle-center fixed point [26].
Such maps model a focusing-defocusing (FODO) magnet cell in a particle accelerator and have
been used to study the structure of bounded orbits, the dynamic aperture, and robustness of
invariant tori [27, 28, 29, 30].

In 1994, Moser [31] showed that every quadratic symplectic map on R2n is conjugate to
the form

(1.2) f = α ◦ σ ◦ β.

Here α, β : R2n → R2n are symplectic maps, β is linear and α is affine, and σ : Rn × Rn →
Rn × Rn is a symplectic shear:

(1.3) σ(x, y) = (x, y −∇V (x)),

where V : Rn → R is a cubic potential. There are several immediate consequences of this
representation. Firstly, if the quadratic map f has finitely many fixed points, as it generically
will, then there are at most 2n [31]. Note that more generally a quadratic non-symplectic map
on a 2n-dimensional space could have as many as 22n isolated fixed points. Secondly, since
the inverse of σ is also a quadratic shear of the same form (replace V by −V ), the inverse of
any quadratic, symplectic map is also quadratic. More generally, the inverse of a quadratic
diffeomorphism could be a polynomial map of higher degree [32, Thm 1.5]; for example, the
inverse of the volume-preserving map (x, y, z, w) 7→ (x, y+x2, z+y2, w+ z2) has degree eight.
The form (1.2) also applies to cubic maps, but not to higher degree polynomial maps [33].

In this paper we study the dynamics of Moser’s map in four dimensions. The normal
form for the 4D case is reviewed and slightly transformed for convenience in §2. We argue
in §3 that its fixed points are most properly viewed as arising from a bifurcation in which
they emerge from a single fixed point as parameters are varied away from a codimension-three
surface. Since this bifurcation often results in the creation of four fixed points, we call it a
quadfurcation, with thanks to Strogatz who, “with tongue in cheek,” proposed the term in an
exercise for 1d odes in his well-known textbook [34, Ex. 3.4.12].

As we will see in §3.1, the unfolding of the quadfurcation in Moser’s map can lead to (i)
the creation of four fixed points from none, or (ii) a collision and re-emergence of two pairs
of fixed points, or (iii) even the collision of a pair leading to four fixed points. The stability
of these fixed points is investigated in §3.2. The unfolding of the quadfurcation along paths
in parameter space is studied in §3.3-§3.4. When the map is reversible, §3.5, additional cases
occur including the simplest one: the Cartesian product of a pair of area-preserving maps.
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We numerically investigate the creation of families of invariant two-tori, as expected from
KAM theory, around doubly elliptic fixed points in §4. In §5 we observe that these bubbles
of elliptic orbits strongly correlate with the regions of bounded dynamics.

Since Moser’s map is affinely conjugate to the general quadratic, symplectic map, it must
have a limit in which it reduces to a pair of uncoupled Hénon maps—we show this in §6.

2. Moser’s Quadratic, Symplectic Map.

2.1. Four-Dimensional Normal Form. For the two-dimensional case, the map (1.2) can
be generically transformed by an affine coordinate change to the Hénon map H,

(2.1) H(x, y) = (−y + ah + x2, x),

with a single parameter ah. When this map has an elliptic fixed point (for −3 < ah < 1),
it is conjugate to the map whose dynamics were first studied by Hénon [15]. By a similar
transformation Moser showed [31] that in four dimensions, (1.2) can generically be written as

(2.2) (x′, y′) = f(x, y) = (C−T (−y +∇V (x)), Cx),

where

(2.3)
C =

(
α β
γ δ

)
,

V = A1x1 +A2x2 + 1
2A3x

2
1 + ε2x

3
1 + x1x

2
2,

and x ≡ (x1, x2) ∈ R2, y ≡ (y1, y2) ∈ R2. Here there are two discrete parameters, ε1 ≡
det(C) = αδ − βγ = ±1, and ε2 ≡ ±1 or 0. The remaining six parameters are free. We will
refer to (2.2) as Moser’s map below. It is convenient to think of the six real parameters of f
as (A1, A2, A3) and (α, δ, µ), where

(2.4) µ = β + γ.

Indeed, given these six, and the sign ε1, we can determine the off-diagonal elements of C from

(2.5) β, γ = 1
2µ±

√
ε1 − αδ + µ2/4.

The choice of the sign here is unimportant since this simply replaces C with CT , and the
resulting map is conjugate to the inverse of (2.2); see §2.3. Note that (2.5) has real solutions
only when µ2 ≥ 4(αδ−ε1), and that C is symmetric only at the lower bound of this inequality.

The map (2.2) is easily seen to be symplectic (1.1) as it is the composition of the symplectic
shear (1.3), the Poisson map, J(x, y) = (−y, x), and the linear symplectic map

(x, y) 7→ (C−Tx,Cy).
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2.2. Shifted Coordinates. As a first step in the analysis of the dynamics of (2.2), we will
study its fixed points. To do this it is convenient to define shifted variables and parameters.
There is a codimension-three set of parameters where the map has exactly one fixed point,
and focusing on this set simplifies the calculations more generally.

For any matrix C and when ε2 6= 0, the map (2.2) has exactly one fixed point at

(2.6)
xQ = (δ, 1

2µ),

yQ = CxQ,

when the parameters (A1, A2, A3) of the potential (2.3) take the values

(2.7)

AQ
1 = 3δ2ε2 + 1

4µ
2,

AQ
2 = δµ,

AQ
3 = 2α− 6δε2.

To see this, and to simplify the computations it is convenient to shift coordinates so that the
origin is at the point (xQ, yQ) and to define new shifted parameters:

(2.8)

(ξ, η) = (x− xQ, y − yQ),

a = A1 −AQ
1 + δ(A3 −AQ

3 ),

b = A2 −AQ
2 ,

c = A3 −AQ
3 .

In these new coordinates, (2.2) becomes

(2.9) (ξ′, η′) = M(ξ, η) = (ξ + C−T (−η + Cξ +∇U(ξ)), Cξ),

where the new potential,

(2.10) U = aξ1 + bξ2 + 1
2cξ

2
1 + ε2ξ

3
1 + ξ1ξ

2
2 ,

is the same as V from (2.3) upon replacing (A1, A2, A3) by (a, b, c). This shifted form of
Moser’s quadratic, symplectic map is convenient because several computations can be carried
out more easily and many of the expressions we obtain below will be more compact.

The map (2.9) is generated by the discrete Lagrangian

(2.11) L(ξ, ξ′) = (ξ′ − ξ)TCξ − U(ξ),

through the equation
η′dξ′ − ηdξ = dL(ξ, ξ′).

In other words the map is implicitly defined by η = −∂ξL(ξ, ξ′) and η′ = ∂ξ′L(ξ, ξ′). This
means that M is exact symplectic [35], and of course, that it preserves the symplectic form
dξ ∧ dη. Note also that if we denote an orbit of (2.9) as a sequence

(2.12) {(ξt, ηt) ∈ R4 | (ξt, ηt) = M(ξt−1, ηt−1), t ∈ Z}
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and define the action of a finite portion by

A =

k−1∑
t=j

L(ξt, ξt+1),

then each stationary point of A, for fixed endpoints, is a segment of an orbit with the mo-
mentum determined by ηt+1 = Cξt.

2.3. Second Difference Form and ODE Limit. The shifted form (2.9) of Moser’s map
(2.2) can be written as a second difference equation. Denoting an orbit as (2.12), then ηt =
Cξt−1 and the map (2.9) is equivalent to

(2.13) CT (ξt+1 − ξt)− C(ξt − ξt−1) = ∇U(ξt).

One immediate consequence of (2.13) is that the replacement C → CT is clearly equivalent
to inverting the map. Therefore the invariant sets of the Moser map with C → CT are the
same as those of the original map. Similarly, note that the replacement C → −C together
with ξ → −ξ and c→ −c leaves the Moser map invariant. We will also use the form (2.13) in
§3.2 and §5.

To emphasize the different roles of the symmetric and antisymmetric parts of C, let

(2.14)

C = Cs + Ca,

Cs ≡ 1
2(C + CT ) =

(
α µ/2
µ/2 δ

)
,

Ca ≡ 1
2(C − CT ) =

(
0 ν/2
−ν/2 0

)
,

where ν = β − γ and, as before µ = β + γ. Then (2.13) becomes

(2.15) Cs(ξt+1 − 2ξt + ξt−1)− Ca(ξt+1 − ξt−1) = ∇U(ξt).

In this form the map closely resembles a pair of second-order differential equations.
Indeed in a neighborhood of the origin in the phase space, (ξ, η), and in the space of the

new parameters, (a, b, c, ν), (2.15) approaches a Lagrangian system of ODEs. To see this,
formally introduce a parameter h, and scale

(a, b, c, ν)→ (h4a, h4b, h2c, hν).

Here hν represents the deviation from symmetry, so that C → Cs + hCa. Then in the limit
h → 0, the second difference equation (2.13) limits on a system of ODEs in a scaled time
τ = ht, and a new variable

ξt → h2q(τ).

This scaling implies that for the potential (2.10), ∇ξU(ξ)→ h4∇qU(q). Moreover, as h→ 0,
the second difference ξt+1− 2ξt + ξt−1 → h4q̈(τ) +O(h5) and the first difference ξt+1− ξt−1 →
2h3q̇(τ) +O(h4). Substituting these into (2.15), gives the limiting system

(2.16) Csq̈ − 2Caq̇ = ∇U(q),
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as h → 0. Thus the symmetric part of C corresponds to a mass matrix, multiplying the
acceleration. By contrast, Ca corresponds to a Coriolis-like force, which is proportional to the
velocity.

The system (2.16) is obtained from the Lagrangian

(2.17) L(q, q̇) = 1
2 q̇
TCsq̇ + qTCaq̇ + U(q).

