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Abstract

We study the mathematical properties of the quasi-dynamic ordinary differential equations defined
empirically in [Chen et al. An omnidirectional visualization model of personalized gene regulatory net-
works, npj Systems Biology and Applications, 5(1):38, 2019]. In particular, we show how the allometric
scaling mentioned in that work emerges naturally from the generalized Lotka-Volterra model under the
quasi-dynamic ordinary differential equations paradigm. We then define and study the proportional
quasi-dynamic ordinary differential equations and discuss the relationship of this equation system to
both the classical and discrete time replicator dynamics. We prove asymptotic properties of these sys-
tems for large and small populations and show that there exist populations for which the proportion of
the population varies cyclically as a function of total logarithmic population size.

1 Introduction

Dynamic analysis of gene and/or microbiota data requires access to high fidelity longitudinal data that are
often not available. Especially in human subjects, each sample in time requires an invasive procedure that
may not be possible from a practical or ethical standpoint. Consequently, the dynamic analysis of microbiota
data is frequently difficult and relies on temporally sparse data sets. In contrast, many of these data sets
are complete in the sense that they have many samples from a (large) population. In [1] it is noted that
these data can be used more efficiently by making a change from the time domain to the niche index [2–5]
domain. By this, we mean one can characterize the interactions of microbiota in the context of the net
population within the environment. This is the the so-called niche index characterizing the overall fitness of
all populations. When multiple hosts have been sampled (even if infrequently), the result is a dense sample of
niche index values from which dynamics can be inferred. Differential equation originally written in time can
be rephrased in terms of niche index. [1] calls these equations quasi-dynamic ordinary differential equations
(qdODE).

In this paper, we use the definition of niche index provided in [1] and use it in the context of the classi-
cal generalized Lotka-Volterra equations to explore the mathematical properties of quasi-dynamic ordinary
differential equations. We show that these qdODE have special structure and that they admit allometric
scaling naturally. This was observed empirically in [1]. We then derive a new system of autonomous dif-
ferential equations that we call the proportional quasi-dynamic ordinary differential equations (pqdODE).
This differential equation system uses the logarithm of the niche-index as the independent variable and mod-
els the dynamics of the population proportions in the qdODE framework, rather than the net population
counts. This analysis is in direct analogy to the classical work done in evolutionary game theory and its
extensions [6–16].

We show that this system of differential equations is closely related to the discrete time replicator equation
studied in [7, 12]. In particular we relate asymptotic properties of these equations (in terms of niche index)
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to the Nash equilibria of an underlying game matrix, establishing a simple variant of the folk theorem of
evolutionary games [11]. We show that this equation system has special properties for populations playing
generalized rock-paper-scissors with homogenous birth/death rates. The main purpose of this paper is to
expand on the mathematical properties of qdODE first observed in [1] and relate them to the standard
evolutionary game theory literature. We note that evolutionary games are an extremely well studied area
in mathematics [9–11], physics [15–18] and biology [14]. Tanimoto [17, 18] and Friedman & Sinervo [14]
offer excellent modern treatments on the subject. In the sequel, we also mention the relationship between
the generalized rock-paper-scissors dynamic considered in this work and the classic three state Potts model
[19–24]. We also note that rock-paper-scissors is commonly studied in evolutionary game theory as an
archetypical examples of a three-strategy game [11,17,18].

2 Model

We consider a finite population model of n interacting species. Let Xi(t) be the count of species i at time t
and suppose that the niche index is:

M(t) =
∑︂
i

Xi(t). (1)

The population proportion is denoted:

xi(t) =
Xi(t)

M(t)
. (2)

Population and proportion vectors are given by:

X = ⟨X1, . . . , Xn⟩ x = ⟨x1, . . . , xn⟩ .

In general, we have X ∈ R+ and x ∈ ∆n, where ∆n is the (n− 1)-dimensional unit simplex defined by:

∆n =
{︁
x ∈ Rn : 1Tx = 1 and x ≥ 0

}︁
.

