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Abstract. We study “holomorphic quadratic differentials” on graphs. We relate
them to the reactive power in an LC circuit, and also to the chromatic polynomial
of a graph. Specifically, we show that the chromatic polynomial χ of a graph G, at
negative integer values, can be evaluated as the degree of a certain rational mapping,
arising from the defining equations for a holomorphic quadratic differential. This
allows us to give an explicit integral expression for χ(−k).

1. Introduction

Let G = (V,E) be a connected graph together with a specified set Vb ⊂ V of boundary
vertices. We let Vint = V − Vb be the interior vertices. We assume that every edge has
at least one interior vertex.

Definition 1. A holomorphic quadratic differential (HQD) on a graph G = (V,E) is
the data consisting of: a function q : E → R defined on unoriented edges, i.e. quv = qvu,
and a mapping (called realization) z : V → C to the complex plane, satisfying for every
interior vertex v ∑

u

quv = 0(1) ∑
u

quv
zu − zv

= 0.(2)

We sometimes drop condition (1). While condition (1) is important for geometric
applications, since it implies a certain Möbius invariance (see Section 2.1 below), it
is less relevant in some applications, notably for the applications to circuits. Since
both cases with and without (1) have interesting applications, we will consider both
possibilities. (This issue is further discussed in Section 2.1 below.)

As examples of geometric applications, in the case of a surface graph, HQDs (satis-
fying both (1) and (2)) appear in the study of discrete minimal surfaces (see [9] and
Section 2.2). In the case of complete graphs, they arise from energy minimization for
points on the sphere (see Section 2.4).

There are several applications of HQDs to circuits. For example, the equation (2)
was studied in [1] in the context of the Dirichlet problem on graphs with fixed edge
energies. Another application is to LC circuits (circuits with inductors and capacitors):
we show in Section 4 that q has a concrete physical interpretation as the reactive power
in an LC circuit associated to the graph.

Key words and phrases. Laplacian, LCR circuit, chromatic polynomial, quadratic differential.
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Even though the definition of HQD involves both the function q and realization z,
we refer to q as “the holomorphic quadratic differential”, since in many applications
the realization z is given a priori. In this paper however we are mainly interested in
the reverse problem, regarding existence and enumeration of realizations z for a given
q.

Problem 2. Given a function q : E → R satisfying (1), and fixed boundary values
z : Vb → C, can we find a realization z : V → C satisfying (2) and how many such
realizations are there?

This problem is related to the entropic discriminant studied by Sanyal, Sturmfels
and Vinzant [10]. In the case where q is positive everywhere (and thus failing (1)),
their result showed that the number of realizations z is equal to the Möbius invariant
of an associated matroid.

In Section 5 we show, under a genericity assumption on q and for certain special
boundary conditions, that the number of solutions to Problem 2 is precisely |χG(−k)|
where χG is the chromatic polynomial of G. This gives a novel way to compute χG(−k)
as the number of solutions over C to a system of rational equations. From work in [1]
it also shows that |χG(−k)| enumerates a certain set of acyclic orientations of a related
graph. This enumeration is closely related to the one given by Stanley in [11], who
also enumerated χG(−k) with a set of orientation/coloring pairs. A bijection is given
below.

We give an explicit integral formula for χG(−k) in Theorem 8 below. Computing
χG(k) is generally #P-complete; for k ≥ 3, even approximating χG(k) to within a
constant factor (in polynomial time) is known to be NP-hard [6]. In principle one can
approximate χG at negative integer values using our integral formula (12) which has
positive integrand. However since the integrand is oscillatory it is not clear how quickly
one can approximate this integral for general graphs.

2. Background

The term “holomorphic quadratic differential” in the continuous setting is a tool used
in Teichmüller theory; it is an object on a Riemann surface which in a local complex
coordinate z has the form φ(z)dz2. Such differentials define the cotangent space to the
Teichmüller space (or to the moduli space) of a Riemann surface. As such one can
think of a holomorphic quadratic differential as an infinitesimal change in conformal
structure.