To convert (2.16) into a Hamiltonian system define the canonical momenta

p(τ) =
∂L

∂q̇
= Csq̇ − Caq,

giving a Hamiltonian, H = pq̇ − L, that has Coriolis and centripetal terms:

(2.18) H(q, p) = 1
2p
TCsp+ pTCsCaq − 1

2q
T (CaCsCa)q − U(q).

Thus Cs is the mass matrix, and U is the negative of the potential energy. The antisymmetric
matrix Ca contributes both a Coriolis-like term, bilinear in q and p, and a centripetal-like
term, quadratic in q. We will use this interpretation, for the case of symmetric C, in §3.5.

3. Quadfurcation. From the general theory [31] we know that Moser’s map (2.2) and
hence (2.9) has at most four (isolated) fixed points. On the codimension-three surface a =
b = c = 0 in parameter space there is a single fixed point (unless ε2 = 0). As we will see
below, there are sectors in parameter space near this surface for which there are no fixed
points, and sectors for which there are four. It seems appropriate to call the creation of
four fixed points from none a quadfurcation. In some cases a quadfurcation can be analogous
to a simultaneous pair of co-located saddle-center bifurcations; however, the stabilities of the
resulting fixed points are usually not those of a pair of decoupled area-preserving maps, namely
the Cartesian product of 2d saddles and centers.

In the following subsections we study the fixed points, their stability, and the structure of
the region of phase space around the elliptic fixed points that contains bounded orbits.

3.1. Fixed Points. The coordinates, ξ∗, of the fixed points of (2.9) are critical points of
the cubic polynomial (2.10). Several contour plots of U(ξ) are shown in Fig. 1. Critical points
satisfy the equations

(3.1) 0 = ∇U(ξ∗) =

(
a+ cξ∗1 + 3ε2ξ

∗2
1 + ξ∗22

b+ 2ξ∗1ξ
∗
2

)
.

Note that the positions are independent of the matrix C, though the momenta, determined
by η∗ = Cξ∗, depend on the full matrix. Note that if ∇U(ξ∗) = 0 for parameters (a, b, c),
then it is also zero at the point −ξ∗ for parameters (a, b,−c) and at the point (ξ∗1 ,−ξ∗2) for
(a,−b, c). Thus we can restrict attention to b, c ≥ 0.

The case a = b = c = 0 is an organizing center for the solutions of (3.1). In this case
the second component immediately implies that either ξ∗1 = 0 or ξ∗2 = 0. Then, whenever
ε2 6= 0, the first implies that both ξ∗1 = ξ∗2 = 0. We call this the quadfurcation point. Since the
matrix elements (α, δ, µ) are still free parameters, it occurs on a codimension-three surface
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Figure 1. Contour plots of the potential U (2.10) for (a, b, c) = (−1,−0.3,−1). (a) ε2 = 1. Here there
are four critical points, implying four fixed points of (2.9). (b) ε2 = −1, two critical points. (c) ε2 = 0, three
critical points.

in the six-dimensional parameter space. The off-diagonal elements of the matrix, β and γ,
are then fixed up to exchange by the condition det(C) = ε1, (2.5). In the parameterization
(2.9) the quadfurcation surface is just the three-plane a = b = c = 0. In Moser’s original
parameterization, this surface is determined by (2.7).

More generally if b 6= 0 then (3.1) implies that ξ∗1 6= 0, so

(3.2) ξ∗2 = − b

2ξ∗1
.

Substituting into the first component of (3.1) then shows that ξ∗1 must be a root of the scalar
polynomial

(3.3) P (v; a, b, c, ε2) = 3ε2v
4 + cv3 + av2 + 1

4b
2.

When ε2 6= 0 this polynomial is quartic, and so has at most four roots. Since P has no linear
term, it has exactly one root in C only when a = b = c = 0, on the quadfurcation set. When
ε2 = 0, P (v) is at most cubic, and there are at most three isolated roots. Several examples
are shown in Fig. 2.

There are various regions in the parameter space (a, b, c) that have different numbers of
fixed points. We now determine the bifurcation sets, which separate these regions: to find
these sets when ε2 6= 0, it is easiest to solve for the surfaces on which there are double roots,
i.e., P (v) = 0 and P ′(v) = 0. First, P always has a critical point, P ′(v) = 0, at v = 0, and it
has two more critical points if

(3.4) ε2a < a+(c) ≡ 3
32c

2.

Eliminating v from the two equations P (v) = P ′(v) = 0 gives the discriminant

b2
[
1728ε2b

4 + 9(−3c4 + 48ε2ac
2 − 128a2)b2 − 16a3c2 + 192ε2a

4
]

= 0.

Thus there are double roots at b = 0, and on the surfaces b = ±
√
D±(a, c), where

(3.5) D±(a, c) =
ε2

384

(
3(c2 − 8ε2a)2 − 64a2 ± |c|√

3
(3c2 − 32ε2a)3/2

)
.



8 A. BÄCKER AND J. D. MEISS

−0.3

0.0

0.3

−1 0 1

∆ = −1.0

∆ = 0

∆ = 1.3

(a) ε2 = 1

v

P (v)

−1 0 1

∆ = −1.0

∆ = 0

∆ = 1.3

(b) ε2 = −1

v −1 0 1

∆ = −1.0

∆ = 0

∆ = 1.3

(c) ε2 = 0

v

Figure 2. The polynomial P (v) (3.3) along the curve (a, b, c) = ∆(1, 0.3, 1) as ∆ varies. (a) ε2 = 1 where
four roots are created when ∆ decreases through zero; (b) ε2 = −1 where there are two roots for any ∆ 6= 0;
and (c) ε2 = 0 with one root for ∆ > 0, infinitely many at ∆ = 0, and three for ∆ < 0.

For these surfaces to be real, the radical in (3.5) must be real, i.e., (3.4) must be satisfied.
Moreover letting

(3.6) a−(c) ≡ 1
12c

2,

then D+(ε2a−, c) = 0 and D−(0, c) = 0. To define real-valued functions let

(3.7)

b+(a, c) =

{ √
D+(a, c), a < ε2a−, and ε2a < a+

0, otherwise
,

b−(a, c) =

{ √
D−(a, c), a < 0, and ε2a < a+

0, otherwise
.

The resulting surfaces are shown in Fig. 3.
If ε2 = 1, then when b > b+ there are no real roots. At the upper surface, b = b+(a, c),

which is nonzero for a < a−, two roots are created. Two additional roots are created upon
crossing b−(a, c), which is nonzero for a < 0, see Table 1. The two surfaces b±(a, c) intersect
at c = 0 on the line a = −

√
3|b|. Crossing this codimension-two set b− = b+ at c = 0 and

moving into the region b < b− thus corresponds to the simultaneous creation of four fixed
points at two different locations, i.e., to a pair of simultaneous saddle-center bifurcations, as
we will see in §3.2.

If ε2 = −1, then (3.3) has four real roots only if −a+ < a < 0 and b+ < b < b−. Note that
b+ is nonzero only when −a− < a < 0. Inside cusp-like shape formed from the b± surfaces, as
shown in Fig. 3(b), there are four roots. Going outwards from this region, by either crossing
b− or b+, two solutions disappear in a saddle-center bifurcation. Thus on the surfaces b = b+
or b = b− there are three roots (one of them with multiplicity 2). When these surfaces merge,
on the curve a = −a+ and b = b±(−a+, c) = c2/32, there are two fixed points:

(ξ∗1 , ξ
∗
2) =

{
c
8(1,−1), (multiplicity 3)
c

24(−1, 9), (multiplicity 1)
(ε2 = −1, a = −3b = −a+).
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0

2

4

b+

b–

ε2= +1

a = –√3b

a = a–

(a)

2
2

4

b–

b+

ε2= –1

a = –a–

a = –3b = –a+

a = 0
 

(b)

Figure 3. Surfaces in (a, b, c) for which there are double roots of P (3.3) (a) when ε2 = 1 and (b) when
ε2 = −1. For ε2 = 1, when b is sufficiently positive there are no real solutions, as b decreases through the b+
surface (3.7), two solutions are created, and finally when it passes through through the b− surface there are four
solutions. For ε2 = −1, there are two solutions if b is sufficiently large. An additional two solutions are created
upon moving through either of the b± surfaces. Curves where bifurcation surfaces intersect are also shown in
each panel: in (a) a = a−(c) on the b = 0 plane and a−

√
3b on the c = 0 plane, and in (b) a = 0 and −a−(c)

at b = 0 and a = −3b = −a+(c).

The cases b = 0 and c = 0 require special treatment. When c = 0 but b 6= 0, the
polynomial (3.3) has no cubic term and the fixed points can be solved for explicitly:

(3.8) ξ∗1 = ±
√
−1

6ε2

(
a±

√
a2 − 3ε2b2

)
(c = 0),

where ξ∗2 is then obtained from (3.2). Note that there are four possible points here, with
choices for the outer ± and the inner ±. This equation gives real solutions only when both
square roots are real. When ε2 = 1, (3.8) gives four real solutions if a < −

√
3|b|. On the

boundary a = −
√

3|b|, these four solutions are created in two pairs, at

(ξ∗1 , ξ
∗
2) = ±

√
−a

6

(
1,−
√

3 sgn(b)
)

(ε2 = 1, a = −
√

3|b|, c = 0).

These pairs merge at the quadfurcation point a = b = c = 0. If ε2 = −1 then only the inner +
sign choice is valid and (3.8) gives two real solutions whenever a or b 6= 0. Table 1 delineates
the possibilities.

