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Abstract
In this short note, I show how a recent result of Alhejji and Smith (A tight uniform
continuity bound for equivocation, 2019. arXiv:1909.00787v1) regarding an optimal
uniform continuity bound for classical conditional entropy leads to an optimal uniform
continuity bound for quantum conditional entropy of classical–quantum states. The
bound is optimal in the sense that there always exists a pair of classical–quantum states
saturating the bound, and so, no further improvements are possible. An immediate
application is a uniform continuity bound for the entanglement of formation that
improves upon the one previously given byWinter (CommunMath Phys 347(1):291–
313, 2016. arXiv:1507.07775). Two intriguing open questions are raised regarding
other possible uniform continuity bounds for conditional entropy: one about quantum–
classical states and another about fully quantum bipartite states.

Keywords Uniform continuity of entropy · Separable Hilbert space · Entanglement
of formation

Recently, the following bound has been established by Alhejji and Smith in [1] for
ε ∈ (0, 1 − 1/ |Y|]:

∣
∣H(Y |X)p − H(Y |X)q

∣
∣ ≤ ε log2(|Y| − 1) + h2(ε), (1)

where h2(ε) := −ε log2 ε − (1 − ε) log2(1 − ε) is the binary entropy, pXY and qXY
are joint probability distributions over the finite-cardinality alphabets X and Y ,

H(Y |X)p := −
∑

x∈X
pX (x)

∑

y∈Y
pY |X (x) log2 pY |X (y|x) (2)
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and H(Y |X)q (defined in a similar way but with qXY ) are conditional Shannon
entropies, and

ε ≥ 1

2
‖pXY − qXY ‖1 := 1

2

∑

x∈X ,y∈Y
|pXY (x, y) − qXY (x, y)| . (3)

The quantity on the right-hand side is known as the total variational distance of the
probability distributions pXY and qXY , and it is a measure of their statistical dis-
tinguishability. The bound in (1) is called a uniform continuity bound because the
right-hand side depends only on ε and the cardinality |Y|. It is optimal in the sense
that for every ε and |Y|, there exists a pair of distributions pXY and qXY saturating the
upper bound (see Eqs. (27)–(28) of [1]). It generalizes the optimal uniform continuity
bound for unconditional Shannon entropy established independently by [2, Eq. (4)]
and [3].

Uniform continuity bounds of the form in (1) for both the classical and quantum
cases find application in providing estimates for various communication capacities
of classical and quantum channels [4–11]. Motivated by this application (as well as
fundamental concerns), there has been a large amount of work on this topic over the
years [3,12–18].

In this brief note, I show how to employ the bound in (1) to establish the follow-
ing optimal uniform continuity bound for conditional entropy of finite-dimensional
classical–quantum states, improving (optimally) upon one of the cases given in
Lemma 2 of [14]:

Proposition 1 The following inequality holds for ε ∈ (0, 1 − 1/dB]:
∣
∣H(B|X)ρ − H(B|X)σ

∣
∣ ≤ ε log2(dB − 1) + h2(ε), (4)

where dB is the dimension of system B, the states ρXB and σXB are the following
finite-dimensional classical–quantum states:

∑

x∈X
r(x)|x〉〈x |X ⊗ ρx

B,
∑

x∈X
s(x)|x〉〈x |X ⊗ σ x

B, (5)

respectively r(x) and s(x) are probability distributions,
{

ρx
B

}

x and
{

σ x
B

}

x are sets
of states, the conditional entropy is defined in terms of the von Neumann entropy as
H(B|X)ρ := ∑

x r(x)H(ρx
B), and

ε ≥ 1

2
‖ρXB − σXB‖1 . (6)

Also, there exists a pair of classical–quantum states saturating the bound for every
value of dB and ε ∈ (0, 1 − 1/dB].
Proof The desired inequality is reduced to the classical case by means of a condi-
tional dephasing channel and data processing. This generalizes an approach recalled
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in the introduction of [14], which is attributed therein to [19]. Suppose without loss
of generality that H(B|X)ρ ≤ H(B|X)σ . Let a spectral decomposition of ρx