In the discrete setting, HQDs on surface graphs were introduced in [9]. For a trian-
gulated disk in the plane, it was shown there that there is a one-to-one correspondence
between holomorphic quadratic differentials, infinitesimal deformations of circle pack-
ings and discrete minimal surfaces.

2.1. Möbius invariance. Given a realization (zv) of G with HQD (quv), and a Möbius

transformation φ : Ĉ → Ĉ, the tuple (φ(zv))v∈V is also a realization with the same
HQD. To see this, note that it is true when φ(z) = az + b is affine, so it suffices to
prove when φ(z) = 1/z (since every Möbius transformation is a composition of affine
transformations and inversions).
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However when φ(z) = 1/z we can write∑
u

quv
φ(zu)− φ(zv)

= −zv
∑
u

quvzu
zu − zv

= −zv
∑
u

quv(zu − zv + zv)

zu − zv

= −zv

(∑
u

quv + zv
∑
u

quv
zu − zv

)
= 0.

As a special case, suppose G has a boundary vertex v0 attached to every interior
vertex, with value z(v0) = z0 in some realization. Compose this realization with a
Möbius transformation taking z0 to ∞. Then we obtain a realization of the smaller
graph G \ {v0} satisfying (2), but without the condition (1). Conversely let q be an
arbitrary function on the edges of G \ {v0} and find a realization of G \ {v0} satisfying
(2). Then on G defining quv0 for each u so that (1) is satisfied, we find a realization of
G with z0 =∞.

2.2. Surface graphs. In the case where G is a cell decomposition of a surface, Problem
2 is equivalent to finding a polyhedral surface in space (with combinatorics dual to G)
with prescribed curvature on edges

quv = `uv tan
αuv
2

where ` and α denote edge lengths and dihedral angles, respectively. Indeed, the dihe-
dral angles of such a surface are determined by the face normals, whose stereographic
projection yields a realization z in the plane satisfying (2). The condition

∑
v quv = 0

indicates that the “discrete mean curvature” on each face vanishes and thus the poly-
hedral surface is a discrete minimal surface [8].

2.3. HQDs with a given realization. Note that not every realization (zv)v∈V of a
graph possesses a holomorphic quadratic differential q. For a fixed realization (zv),
finding a holomorphic quadratic differential (quv) involves solving a system of linear
equations with E unknowns and 3Vint constraints, and E − 3Vint can be positive or
negative. Even when it is negative, however, there may be nontrivial solutions. For
example, realizations of the Z2-lattice equipped with q = 1 on horizontal and q = −1
on vertical edges include orthogonal circle patterns, see [3].

2.4. Complete graphs. Although we focus on generic HQDs and realizations z in
the complex plane in Section 4 and 5, it should be pointed out that realizations in Rd

for d > 2 are also interesting.

Problem 2 (extension): Given a function q : E → R satisfying (1) and fixed bound-
ary values f : Vb → Rd ∪ {∞}, can we find a realization f : V → Rd ∪ {∞} satisfying∑

u

quv
|fu − fv|2

(fu − fv) = 0 ∀v ∈ Vint(3)
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and how many such realizations are there?

Such HQDs can arise from energy-minimizing point configurations on the sphere.
Imagine that a set of particles are distributed on the sphere and interact with each
other via a pairwise potential. What configurations minimize the total energy? Such
problems appear in many optimization problems in the physical and biological sciences.
We use the logarithmic energy.
Question: Find a configuration of N points fi ∈ Sd−1 ⊂ Rd that minimizes the
logarithmic energy

(4) Elog(f1, f2, . . . , fN) = −
∑
u6=v

log |fu − fv|.