If b = 0, then (3.1) implies that either ξ∗1 = 0 or ξ∗2 = 0. The first component of (3.1) is
then trivially a quadratic function. In this case the four solutions are

(3.9) (ξ∗1 , ξ
∗
2) =

{ (
0,±√−a

)(
ε2
6 (−c±

√
c2 − 12ε2a), 0

) (b = 0).
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Number of Fixed Points
ε2 b c 0 1 2 3 4

1 b > b+ b = b+ b ∈ (b−, b+) b = b− b < b−

0 a > a− a = a− 0 < a < a− a = 0 a < 0

0 a > −
√

3|b| a = −
√

3|b| a < −
√

3|b|
0 0 a > 0 a = 0 a < 0

−1 a /∈ (−a+, 0], b = b+, a ∈ (−a+, 0),

or b /∈ [b+, b−] or b = b− and b ∈ (b+, b−)

0 a /∈ [−a−, 0] a = −a−, 0 a ∈ (−a−, 0)

0 always

0 0 a = 0 a 6= 0

0 a > −a0 a = −a0 a < −a0

0 a > 0 a = 0 a < 0

0 a ≥ 0 a < 0

0 0 a > 0 a < 0
Table 1

Number of fixed points of the map (2.9) depending upon ε2 and parameters (a, b, c). Since this number is
an even function of b and c, we can assume that both are nonnegative. The functions b±(a, c) are given by
(3.7), and a±(c) by (3.4) and (3.6). The additional rows delineate special cases when either b or c or both are
zero.

Note that when ε2 = 1 there are four real fixed points whenever a < 0, and two in the range
0 < a < a−. If ε2 = −1, then the first pair is real when a ≤ 0, and the second pair is real only
if a ≥ −a−. Thus there are four real fixed points when −a− < a < 0.

For ε2 = 0 and c 6= 0, the polynomial (3.3) is cubic, so there is always at least one fixed
point. The critical points of P are at v = 0 and v = −2a/3c, and critical values P (0) = 1

4b
2 ≥ 0

and P (−2a/3c) = 4
27
a3

c2
+ 1

4b
2. Thus there are three fixed points when

(3.10) a < −a0 ≡ −3

∣∣∣∣bc4
∣∣∣∣2/3 .

If c = 0, then the polynomial (3.3) is at most quadratic. It has two solutions if a < 0. Special
cases are again shown in Table 1. Finally, when a = b = c = 0, there is a line of fixed points
at ξ2 = 0. This case (not shown in Table 1) is the only one for which there are infinitely many
fixed points.

3.2. Stability. The stability properties of fixed points of the map (2.9) are most easily
computed using the second difference form (2.13). Linearization about a fixed point gives the
2× 2 eigenvalue problem

(3.11)
(
λCT + λ−1C

)
q = Wq,
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where W = C + CT +D2U(ξ) is the symmetric matrix

(3.12) W =

(
2α µ
µ 2δ

)
+

(
c+ 6ε2ξ1 2ξ2

2ξ2 2ξ1

)
.

Given the coordinate eigenvector q, the momentum components are p = λ−1Cq. A similar
analysis can be used, more generally, for a period-n orbit, see [36, eqs. (21)-(22)].

Thus for a nontrivial solution of (3.11), the 2× 2 matrix

N(λ) = λCT + λ−1C −W

must be singular. Since the map is symplectic its eigenvalues must satisfy the reflexive prop-
erty: if λ is an eigenvalue, then so is λ−1. This follows for (3.11) because W T = W implies
that NT (λ) = N(λ−1). As a consequence the characteristic polynomial can be written as a
quadratic polynomial in the partial trace ρ = λ+ λ−1:

(3.13) det(N(λ)) = ε1(ρ2 −Aρ+B − 2),

where we recall that ε1 = detC. The parameters A,B are Broucke’s stability parameters
[37, 38]. More generally, these parameters are determined by the linearized map DM at a
fixed point, by A = tr(DM) and B = 1

2

[
(tr(DM))2 − tr(DM2)

]
; equivalently, in terms of the

eigenvalues ρ1,2 of the reduced characteristic polynomial one has A = ρ1+ρ2 and B = ρ1ρ2+2,
or explicitly

(3.14) ρ1,2 = 1
2

(
A±

√
A2 + 8− 4B

)
≡ λ1,2 + λ−1

1,2,

where λ1,2, λ
−1
1,2 are the two reciprocal pairs of eigenvalues of the characteristic polynomial of

the linearized map.
The (A,B)-plane is divided into seven stability regions as shown in Fig. 4. These are

bounded by the saddle-center (SC), and period-doubling (PD) lines:

(3.15)
SC = B − 2A+ 2 = 0,

PD = B + 2A+ 2 = 0,

on which there is a pair of eigenvalues at +1 or −1, respectively, and the Krein parabola (KP )

(3.16) KP = B −A2/4− 2 = 0

on which there are double eigenvalues on the unit circle (for B < 6 and |A| < 4) or real axis
(for B ≥ 6 and |A| ≥ 4.). The point (A,B) = (4, 6) corresponds to four unit eigenvalues.
The seven stability regions with different types of linearized dynamics around the fixed point
are labeled by combinations of E (elliptic), H (hyperbolic), and I (inverse hyperbolic), each
involving a pair of eigenvalues (λ, 1/λ), and in the CU (complex unstable) region, where
KP > 0, there is a complex quartet of eigenvalues.

For a general symmetric W , the stability parameters are

A = ε1(w22α+ w11δ − w12µ),

B = ε1(det(W )− (β − γ)2) + 2.
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Figure 4. Stability regions for a reflexive, quartic, characteristic polynomial. There are seven regions, EE,
EH, IE, IH, II, HH, and CU, with the configuration of the four eigenvalues as shown in the representative
complex plane insets.

For the matrix (3.12) these become

(3.17)
A = 4 + ε1

[
δc− (β − γ)2 + (6δε2 + 2α)ξ1 − 2µξ2

]
,

B = 6 + ε1

[
2(δc− (β − γ)2) + 12ε2(ξ1 + δ)ξ1 + 2(2α+ c)ξ1 − 4(ξ2 + µ)ξ2)

]
,

and the saddle-center and period-doubling parameters are

(3.18)
SC = ε1 det(D2U) = ε1(12ε2ξ

2
1 + 2cξ1 − 4ξ2

2),

PD = 16 + 4ε1

(
δc− (β − γ)2 + 3ε2ξ

2
1 + (6δε2 + 2α+ 1

2c)ξ1 − ξ2
2 − 2µξ2

)
.

In particular, note that the sign of SC depends on the fixed points only through the sign
of the Hessian of the potential (2.10); for example, if ε1 = 1, then SC > 0 at extrema and
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SC < 0 at saddle points of U . Finally, the Krein parameter is

(3.19)

KP =− 1
4(δc− (β − γ)2)2

+ (cδ − (β − γ)2)(µξ2 − (3δε2 + α)ξ1) + 2ε1cξ1

+ (12ε1ε2 − (3δε2 + α)2)ξ2
1 + 2µ(3δε2 + α)ξ1ξ2 − (µ2 + 4ε1)ξ2

2 .

At the quadfurcation, where a = b = c = ξ1 = ξ2 = 0, (3.17) gives

(3.20)
AQ = 4− ε1(β − γ)2,

BQ = 6− 2ε1(β − γ)2.

This implies that the quadfurcation point lies on the saddle-center line; indeed from (3.18),
SC = 0 at this point. When ε1 = 1 (ε1 = −1), then (AQ, BQ) lies below and to the
left of (above and to the right of) the point (4, 6). The quadfurcation occurs at (4, 6) only
when β = γ, i.e., when the matrix C is symmetric, see the discussion in §3.5 below. The
quadfurcation occurs below the period-doubling line, i.e., for PD < 0, only if ε1 = 1 and
|β − γ| > 2.

More generally, since fixed points are critical points of U , (3.1), they can be created or
destroyed only when det(D2U) = 0, which is equivalent to SC = 0 by (3.18). This can also be
seen upon computing the resultant of SC and P (3.3)—recall that the resultant gives the set
of parameters on which two polynomials simultaneously vanish. This resultant is proportional
to b4(b2 − b2−)(b2 − b2+). Of course, this is what we saw in Fig. 3—pairs of fixed points are
created or destroyed upon crossing the surfaces b = b± (3.7).

3.3. Quadfurcation along a Line in Parameter Space. Near the quadfurcation, if we
assume that a, b, c = O(∆) for ∆ � 1, then ξi = O(

√
∆), the cubic term involving c in (3.3)

is negligible to lowest order, and the fixed points are given by (3.8) to O(
√

∆). Substitution
into the stability criteria then gives

SC = ∓4ε1

√
a2 − 3ε2b2 +O(∆3/2),(3.21a)

PD = 16− 4ε1(β − γ)2 + 8ε1[(3δε2 + α)ξ1 − µξ2]
√

∆ +O(∆),(3.21b)

KP = (β − γ)2
[
−1

4(β − γ)2 + (3δε2 + α)ξ1 − µξ2

]
+O(∆).(3.21c)

Note that the ∓ signs in (3.21a) correspond to the inner ± in (3.8), the sign inside the
square root. Using these results, we can get an overview of all possible stability scenarios of
the fixed points created in a quadfurcation, see Table 2 and Fig. 5. As the quadfurcation
point shifts along the SC line, different stabilities occur, but since SC ∼ ∆ and generically
PD − PDQ ∼

√
∆, the branches emerge tangentially to the SC line (the O(

√
∆) term could

vanish, but this is exceptional). Moreover, the sign of A − AQ depends on the choice of the
outer ± sign in (3.8), so this pair of fixed points form a parabolic curve that is tangent to the
SC line at the quadfurcation point.