B be as
follows:

ρx
B =

∑

y

r(y|x)|φy,x 〉〈φy,x |B, (7)

where r(y|x) is a conditional probability distribution and {|φy,x 〉B}y is a set of
orthonormal states (for fixed x). Define the conditional dephasing channel as

�
cd
XB(ωXB) =

∑

x,y

(|x〉〈x |X ⊗ |φy,x 〉〈φy,x |B
)

ωXB
(|x〉〈x |X ⊗ |φy,x 〉〈φy,x |B

)

, (8)

which we think of intuitively as dephasing or measuring system X and then based on
the outcome, dephasing system B in the eigenbasis of ρx

B . This is a unital channel, and
so, the entropy of any state on systems X and B does not decrease under its action.
When this conditional dephasing acts on σXB , it leads to the following state:

�
cd
XB(σXB) =

∑

x∈X ,y∈Y
s(x)s(y|x)|x〉〈x |X ⊗ |φy,x 〉〈φy,x |B, (9)

where s(y|x) is a conditional probability distribution and Y is an alphabet with the
same cardinality as the dimension dB : |Y| = dB . Observe that

σX = TrB[σXB] = TrB[�cd
XB(σXB)]. (10)

Furthermore, the state ρXB is invariant under the action of the conditional dephasing
channel:

ρXB = �
cd
XB(ρXB). (11)

Observe that ρXB and �
cd
XB(σXB) are commuting states, and thus can be considered

as classical–classical states. (To be more precise, the first is classical and the second
is classical conditioned on the classical value in the first system.) Define the joint
distributions rXY (x, y) = r(x)r(y|x) and sXY (x, y) = s(x)s(y|x). From (10) and the
fact that the conditional dephasing channel is unital, it follows that

H(B|X)σ = H(BX)σ − H(X)σ (12)

= H(BX)σ − H(X)
�

cd
(σ )

(13)

≤ H(BX)
�

cd
(σ )

− H(X)
�

cd
(σ )

(14)

= H(B|X)
�

cd
(σ )

(15)

= H(Y |X)s . (16)

So we have that

H(Y |X)r = H(B|X)ρ ≤ H(B|X)σ ≤ H(Y |X)s, (17)
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which means that

H(B|X)σ − H(B|X)ρ ≤ H(Y |X)s − H(Y |X)r . (18)

Meanwhile, we have from data processing for normalized trace distance that

1

2
‖ρXB − σXB‖1 ≥ 1

2

∥
∥
∥�

cd
XB(ρXB) − �

cd
XB(σXB)

∥
∥
∥
1

(19)

= 1

2

∥
∥
∥ρXB − �

cd
XB(σXB)

∥
∥
∥
1

(20)

= 1

2
‖rXY − sXY ‖1 . (21)

In turn, this means that the following bound holds for total variational distance:

1

2
‖rXY − sXY ‖1 ≤ ε. (22)

Now we have completed the reduction in the classical case and invoke (1) to conclude
that

∣
∣H(B|X)ρ − H(B|X)σ

∣
∣ = H(B|X)σ − H(B|X)ρ (23)

≤ H(Y |X)s − H(Y |X)r (24)

≤ ε log2(dB − 1) + h2(ε), (25)

completing the proof of (4). The inequality in (4) is seen to be tight by using the
classical example from Eqs. (27)–(28) of [1]. 	


Byemploying the samemethod of proof given forCorollary 4 in [14] (and observing

that δ = √
ε (2 − ε) and δ ∈ (0, 1 − 1/d] imply that ε ∈ (0, 1 −

√
2d−1
d ]), we arrive

at the following uniform continuity bound for the entanglement of formation:

Corollary 2 Let ρAB and σAB be finite-dimensional quantum states such that

1

2
‖ρAB − σAB‖1 ≤ ε, (26)

where ε ∈ (0, 1 −
√
2d−1
d ] and d = min {dA, dB}. Then

|EF(ρAB) − EF(σAB)| ≤ δ log2(d − 1) + h2(δ), (27)

where EF is the entanglement of formation and δ = √
ε (2 − ε). The entanglement of

formation of a state ωAB is defined as follows [20]:

EF(ωAB) :=
inf{H(B|X)τ : τX AB =

∑

x

p(x)|x〉〈x |X ⊗ φx
AB,TrX [τX AB] = ωAB}, (28)
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where each φx
AB is a pure state and p(x) is a probability distribution.