Even when d = 3, the exact determination of the set of optimal configurations is
known only for a handful of cases, since the number of critical configurations grows
exponentially with the number of particles N . However, critical configurations on the
sphere correspond exactly to realizations that carry a specific HQD:

Proposition 3. Let G = (V,E) be the graph obtained by connecting all the vertices of
the complete graph KN to two boundary vertices v0, v∞. A configuration f1, f2, . . . , fN ∈
R3 is a critical configuration of the logarithmic energy on a sphere centered at the origin
if and only if the configuration together with boundary vertices f0 := (0, 0, 0), f∞ :=∞
has a holomorphic quadratic differential of the form

q =

{
1 on E(KN)

−(N − 1)/2 on E(G)− E(KN)

Proof. Suppose f1, f2 . . . fN are points on a sphere that form a critical configuration
for the logarithmic energy. Then by the method of Lagrange multipliers, we have for
each v = 1, 2, . . . N

λv
fv
|fv|2

=
∑
u6=v

fu − fv
|fu − fv|2

for some λv ∈ R and the summation is over all possible values u in {1, 2, . . . , N}.
Taking the dot product with fv on both sides, we have λv = −(N − 1)/2. Thus the
configuration of points together with f0 and f∞ carries the HQD as described.

Conversely, suppose f1, f2 . . . fN ∈ R3 together with boundary vertices f0, f∞ carry
the HQD as described. We need to show that f1, f2 . . . fN ∈ R3 lies on a sphere centered
at the origin f0 = (0, 0, 0). To see this, for each v we have

0 = −N − 1

2

f0 − fv
|f0 − fv|2

+
∑
u6=v

fu − fv
|fu − fv|2

.

Taking the dot product with fv, we deduce for each v

0 =
∑
u6=v

|fu|2 − |fv|2

|fu − fv|2
.
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This implies that |f1| = |f2| = · · · = |fN |: otherwise there would be a vertex fv having
the maximal distance from the origin, and the sum on the right hand would be strictly
negative, a contradiction. �

See [5] for more details on point configurations under the logarithmic energy.

3. Preliminaries

3.1. Space of q-values on a graph.

Lemma 4. When G has a boundary and is connected, the space of solutions to (1) is
of dimension |E| − |Vint|.

Proof. In fact we prove slightly more, that the conclusion holds even if G is discon-
nected, but each vertex is connected to some boundary vertex. The condition (1) says
that q is in the kernel of the incidence matrix M : RE → RVint . So it suffices to show
that M has full rank |Vint|, that is, that M is surjective. Given ~v ∈ RVint let us find
q ∈ RE with Mq = ~v. It suffices to take q with support on a wired spanning tree T
of G, that is a spanning forest every component of which contains a unique boundary
vertex (equivalently, a spanning tree of the graph in which all boundary vertices of G
have been identified). Now proceed by induction on the number of internal vertices: if
T has an internal leaf i, then q on its edge is determined by vi; remove this leaf and
vertex and finish by induction. �

3.2. Graph reductions. We have assumed that G is a simple graph; if G has self-loops
then equation (2) is not defined.

We can allow multiple edges. However if G has multiple edges then a realization of
G gives a realization of the graph G ′ in which multiple edges have been replaced by
single edges, with the q-value on the new edge being the sum of the q-values on the
multiple edges.

Suppose G has an interior vertex v of degree 2, with neighbors u,w. Consider a
realization (q, z). Then at v we have (when quv 6= 0)

quv
zv − zu

− quv
zv − zw

= 0,

or zu = zw. In particular a realization of G is also a realization of G ′, the graph in which
edge uv and wv have been contracted (and the values quv, qwv have been discarded). It
is therefore convenient to assume that interior vertices of G have degree at least 3.

3.3. Example with a family of realizations. When G is bipartite, and all boundary
vertices are on the same side of the bipartition (say, all boundary vertices are white),
then Problem 2 for certain nongeneric q can have a one or more parameter family of
solutions.