Finally, note that when β 6= γ, then KP < 0 at the quadfurcation, and hence a direct
transition to the complex unstable (CU) region is only possible in the symmetric case for
which (AQ, BQ) = (4, 6); this is discussed in §3.5.
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(AQ, BQ) Condition Fixed Points and Stability

on SC ε1 |β − γ| ε2 = 1, a < −
√

3|b| ε2 = −1, a or b 6= 0

> (4, 6) −1 6= 0 2 EH + 2 HH 2 HH
= (4, 6) ±1 0 see §3.5 see §3.5
< (4, 6) 1 < 2 2 EE + 2 EH 2 EH

= (0,−2) 1 2 IE + EE + IH + EH IH + EH
< (0,−2) 1 > 2 2 IE + 2 IH 2 IH

Table 2
Overview of the location of the quadfurcation along the SC line depending on the the value of ε1 and

the asymmetry of C. Stabilities of the fixed points are shown in the last two columns for a path of the
form (a, b, c) = ∆(a∗, b∗, c∗), which has a quadfurcation at ∆ = 0. For ε2 = 1, four fixed points are created
as a becomes negative if a < −

√
3|b|. Their stabilities are shown in column four. When ε2 = −1, two

fixed points exist whenever a or b 6= 0 and collide at ∆ = 0; their stabilities are shown in the last column.

For ε2 = 1 the basic structure is the one shown in the fourth column of Table 2 and
Fig. 5(a, c): four new branches emerge from a point on the saddle-center line. In each case,
two of the fixed points are above (SC > 0), and two are below (SC < 0), this line. The
implication is that when ε1 = 1, and |β − γ| > 2 the quadfurcation occurs below the PD line
and corresponds to the transition

∅ → 2 IE + 2 IH,

i.e., two of the created fixed points are of type IE and two of type IH (this is not shown in
Fig. 5, but compare with Fig. 4). Perhaps the most interesting quadfurcation creates stable
fixed points. This occurs for ε1 = 1 and 0 < |β − γ| < 2, where we have the transition

(3.22) ∅ → 2 EE + 2 EH.

This is the case shown in Fig. 5(a): as ∆ decreases from zero, the two created EE points move
along the green and black curves in the figure and the two EH points move along the red and
blue curves.

Note that one of the EE points in this figure eventually undergoes a Krein bifurcation [39],
moving into the CU region. The implication is that the Krein signature of this point must
have been indefinite when it was created in the quadfurcation, since this signature is constant
under parameter variations so long as the stability remains in the interior of the EE-region in
Fig. 4 [38, Sec. III].

Finally, when ε1 = −1 the quadfurcation point is above (A,B) = (4, 6) whenever β 6= γ,
so the transition is

(3.23) ∅ → 2 EH + 2 HH.

This case is shown in Fig. 5(c). Again, a Krein bifurcation, HH → CU, eventually occurs.
For ε2 = −1 the basic structure is shown in the last column of Table 2 and in Fig. 5(b, d).

There are two fixed points before and after the quadfurcation with positions given by the inner
+ sign in (3.8). Using this and (3.2), there is no sign choice that smoothly connects the (ξ∗1 , ξ

∗
2)

branches for ∆ < 0 to ∆ > 0: the fixed points lose their identity when they collide. The sign
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Figure 5. Stability of fixed points for (a, b, c) = ∆(1.5, 0.5, 1) with ∆ ∈ [−1, 1] and different choices of
C, ε2, and ε1: (a, b) Case (α, µ, δ, ε1) = (1, 0.1, 0.5, 1). Since |β − γ| ≈ 1.42, the quadrupling occurs at
(AQ, BQ) = (1.99, 1.98). (a) ε2 = +1: creation of four fixed points in the transition (3.22) for ∆ < 0.
(b) ε2 = −1: the transition (3.24), before and after the bifurcation one has two fixed points. (c, d) Case
(α, µ, δ) = (1, 2.0,−0.5), ε1 = −1, giving (β, γ) ' (1.71, 0.29) and the quadrupling occurs at (AQ, BQ) = (6, 10).
(c) ε2 = 1: creation of four fixed points (3.23) for ∆ < 0. (d) ε2 = −1: the transition (3.25) two fixed points
before and after the bifurcation. The arrows indicate the direction towards more negative ∆ and in (b, d) the
branches for ∆ > 0 are shown as dashed lines.

choice implies that sgn(SC) = − sgn(ε1). When ε1 = 1, and hence (AQ, BQ) < (4, 6), the
fixed points both before and after the quadfurcation are below the SC line, so the transition
is

(3.24) 2 EH→ 2 EH

if |β− γ| < 2. As shown in Fig. 5(b), the fixed points move in towards the SC line (black and
red dashed curves) as ∆ → 0+ colliding at ∆ = 0, and splitting apart again for ∆ < 0 (full
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Figure 6. Contour plots of the potential U , Eq. (2.10), for the path (3.26) with (α, µ, δ) = (1, 0.1, 0.5),
ε1 = 1, and ε2 = −1. The three panels show ∆ = −0.5, 0, and 1. Two EH fixed points merge in the quadfurcation
at ∆ = 0 and for ∆ > 0 there are four fixed points, one being EE and three EH.

curves). Similarly, when |β − γ| > 2 the transition corresponds to

2 IH→ 2 IH.

Finally, when ε1 = −1 and (AQ, BQ) > (4, 6), the transition is

(3.25) 2 HH→ 2 HH,

as shown in Fig. 5(d).
It is interesting that all of this structure is quite different from what would be expected

from a pair of decoupled, area-preserving maps undergoing saddle-center bifurcations, where
there can be at most one EE point. This case corresponds to the special point (AQ, BQ) =
(4, 6), which will be treated in §3.5 and applied to the case of decoupled maps in §6.

3.4. Two to Four Fixed Point Transitions. When a parameter path crosses one of the
surfaces b±(a, c) then SC = 0 in (3.18), and the resulting saddle-center bifurcation typically
creates or annihilates a pair of new fixed points, one with E eigenvalues and one with H
eigenvalues. When ε2 = −1, there are two fixed points outside the wedge between b+ and b−
shown in Fig. 3(b), and so if the parameter path enters the wedge then two new fixed points
are created. If the path enters the wedge at the quadfurcation point a = b = c = 0, then
the two existing fixed points merge, and the bifurcation—now a quadfurcation—occurs at the
origin. Depending upon β−γ and the sign ε1, the quadfurcation can occur at any point along
the SC line, and so a number of different stability cases can arise.

An example is shown in Fig. 6 for the parabolic path

(3.26) (a, b, c) = (−0.07 ·∆|∆|, 0.01 ·∆2,∆)

as ∆ varies, with the remaining parameters as shown in the caption. Figure 6 shows the
contours of the potential for ∆ = −0.5, 0, and 1 and Fig. 7 shows the corresponding stability
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Figure 7. Stability diagram for the path (3.26) with ∆ ∈ [−2, 5] and all other parameters as in Fig. 6. The
two EH fixed points for negative ∆ (dashed curves) merge at the quadfurcation point ∆ = 0 and lead to four
fixed points for ∆ > 0, one with EE and three with EH stability. For larger ∆ the EE point becomes type CU.

diagram. There are two fixed points when ∆ < 0 both of type EH; these merge at ∆ = 0.
The quadfurcation corresponds to a transition

2 EH→ 3 EH + EE.

Effectively the original EH pair is reformed and the contour lines near the new EE–EH pair
in Fig. 6(c) resemble those for a local saddle-center bifurcation.

3.5. Krein Collisions, Symmetric C and Reversibility. As we noted in (3.20), the quad-
furcation occurs for a multiplicity-four unit eigenvalue only when the matrix C of (2.3) is
symmetric. This is the only case in which the quadfurcation can immediately create fixed
points of type CU, recall Fig. 4.

As discussed in §2.3 the inverse of the Moser map is conjugate to the original map upon
the replacement C → CT . Therefore, when C is symmetric, the map (2.2) is reversible, i.e.,
it is conjugate to its inverse [40]: S ◦ f = f−1 ◦ S for a homeomorphism S. For example, the
Hénon map (2.1) is reversible with S(x, y) = (y, x). In general, the inverse of (2.9) is

M−1(ξ, η) =
(
C−1η, η + CT (−ξ + C−1η) +∇U(C−1η)

)
.

This map is conjugate to M when C = CT using the reversor

S(ξ, η) = (C−1η, Cξ).

Thus, as Moser showed [31], if C is symmetric the map (2.2), or equivalently (2.9), is reversible;
we do not know if the converse of this statement is true. This reversor is an involution with the
fixed set Fix(S) = {(ξ, Cξ) : ξ ∈ R2}, a 2d plane. All of the fixed points are thus symmetric.

The quadfurcation is especially interesting in the reversible case since, by (3.17) and
(3.21), only then does it occur for the stability parameters (AQ, BQ) = (4, 6). Indeed as
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Figure 8. Stability of fixed points for symmetric C with ε1 = −1 and ε2 = +1. The parameters vary
along the line (a, b, c) = ∆( 3

2
, 1
2
, 1) with ∆ ∈ [−1, 0]. (a) The transition (3.27) for (α, µ, δ) = (− 3

2
, 1, 1

2
), giving

β = γ = 1
2

. (b) The transition (3.28) for (α, µ, δ) = ( 3
2
,
√

23
2
, 5
4
), giving β = γ =

√
23
8

.

in §3.3, assuming that a, b, c = O(∆) and ξi = O(
√

∆) near the quadfurcation, the Krein
criterion (3.21c) is zero to O(∆1/2), and the first nonzero terms are

KP = 4αδa− 2(α+ 3ε2δ)γb+
(
12ε1ε2 − (α− 3ε2δ)

2
)
ξ∗21 +O

(
∆3/2, (β − γ)2

)
where ξ∗1 is given by (3.8). The sign of this parameter can change, depending upon the details.
However, note that since KP depends only on ξ∗21 , it does not depend upon the outer sign in
(3.8). Thus when c = O(∆), the fixed points come in pairs with the same sign of KP .