The statement in Proposition 1 has a straightforward generalization to the case in
which the classical conditioning system is countable (thus addressing an open question
stated in [1]). To arrive at the corollary, let us define conditional entropy in this case
as follows:

H(B|X)ρ :=
∑

x∈X
pX (x)H(ρx

B), (29)

where ρXB has the same form as in (5), except that X is now a countable alphabet
(correspondingly, X is now a separable Hilbert space). Then we have the following
corollary:

Corollary 3 The following inequality holds for ε ∈ (0, 1 − 1/dB]:
∣
∣H(B|X)ρ − H(B|X)σ

∣
∣ ≤ ε log2(dB − 1) + h2(ε), (30)

where dB is the dimension of system B, the states ρXB and σXB are the following
classical–quantum states:

∑

x∈X
r(x)|x〉〈x |X ⊗ ρx

B,
∑

x∈X
s(x)|x〉〈x |X ⊗ σ x

B, (31)

respectively with system B finite-dimensional and the alphabetX countable, r(x) and
s(x) are probability distributions,

{

ρx
B

}

x and
{

σ x
B

}

x are sets of states, and

ε ≥ 1

2
‖ρXB − σXB‖1 . (32)

Proof Recall that the conditional entropy of a bipartite state ρLM acting on a separable
Hilbert space, with H(L)ρ < ∞, is defined as [21]

H(L|M)ρ := H(L)ρ − I (L; M)ρ, (33)

where the mutual information is given in terms of the relative entropy D(ω‖τ) [22,23]
of states ω and τ as

I (L; M)ρ := D(ρLM‖ρL ⊗ ρM ), (34)

D(ω‖τ) := 1

ln 2

∑

x,y

∣
∣〈φx |ψy〉

∣
∣
2 [

λx ln(λx/μy) + μy − λx
]

, (35)

and spectral decompositions of states ω and τ are given by

ω =
∑

x

λx |φx 〉〈φx |, τ =
∑

y

μy |ψy〉〈ψy |. (36)
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Let us first verify that the formula in (33) reduces to that in (29). Evaluating the
formulas in (34) and (35) for the case of interest (the state ρXB in (31)), while taking
spectral decompositions of ρXB and ρX ⊗ ρB as

ρXB =
∑

x∈X
r(x)|x〉〈x |X ⊗

∑

y∈Y
r(y|x)|φy,x 〉〈φy,x |B, (37)

ρX ⊗ ρB =
∑

x ′∈X
r(x ′)|x ′〉〈x ′|X ⊗

∑

z∈Z
q(z)|ψz〉〈ψz |B, (38)

with X countable, Y and Z finite, we find that

I (X; B)ρ = 1

ln 2

∑

x,y,z,x ′

∣
∣
(〈x ′|X ⊗ 〈ψz |B

) (|x〉X ⊗ |φy,x 〉B
)∣
∣
2

×
[

r(x)r(y|x) ln
(
r(x)r(y|x)
[r(x ′)q(z)]

)

+ r(x ′)q(z) − r(x)r(y|x)
]

(39)

= 1

ln 2

∑

x,y,z

∣
∣〈ψz |φy,x 〉B

∣
∣2

×
[

r(x)r(y|x) ln
(
r(x)r(y|x)
[r(x)q(z)]

)

+ r(x)q(z) − r(x)r(y|x)
]

(40)

= 1

ln 2

∑

x

r(x)
∑

y,z

∣
∣〈ψz |φy,x 〉B

∣
∣
2
[

r(y|x) ln
(
r(y|x)
q(z)

)

+ q(z) − r(y|x)
]

.