Consider for example the graph of Figure 1, with boundary vertices v1, v2, v3 (marked
1, 2, 3 in the diagram). Suppose that q satisfies (1) at all vertices including the boundary
vertices. Then we claim that for fixed boundary values z1, z2, z3, equations (2) have a
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Figure 1. A graph with a continuous family of realizations.

solution in which z6 = z7 = z8 = b for any value of b 6= z1, z2, z3. The equations at v4

and v5 drop out when z6 = z7 = z8, and the equations at v6, v7, v8 are

q64

b− z4

+
q65

b− z5

+
q61

b− z1

+
q62

b− z2

+
q63

b− z3

= 0(5)

q74

b− z4

+
q75

b− z5

+
q71

b− z1

+
q72

b− z2

+
q73

b− z3

= 0(6)

q84

b− z4

+
q85

b− z5

+
q81

b− z1

+
q82

b− z2

+
q83

b− z3

= 0(7)

and the last is a consequence of the first two (since q6j+q7j+q8j = 0 for j = 1, 2, 3, 4, 5).
Given b we can solve (5) and (6) for z4, z5 on condition that q64q75 − q65q74 6= 0, since
they are linear in 1

b−z4 ,
1

b−z5 .

4. LC circuits

We show in this section that a holomorphic quadratic differential (satisfying (2) but
not necessarily (1)) can be regarded as the reactive power in an AC circuit consisting
of inductors and capacitors, where the zv’s represent the complex voltages.

For information on RLC circuits see [7]. An RLC circuit is an electric circuit con-
sisting of inductors (represented by an L value, or inductance value), capacitors (rep-
resented by a C value, or capacitance value) and resistors (represented by an R value,
or resistance value). The L,C,R values are positive real numbers. Mathematically an
RLC circuit is a graph with boundary, on each edge of which we have some subset
of an inductor, a capacitor, or a resistor, connected in series. For such a ciruit we
consider a certain driving voltage applied at the boundary vertices. This voltage is
a real function depending on time, and in the present case will be a sinusoidal wave
with a common frequency ω but various phases at different boundary vertices (the AC
in “AC circuit” means alternating current, by which we mean there is a sinusoidal
driving voltage of this type). This driving voltage will induce voltages at each interior
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vertex, and currents on edges, according to the usual Kirchhoff circuit laws which are
explained below.

An LC circuit is an RLC circuit without any resistors. However to explain the
concept of real power and reactive power, we assume for the moment that there are
resistors in the circuit as well.

We consider a circuit with the combinatorics of the graph G = (V,E). The voltages
{U(t)} at the boundary vertices are imposed and satisfy:

Uv(t) = Re(uve
iωt)

for some u : Vb → C and fixed real ω. Let us discuss how to compute the voltages at
the interior vertices; these will have the same form for some function u : V → C.

Under a sinusoidal waveform, associated to a capacitor with capacitance C > 0, an
inductor with inductance L > 0 and a resistor R > 0 is an impedance

Zcapacitor =
1

iωC
Zinductor =iωL

Zresistor =R.

The impedance on an edge is by definition the sum of the impedances of the indi-
vidual elements. We thus have Z : E → C defined on unoriented edges. Note that if
no resistor is present, Z is pure imaginary.

We define at each vertex the complex voltage U := ueiωt and U = Re(U). Ohm’s
law relates complex voltage U, complex current I on edges, and impedance via

Uv −Uw = I(evw)Zvw

and Kirchhoff’s current law say that at each interior vertex v,∑
w∼v

I(evw) = 0,

that is, there is no current lost at v. Combining these two laws, we see that U must
satisfy ∆U = 0 at interior vertices for the associated Laplacian operator ∆ : CV → CV

defined by

(8) (∆U)v =
∑
w∼v

1

Zvw
(Uv −Uw).

To solve for U for given boundary values, we need to be able to invert ∆′, where ∆′

is ∆ restricted to the internal vertices (for the natural basis, ∆′ is the submatrix of
∆ indexed by internal vertices). Typically ∆′ is nonsingular: a frequency ω such that
det ∆′ = 0 is called a resonant frequency. The set of resonant frequencies is finite and
nonempty if there are no resistances, see Theorem 5 below.