When ε2 = 1, the four created fixed points come in pairs with opposite signs of SC from
(3.21a). Thus there will be a pair of fixed points of type EH. Since the curves generically
emerge tangent to the the SC line, the second pair will both have type CU or one will be EE
and the other HH. For example, a quadfurcation of the form

(3.27) ∅ → 2 CU + 2 EH

is shown in Fig. 8(a). For this case KP = 1
4(3± 7

√
6)∆ to lowest order, where the sign is the

inner ± sign in (3.8), implying that the two fixed points with the + sign have KP > 0 when
∆ < 0 near the quadfurcation and are thus of type CU. In contrast, for the example shown
in Fig. 8(b) the quadfurcation is

(3.28) ∅ → EE + HH + 2 EH

as here KP = ∆
64(993− 84

√
46± 91

√
6) < 0 when the fixed points exist, ∆ < 0. This last case

is what would happen in a pair of uncoupled 2d maps, and will be seen below in §6.
As in §3.3, when ε2 = −1, the quadfurcation at ∆ = 0 corresponds to a collision and

re-emergence of a pair of fixed points with sgn(SC) = − sgn(ε1). When ε1 = 1, all of the fixed
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4
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The transition (3.31) for (α, µ, δ) = (− 3
2
, 1, 1

2
), giving β = γ = 1

2
.

points will have stability type EH, and so the transition will be

2 EH→ 2 EH

and thus follows the pattern shown in Fig. 5(b).
However, when ε1 = −1, then sgn(SC) = +1 implying that EE, HH and CU are all

possible. However, since the two fixed points have the + inner sign in (3.8) they will have the
same sign of KP , so we either have a CU pair or an EE+HH pair. The possible transitions
are

(3.29) 2 CU→ EE + HH,

for which the stability diagram is shown in Fig. 9(a)

(3.30) EE + HH→ EE + HH,

with stability diagram shown in in Fig. 9(b) and

(3.31) 2 CU→ 2 CU,

with stability diagram shown in Fig. 9(c).
Another technique for analyzing stability in the neighborhood of the quadfurcation is to

use the ODE limit (2.16) with the Hamiltonian (2.18). Recall that this limit assumes that we
assume the scaling (a, b, c)→ (h4a, h4b, h2c), for h� 1. This scaling differs from the ∆-scaling
by allowing larger relative values for c. The implication of this is that the term 1

2cq
2
1 in U ,

which was negligible when c = O(∆), is formally important when we take c = O(h2). When
C is symmetric, Ca = 0, and the Coriolis and centripetal-like terms vanish, simply giving

(3.32) H(q, p) = 1
2p
TC−1p− U(q).
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Figure 10. Contour plot of the potential U , Eq. (2.10). (a) For (a, b, c) = (− 3
4
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) and ε2 = 1 there

are four critical points, which are equilibria of (3.32). When C > 0, the maximum, at ξ = (−0.38825,−0.32196),
corresponds to a doubly elliptic equilibrium and the minimum, at ξ = (0.57441, 0.21761), to a doubly hyperbolic
equilibrium. As specific example (α, µ, δ) = ( 5

2
,
√

6, 1) is used for the matrix C determining the stabilities.
(b) Potential for (a, b, c) = (− 3

8
,− 1

8
,− 1

4
) and ε2 = −1 where there are two critical points; the matrix C,

determining the stabilities, is the same as in (a).

When C = Cs is positive or negative definite, then the stability is governed entirely by
the classification of the critical point of U . In particular if C > 0 then since the potential
in (2.18) is −U , a minimum of U is an HH point, and a maximum is an EE point. Saddles,
correspond to EH points. When C < 0, the minima are HH and the maxima are EE. This
is consistent more generally with (3.18), which shows that SC = ε1 det(D2U). Two example
contour plots for U are shown in Fig. 10.

4. Elliptic Bubbles. To visualize the dynamics near the fixed points of the 4D map we
use a 3d phase space slice [41]. In its simplest form one considers a thickened 3d hyperplane
in the 4D phase space defined by fixing one of the coordinates, e.g., η2 = η?2, to define the
slice of thickness ε by {

(ξ1, ξ2, η1, η2)
∣∣ |η2 − η∗2| ≤ ε

}
,

Whenever the points of an orbit lie within the slice, the remaining coordinates (ξ1, ξ2, η1)
are displayed in a 3d plot. The parameter ε determines the resolution of the resulting plot;
decreasing ε requires the computation of longer trajectories as the slice condition is fulfilled less
often, but the resulting intersections will be more precise. For example, if a two-torus intersects
the hyperplane, it will typically do so in one or more loops. As ε grows these loops thicken into
annuli in the slice. For further examples and detailed discussion see [41, 42, 43, 44, 45, 46].

For our purposes a slightly more general, rotated slice, defined so as to contain all of the
fixed points, will be more convenient. Because the momenta of the fixed points are determined
by the coordinates through η = Cξ, all fixed points of the 4D map (2.9) are contained in a 2d
plane. Following the ideas of [41, App. 3], we define new coordinates (ξ, χ), with χ = η−Cξ,
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so that the fixed points lie in the two-plane χ = 0. Thus we define the 3d slice

Γε =
{

(ξ1, ξ2, χ1, χ2)
∣∣ |χ2| ≤ ε

}
so that we get (ξ1, ξ2, χ1) as 3d coordinates. Equivalently, this corresponds to using non-
orthogonal basis vectors given as columns of the block matrix

B = (v1|v2|v3|v4) =

(
I 0
C I

)
.

As these are linearly independent, they can be used to express any point as linear combination
with coefficients (ξ1, ξ2, χ1, χ2). These coefficients can be computed from the scalar products
with the dual basis vectors {vi}, which are the columns of

B−T =
(
v1|v2|v3|v4

)
=

(
I −CT
0 I

)
.

Figure 11 shows an example of a slice for the map (2.9) with the parameters of Fig. 5(a)
when ∆ = −0.01. For these parameters the quadfurcation has created two EE and two EH
fixed points that, by construction of the 3d slice, lie in the 2d plane χ1 = 0. As expected
from KAM theory, the EE fixed points should be surrounded by a Cantor family of two-tori
on which the dynamics is conjugate to incommensurate rotation. By analogy with Moser’s
theorem for 2d maps [47], the density of these tori should approach one as they limit on the
EE points providing that the linearized frequencies are not in a low-order resonance. Indeed,
the formal normal form expansion around a nonresonant EE point is an integrable twist map
to all orders [21], and higher-dimensional results along the lines of Moser’s twist theorem have
been proven for elliptic equilibria of Hamiltonian flows [48, 49]. In the 3d slice each of these
tori becomes two (or more) thin annular rings, which, since we have set ε = 10−6, appear as
1d loops in the figure [41].

The numerical approximations of regular tori in Fig. 11 were obtained by manually choos-
ing initial conditions in several 2d planes in the 3d slice so that they appeared to represent
a kind of “outer” boundary of the regular region. Some initial conditions escape quickly and
are discarded. We numerically verified that these sets are 2d tori using frequency analysis
[50, 51, 41]. Here one computes, for a finite trajectory segment, two fundamental frequen-
cies from a windowed Fourier transform; on a true torus, these should be independent of the
segment chosen. All but two of the tori in Fig. 11 have frequencies that vary by less than
7× 10−7 when computed over successive segments of 4096 iterates, and for most the variation
is of order 10−10. The two exceptional “tori” in the figure have a frequency variation of order
2 × 10−5 and are probably very weakly chaotic orbits that are trapped near a resonance for
long times by Nekhoroshev stability.

This family of two-tori appears to approximately be limited by the locations of the EH
fixed points. Indeed, since the center-stable and center-unstable manifolds of the EH points
are 3d, they should form boundaries for the elliptic dynamics. Of course, we expect there
will be chaotic orbits near these manifolds, and so the regular 2d tori will not extend into the
chaotic zone. Also shown in the plot is the full orbit of one of these 2d tori, now projected
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Figure 11. Three-dimensional phase space slice of the 4D map corresponding to Fig. 5(a) with parameters
(α, µ, δ) = (1, 0.1, 0.5), ε1 = ε2 = 1, and (a, b, c) = (−0.015,−0.005,−0.01). The small spheres show two EE
(red) and two EH (green) fixed points. Also shown are several selected regular tori (black lines) surrounding
the EE fixed points. Each torus is represented by 104 points in the slice with ε = 10−6. These tori are 2d in
the 4D phase space and therefore (usually) lead to a pair of loops in the 3d phase space slice. A projection of
one 2d torus is shown as 106 semi-transparent points with χ2 encoded in color (see color bar). For a rotating
view see http://www.comp-phys.tu-dresden.de/supp/.

onto the slice; the projected coordinate χ2 is encoded in color as indicated in the color bar at
the right [52].

Figure 12 shows an example of a slice for the transition (3.30), when the matrix C is sym-
metric; the parameters correspond to Fig. 9(b) with ∆ = −0.001, close to the quadfurcation.
For this case there are only two fixed points, one of type EE and the other of type HH. Here
again we see a family of 2d tori surrounding the EE point. This family has a larger extent
in the ξ2 direction than in ξ1, and the loops shrink in size as they become closer to the HH
point. Note that now the stable and unstable manifolds of the HH point are two-dimensional,
and so do not form barriers in 4D.

http://www.comp-phys.tu-dresden.de/supp/
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Figure 12. 3d phase space slice of the 4D map for parameters of Fig. 9(b) with ∆ = −0.001. The small
spheres show an EE (red) and an HH (blue) fixed point. Also shown are slices of several selected regular tori
as in Fig. 11. For a rotating view see http://www.comp-phys.tu-dresden.de/supp/.