Here 1 is an appropriate dimension vector consisting of all 1’s.
Suppose:

Ẋ = F(X,M), (3)

here F : Rn → Rn. Then:
Ṁ = 1TF(X,M). (4)

Rather than focus on the dynamics of Xi (or xi) as a function of time, we consider the dynamics of Xi (and
xi) as functions of the total population in order to understand the potential whole-part relationships that
may emerge. In particular, we seek to quantify the behavior of dXi/dM and dxi/dM rather than Ẋi or ẋi

as in the traditional replicator dynamics.
Given a population vector X that varies according to Eq. (3), the quasi-dynamic population equation is:

X′(M) =
F(X,M)

1TF(X,M)
. (5)

Understanding quasi-dynamic population equations is critical when there is only a limit sense of common
“time” or when only a few samples may be taken limiting time series analysis. Situations like this occur
frequently, for example when working with human subjects (i.e., when sampling in vivo from human patients).

3 Interactive Growth Model

Assume the underlying (hidden) dynamics are given by:

Ẋi = Xi

(︁
λi + eTi Ax

)︁
. (6)

Here A is an interaction (community or game) matrix and λi is an intrinsic birth/death rate for species i.
This is consistent with the model in [25].
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Let λ be the vector of population birth/death rates. Applying Eq. (5), we obtain:

dXi

dM
=

Xi

(︁
λi + eTi Ax

)︁∑︁
j Xj

(︁
λi + eTj Ax

)︁ . (7)

Note that:

x =
1

M
X,

and ∑︂
j

Xje
T
j Ax = XTAx =

1

M
XTAX.

Using these facts, we can simplify Eq. (7) to obtain the quasi-dynamic population equations:

dXi

dM
=

λiXi +
Xi

M eTi AX

λTX+ 1
MXTAX

. (8)

From this we note that if λ = 0, then dynamics are autonomous, and given by:

dXi

dM
= Xi

eTi AX

XAX
. (9)

In the absence of interaction, the dynamics are also autonomous and given:

dXi

dM
=

λiXi

λTX
. (10)

Taken together, however, the qdODE system is a non-autonomous system of differential equations. In the
sequel, we will show that the proportional form of these equations can be made naturally autonomous through
a change of variables.

3.1 Emergence of Power Scaling Phenomena

The existence of allometric scaling in gene network data is observed in [1]. Here we derive this phenomena
for the case of weak interaction and using the point of view of a Walrasian equilibrium in which we assume
that each species is a small fraction of the whole microbiome of the organism. In specific, we show that
a power scaling law emerges naturally in the case of limited interactions in environments where no species
dominates the entire population. This observation is used in [1] as part of their statistical modeling.

Consider a simple case with limited interaction where we are concerned with only one species whose
population quantity is given by X1. All other species are assumed to be grouped together as a second
species whose population quantity is given by X2. From Eq. (10), when A ≈ 0 we have the two-dimensional
system: ⎧⎪⎪⎨⎪⎪⎩

dX1

dM
=

λ1X1

λ1X1 + λ2X2

X2

dM
=

λ2X2

λ1X1 + λ2X2

. (11)

Eq. (11) can be solved exactly by using X1 as a reference species:

dX2

dX1
=

λ2X2

λ1X1
. (12)

Integrating the separable system yields:

X2 =
A

λ2
(λ1X1)

λ2

λ1 , (13)

where A is a constant of integration. Then we compute:

M = X1 +X2 = X1 +
A

λ2
(λ1X1)

λ2

λ1 . (14)
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Observe, when X1 ≪ M , (as we assumed), then:

M ≈ A

λ2
(λ1X1)

λ2

λ1 . (15)

In this approximation, we can solve for X1 and observe that:

X1 ≈ 1

λ1

(︃
λ2M

A

)︃−λ2

λ1

. (16)

Thus, when no species dominates and interaction is small, we see that the quantity of each species should
behave according to a power law; i.e., the system will exhibit allometric scaling of whole to part.