For nonresonant frequencies, the function U exists and is harmonic at interior ver-
tices, that is, ∆U(v) = 0 there. The real current through the oriented edge euv is

I(evw) = Re(I(evw)) = Re(eiωt(uw − uv)/Zvw).
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We have

Uw − Uv = Re(eiωt(uw − uv)) = |uw − uv| cos(ωt+ φ)(9)

I(evw) = Re(eiωt(uw − uv)/Zvw) =
|uw − uv|
|Zvw|

cos(ωt+ φ+ φ̃)(10)

where Zvw = |Zvw|e−iφ̃. We now calculate the instantaneous power, by multiplying (9)
and (10):

Pvw(t) := (Uw−Uv)I(evw) =
|uw − uv|2

2|Zvw|

(
cos(φ̃)(1+cos(2ωt+2φ))−sin φ̃ sin(2ωt+2φ)

)
.

In terms of complex power

Svw := (Uw −Uv)I(evw) =
|uw − uv|2

|Zvw|
(cos φ̃− i sin φ̃),

the instantaneous power can be written as

Pvw(t) =
1

2
(ReSvw(1 + cos(2ωt+ 2φ)) + ImSvw sin(2ωt+ 2φ)).

The first part of this equation

1

2
ReSvw(1 + cos(2ωt+ 2φ))

is non-negative and regarded as power dissipated in resistors. In fact if the edge consists
of resistors only, it is the same as the instantaneous power since Im S = 0. In general,
the average power over a period is 1

2
ReSvw, which is called real power.

On the other hand, the second part of the instantaneous power

1

2
ImSvw sin(2ωt+ 2φ)

does not contribute any energy over a period. If the edge does not contain any resistors,
then this term is exactly the instantaneous power as Re Svw = 0. The quantity ImSvw
is called the reactive power.

After this explanation of the physical meaning, we can now go back to our original
setting where there are no resistors in the circuit and hence no energy loss. In this case
the complex power is purely imaginary

Svw = (Uw −Uv)I(evw) = |uw − uv|2/Zvw =: iqvw

where q : E → R and qvw = qwv. Kirchhoff’s current law implies that for every interior
vertex v

0 =
∑
w

I(evw) =
∑
w

− iqvw
uw − uv

eiωt

which is equivalent to

0 =
∑
w

qvw
uw − uv

.
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On the other hand, the impedance is

Zvw = −|uw − uv|
2

iqvw

and hence the Laplacian operator (8) can be written in terms of the complex voltage
u and q

(11) (∆f)v =
∑
w∼v

1

Zvw
(fv − fw) = −i

∑
w∼v

qvw
|uw − uv|2

(fv − fw).

Given an HQD satisfying (2) (but not necessarily (1)) equation (11) (with u∗ there
equal to z∗) is a naturally associated Laplacian-type operator. In this case equation
(2) says that z is a harmonic function, that is ∆(z)(v) = 0 for internal vertices v.
By analogy with the usual Laplacian we define ce = −iquv

|zu−zv |2 to be the conductance,

Iuv = −iquv
z̄u−z̄v to be the current, and quv to be the energy associated to this function.

Equation (2) says there is no current lost at an internal vertex.
In standard potential theory the conductances are positive real, so the above should

be considered as only an analogy with the real case.

Theorem 5. In an LC circuit in which not all wired spanning trees have the same
number of capacitors, the set of resonant frequencies is finite and nonempty.

Proof. This argument was provided to us by Robin Pemantle. Recall that a multivari-
ate real polynomial p(z1, . . . , zn) is stable if p(z1, . . . , zn) 6= 0 whenever Im(zi) > 0 for
each i. See [12] for background on stable polynomials. Stability is preserved under
certain operations: setting some variables to be real constants; replacing a variable zi
by czi for c > 0; setting some variables equal to each other.