5. Bounded Orbits. Moser showed, under a nondegeneracy condition on the quadratic
terms, that the domain of the quadratic map containing bounded orbits is itself bounded [31].
To obtain an explicit bound we consider the second-difference form (2.13), rewriting it as

(5.1) CT ξt+1 + Cξt−1 = A+Dξt +Q(ξt),

where A = (a, b)T is a constant vector and the linear and quadratic terms are

Dξ ≡
(

2α+ c µ
µ 2δ

)(
ξ1

ξ2

)
,

Q(ξ) ≡
(

3ε2ξ
2
1 + ξ2

2

2ξ1ξ2

)
.

Using this form we can prove the following.

Theorem 1. When ε2 = ±1, all orbits that are bounded for both positive and negative time
of the map (5.1) are contained in the disk ‖ξ‖ ≤ κ, where

(5.2) κ ≡ 1
2τ

(
κ2 + 2κ3 +

√
(κ2 + 2κ3)2 + 4τ

√
a2 + b2

)
,

http://www.comp-phys.tu-dresden.de/supp/
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with τ = 1 for ε2 = 1 and τ =
√

2
3 for ε2 = −1, and we define

(5.3)
κ2 ≡ ‖D‖F =

√
(2α+ c)2 + 2µ2 + 4δ2,

κ3 ≡ ‖C‖F =
√
α2 + β2 + γ2 + δ2.

Proof. When ε2 = 1 the norm of the quadratic terms has the lower bound

‖Q(ξ)‖2 = 9ξ4
1 + 10ξ2

1ξ
2
2 + ξ4

2 = (9ξ2
1 + ξ2

2)‖ξ‖2 ≥ ‖ξ‖4 = ρ4,

where we denote ‖ξ‖ = ρ.
Using the triangle inequality on (5.1) gives

(5.4) ‖CT ξt+1‖+ ‖Cξt−1‖ ≥ ‖Q(ξt)‖ − ‖Dξt‖ − ‖A‖.

Define κ2,3 > 0 so that

‖Dξt‖ ≤ κ2ρt; ‖CT ξt‖, ‖Cξt‖ ≤ κ3ρt.

For example we can use the Frobenius norms of these matrices to give (5.3) (one could also
use the operator norm, giving results in terms of the singular values). Putting the bounds
into (5.4) gives

(5.5) κ3(ρt+1 + ρt−1) ≥ ρ2
t − κ2ρt − ‖A‖.

Let κ > 0 be chosen such that whenever ρ > κ, then ρ2 − κ2ρ − ‖A‖ > 2κ3ρ. Solving for
the largest root of this quadratic, as an equality, gives (5.2). Using this in (5.5) implies that
whenever ρt > κ,

(5.6) ρt+1 + ρt−1 > 2ρt.

Thus, if ρt > κ, there are two possible cases:
• Suppose that ρt ≥ ρt−1. Then by (5.6), we have ρt+1 > 2ρt − ρt−1 ≥ ρt. This

implies that the sequence {ρt} is strictly increasing with t. If this monotone sequence
is bounded, it must approach a limit ρt → ρ∗, which must be a solution of (5.5) as
an equality. But this implies ρ∗ is no more than the largest root κ, contradicting our
assumption. Thus {ρt} is unbounded as t→∞.

• Alternatively, suppose that ρt < ρt−1. Relabeling the t index in (5.6) then implies
that ρt−2 > 2ρt−1−ρt > ρt−1. Thus the sequence {ρt} strictly increases as t decreases.
Again, since ρt > κ this implies that ρt is unbounded, now as t→ −∞.

Together, these imply the theorem when ε2 = 1.
If ε2 = −1, then we can see that ‖Q(ξ)‖2 ≥ 2

3ρ
4, indeed

‖Q(ξ)‖2 − 2
3(ξ2

1 + ξ2
2)2 = 25

3 ξ
4
1 − 10

3 ξ
2
1ξ

2
2 + 1

3ξ
4
2 = 1

3(5ξ2
1 − ξ2

2)2 ≥ 0.

Thus the analysis above works, if we replace κ by the larger solution to

τρ2 − (κ2 + 2κ3)ρ− ‖A‖ = 0

with τ =
√

2
3 , giving (5.2) again.
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Figure 13. Plot of the escape time tesc encoded in color for initial conditions defined via (ξ1, ξ2) with
η = Cξ. Initial conditions whose orbits have not escaped within 104 iterations are colored white. There is a
large region of non-escaping orbits surrounding the EE fixed point. Further from the EE point one observes a
complicated fine-scale structure of escaping and non-escaping orbits. Parameters are: (α, µ, δ) = (1, 0.1, 0.5),
ε1 = ε2 = 1, and (a, b, c) = (−0.25, 0.05, 0.05).

Note that if ε2 = 0, then

‖Q(ξ)‖2 = 4ξ2
1ξ

2
2 + ξ4

2 = ξ2
2(4ξ2

1 + ξ2
2),

which does not obey a bound of the form needed in the proof of Th. 1. Thus the theorem does
not apply to this case. Indeed, we showed in §3.1 that if ε2 = 0, then when a = b = c = 0
there is a line of fixed points, recall the discussion in §3.1.

A good way to visualize the distinction between bounded and unbounded orbits for a given
parameter set is an escape time plot, see Fig. 13. In this plot, a grid of initial points of the
form (ξ, η) = (ξ, Cξ) are iterated until ‖ξ‖ > κ and the required time to escape is encoded
in color. Points that have not escaped within 104 iterations are displayed in white. Some
of these points lie on a family of regular 2d tori in the neighborhood of the EE fixed point;
these will never escape. Points near the boundary of the white region may eventually escape,
and indeed, even arbitrarily close to an EE fixed point there are initial conditions that are
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Figure 14. Area of bounded initial conditions (ξ, Cξ), determined from a grid in the ξ-plane for |ξi| < κ/2,
under variation of a with b = c = 0.01, and ε2 = 1; the matrix C is as in Fig. 13. The insets show escape time
plots for a neighborhood of the EE fixed point. Note that for all a-values in the figure there are four fixed points
(shown as small black crosses in the insets), which, as a decreases, move out of the shown square. A movie of
escape time plots as a function of a can be found in the supplementary material at http://www.comp-phys.tu-
dresden.de/supp/.

expected to escape for extremely large times by means of Arnold’s exponentially-slow diffusion
mechanism [53, 54, 55, 56].

We can quantify the size of the region of “bounded orbits” under parameter variation
by computing the area of the white region in a 2d-plane of initial conditions like that in
Fig. 13. For this we choose initial conditions in the two-plane (ξ, Cξ), with ξ varied on a grid
of 3000× 3000 points within the box −1

2κ < ξi <
1
2κ, and iterate at most 5000 steps. Orbits

that remain within the disk ‖ξ‖ ≤ κ are counted, and the resulting area is denoted Areg. This
area varies as fixed points undergo various bifurcations. A 1d cut through parameter space,
Fig. 14, shows how Areg varies with the parameter a (here b = c = 0.01). Insets in the figure
show escape time plots, like that in Fig. 13, for some selected parameters. There is a strong
correlation of the area with the structure of the region of stable orbits around the EE point,
as we discuss further below.

In Fig. 15 we show Areg as a function of the two parameters a and b, setting c = b. Note
that there are apparently no bounded orbits when b > b+ (3.7), where there are no fixed

http://www.comp-phys.tu-dresden.de/supp/
http://www.comp-phys.tu-dresden.de/supp/
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Figure 15. Area Areg of bounded initial conditions as a function of (a, b) with c = b and ε2 = 1. The matrix
C is defined by (α, µ, δ) = (1, 0.1, 0.5), and ε1 = 1, as in Fig. 5(a, b). The curves b± represent the crossing
of the surfaces (3.7) with the plane c = b. Thus there are four fixed points when b is below b− and two when
b− < b < b+. Upon crossing the (dotted) PD curve from right to left, the EE fixed point becomes IE and Areg

rapidly drops to zero. The blue dashed-dotted curves show several resonances (5.7), labeled n1 : n2 : m, of the
EE fixed point.

points, nor when b & 0.6 or a < −1.5. The largest bounded area occurs in the region near
the origin in the (a, b) plane; recall that the origin corresponds to the quadfurcation since
c = b. The dotted curve corresponds to parameters for which PD = 0, the period-doubling
bifurcation (3.21b). To the left of the PD curve, the EE fixed point becomes IE and Areg

decreases quickly to 0. To the right of the PD curve and for b < b−, the four fixed points
have the stabilities EE, EH, EH, and CU. On the curve b = b− the EH and CU fixed points
coalesce; however, since there are no bounded, regular orbits in a neighborhood of these fixed
points, this transition does not influence Areg.

At several places in Fig. 14 and along several curves in Fig. 15 one observes a substantial
decrease in the bounded area. Several of these decreases can be related to those parameters for
which the linearization about the elliptic-elliptic fixed point fulfills a low-order resonance. Of
course, such behavior is well-known for the case of 2d area-preserving maps. The variation is
related to the fractal structure of the stability region which changes significantly, in particular
when passing through the low-order resonances, see e.g. [57, 58, 59].