It is worth asking how A ≈ 0 would emerge in a complex system. If we consider the more complex
growth model:

Ẋi = Xi

(︃(︃
1− M

M∗

)︃
λi +

M

M∗ e
T
i Ax

)︃
, (17)

where M∗ is a carrying capacity for the entire ecology, then for M ≪ M∗, the interaction component is
small. Analysis of this more complete model is left to future work in order to study the properties of the
simpler model. However we note that empirical evidence supporting the emergence of power-law scaling in
naturally occurring microbiota be found in [1].

4 Proportional Quasi-Dynamic ODE

In this section we investigate the properties of the quasi-dynamic ODE for the population proportions xi (as
compared to Xi).

Applying the quotient rule to Xi/M yields:

1

M

dXi

dM
− Xi

M2
=

1

M

(︃
λiXi + xie

T
i AX

λTX+ xAX

)︃
− 1

M
xi,

where we replace Xi/M with xi and X/M with x. Factoring M out of the top and bottom yields:

dxi

dM
=

1

M

(︃
M

M
· λixi + xie

T
i Ax

λTX+ 1
M xAx

)︃
− 1

M
xi.

Factoring and simplification yields the proportional quasi-dynamic ODE:

dxi

dM
=

xi

M

(︃
λi + eTi Ax

λ̄(x) + xTAx
− 1

)︃
, (18)

where:
λ̄(x) =

∑︂
i

λixi. (19)

Eq. (18) is clearly non-autonomous, but we can analyze an equivalent autonomous system by a simple change
of variables. Let L = log(M). Then we have the following:

dxi

dM
= xi

dL

dM

(︃
λi + eTi Ax

λ̄+ xTAx
− 1

)︃
.

This implies:
dxi

dL
= xi

(︃
λi + eTi Ax

λ̄+ xTAx
− 1

)︃
. (20)

We note that these dynamics are a continuous variation of the discrete time replicator dynamics discussed
in [7, 12] (see Eq. 2.1 of [7]), where time is replaced by the logarithmic population size and we consider
continuous (rather than discrete) change. The fact that the proportional quasi-dynamic ordinary differential
equations are related (in form) to the discrete time replicator dynamic is both interesting and useful, since
we can use results from classical evolutionary game theory to derive properties of these equations for varying
population sizes. For this reason, we refer to Eq. (20) as the quasi-dynamic replicator equation.
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4.1 Analysis of the Quasi-Dynamic Replicator Equation

Suppose λi = 0 for all i and x∗ is a strict Nash equilibrium. Further assume that xTAx > 0, then as t → ∞
we have L → ∞. In particular from the folk theorem of evolutionary game theory [11], we know that if x∗

is a strict Nash equilibrium, then it is asymptotically stable in the replicator dynamics [11]. Consequently
we have shown that there is some neighborhood N of x∗ in which all trajectories asymptotically approach
x∗ as L → ∞.

Despite the relationship to the replicator, the asymptotic behavior of Eq. (20) is distinct from the behavior
of the ordinary replicator. To see this, note that the extreme points of the simplex need not be fixed points
of the dynamics when λi = 0 for all i.

Moreover, suppose x∗ is a unique globally asymptotically stable fixed point for ẋ and L̇ > 0 for all x.
Then, x∗ is asymptotically stable as L → ∞. On the other hand, if x∗ is a unique globally asymptotically
unstable fixed point for ẋ and L̇ < 0 for all x, then x∗ is (also) asymptotically stable as L → ∞. In essence,
by considering population explosion, we are working backward in time, rather than forward in time.

4.2 Illustration of Results

We will illustrate this using the biased rock-paper-scissors matrix:

A =

⎡⎣ 0 −1 1 + a
1 + a 0 −1
−1 1 + a 0

⎤⎦ .