On a finite graph G with variables ze on edges, let Z = Z({ze}) be the weighted sum
of wired spanning trees; it is a homogeneous stable polynomial in the ze, see [4, Prop.
2.4]: in fact this is one of the canonical examples of multivariate stable polynomials.
Moreover the Matrix-Tree Theorem [2] shows that Z = det ∆′ where ∆′ is the Laplacian
matrix of G, restricted to the internal vertices, with conductances ze on edges.

Now suppose G is an LC circuit. For those edges e with inductors, replace each ze
by 1/Le where Le is the inductance, and for those edges e with capacitors, replace
ze with zeCe where Ce is the capacitance. These operations preserve stability since
Ce, Le > 0. Now set all remaining factors of ze to a single value z. This also preserves
stability. The new one-variable polynomial of z, Z̃(z), has only real roots, by stability
(and the fact that it has real coefficients). Moreover these roots must be negative since
all coefficients are positive. By our hypothesis that not all spanning trees have the
same number of inductors, Z̃ is not a monomial in z, so has at least one negative root.
Now replace z with −ω2, and divide by (iω)n where n is the degree. This modified
(Laurent) polynomial Z̃(−ω2)/(iω)n is the determinant of the Laplacian ∆′ associated
to the HQD (see (8)), and thus its zeros are precisely the resonant frequencies. �

Question. Under what general circumstances will it be the case that (1) holds (at
internal vertices) as well? Is there a “physical” meaning for such a circuit?
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5. Counting realizations

5.1. Compatible orientations. For a graph G with boundary Vb and a function
z : Vb → R, a compatible orientation is an acyclic orientation of G, with no internal
sources or sinks, and with no oriented path from a boundary vertex to another boundary
vertex of higher or equal u-value.

In [1] it was shown that the number of compatible orientations for a graph with
distinct boundary values does not depend on the boundary values themselves (or even
their relative order). Moreover there is a bijection between the set of compatible
orientations and the number of solutions to (2) under the assumption q > 0: here is a
statement of the main result of that paper.

Theorem 6 ([1]). Let G be a graph with boundary, with fixed distinct real boundary
values zvi, and q : E → R>0. Then any solution {zv}v∈Vint

to the system (2) is real, and
there is a bijection between solutions and compatible orientations, where the orientation
of an edge uv is sign(zv − zu).

When the boundary values are distinct complex numbers, rather than real numbers,
the number of solutions is still equal to the number of compatible orientations, by
Zariski density, but there is no obvious bijection in this case.

5.2. Chromatic polynomial. Recall that the chromatic polynomial χG(x) of a graph
G is a polynomial with the property that for nonnegative integer x, χG(x) is the number
of proper colorings of G with x colors (a proper coloring is one with no two adjacent
vertices having the same color).

Theorem 7. Let Gk+2 be obtained from a graph G without boundary by adding k + 2
additional vertices v0, v1, . . . , vk+1, each attached to all vertices of G, and playing the
role of the boundary vertices of Gk+2. Fix distinct values zi ∈ C at vi. Then the
number NGk+2

of realizations z for fixed generic q satisfying (1) and (2) is NGk+2
=

(−1)|Vint|χ(−k) where χ is the chromatic polynomial of G.

In particular when the boundary has size k + 2 = 2 there are no realizations.

Proof. As discussed at the end of Section 2.1, we send the boundary value zk+1 to ∞
using a Möbius transformation, and assume that q is positive on the remaining graph
Gk+1, which now has boundary of size k+ 1. Since the number of solutions to (2) does
not depend on the exact boundary values z0, . . . , zk, as long as they vary in a Zariski
dense subset, we may assume that the remaining boundary values z0, . . . , zk are real
and satisfy z0 < z1 < · · · < zk.

By Theorem 6, the number of realizations is equal to the number of compatible
orientations of Gk+1.