At a resonance in the 4D case, the four eigenvalues have the form λ1,2 = e2πiν1,2 , and the
conjugate/inverse values λ̄i = 1/λi. Each frequency, νi, describes the rate of rotation around
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Figure 16. Area Areg of initial conditions on the 2d plane η = Cξ inside the box |ξi| ≤ κ/2 (on a 3000×3000
point grid) that remain within the disk ‖ξt‖ ≤ κ for t ≤ 5000. Variation of (a, b) with (a) c = 5b and (b) c = 2.
The remaining parameters are the same as in Fig. 15. The curves b± represent the crossing of the surfaces
(3.7) with the plane c = 5b or 2, respectively. Thus there are four fixed points when b is below b− and two when
b is between b− and b+. To the left of the (dotted) PD line the EE fixed point has become EI.

the fixed point in the 2d invariant planes spanned by the eigenvectors of the corresponding
conjugate pair of eigenvalues. These can be written in terms of the partial traces, ρ1,2, recall
(3.14), as

ν1,2 = 1
2π arccos

(
1
2ρ1,2

)
.

The frequencies (ν1, ν2) of an EE fixed point fulfill a resonance condition when

(5.7) n1ν1 + n2ν2 = m, (n1, n2) ∈ Z2\{0, 0}, m ∈ Z.

Without loss of generality, we can set gcd(n1, n2,m) = 1, and m ≥ 0. We refer to such a
relation as an n1 : n2 : m resonance. Curves of several such resonances are shown in Fig. 15

While resonances are dense in frequency space, those with small order, |n1| + |n2|, are
of particular relevance. For example the large white region in Fig. 15 starting at b = 0 and
a ≈ −0.75 corresponds to the 1 : 2 : 1 resonance. This is also manifested in the broad
minimum with Areg ≈ 0 in Fig. 14. The other prominent minimum near a ≈ −0.5 is caused
by the 2 : 2 : 1 resonance. In these two cases Areg is reduced in a parameter neighborhood
of the resonance curve. For other indicated resonances, i.e., 3 : 2 : 1, −1 : 3 : 1 and 3 : 1 : 1,
the density is only reduced on one side of the bifurcation. In the examples this happens for
smaller a, and sometimes—as for the 3 : 2 : 1 resonance—it occurs quite some distance away.

Higher-order resonances, |n1| + |n2| ≥ 5, should have less influence on Areg. The results
of [21] lead to the expectation that the EE point will remain stable, and that for a single
resonance the bifurcation creates a pair of invariant 1d tori, one normally hyperbolic and
one normally elliptic (at least in the normal form). Further away from the bifurcation of the
EE fixed point the geometry is described by bifurcations of families of 1d tori, see [43] and
references therein. When the frequency passes through a double resonance, so that νi = pi/qi
are rational, then one expects four periodic orbits to be created [21, 60]. According to [21]
their stability is either EE + 2 EH + HH or 2 EH + 2 CU, see [42] for an illustration of the
geometry in the first case.
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Two further examples of Areg are shown in Fig. 16 with the same parameters as in Fig. 15,
except for Fig. 16(a) c = 5b and for Fig. 16(b) the parameter c = 2 is fixed. In the latter case
the parameter plane no longer intersects the quadfurcation point (a = b = c = 0), so that the
curves b± do not intersect at the origin in the figure. In Fig. 16(a) the line b = 0 corresponds
to that in Fig. 15 so that the same resonances are still relevant. These now extend to the
region b > 0, bending strongly to the right. The same overall resonance structure is also
visible in Fig. 16(b).

6. Coupled Hénon Maps. Since Moser’s map, (2.2) or equivalently (2.9), is the generic,
four-dimensional quadratic symplectic map, there must be parameters for which it corresponds
to a pair of uncoupled quadratic maps. In this section, we show that this is possible for ε2 = 1
and special choices of the matrix C, depending on ε1. The sign ε1 corresponds to positive
and negative Krein signatures. These Hénon maps are uncoupled when c = 0. Whether there
are other possibilities for which the Moser map has uncoupled dynamics with respect to some
invariant canonical planes on which the dynamics is conjugate to Hénon maps is presently not
clear and left for future study.

Dynamics of a pair of coupled Hénon maps has been studied previously for example in
[19, 20, 21, 27, 22, 23, 24, 28, 29, 30], particularly in regard to models of storage rings for
particle accelerators.

6.1. Decoupled Limits: Hénon Maps. To find parameter values for which the Moser map
is decoupled, we search for a coordinate transformation that reveals the invariant planes. This
transformation should be affine in order to maintain the quadratic form. So that the resulting
map is symplectic with the standard Poisson matrix (1.1) and to maintain the momentum-
coordinate split for the Hénon form, we start with the linear transformation:

(ξ, η) = S(q, p) = (Aq, ρA−T p),

where A is an invertible matrix and ρ > 0. This transformation is symplectic-with-multiplier,
DSTJDS = ρJ . In the new coordinates the map (2.9) becomes

q′ = q + Ĉ−T (−p+ Ĉq +∇qÛ(q)),

p′ = Ĉq,

where

Ĉ =
1

ρ
ATCA, Û(q) =

1

ρ
U(Aq),

so that ∇qÛ(q) = 1
ρA

T∇ξU(Aq). In order that the map be decoupled in the new coordinates,

any cross terms in the new potential Û should be zero. This can be accomplished for (2.10)
only if ε2 = 1, c = 0. We can normalize the amplitude of the quadratic terms in the new map
by setting ρ = 1/

√
12 choosing

A = ρ

(
1 1

−
√

3
√

3

)
to give

Û(q) = (a−
√

3b)q1 + (a+
√

3b)q2 + 1
3(q3

1 + q3
2).
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The transformation is thus fixed by this choice. So that the resulting map be decoupled, Ĉ
must be diagonal, e.g.,

(6.1) Ĉ =

(
ε1 0
0 1

)
,

where detC = det Ĉ = ε1 = ±1. In order for this to be the case, the original C must take
one of two forms:

ε1 = 1 : C =

(√
3 0

0 1√
3

)
,(6.2a)

ε1 = −1 : C =

(
0 1
1 0

)
.(6.2b)

Note that one could also replace Ĉ by −Ĉ in (6.1), but by the symmetries discussed in §2.3,
this gives nothing new.

With this we get the transformed map

q′1 = 2q1 + ε1(−p1 + a−
√

3b+ q2
1)

p′1 = ε1q1

q′2 = 2q2 − p2 + a+
√

3b+ q2
2

p′2 = q2.

This is not quite in the Hénon form (2.1), but a final affine transformation q → (q̂1−ε1, q̂2−1)
and p→ p̂− (1, 1) brings the map to the form

(6.3)

q̂′1 = ε1(−p̂1 + 1 + a−
√

3b+ q̂2
1)

p̂′1 = ε1q̂1

q̂′2 = −p̂2 + 1 + a+
√

3b+ q̂2
2

p̂′2 = q̂2.

Note that after this transformation we obtain, when ε1 = 1, a pair of uncoupled maps of
the Hénon-form (2.1). However, when ε1 = −1, the first canonical pair has the Hénon form
only upon a mirroring transformation, e.g., (q̂1, p̂1) → (−q̂1, p̂1); the point is that in the
canonical coordinates, the (q̂1, p̂1) components “rotate” under the map in the opposite sense
from (q̂2, p̂2).

The component maps have saddle-center bifurcations along the lines a = ±
√

3b, creating
pairs of fixed points for each component when a < ±

√
3b, respectively. However, in order

that the 4D map have a fixed point, both components must have fixed points, implying that
a < −

√
3|b|. This bifurcation occurs on the same line that appears in Fig. 3(a) when c = 0.

When the maps are decoupled, and a < −
√

3|b| the four newly created fixed points have
types EE, EH, EH and HH. In particular the EE point is located at

ε1q
∗
1 = p∗1 = 1−

√√
3b− a,

q∗2 = p∗2 = 1−
√
−
√

3b− a.
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In the original variables, the fixed points of these maps are given by (3.8) since this corresponds
to c = 0. The doubly elliptic fixed point remains stable in the rectangle

−4 +
√

3|b| < a < −
√

3|b|
since the individual maps have period-doubling bifurcations at a = −4±

√
3b, respectively.

Recall that for a symplectic map (1.1), with a doubly elliptic fixed point z∗, the quadratic
form q(v) = vTJDf(z∗)v is an invariant of the linearized dynamics. This implies stability
when the form q is definite [61, 38]: an EE fixed point cannot cross the KP = 0 line in Fig. 4
into the CU region. Equivalently, the Krein bifurcation cannot occur if the symmetric matrix

Q = 1
2 [JDf(z∗)−DfT (z∗)J ]

is definite. At an elliptic-elliptic point for (6.3), Q becomes

Q =

 Ĉ
−ε1q

∗
1 0

0 −q∗2
−ε1q

∗
1 0

0 −q∗2
Ĉ

 ,

where Ĉ is given in (6.1). When (6.3) has an EE point then q∗2i < 1. This implies that Q is
positive definite when ε1 = 1, but has a pair of negative eigenvalues when ε1 = −1. Thus,
only in the latter case, can coupling lead to a Krein bifurcation.

Indeed, we can see this if we re-introduce coupling by allowing c 6= 0. The same trans-
formations that lead to (6.3) can be applied if we still take ε2 = 1 and C to be one of the
matrices (6.2). The result is the pair of coupled Hénon maps

(6.4)

q̂′1 = ε1

(
−p̂1 + ah1 + q̂2

1 +
c

2
√

3
(q̂1 + q̂2)

)
,

p̂′1 = ε1q1,

q̂′2 = −p̂2 + ah2 + q̂2
2 +

c

2
√

3
(q̂1 + q̂2),

p̂′2 = q̂2,

where

(6.5)

ah1 = 1 + a−
√

3b− ε1 + 1

2
√

3
c,

ah2 = 1 + a+
√

3b− ε1 + 1

2
√

3
c.