We assume a > −1, otherwise, the dynamics are no longer rock-paper-scissors. Before proceeding, we note
that this matrix can be constructed as a linear combination of a constant (ones) matrix, a traditional rock-
paper-scissors matrix as found in [10] and a matrix defining a coordination component (the bias), which is
similar to a Potts model [26]. Various combinations of rock-paper-scissors and the Potts model and their
relationship have been studied extensively [19–24].

In the ordinary replicator dynamics, the internal fixed point x∗ =
⟨︁
1
3 ,

1
3 ,

1
3

⟩︁
is stable if and only if a > 0.

However, note that this a fixed point for Eq. (20) only when a ̸= 0. Moreover, first order analysis yields the
eigenvalues of the Jacobian equal to:

{λ1, λ2, λ3} =

{︄
−1,−1

2
− i|2 + a|

√
3

2a
,−1

2
+

i|2 + a|
√
3

2a

}︄
. (21)

Thus as L → ∞,
⟨︁
1
3 ,

1
3 ,

1
3

⟩︁
is stable as long as a ∈ (−1,∞). This is illustrated for a = − 1

10 in Fig. 1. We
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Figure 1: Illustration of the behavior of generalized rock-paper-scissors with negative growth.

note the whip that occurs as L → 0 is a result of the instability of the interior fixed point in the ordinary
rock-paper-scissors and the fact that the three simplex extreme points are stable in the ordinary replicator
dynamic. Thus for small niche indexes, one should expect numerical instability in any analysis, illustrating
a caveat on the use of the quasi dynamic approach.
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5 Detailed Analysis of Rock-Paper-Scissors with Symmetric Pop-
ulations

Heretofore we have considered the case when λi = 0. We now relax this assumption and conduct an
analysis for symmetric populations under varying assumptions and show that the behavior is consistent with
the discrete time behavior of rock-paper-scissors [11]. This analysis also serves to illustrate the types of
dynamics that might be observed in the wild.

5.1 Case: a ̸= 0

Assume three species with equal growth rates so that λi = λ for all i ̸= j. The eigenvalues of the Jacobian
matrix about the interior fixed point

⟨︁
1
3 ,

1
3 ,

1
3

⟩︁
are given by:

{λ1, λ2, λ3} =

{︄
−1,

−a− i|2 + a|
√
3

2(a+ 3λ)
,
−a+ i|2 + a|

√
3

2(a+ 3λ)

}︄
. (22)

Assuming a > 0, then when λ < −a
3 , the resulting interior fixed point is unstable. A symmetry argument

shows that the eigenvalues of the Jacobian at any of the extreme points of the simplex are:

{λ1, λ2, λ3} =

{︃
− 1

λ
,
1 + a

λ
,−1

}︃
. (23)

Thus the extreme points are hyperbolic and unstable when λ < 0 and a > −1. This unnatural situation can
be interpreted by noting that:

Ṁ =
(︁
λM +MxTAx

)︁
. (24)

In particular, when a > 0, then xTAx ∈
[︁
0, a

3

]︁
. Thus,(︁

λM +MxTAx
)︁
≤

(︂
λM +

a

3
M

)︂
.

This implies that

Ṁ ≤
(︂
λ+

a

3

)︂
≤ 0. (25)

Thus in this case, the population is monotonically decreasing and the proportions exhibit whip as the
population collapses. Conversely, if a > 0 and λ > −a

3 , then the population is increasing and will converge
in the long-run to the asymptotically stable interior fixed point. This is illustrated in the Fig. 2, where
population decrease is illustrated by tracing the trajectory from right to left.
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Figure 2: An illustration of equal growth rates in biased rock-paper-scissors with interior fixed point unstable
in negative population growth.
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5.2 Case a = 0

In the case when a = 0 and all players are symmetric, the symmetric interior fixed point becomes a non-linear
center and the populations oscillate about the interior fixed point for varying log-niche-indexes. To see this,
first note that the rock-paper-scissors system can be transformed into a two-dimensional system by setting
x3 = 1− x1 − x2. The resulting eigenvalues for the fixed point x1 = x2 = 1