(41)

For every x ∈ X , we find that

∑

y,z

∣
∣〈ψz |φy,x 〉B

∣
∣
2
[

r(y|x) ln
(
r(y|x)
q(z)

)

+ q(z) − r(y|x)
]

(42)

=
∑

y,z

∣
∣〈ψz |φy,x 〉B

∣
∣
2
[

r(y|x) ln
(
r(y|x)
q(z)

)]

(43)

=
∑

y,z

∣
∣〈ψz |φy,x 〉B

∣
∣2 [r(y|x) ln (r(y|x))] +

∑

y,z

∣
∣〈ψz |φy,x 〉B

∣
∣2

[

r(y|x) ln
(

1

q(z)

)]

(44)

=
∑

y

[r(y|x) ln (r(y|x))] +
∑

z

〈ψz |ρx
B |ψz〉 ln

(
1

q(z)

)

(45)

= − (ln 2) H(ρx
B) +

∑

z

〈ψz |ρx
B |ψz〉 ln

(
1

q(z)

)

. (46)
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Then we find that

I (X; B)ρ =
∑

x∈X
r(x)

[

−H(ρx
B) +

∑

z

〈ψz |ρx
B |ψz〉 log2

(
1

q(z)

)]

(47)

= −
∑

x∈X
r(x)H(ρx

B) +
∑

z

〈ψz |
[
∑

x

r(x)ρx
B

]

|ψz〉 log2
(

1

q(z)

)

(48)

= −
∑

x∈X
r(x)H(ρx

B) +
∑

z

〈ψz |ρB |ψz〉 log2
(

1

q(z)

)

(49)

= −
∑

x∈X
r(x)H(ρx

B) +
∑

z

q(z) log2

(
1

q(z)

)

(50)

= −
∑

x∈X
r(x)H(ρx

B) + H(ρB). (51)

So finally
H(B)ρ − I (X; B)ρ =

∑

x∈X
r(x)H(ρx

B), (52)

as expected.
Now, it is known from [21] that the following limit holds

lim
k→∞ H(B|X)ρk = H(B|X)ρ, (53)

where

ρk
X B := Pk

X (ρXB) := �k
XρXB�k

X + �k
X

Tr[�k
X ] ⊗ TrX [(IX − �k

X )ρXB], (54)

and
{

�k
X

}

k is a sequence of finite-dimensional projections strongly converging to the

identity. Then by taking the projection �k
X := ∑k

x=1 |x〉〈x |X , we find from (32) and
data processing for normalized trace distance with respect to the channel defined in
(54) that

ε ≥ 1

2

∥
∥
∥ρk

X B − σ k
X B

∥
∥
∥
1
, (55)

where σ k
X B := Pk

X (σXB). Now applying the uniform continuity bound from Propo-
sition 1 to the finite-dimensional states ρk

X B and σ k
X B , we arrive at the following

inequality holding for all k ∈ N:

∣
∣H(B|X)ρk − H(B|X)σ k

∣
∣ ≤ ε log2(dB − 1) + h2(ε). (56)

Finally applying the limit in (53), we arrive at the statement of the corollary. 	
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Two intriguing questions remain about continuity of conditional entropy. The first
is whether the following inequality could hold

∣
∣H(X |B)ρ − H(X |B)σ

∣
∣

?≤ ε log2(dX − 1) + h2(ε), (57)

where ρXB and σXB are the same classical–quantum states from (5). (With the systems
in the conditional entropyflipped,we could call these states “quantum–classical” now.)
The other question is whether the following inequality could hold for fully quantum
states ρAB and σAB that satisfy 1

2 ‖ρAB − σAB‖1 ≤ ε where ε ∈ (0, 1 − 1/d2A]:

∣
∣H(A|B)ρ − H(A|B)σ

∣
∣

?≤ ε log2(d
2
A − 1) + h2(ε). (58)

This inequality is saturated by an example given in Remark 3 of [14]. These questions
were raised during the open problem session at theworkshop “Algebraic and Statistical
ways into Quantum Resource Theories,” held in Banff, Canada, during July 2019. It
seems that solving them requires techniques beyond what is currently known.
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