The stability of the fixed points for this map can be conveniently obtained from the results
for the Moser map (2.9). For ε1 = ε2 = 1 and the diagonal matrix in (6.2a), the stability
parameters (3.17) become

A = 4(1 +
√

3ξ1) +
c√
3
,

B = 6 +
2c√

3
(1 +

√
3ξ1) + 4

√
3ξ1(2 +

√
3ξ1)− 4ξ2

2 .
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Since the quadfurcation occurs for a = b = c = 0, ξ1 = ξ2 = 0, it always occurs at the point
(AQ, BQ) = (4, 6) for this C, as we showed in §3.5 is more generally true for the symmetric
case. For this case the Krein parameter (3.19) is always nonpositive:

(6.6) KP = −4ξ2
2 − c2/12,

even when the maps are coupled again by nonzero c. This reflects the fact that for the two
2d uncoupled maps the elliptic motions in (p̂1, q̂1) and (p̂2, q̂2) have the the same orientation.
This is not changed by the coupling when ε1 = +1, and a CU instability is not possible. This
case corresponds to the transition (3.28) with a stability diagram like that shown in Fig. 8(b)
and neither the EE nor the HH fixed point may turn CU.

For the case ε2 = 1, and ε1 = −1, for the matrix in (6.2b), we similarly obtain

A = 4(1 + ξ2),

B = 6− 12ξ2
1 + 8ξ2 + 4ξ2

2 − 2cξ1.

Now the Krein parameter becomes

(6.7) KP = −2ξ1(6ξ1 + c),

which potentially may have either sign. So when the rotation directions for the two canonical
planes are opposed, the coupling terms make a Krein bifurcation possible for nonzero c. Thus
the initial quadfurcation may correspond to the transition ∅ → EE + HH + 2 EH, as in
Fig. 8(b), and both the EE and HH might later become CU. In addition a direct transition
to 2 CU + 2 EH is possible, which is analogous to the A-B diagram shown in Fig. 8(a) for
the fully coupled case.

6.2. Numerical Illustration. Let us now illustrate the dynamics near the uncoupled case.
Figure 17 shows the area, Areg, of bounded orbits for the two cases (6.2) of the matrix C.
In these figures, the maps are uncoupled along the line b = 0 since we choose c = 2b. As
in Figs. 15 and 16 one observes clear drops of Areg along curves in the (a, b) plane. For the
uncoupled case, when b = 0, the two plots in Fig. 17 agree because the individual 2d maps
in (6.4) have the same parameters ah1 = ah2. For both panels, the b− line corresponds to
a saddle-center bifurcation, but in Fig. 17(a) two fixed points with stabilities EH and HH
disappear upon reaching b− from below; thus the decrease in the number of fixed points has
no significant influence on the size of Areg. In contrast, for Fig. 17(b) the fixed points with
stabilities EE and EH disappear upon reaching b− from below, so that only the EH and HH
fixed points are left in the region between b− and b+ and Areg decreases abruptly. As ε1 = 1
for Fig. 17(a) none of fixed points can become CU. For ε1 = −1, as in Fig. 17(b), the HH
fixed point becomes CU when a is sufficiently negative, but again this does not significantly
influence Areg.

In both panels of Fig. 17 the 0 : 3 : 1 resonance curve of the EE fixed point leads to
a strong reduction in bounded area as a decreases through the resonance. There is also a
strong reduction for both cases in Areg along two lines that meet in (a, b) = (−1, 0). At this
parameter value the uncoupled Hénon maps have a fourth-order resonance, see e.g. [59] for a
detailed study of the 2d case. The right line correspond to the 0 : 4 : 1 resonance and the



THE QUADFURCATION IN MOSER’S MAP 33

0.0

0.5

1.0

1.5

−4 −3 −2 −1 0

(a) ε1 = 1

0:
3:
1

b− b+

PD

0.0

0.1

0.2

0.3

0.4

Areg

a

b

0.0

0.5

1.0

−4 −3 −2 −1 0

(b) ε1 = −1

0
:3
:1

b− b+

PD

0.0

0.1

0.2

0.3

0.4

Areg

a

b

Figure 17. Area Areg of bounded orbits on the plane η = Cξ for the matrices (6.2) with ε2 = 1, c = 2b and
for (a) ε1 = 1, and (b) ε1 = −1. The maps reduce to the uncoupled case only along the axis b = 0, since then
c = 0 as well. The curves b± represent the crossing of the surfaces (3.7) with the plane c = 2b. Thus there
are four fixed points when b is below b− and two when b is between b− and b+. For both examples, to the left
of the (dotted) PD line the EE fixed point becomes EI. The dashed-dotted line shows the 0 : 3 : 1 resonance
near where there is a strong decrease in Areg. The long-dashed (light blue) lines show the 4 : 0 : 1 resonance
(left branch) and the 0 : 4 : 1 resonance (right branch) that emanate from (a, b) = (−1, 0) corresponding to the
quadrupling bifurcation in the uncoupled case.

left to the 4 : 0 : 1 resonance. For both resonances the reduction happens to the left of the
lines, i.e. for smaller values of a. This corresponds to the direction in which the quadrupling
bifurcation creates new elliptic and hyperbolic fixed points and 1d tori.

Figure 18 shows a 3d phase space slice plot and an escape time plot in the (ξ1, ξ2)-plane for
(a, b, c) = (−0.3, 0.1, 0.2) and ε1 = 1. The elliptic-elliptic fixed point is surrounded by a region
of predominantly regular motion as seen by the white region of non-escaping orbits (within
104 iterations). Corresponding regular 2d tori are shown as black curves in the slice. Some
of these are secondary tori around periodic orbits and appear as sequences of disjoint loops
in the 3d phase space slice. The HH fixed point and the two EH fixed points approximately
limit the region in which the regular orbits and orbits with longer escape times are contained.

7. Summary and Outlook. In this paper we have studied some of the dynamics of
Moser’s 4D quadratic, symplectic maps, which have a normal form (2.9) with six parameters
a, b, c, α, δ, µ and two discrete parameters ε1, ε2. We showed that there is a codimension-three
submanifold in parameter space for which Moser’s map has a single fixed point with a pair
of unit eigenvalues. Bifurcations that occur on this submanifold correspond to creation and
destruction of up to four fixed points, the maximum possible number for the map (except
for one singular case). Along paths in parameter space that pass through this singularity it
is possible that four fixed points are created from none—a quadfurcation. For other paths,
two fixed points may be created or collide and emerge as two or four, recall Fig. 3 and Ta-
ble 1. Intuitively, the simplest case corresponds to a pair of uncoupled 2d Hénon maps, where
a quadfurcation corresponds to choosing parameters so that the maps have simultaneous,
co-located saddle-center bifurcations.

When a fixed point has four distinct eigenvalues on the unit circle (has type “EE”), then it
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Figure 18. 3D phase space slice and corresponding escape time plot in the η = Cξ plane for the diagonal
matrix C of (6.2a) with ε1 = 1 and (a, b, c) = (−0.3, 0.1, 0.2). Shown are several selected regular tori (black
lines) near the “outer edge” of the “regular region” surrounding the EE fixed point. Each torus is represented
by 104 points in the slice with ε = 10−6. The four fixed points are shown as small spheres: EE (red), 2 EH
(green), and HH (blue). The coloring of the escape times is the same as in Fig. 13. For a rotating view see
http://www.comp-phys.tu-dresden.de/supp/.

is linearly stable, and according to KAM theory, is generically surrounded by a Cantor family
of invariant two-tori. We have seen that it is possible for one or two EE-fixed points to emerge
from the quadfurcation. The remaining two fixed points have at least one hyperbolic pair of
eigenvalues. For the case of uncoupled Hénon maps, the four fixed points correspond to the
cross-products of the saddles and centers of the two area-preserving maps, giving rise to a
single EE fixed point, two EH points, and one HH point. This scenario persists when coupling
is added, and, as we will show in a future paper, can describe the creation of accelerator modes
in a 4D standard map near zero coupling. However, this scenario is rather special from the
point view of Moser’s map, where one more typically has the creation of two EE and two EH
fixed points, unless the matrix C is symmetric.

http://www.comp-phys.tu-dresden.de/supp/
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For symmetric C, where the map is reversible, the quadfurcation has the special feature
that the fixed points are born with four unit eigenvalues. This allows, for example, the
direct creation of complex unstable, CU, fixed points. It is also of interest that when C is
symmetric, the limiting form of Moser’s map near the quadfurcation is a natural Hamiltonian
system (3.32). It is still an open question whether the map is reversible only when C is
symmetric

We showed in Th. 1 that, when ε2 6= 0, there is a ball that contains all bounded orbits. We
observe that orbits that remain bounded are typically associated with the EE fixed points. The
computations suggest that the center-stable manifolds of the EH points are likely candidates
for partial barriers that delineate the boundary of the region of orbits that have long escape
times. In a future paper, we hope to compute these manifolds to understand better the
geometry of the barriers.

There are several other interesting questions left for future studies. For the 2d case,
where the Hénon map provides the universal form for any quadratic area-preserving map,
the algebraic decay of the survival probability for the escape from a neighborhood of the
regular region is well established and understood in terms of partial barriers and approximately
described by Markov models. While for higher-dimensional maps such power-law stickiness is
numerically well established, the mechanism for this is still not understood. Moser’s map is
the prototypical example for the study of the stickiness of a regular region in 4D. Of course,
in this context, Arnold diffusion will also be important.

Finally, it would be of interest to study similar bifurcations for polynomial maps of higher
degree; for example, the cubic case can be written in the Moser form as a composition of affine
maps with a symplectic shear [33]. And of course, one can wonder what other exotic local
bifurcations may happen in even higher-dimensional symplectic maps.
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[59] C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of

area preserving maps, Nonlinearity 22, 1191 (2009), http://iopscience.iop.org/0951-7715/22/5/012.
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