3 are:

λ1,2 = ± i√
3λ

. (26)

The eigenvalues for the extreme points (single species solutions) are given by:

λ1,2 = ± 1

λ
. (27)

Thus the extreme points are again hyperbolic and unstable. Analysis of the center manifold at the interior
fixed point can be accomplished by following the standard analysis used in the ordinary Lotka-Volterra
equations. Compute:

dx2

dx1
=

dx2

dL

dL

dx1
= −x2 (2x1 + x2 − 1)

x1 (x1 + 2x2 − 1)
. (28)

This differential equation can be solved explicitly1 and yields the implicit expression:

f(x1, x2) = x2
1x2 + x1x

2
2 − x1x2 = C, (29)

that solutions of Eq. (28) must satisfy. Here C is a constant of integration. It is straightforward to see that:

∇f
(︁
1
3 ,

1
3

)︁
= 0. (30)

Moreover, evaluating the Hessian matrix of f at x = y = 1
3 yields:

H =

[︃
2
3

1
3

1
3

2
3

]︃
,

which has eigenvalues 1 and 1
3 . Thus, the Hessian matrix is positive semi-definite and x1 = x2 = 1

3 must
be a local-minimum for f . This implies that in a neighborhood of the fixed point, the solution curves of
the proportional qdODE must be closed and thus the fixed point is a center. This is illustrated in Fig. 3,
where we show a vector field plot with a clear non-linear center and solution plots for λ = 1

10 . It is worth
noting (as before) that the sign of λ does not affect the solution curves, but impacts the direction along the
log-niche-index axis the system should be considered evolving.

5.3 General Behaviors of qdODE

In general, it is worth noting that the proportional quasi-ODE dynamics can exhibit a large variety of
behaviors. We illustrate this in Fig. 4 using a = − 1

10 in the biased rock-paper-scissors matrix and λ1 = 0.3,
λ2 = 0.4 and λ3 = 0.9 with starting state x1(10) = 0.4, x2(10) = 0.3 and x3(10) = 0.3. Notice that the
proportions oscillate as a result of the cyclic interactions defined by A but mediated by endogenous growth
from the unbalanced growth rates. Constructing a complete theory for asymmetric populations is left as
future work.

6 Conclusions

In this paper, we studied a mathematical formulation of the quasi-dynamic ordinary differential equations
first defined empirically in [1]. We showed that simple non-linear qdODE systems arise when the temporal
dynamics governing a (difficult to sample) population are given by the generalized Lotka-Volterra equations.

1Mathematica provides an automatic solution.
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Figure 3: (a) The two-dimensional vector field plot of the dynamics of rock and paper (scissors is linearly
dependent on these values). The vector field clearly indicates the presence of a center. (b) Solution curves
for the qdODE with ordinary rock-paper-scissors and a symmetric growth rate of λ = 1
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Figure 4: An illustration of the behavior of the proportional quasi-dynamic ODE system using asymmetric
parameters.
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We showed how allometric scaling arises naturally from these dynamics under a weak interaction assump-
tion, thus providing a mathematical explanation for the empirical observation in [1]. We then studied the
proportional qdODE and showed that under a non-linear transformation of niche-index to log-niche-index
an autonomous non-linear system emerges that has properties similar to the ordinary replicator and is (in
fact) the continuous analog of the discrete replicator dynamic studied in [7, 12]. We showed formal proper-
ties of this system and studied the case of a symmetric population playing using generalized Lotka-Volterra
dynamics with a biased rock-paper-scissors interaction matrix.

In future work, we will study the theoretical properties of asymmetric populations further and determine
their behavior under changing niche index. Additionally, it may be instructive to analyze the model given in
Eq. (17). Cursory analysis shows that the proportional form of this equation is non-autonomous (in log(M))
making analysis more complex, but potentially more interesting. As additional future work, it may also be
possible to consider more general interaction dynamics that include population specific carrying capacities.
Extending [1] and studying the relationship of these mathematical models with real-world data is also a
future priority.