Stanley showed in [11] that for a graph G, |χ(−k)| counts the number of pairs (σ,C)
where C : V → {1, 2, . . . k} is a (not necessarily proper) coloring of G with k colors and
σ is an acyclic orientation of G which is compatible with C in the sense that an edge uv
is directed from u to v if C(u) > C(v) (for the prescribed total order on the colors).
Edges uv for which C(u) = C(v) can have either orientation, subject to acyclicity.
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Here is a bijection between such pairs (σ,C) and compatible orientations of Gk+1; we
thank the referee for this argument. Let τ be a compatible orientation of Gk+1. Note
that v0 is a sink and the restriction of τ to G is acyclic. Let V1 be those vertices of G
which can be reached from v1 going positively along τ . Let V2 be those vertices of G\V1

which can be reached from v2 going positively along τ , and so on for V3, . . . , Vk. For
1 ≤ i ≤ k, color vertices in Vi with the i-th color. This yields a coloring C : V (G) →
{1, 2, . . . k} which is compatible with σ in the above sense. This gives a pair (σ,C)
where σ is just τ restricted to G. To get the inverse map from such pairs to compatible
orientations, orient the remaining edges so that edges at vi are oriented away from vi
if and only if their other endpoint is in Vi. �

5.3. Integral formulation. We construct an integral whose value is |χG(−k)| as fol-
lows. Construct the graph Gk+1 as above, and assign it distinct boundary values
x0, . . . , xk ∈ R. For any choice of conductances (c1, . . . , cm) on the edges of Gk+1,
let h be the harmonic extension, that is, the solution to the Dirichlet problem with
boundary values x0, . . . , xk. Let Ψ : Rm → Rm be the map from tuples of edge conduc-
tances (c1, . . . , cm) of Gk+1 to tuples of energies (q1, . . . , qm) for the harmonic extension:
here quv = cuv(h(u)− h(v))2. In [1] it is shown that the Jacobian of Ψ is ±

∏
e
qe
ce
, and

the degree of Ψ as a map on projective space is the number of compatible orientations.
We can compute the degree of Ψ by integrating its Jacobian.

Because Ψ is homogeneous and Φ−1((0,∞)E) ⊂ (0,∞)E we can simply integrate Ψ̃
over the simplex ∆m of (positive) conductances whose sum is 1, where Ψ̃ = π ◦Ψ is Ψ
projected back to the unit simplex. Since the Jacobian of π is Z−m where Z =

∑
e qe,

the Jacobian of Ψ̃ is
∏

e=uv
(h(u)−h(v))2

Z
. We have proved:

Theorem 8. The chromatic polynomial at −k satisfies

(12) |χG(−k)| = 1

|∆m|

∫
∆m

∏
e=uv

(h(u)− h(v))2

Z
dvol

where the integral is over the m-simplex of conductances on Gk normalized to sum
to 1, h is the harmonic extension with the given conductances and boundary values
x0, . . . , xk, Z =

∑
e qe is the total Dirichlet energy of h and dvol is the Lebesgue measure

on ∆m.

As an example, let G consist of a single vertex v. Then G3 is a star with three
boundary vertices v0, v1, v2. Assign them boundary values 0, 1, 2 respectively and let
their corresponding edge conductances be c0, c1, c2 which sum to 1. The harmonic
extension h then has h(v) = c1 + 2c2. The above integral is

|χG(−2)| = 2

∫ 1

0

∫ 1−c1

0

h(v)2(h(v)− 1)2(h(v)− 2)2

(c0h(v)2 + c1(h(v)− 1)2 + c2(h(v)− 2)2)3
dc2 dc1

= 2

∫ 1

0

∫ 1−c1

0

(2c2 + c1)2(2c2 + c1 − 1)2(2c2 + c1 − 2)2

(c1 − c2
1 + 4c2 − 4c1c2 − 4c2

2)3
dc2 dc1

= 2.
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The value of the integral does not depend on the precise boundary values 0, 1, 2 we
used; can we further simplify this integral by taking particular boundary values, for
example when the boundary values are highly skewed?
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