Acknowledgement

Portions of CG’s work were supported in part by the National Science Foundation Grant DMS-1814876.
LJ was supported by the Fundamental Research Funds for the Central Universities (NO. 2015ZCQ-SW-06,
NO. BLX2015-23), grant 31700576 from National Natural Science Foundation of China, grant 31600536
from National Natural Science Foundation of China, and grant 201404102 from the State Administration of
Forestry of China.

References

[1] C. Chen, L. Jiang, G. Fu, M. Wang, Y. Wang, B. Shen, Z. Liu, Z. Wang, W. Hou, S. A.
Berceli, and R. Wu, “An omnidirectional visualization model of personalized gene regulatory
networks,” npj Systems Biology and Applications, vol. 5, no. 1, p. 38, 2019. [Online]. Available:
https://doi.org/10.1038/s41540-019-0116-1

[2] K. Finlay and G. Wilkinson, “The analysis of adaptation in a plant-breeding programme,” Australian
journal of agricultural research, vol. 14, no. 6, pp. 742–754, 1963.

[3] C. S. Elton, Animal ecology. University of Chicago Press, 2001.

[4] C. Hui, “Carrying capacity, population equilibrium, and environment’s maximal load,” Ecological Mod-
elling, vol. 192, no. 1-2, pp. 317–320, 2006.

[5] F. C. Pereira and D. Berry, “Microbial nutrient niches in the gut,” Environmental microbiology, vol. 19,
no. 4, pp. 1366–1378, 2017.

[6] P. D. Taylor and L. B. Jonker, “Evolutionarily stable strategies and game dynamics,” Mathematical
biosciences, vol. 40, no. 1-2, pp. 145–156, 1978.

[7] J. Hofbauer, “A difference equation model for the hypercycle,” SIAM Journal on Applied Mathematics,
vol. 44, no. 4, pp. 762–772, 1984.

[8] K. Sigmund, “A survey of replicator equations,” in Complexity, Language, and Life: Mathematical
Approaches. Springer, 1986, pp. 88–104.

[9] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics. Cambridge University
Press, 1998.

[10] J. W. Weibull, Evolutionary Game Theory. MIT Press, 1997.

[11] J. Hofbauer and K. Sigmund, “Evolutionary Game Dynamics,” Bulletin of the American Mathematical
Society, vol. 40, no. 4, pp. 479–519, 2003.

9

https://doi.org/10.1038/s41540-019-0116-1


[12] J. Alboszta, J. Mie et al., “Stability of evolutionarily stable strategies in discrete replicator dynamics
with time delay,” Journal of theoretical biology, vol. 231, no. 2, pp. 175–179, 2004.

[13] D. F. Toupo and S. H. Strogatz, “Nonlinear dynamics of the rock-paper-scissors game with mutations,”
Physical Review E, vol. 91, no. 5, p. 052907, 2015.

[14] D. Friedman and B. Sinervo, Evolutionary games in natural, social, and virtual worlds. Oxford Uni-
versity Press, 2016.

[15] G. B. Ermentrout, C. Griffin, and A. Belmonte, “Transition matrix model for evolutionary
game dynamics,” Phys. Rev. E, vol. 93, p. 032138, Mar 2016. [Online]. Available: http:
//link.aps.org/doi/10.1103/PhysRevE.93.032138

[16] C. Griffin and A. Belmonte, “Cyclic public goods games: Compensated coexistence among mutual
cheaters stabilized by optimized penalty taxation,” Physical Review E, vol. 95, no. 5, p. 052309, 2017.

[17] J. Tanimoto, Fundamentals of evolutionary game theory and its applications. Springer, 2015.

[18] ——, Evolutionary Games With Sociophysics. Springer, 2019.
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